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Widespread but heterogeneous responses 
of Andean forests to climate change
Belén Fadrique1, Selene Báez2,3, Álvaro Duque4, Agustina Malizia5, Cecilia Blundo5, Julieta Carilla5, Oriana Osinaga-Acosta5, 
Lucio Malizia6, Miles Silman7, William Farfán-Ríos7,8, Yadvinder Malhi9, Kenneth R. Young10, Francisco Cuesta C.3,11,  
Jurgen Homeier12, Manuel Peralvo3, Esteban Pinto3, Oswaldo Jadan13, Nikolay Aguirre14, Zhofre Aguirre14 & Kenneth J. Feeley1,15*

Global warming is forcing many species to shift their distributions upward, causing consequent changes in the 
compositions of species that occur at specific locations. This prediction remains largely untested for tropical trees. Here 
we show, using a database of nearly 200 Andean forest plot inventories spread across more than 33.5° latitude (from 26.8° S 
to 7.1° N) and 3,000-m elevation (from 360 to 3,360 m above sea level), that tropical and subtropical tree communities 
are experiencing directional shifts in composition towards having greater relative abundances of species from lower, 
warmer elevations. Although this phenomenon of ‘thermophilization’ is widespread throughout the Andes, the rates 
of compositional change are not uniform across elevations. The observed heterogeneity in thermophilization rates is 
probably because of different warming rates and/or the presence of specialized tree communities at ecotones (that is, at 
the transitions between distinct habitats, such as at the timberline or at the base of the cloud forest). Understanding the 
factors that determine the directions and rates of compositional changes will enable us to better predict, and potentially 
mitigate, the effects of climate change on tropical forests.

As global temperatures rise, species are predicted to shift their geo-
graphical distributions towards cooler latitudes and elevations1. These 
‘species migrations’ (here referring to all modes of range changes, 
including expansions, contractions and shifts2,3) have been observed 
in many different species and systems2,4,5. However, the vast majority 
of studies that have investigated species migrations are from temperate 
or boreal systems, and little information is available about the responses 
of tropical and subtropical species—and in particular tropical plant 
species—to climate change2,6. This is despite the fact that tropical plants 
may be especially susceptible to climate change because of their narrow 
thermal niches7, and the fact that species migrations out of tropical 
lowlands can cause biotic attrition8 and losses of local biodiversity.

Species migrations of tropical plants
For tropical and subtropical plants, only a small set of studies have 
researched species migrations. The most direct approach to detect spe-
cies migrations is to quantify changes in the ranges of species over time, 
usually by tracking shifts in the mean or upper elevational range limits 
of species. For example, in the alpine Himalayas (>4,000 m above sea 
level, (m a.s.l.)), the upper range limits of nearly 90% of investigated 
plant species have risen since 18509. In another study, 58% of plant 
species studied in Taiwan shifted their ranges upwards over a 100-year 
period10. In Hawaii, 67% of the studied grass species increased their 
maximum elevation levels over a 42-year period11, and in Ecuador, 
88% of the studied alpine plant species expanded their upper range 
limits to higher elevations over a 200-year period12. Although these 
species-specific studies provide compelling evidence that many tropical  
and subtropical plant species are shifting their ranges upslope, the 

approach is of limited applicability because it requires accurate maps of 
the ranges of individual species, or range limits, at multiple times. Long-
term species-specific data are not available for the majority of tropical 
species. Indeed, even the current ranges of most tropical plant species 
remain unknown, making it impossible to test for temporal range shifts. 
For example, the Himalayan study included only 124 species and the 
Taiwanese study 24 species—small fractions of the total plant diversity 
in either of these areas. Thousands of other species from throughout 
the tropics and subtropics are similarly excluded from these types of 
studies because of the lack of accurate distribution data6,13.

Another approach that enables the integration of data that are 
more-readily available from more areas and for more species is to ana-
lyse changes in the taxonomic or functional composition of commu-
nities over time5. More specifically, a community temperature index 
(CTI) can be used to characterize communities based on the relative 
abundances of species with different thermal affiliations, or optima, 
and to test the prediction that species migrations should cause direc-
tional changes in composition over time14. For example, upward species 
migrations will result in greater relative abundances of more-thermo-
philic species from relatively warmer climates at any given elevation. 
In other words, upward species migrations should cause increases in 
the CTI of communities—a phenomenon referred to as ‘thermophil-
ization’. Changes in the CTI and thermophilization have been used as 
evidence of latitudinal migrations of bird and butterfly species15, as well 
as temperate lowland16 and alpine plant species17. Changes in CTI, or 
other analogous indices, have also been calculated from fossil pollen 
records to estimate rates of plant species migrations in response to past 
climate change18.
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Tracking changes in the CTI is an especially useful tool for analysing 
the effects of climate change in hyperdiverse systems, such as tropical 
forests, because it does not require precise information about the range 
limits of individual species and enables the integration of census data 
from multiple locations and years. Several recent studies have used 
the CTI to characterize changes in the composition of tree species in 
tropical montane forests owing to contemporary species migrations. 
These studies from Peru, Costa Rica and Colombia found that focal tree 
communities mostly show increases in their CTI over time19–21. The 
thermophilization of these forests was hypothesized to be due primarily 
to increased mortality of the more heat-sensitive (that is, less-thermo-
philic) tree species as temperatures increased21.

The above studies indicate that climate change is causing rapid shifts 
in the distributions of many tropical trees, which in turn is leading to 
directional changes in forest composition. However, important ques-
tions remain about the generalizability of these results. Specifically, it 
remains unclear how widespread and uniform the process of thermo
philization is in tropical forests and what factors cause variation in 
thermophilization rates between different communities. In this study, 
we address these questions in the Tropical Andes Biodiversity Hotspot, 
from Colombia to Argentina in South America. We assess variability in 
rates of thermophilization between sites to gain insights into the factors 
that may be slowing, or preventing, species migrations in some areas.

Thermophilization of Andean forests
To examine temporal changes in the composition of tropical tree species 
at a large spatial scale, we collated a database of forest censuses from 186 
inventory plots spread throughout the tropical and subtropical Andes 
Mountains of Colombia, Ecuador, Peru and northern Argentina22 
(Fig. 1). The plots span an elevation gradient of more than 3,000 m, 
corresponding to a gradient of approximately 14 °C in mean annual 

temperature (MAT). A total of 120 plant families, 528 genera and 2,024 
tree species (including palms, tree ferns and lianas) occur in the study 
plots and were included in our analysis (further information about the 
plots is provided in Table 1 and in Supplementary Table 1). Using this 
dataset of tree-species composition in Andean forests, we analysed the 
relationships between the CTI and the environmental temperature 
and elevation of the plots. We then tested for thermophilization—that 
is, increases in CTI over time—in the plots that had been censused 
repeatedly (n = 64). We also applied a new analytical approach to the 
combined dataset of all plots (n = 186) to determine how rates of ther-
mophilization relate to elevation and temperature across the Andes.

To look at patterns of species composition and compositional change, 
we first calculated the CTI (°C) for each plot during each census. CTI 
is the mean of the thermal optima of all species that were found in a 
plot weighted by their relative abundances. The thermal optimum of 
each species was calculated as the mean of the MATs23 at the locations 
where each species are known to occur based on collection records 
obtained through the Global Biodiversity Information Facility (GBIF; 
https://www.gbif.org/).

We next analysed the relationship between the CTI and the MAT 
of the plots to assess the role of regional temperatures in structuring 
community assembly. The average CTI of the plots ranged from 12.2 to 
23.8 °C and was strongly positively correlated with MAT (slope = 0.71, 
R = 0.92, P < 0.001; Extended Data Fig. 1a). This indicates that the 
functional composition (that is, the relative abundances of species 
with different thermal optima) of the plots is strongly determined by 
temperature. In other words, plots at similar regional temperatures 
have similar CTI because of similar relative abundances of more- or 
less-thermophilic species, even if the plots are separated by as much 
as 4,000 km (for example, plots in Argentina versus Colombia) and 
have little to no taxonomic overlap in species. Given the strength of 

Fig. 1 | Map of Andean forest plot locations. The map shows the 
locations of the 186 Andean forest plots that are included in the analyses. 
Red points indicate plots with positive TRplot (which is the annualized 

change in the CTI of a plot); blue points are plots with negative TRplot; 
black points are plots with only one census and for which it was therefore 
not possible to calculate the TRplot.
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MAT in determining the functional composition of Andean forests, 
global warming should manifest as temporal increases in the CTI of 
the study plots.

To test for thermophilization, we first looked at changes in CTI over 
time in all plots that had been censused more than once. We calculated 
the annualized rate of change in the CTI of each plot in all possible 
census intervals (n = 176 census intervals, Fig. 2) and used the rate 
of change in CTI between the initial and final censuses as the best 
estimate of the thermophilization rate of each plot (TRplot). Of the 64 
plots with repeated census data, 46 (72%) increased in CTI (that is, 
had positive thermophilization rates), indicative of increasing relative 
abundances of species from relatively warmer climates. The number of 
plots with positive TRplot is more than expected under the null expec-
tation of equal proportions of plots with positive and negative TRplot 
values that would occur due to random fluctuations in composition 
over time (binomial probability <0.001). Of the 23 plots that were cen-
sused repeatedly, 43% consistently increased in CTI and had positive 
TRplot over all intervals. By contrast, only one of the plots (4%) had 
negative TRplot in all intervals. The mean thermophilization rate meas-
ured across all census intervals was 0.0066 °C per year (95% confidence  
interval = 0.004– 0.009 °C per year) (see Methods and Extended Data 
Fig. 2 for an alternative method of calculating TRplot).

To assess how thermophilization rates relate to plot temperatures 
and elevations, we integrated the compositional information from 
all 186 inventory plots, including those that had been censused only 
once, and calculated a running mean of CTI per MAT in overlapping 
five-year census intervals between 2000 and 2015 (Fig. 3a). We then 
calculated the thermophilization rate (TRMAT) as the slope of the linear 
least-square regression between its mean CTI and the midpoint of the 
respective time period (Fig. 3b). TRMAT was significantly positive at 
most MATs and elevations, consistent with the widespread thermo-
philization observed in the per-plot analysis described above. Using a 
linear mixed-effect model of CTI versus year with plot identity included 
as a random effect (n = 283), we estimated that the mean TRMAT was 
0.003 °C per year (95% confidence interval = 0.002–0.004 °C per year). 
The difference between the mean TRMAT and TRplot is due to the inclu-
sion of plots with single censuses and the fact that TRMAT incorporates 
temporal changes in the CTI both within and between plots.

Ecotonal barriers to species migrations
Our results support the hypothesis that increasing temperatures are 
causing thermophilization of montane forests across much of the trop-
ical and subtropical Andes. Although thermophilization is widespread, 
we also find that the rates of thermophilization are heterogeneous 
throughout the MAT and elevation gradients. Specifically, thermo-
philization rates were positive on average, but TRMAT was negative or 
not significantly different from zero at the coldest and middle MATs 
(that is, at the highest and mid-elevations, respectively). This result 
mirrors patterns that have been observed within individual elevation 
gradients in Peru, Colombia and Costa Rica19–21; in all three of these 
gradients, the lowest thermophilization rates occurred at mid- and high 
elevations.

Although the tropical Andes have been identified as a ‘warming 
hotspot’24, some studies indicate that the warming rates vary between 
elevations25. As such, one possible explanation for the absence of sig-
nificant thermophilization at high and mid-elevations is that warming 
rates may be slower at these elevations. Indeed, when we compare TRplot 
to the estimated mean warming rates at each plot location (overall mean 

warming = +0.06 °C per year since 1990), we find that there is an over-
all positive correlation (R = 0.30, P < 0.01) and that TRplot is negative at 
six out of the seven sites at which temperatures decreased (Fig. 4). We 
also find a generally positive relationship between warming rates and 
TRMAT (Extended Data Fig. 3). Although these analyses suggest that 
differences in regional warming rates may be contributing to variation 
in thermophilization rates, the relationships are fairly weak and it is 
probable that other factors—as discussed below—are also important in 
determining rates of compositional change in Andean forests.

An alternative or additional factor that may be driving differences 
in thermophilization rates across elevations is the presence of several 
distinct ecotones along the slopes of the Andes; for example, the tran-
sition from montane rainforest to cloud forest (that is, the cloud base) 
at mid-elevations and the transition from closed-canopy forest to open 
alpine grasslands (that is, the timberline) at high elevations. Conditions 
at ecotones can be biotically and abiotically distinct from surround-
ing forests, potentially reducing establishment success of colonizers 
and favouring stability of incumbent communities. For example, the 
cloud-base ecotone represents an inflexion point in many environ-
mental variables such as precipitation, diurnal temperature range26, 
soil water content27 and light availability28. If the tree communities in 
and around ecotones are comprised predominantly of specialist species 
able to cope with the unique conditions that occur at these sites, then it 
may be harder for the composition to change, because any change will 
require the encroachment of non-specialized species. As one conceptual  
example, many high-elevation forests are dominated by just a single to few 
species of trees that are specifically adapted to the unique environmental  
conditions that occur near the timberline. Even if rising temperatures 
cause decreased reproduction, performance and/or increased mortality 
of these species (or even the complete loss of some species), changes 
in the CTI will be small because all of the remaining species will have 
similar thermal optima. In cases such as these, thermophilization can 
only occur if a species from lower elevations (that is, with higher ther-
mal optima) expands its range and recruits into the ecotonal forest. In 

Table 1 | Description of the Andean forest plot database
Countries Argentina Colombia Ecuador Peru Total

Number of plots 52 (48) 10 (10) 110 (6) 14 (14) 186 (78)

Total plot area in ha 55.84 10 16.72 14 96.56

Number of plots with 
multiple censuses

38 (34) 10 (10) 2 (2) 14 (14) 64 (60)

The number of 1-ha plots is shown in brackets.
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Fig. 2 | Thermophilization rates of repeatedly censused plots. TRplot 
and MAT values were calculated for the Andean forest plots with multiple 
censuses. n = 64. Triangular grey points represent the annual change 
in the CTI for each of the possible census intervals (TRinterval); coloured 
triangular points represent plots with only two censuses and therefore 
only one interval. Circular points represent the average annual change 
in the CTI over the complete study period for plots with more than two 
censuses (that is, the annualized difference between final and initial CTI). 
Positive and negative thermophilization rates are coloured red and blue, 
respectively. Circles with black centres indicate plots for which the CTI 
changed consistently in one direction (that is, positive or negative) across 
all intervals.
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support of this hypothesis, we find that (1) plots with negative ther-
mophilization rates have lower species richness than expected based 
on their MAT (Extended Data Fig. 4), (2) more-specialized commu-
nities have slower rates of thermophilization as indicated by a positive 
correlation between measures of intraspecific variation in the thermal 
optima of co-occurring species and the corresponding TRplot (Extended 
Data Fig. 5) and (3) the absolute abundance (basal area) of more-ther-
mophilic species (that is, with thermal optima higher than the CTI of 
the plot) remained stable or decreased in low- and mid-temperature 
plots, but generally increased in high-temperature plots (by contrast, the 
absolute abundance of less-thermophilic species with thermal optima 
below the CTI of the plot increased at mid-temperatures) (Extended 
Data Fig. 6). In other words, slow or negative thermophilization rates 
are associated with areas in which warming rates are slower, and/or with 
lower-diversity and more-specialized forests near ecotones in which 
there is little ingrowth or recruitment of more-thermophilic species.

In addition, variation in thermophilization rates can increase if the 
ranges of some species are limited by biotic interactions29, non-climatic  
factors (for example, topography or soil-nutrient composition) or 
climatic factors that do not change concomitantly with temperature 
(for example, cloud cover or water availability)30. For example, if water 
availability decreases with elevation, then changes in precipitation and 
rising temperatures could cause drought-sensitive species to migrate 
downslope31, resulting in negative TRplot estimates. Similarly, changes in 
other environmental constraints such as light exposure or the frequency 
of frost events can change in unexpected and nonlinear ways (for exam-
ple, owing to changes in cloud cover or ‘cloud lifting’), potentially 
leading to downward migrations of some species in some areas. For 
example, there is evidence that the upper range limits of some Andean 
tree species are set by cold night-time temperatures and frost events. 
Despite rising MATs, the frequency and magnitude of frost events is 
increasing in some areas; this could prevent upward migrations and 
potentially cause the downward migrations of some species32.

Finally, we cannot rule out the influence of idiosyncratic processes or 
events on community composition and thus thermophilization rates33—
especially given the relatively short duration of this study in relation 
to the lifespans of most trees. In particular, the two plots with the 
most-negative TRplot values may have been influenced by site-specific  
factors including increased understory recruitment due to reduced 

herbivory34 and high growth rates of less-thermophilic understory 
species during certain years35. For this study, we focused exclusively on 
the effects of rising temperatures on tree species composition, but mul-
tiple forces (both climatic and non-climatic) can undeniably affect the 
suitability of habitats for different species36 and, therefore, the CTI33; 
uncovering and integrating these other factors must be a priority of 
future studies.
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Fig. 3 | Thermophilization rates of Andean forest plots. a, The CTI 
and MAT values for all plot censuses are shown as points. n = 283. The 
lines indicate the mean CTI compared to MAT, calculated for overlapping 
five-year time periods from 2000 to 2015. b, The thermophilization rates 
for thermal bands (TRMAT; the annualized change in the mean CTI of 
all plots within a thermal band) was compared to MAT values. n = 283 
plot censuses, assigned to 28 thermal bands. The dashed line indicates 

the mean TRMAT and the coloured area indicates the 95% confidence 
interval of TRMAT with positive and negative values coloured red and blue, 
respectively. The black rectangle encompasses the approximate MATs 
encompassing cloud base in each country (Argentina, 1,000 m a.s.l.; 
Ecuador, 1,400 m a.s.l.; Colombia, 1,500 m a.s.l.; Peru, 1,600 m a.s.l.). 
Timberline occurs at approximately 5–7 °C MAT.
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Discussion
Our analyses indicate widespread thermophilization but with rates of 
compositional change that vary across elevation—potentially owing to 
differences in warming rates, the occurrence of ecotonal ‘roadblocks’ 
and/or the influence of factors other than temperature in setting the 
range limits of some species. Although we are confident that these find-
ings are robust, we acknowledge two limitations of this study. First, 
the data used in our analyses come from a single, albeit extremely 
important, region of the tropics—the Tropical Andes Biodiversity 
Hotspot37—and it remains uncertain how other tropical forests and 
ecosystems are responding to climate change. Although comparable 
studies are clearly needed for other tropical and subtropical regions, 
there is good reason to suspect that other forests are undergoing sim-
ilar changes in composition. As discussed above, studies from other 
parts of the tropics have all shown evidence of species migrations and 
thermophilization of plant communities9–12,19–21. Similarly, studies 
from various regions of the tropics have shown evidence of upward 
migration of animal species (for example, birds, insects and herpeto-
fauna) and communities38–40. Second, although the observed shifts in 
the composition of tropical and subtropical Andean forests towards 
having greater relative abundances of thermophilic species is consistent 
with upward species migrations, these data alone cannot be used to 
determine which species are migrating or the specific manner in which 
the ranges of individual species are changing over time (for example, by 
range expansion, contraction or shifts)2. To help to resolve these ques-
tions, species-specific analyses looking at population demographics and 
range dynamics are required. In addition, experimental studies will be 
crucial for determining the specific way(s) in which changes in different 
climatic factors are affecting individual species and the consequences 
for ecosystem processes and services41.

Despite these limitations, this study provides comprehensive evi-
dence that many tropical and subtropical forests are changing direc-
tionally in composition over time, most probably as a response to global 
warming. It is troubling to note that in all but a few plots, rates of com-
positional change are markedly slower than regional warming (Fig. 4). 
Indeed, given that global temperatures have been rising for over a cen-
tury, the ‘slow’ rates of compositional change that are observed here (on 
average 10 times slower than changes in regional MAT) suggest that 
many tropical tree species may already be occurring in sub-optimal 
conditions. The disequilibrium between rates of compositional and 
climate change42, together with potential ecotonal barriers to species 
migrations30, raises concerns regarding the future of tropical montane 
forests and the many important ecosystem services that they provide. 
Andean forests must be added to the growing list of ecosystems and 
species that lack the ability to quickly and cohesively respond to climate 
change15,16,43 and thus face high risk of extinction, biodiversity loss 
and functional collapse44. Modelling and conservation efforts must 
account for compositional lags and prepare for the likelihood that as 
global warming continues to accelerate, tropical forests will fall even 
further behind.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0715-9

Received: 17 November 2017; Accepted: 17 September 2018;  
Published online 14 November 2018.

	1.	 Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).
	2.	 Lenoir, J. & Svenning, J. C. Climate-related range shifts - a global 

multidimensional synthesis and new research directions. Ecography 38, 15–28 
(2015).

	3.	 Feeley, K. J., Rehm, E. M. & Machovina, B. The responses of tropical forest 
species to global climate change: acclimate, adapt, migrate, or go extinct? Front. 
Biogeogr. 4, 69–84 (2012).

	4.	 Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts 
of species associated with high levels of climate warming. Science 333, 
1024–1026 (2011).

	5.	 Steinbauer, M. J. et al. Accelerated increase in plant species richness  
on mountain summits is linked to warming. Nature 556, 231–234  
(2018).

	6.	 Feeley, K. J., Silman, M. R. & Duque, A. Where are the tropical plants? A call for 
better inclusion of tropical plants in studies investigating and predicting the 
effects of climate change. Front. Biogeogr. 7, 174–176 (2015).

	7.	 Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 
351, 1392–1393 (2016).

	8.	 Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global 
warming, elevational range shifts, and lowland biotic attrition in the wet tropics. 
Science 322, 258–261 (2008).

	9.	 Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational 
range shifts and increase in plant species richness in a Himalayan biodiversity 
epicentre. PLoS ONE 8, e57103 (2013).

	10.	 Jump, A. S., Huang, T.-J. & Chou, C.-H. Rapid altitudinal migration of mountain 
plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 
204–210 (2012).

	11.	 Angelo, C. L. & Daehler, C. C. Upward expansion of fire-adapted grasses 
along a warming tropical elevation gradient. Ecography 36, 551–559  
(2013).

	12.	 Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over 
two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 
(2015).

	13.	 Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution 
modelling requires more collections than previously thought. Divers. Distrib. 17, 
1132–1140 (2011).

	14.	 Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. 
Thermal biases and vulnerability to warming in the world’s marine fauna. 
Nature 528, 88–92 (2015).

	15.	 Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a 
continental scale. Nat. Clim. Change 2, 121–124 (2012).

	16.	 Bertrand, R. et al. Changes in plant community composition lag behind climate 
warming in lowland forests. Nature 479, 517–520 (2011).

	17.	 Gottfried, M. et al. Continent-wide response of mountain vegetation to climate 
change. Nat. Clim. Change 2, 111–115 (2012).

	18.	 Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest 
change in a biodiversity hot spot. Science 303, 827–829 (2004).

	19.	 Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 
(2011).

	20.	 Feeley, K. J., Hurtado, J., Saatchi, S., Silman, M. R. & Clark, D. B. Compositional 
shifts in Costa Rican forests due to climate-driven species migrations. Glob. 
Change Biol. 19, 3472–3480 (2013).

	21.	 Duque, A., Stevenson, P. R. & Feeley, K. J. Thermophilization of adult and 
juvenile tree communities in the northern tropical Andes. Proc. Natl Acad. Sci. 
USA 112, 10744–10749 (2015).

	22.	 Báez, S. et al. Large-scale patterns of turnover and basal area change in Andean 
forests. PLoS ONE 10, e0126594 (2015).

	23.	 Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface 
areas. Sci. Data 4, 170122 (2017).

	24.	 Russell, A. M., Gnanadesikan, A. & Zaitchik, B. Are the Central Andes mountains 
a warming hot spot? J. Clim. 30, 3589–3608 (2017).

	25.	 Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W. S. & Cáceres, B. 
Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. 
Atmos. 120, 3745–3757 (2015).

	26.	 Rapp, J. M. & Silman, M. R. Diurnal, seasonal, and altitudinal trends in 
microclimate across a tropical montane cloud forest. Clim. Res. 55, 17–32 
(2012).

	27.	 Palin, O. F. et al. Termite diversity along an Amazon–Andes elevation gradient, 
Peru. Biotropica 43, 100–107 (2011).

	28.	 Fyllas, N. M. et al. Solar radiation and functional traits explain the decline of 
forest primary productivity along a tropical elevation gradient. Ecol. Lett. 20, 
730–740 (2017).

	29.	 Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ 
responses to climate change. Nature 525, 515–518 (2015).

	30.	 Rehm, E. & Feeley, K. J. Many species risk mountain top extinction long before 
they reach the top. Front. Biogeogr. 8, e27788 (2016).

	31.	 Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & 
Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in 
plant species’ optimum elevations. Science 331, 324–327 (2011).

	32.	 Rehm, E. M. & Feeley, K. J. Freezing temperatures as a limit to forest recruitment 
above tropical Andean treelines. Ecology 96, 1856–1865 (2015).

	33.	 Bowler, D. & Böhning-Gaese, K. Improving the community-temperature index 
as a climate change indicator. PLoS ONE 12, e0184275 (2017).

	34.	 Malizia, A., Easdale, T. A. & Grau, H. R. Rapid structural and compositional 
change in an old-growth subtropical forest: using plant traits to identify 
probable drivers. PLoS ONE 8, e73546 (2013).

	35.	 Carilla, J. & Grau, R. Tendencias sucesionales de los bosques montanos 
subtropicales del noroeste argentino. Bosque (Valdivia) 32, 97–111 (2011).

	36.	 McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from 
discordant shifts in temperature and precipitation in a changing climate. Ecol. 
Lett. 14, 1236–1245 (2011).

	37.	 Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. 
Biodiversity hotspots for conservation priorities. Nature 403, 853–858 
(2000).

	38.	 Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism 
from warming and upslope displacement: a preliminary appraisal for the 
highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).

1 3  D ECE   M B ER   2 0 1 8  |  V O L  5 6 4  |  N A T U RE   |  2 1 1
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0715-9


ArticleRESEARCH

	39.	 Chen, I.-C. et al. Elevation increases in moth assemblages over 42 years on a 
tropical mountain. Proc. Natl Acad. Sci. USA 106, 1479–1483 (2009).

	40.	 Forero-Medina, G., Terborgh, J., Socolar, S. J. & Pimm, S. L. Elevational ranges of 
birds on a tropical montane gradient lag behind warming temperatures. PLoS 
ONE 6, e28535 (2011).

	41.	 Feeley, K. J. Moving forward with species distributions. Am. J. Bot. 102, 173–175 
(2015).

	42.	 Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future 
climate change. Am. J. Bot. 100, 1266–1286 (2013).

	43.	 Menéndez, R. et al. Species richness changes lag behind climate change. Proc. 
R. Soc. B 273, 1465–1470 (2006).

	44.	 Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. 
Nat. Commun. 7, 12643 (2016).

Acknowledgements We thank the many individuals and institutions (including 
the Red de Bosques Andinos, CODESAN, APECO, CONICET and RAINFOR) who 
are working to protect and understand Andean forests; GBIF and contributing 
institutions for making collection data publicly available and E. Ortíz for creating 
the map of plot locations. B.F. and K.J.F. were supported by the US NSF (DEB-
1350125) and the Swiss Agency for Development and Cooperation. M.R.S. 
and W.F.R. were supported by the US NSF (DEB-1754647, DEB-1258112, and 
EAR-1338694). J.H. was supported by DFG Grants HO3296/2 and HO3296/4. 
Peruvian plot monitoring was supported by the Blue Moon Fund and the 
Gordon and Betty Moore Foundation’s Andes to Amazon Program and RAINFOR 

grant 1656 (coordinated by O. Phillips). A complete list of acknowledgments 
and funding sources can be found in the Supplementary Information.

Reviewer information Nature thanks A. M. Latimer, J. Lenoir, H. Pauli and the 
other anonymous reviewer(s) for their contribution to the peer review of this 
work.

Author contributions B.F. and K.J.F. designed the study, carried out the analysis 
and wrote the Article. S.B., A.D., A.M., C.B., J.C., O.O.-A., L.M., M.S., W.F.-R., Y.M., 
K.R.Y., F.C.C., J.H., M.P., E.P., O.J., N.A. and Z.A. provided data and assistance with 
writing.

Competing interests The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
018-0715-9.
Supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-018-0715-9.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to K.J.F.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

2 1 2  |  N A T U RE   |  V O L  5 6 4  |  1 3  D ECE   M B ER   2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0715-9
https://doi.org/10.1038/s41586-018-0715-9
https://doi.org/10.1038/s41586-018-0715-9
https://doi.org/10.1038/s41586-018-0715-9
http://www.nature.com/reprints
http://www.nature.com/reprints


Article RESEARCH

METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Data. We collated census data from 186 Andean forest inventory plots (http://
redbosques.condesan.org/). Plots were originally established as parts of seven inde-
pendent projects with differing motivations and methods but with common core 
data on the identity and size of all trees (including palms, tree ferns and lianas) 
that were found within each plot (first census in 1991). A subset of 64 plots had 
been censused repeatedly (median number of censuses = 2, maximum number of 
censuses = 6) providing additional data on temporal changes in species compo-
sition. In collaboration with plot managers, the collated database was cleaned and 
corroborated to maximize accuracy of plot metadata, species identifications and 
stem diameter measurements. Plots with observations that indicated secondary 
forest composition were excluded from the database; however, two of the included 
plots from Argentina showed some signs of successional processes35 or recovery 
from past disturbances (cattle)34 that may affect their understory composition 
(excluding these plots had no observable effects on the results). Plot elevations were 
estimated based on their coordinates and the SRTM 1 ArcSec Global V3 (https://
lta.cr.usgs.gov) 30-m-resolution digital elevation model (DEM). Plot elevations 
ranged from 360 to 3,360 m a.s.l., corresponding to a MAT gradient from 24.1 to 
10.2 °C. The MAT of each plot was estimated by extracting the CHELSA BIO1 val-
ues23 (30-arcsec resolution; approximately 1 km at the equator) at the plot locations. 
We subsequently down-scaled these estimates to a resolution of 30 m by applying a 
geographically weighted regression (GWR) model45. For the GWR model, we used 
the environmental and climate data from a total of 745,878 pixels. These included 
the pixels that contained each of the study plots, all pixels within a 100-m radius 
around each of the plots, and 20,000 pixels sampled randomly from across the 
entire Andean study area (bounding box coordinates: 83.0° W, 63.0° W, 9.9° N, 
30.0° S). In the GWR, CHELSA BIO1 (that is, MAT) was disaggregated to a 30-m 
resolution and included as the dependent variable. Elevation, slope and aspect46, 
derived from the 30-m DEM (topographic variables calculated using the Raster 
package in R47), were set as the independent variables. Bandwidth of the GWR was 
set automatically based on preliminary analyses with 100,000 sample points. The 
relationship between plot elevation and MAT is shown in Extended Data Fig. 1c.

The combined list of tree species from all plots was submitted to the Taxonomic 
Name Resolution Service (TNRS; http://tnrs.iplantcollaborative.org/) version 
3.0 for homogenization and validation of species names. The processing mode 
was ‘name resolution’ and the selected sources were The Plant List48, the Global 
Compositae Checklist49, the International Legume Database and Information 
Service50, Tropicos51 and USDA’s Plants Database52. The family classification was 
based on Tropicos. The match accuracy threshold was set to 0.05 with partial 
matches allowed. All species with invalid original names (for example, sp1, indet, 
and so on) were assigned as ‘undetermined’. Any species with an unassigned TNRS-
accepted name and taxonomic status of ‘no opinion’, ‘illegitimate’ or ‘invalid’ were 
manually reviewed. The proper name was added if the species name could be 
confirmed on The Plant List or Tropicos; if the proper species name could not be 
confirmed, but the genus was valid, it was assigned the genus name and a unique 
species identifier. All TNRS species names with taxonomic status ‘accepted’ but 
with matching scores lower than 0.9 were also manually checked and modified 
following the same criteria. Families and genera were changed in accordance with 
the new species name. If a full species name was not provided or could not be 
found, the genus and/or family name were kept from the original file.
CTI. Using previously established protocols19,21, we estimated the thermal distribu-
tions of all tree species that occurred in the inventory plots based on the locations of 
herbarium specimens reported for these species from the tropical and subtropical 
Andes. More specifically, for all species found in the study plots, all available georef-
erenced herbarium data records from the Andean countries of Colombia, Ecuador, 
Peru, Bolivia and northern Argentina (latitude <30° S) were downloaded through the 
GBIF data portal (https://www.gbif.org/; data downloaded on 9 October 2015, https://
doi.org/10.15468/dl.bmz3hf). Any records that were tagged by the GBIF as having 
possible coordinate issues or that had obvious georeferencing errors (for example, 
falling in large bodies of water or outside the Andean study region) were discarded. 
The MAT at the collection locations of all specimens were estimated by extracting 
the MAT values from the CHLESA BIO123-extrapolated climate map at a spatial 
resolution of 30 arcsec. We did not down-scale the climate map when extracting MAT 
values at collection locations owing to the low resolution and potential inaccuracies 
of the georeferencing data. Only a single occurrence per species was retained from 
each climate cell. Finally, the most climatically extreme records (that is, those outside 
the species’ central 95% quantile of MAT) for each species were discarded to help to 
minimize the influence of outliers or remaining georeferencing errors.

For each species represented by ≥10 observation records (n = 1,220), we esti-
mated the thermal optimum as the mean MAT (°C) of the collection locations 
(we also calculated thermal optima based on median MAT values but this did not 

significantly change the results). This method of estimating the thermal optimum 
is appropriate for mountain species as their full thermal ranges can be expressed. 
By contrast, lowland species may have truncated thermal ranges and therefore their 
geographical distributions may not provide accurate estimates of their thermal 
optima53. For species with <10 available records (n = 500) or identified at the 
genus level (n = 264), we estimated the thermal optimum as the average collection 
temperature calculated from all available records for congeneric individuals in the 
Andean region (changing minimum sample size criteria did not have qualitative 
effects on the results). Any species not identified to genus or that had insufficient 
records available at either the genus or species levels (n = 40) was excluded from 
subsequent analyses.

We calculated the CTI of each plot as the average thermal optima of the species 
weighted by their relative total basal area (summed cross-sectional stem area of all 
conspecifics measured at breast height (1.3 m above ground)) in that plot. Changes 
in the CTI therefore integrate the effects of tree growth, recruitment and mortality 
on community composition. The CTI of a plot is calculated as:

∑= / /
=

CTI (SpOptT(BA BA )) BA
i

n

i i
1

plot plot

in which n is the number of species in the focal plot, SpOptTi is the thermal opti-
mum for species i, and BAi and BAplot are the basal area of species i and of the plot, 
respectively. All individuals available in the plot inventory datasets, regardless of 
minimum criteria for the diameter at breast height, were included in the analyses 
presented in the main text. We reran all analyses using standard criteria of including 
only stems with a diameter at breast height of ≥10 cm; results of these analyses are 
shown in Extended Data Table 1. The relationships between the plot CTI and MAT 
and between the plot CTI and elevation are shown in Extended Data Fig. 1a, b.
TRplot. To test for changes in the species composition of the study plots over time, 
we calculated the annualized difference in CTI between all possible censuses for 
each plot that was censused more than once (TRinterval). The rate of change in CTI 
between the initial and final census was used as the best estimate of the TRplot of 
each plot. We then calculated the mean TRplot using the generalized linear model of 
TRinterval (CTI change per interval, n = 176) with plot identity included as a random 
effect. We used a binomial probability test to determine whether the number of 
plots with positive TRplot values differed significantly from the null expectations of 
equal positive and negative changes. We also performed a Student’s t-test between 
TRplot and a null hypothesis of no change. We repeated the above analyses using 
only the 61 plots with an area ≥1 ha and with ≥2 censuses and obtained nearly 
identical results (Extended Data Table 1). As an alternative means of calculating 
the overall change in the CTI of a plot over time, we also calculated TRplot as the 
slope of the linear least-square regression between CTI and census year. Results 
did not differ qualitatively from the TRplot estimates explained above (Extended 
Data Fig. 2).
TRMAT. To integrate data from plots with single censuses and investigate how 
thermophilization rates vary across the MAT and elevation gradients, we analysed 
temporal changes in the running average of CTI versus MAT. More specifically, we 
divided the census data into overlapping five-year periods from 2000 to 2015 (that 
is, period 1 = 2000–2005, period 2 = 2001–2006, period 3 = 2002–2007…period 
11 = 2010–2015). For each time period, we calculated the mean CTI of all plots that 
occurred within overlapping 1.5-°C thermal bands (equivalent to approximately 
250 m elevation based on the regional adiabatic lapse rate) between 10 and 25 °C 
MAT such that band 1 = 10–11.5 °C, band 2 = 10.5–12 °C, band 3 = 11–12.5 °C…
band 28 = 23.5–25.0 °C (plots were assigned to thermal bands based on their 
downscaled CHELSA BIO1 values (see above) such that the MAT and thermal 
band assignments of a plot did not change over time). To calculate the average CTI 
per thermal band per time period, plots were weighted by their area. For any plot 
censused more than once in a given time period, we used the average CTI of that 
plot within that period. For each thermal band with ≥10 plots, we then calculated 
the TRMAT as the slope of the linear least-square regression between average CTI 
and year (mid-point of the five-year time period). We used the same regression 
analyses to estimate the 95% confidence interval around the TRMAT estimates, 
which then allowed us to assess the significance of TRMAT at specific MATs. We 
calculated the mean TRMAT using the generalized linear model of CTI (n = 283) 
versus census year with plot identity included as a random effect.
Historic temperature change for the study area. We downloaded monthly mean 
temperature data at 30-arcsec resolution from 1990 to 2013 from the CHELSA 
Timeseries dataset (http://chelsa-climate.org/timeseries/). We extracted the 
information for the plot locations and calculated the annualized change in mean 
temperature as the slope of the linear least-square regression of temperature ver-
sus date. For plots with multiple censuses, we performed a Spearman correlation 
between the warming rate and TRplot. We also replicated the TRMAT calculation 
substituting MAT with warming rate (TRwarm) (average thermophilization rates 
calculated at intervals of 0.01 °C between −0.05 and 0.15 °C).
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Species richness. For 1-ha plots with multiple censuses, we calculated species 
richness as the count of species that were found in the focal plot. We combined all 
morpho-species according to their genus assignments and added the genus to the 
species counts. We performed a linear model between MAT and species richness.
Range of thermal optima within plots. For plots with multiple censuses, we cal-
culated the range of thermal optima (SpOptT) for all species that occurred within 
each plot as the difference between maximum and minimum SpOptT of the co- 
occurring species. We performed a linear model between the range of thermal 
optima and TRplot values of the plots.
Change in basal area of more- versus less-thermophilic species per plot. For 
plots with multiple censuses, we calculated the change in basal area per plot gener-
ated by recruitment and growth (increase in basal area) versus mortality (decrease 
in basal area) for more-thermophilic species (that is, species with thermal optima 
above the CTI of a plot) and less-thermophilic species (that is, species with thermal 
optima below the CTI of a plot). For this analysis, we only included species for 
which the species thermal optima (SpOptT) were calculated using species-level 
GBIF records; we did not include species for which the thermal optima were esti-
mated based on the distribution of congeners. We standardized the change in basal 
area by plot size and express the change as a percentage of the initial basal area. 
We performed a loess regression analysis between the basal area of more- versus 
less-thermophilic species and the MAT of the plots.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The plot data that support the findings of this study are available from the Red de 
Bosques (https://redbosques.condesan.org/) upon reasonable request. The list of 
species included in the analysis with their number of GBIF records after filtering 
and their estimated thermal optima is available in Supplementary Table 2.
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Extended Data Fig. 1 | CTI, MAT and elevation of study plots. a, The 
relationship between the mean CTI for each of the Andean forest plots 
(averaged across all censuses) and the MAT at the plot locations. n = 186, 
slope = 0.71, R = 0.92, 95% confidence interval = 0.88–0.93, P < 0.001.  
b, The relationship between the mean plot CTI and plot elevation. n = 186, 

R = −0.77, 95% confidence interval = −0.82 to −0.7, P < 0.001. c, The 
relationship between plot MAT and plot elevation. n = 186, R = −0.92, 
95% confidence interval = −0.93 to −0.88, P < 0.001. All analyses are 
two-sided Spearman correlations.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 2 | Regression-based thermophilization rates of 
repeatedly censused plots. TRplot was compared to the MAT for the 
Andean forest plots with multiple censuses (n = 64). Each point represents 
one plot and the size of the point is proportional to the number of 
censuses. Error bars are 95% confidence intervals based on the linear least-
square regressions of the CTI versus census year of each plot. Grey points 

represent plots with non-significant TRplot values and filled, coloured 
points represent plots with significant TRplot values; hollow points are plots 
with only two censuses and for which the significance of the TRplot could 
therefore not be determined. Positive and negative TRplot are coloured red 
and blue, respectively.
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Extended Data Fig. 3 | Thermophilization rates for areas with different 
warming rates. The thermophilization rates in areas with different 
warming rates (TRwarm; the annualized change in the mean CTI of all plots 
within a band of equitable warming rate) were compared to the warming 

rate. n = 283 plot censuses, assigned to 20 warming bands. The dashed line 
indicates the mean TRwarm and the coloured shaded area indicates the 95% 
confidence interval of TRwarm. Positive and negative TRwarm is coloured red 
and blue, respectively.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 4 | Species richness of repeatedly censused 1-ha 
plots. Species richness versus MAT in the 1-ha Andean forest plots with 
multiple censuses. n = 61. Each point represents one plot and the red 

and blue colours indicate positive and negative TRplot values, respectively. 
The line shows the linear regression between MAT and species richness. 
R2 = 0.10, P < 0.05.
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Extended Data Fig. 5 | Range of the thermal optima in study plots. The 
range of thermal optima of co-occurring species versus TRplot in the plots 
with multiple censuses. n = 64. Each point represents one plot and the red 

and blue colours represent positive and negative TRplot values, respectively. 
The line shows the linear regression between the range of the thermal 
optima of the plots and TRplot. R2 = 0.19, P < 0.001.
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Extended Data Fig. 6 | Basal area change in species composition. 
Percentage change in absolute basal area per plot for more-thermophilic 
(species thermal optimum > plot CTI) and less-thermophilic (species 
thermal optimum < plot CTI) species versus MAT in plots with multiple 

censuses (n = 64). The more- and less-thermophilic species are coloured 
red and blue, respectively. Lines show loess regression fits between the 
percentage change in basal area and MAT, and the shaded areas represent 
the 95% confidence intervals around the loess regressions.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Table 1 | Results for alternative calculations of TRMAT and TRplot

© 2018 Springer Nature Limited. All rights reserved.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Data downloaded from 
https://lta.cr.usgs.gov - SRTM 1 ArcSec Global V3  
http://chelsa-climate.org - CHELSA BIO1 and Timeseries 
https://www.gbif.org/ 
Taxonomic Name Resolution Service (TNRS; http://tnrs.iplantcollaborative.org/) version 3.0)

Data analysis R Core Team. 2018 R: A language and environment for statistical 
   computing. R Foundation for Statistical Computing, Vienna, Austria. 
   URL http://www.R-project.org/. version 3.5 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The plot data that support the findings of this study are available from the Red de Bosques (https://redbosques.condesan.org/) upon reasonable request. The list of 
species included in the analysis with their number of GBIF records used after filtering and their estimated Thermal Optima is available in Supplementary Table 2 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We collated census data from 186 Andean forest inventory plots (redbosques.condesan.org) and tested for Thermophilization on 
Andean plant communities by calculating the Thermophilization rate per plot and the Thermophilization rate per thermal band. For 
the TRplot we grouped or data based on plot identity and for the TRband we grouped the plots in thermal bands based on the Mean 
Annual Temperature of the plot location. The total number of census available is 293. A subset of 64 plots has been censused 
repeatedly (median number of censuses = 2, maximum number of censuses = 6).

Research sample We used plot data available from 'Red de Bosques'. The extensive latitudinal and elevational range of the plots guarantees that 
multiple environmental conditions and corresponding plant communities are represented. This dataset represents the largest 
compilation of Andean forests plots so we hoped our sample would be as representative as possible for the Andean forests. The only 
manipulation performed to the original datasets was the standardization of species names. The plot data used in the analysis comes 
from 7 independent projects, led by the co-authors, with core data on the identity and size of all trees occurring within each plot.  
In this project, we also use GBIF data to calculate the species Thermal Optimum. GBIF data comes from multiple sources and it is 
publically available. 

Sampling strategy No sample-size calculation was performed. We used all plot data available from 'Red de Bosques'; this dataset represents the largest 
compilation of Andean forests plots. The extensive latitudinal and elevational range of the plots guarantees that multiple 
environmental conditions and corresponding plant communities are represented. 

Data collection We collated data from pre-existing plots. The information on the plot PI’s is shown in Supplementary Information Table 1. 

Timing and spatial scale There is no rationale behind the start or timing of data collection other than availability of plot data. All plots are located within the 
tropical and subtropical Andes

Data exclusions Plots on the Red de Bosques database with comments indicating secondary forest status were not included on any analysis in order 
to avoid the inclusion of confounding factors affecting changes in species composition. We also excluded plots on elevations with 
Mean Annual Temperature (MAT) higher than 25ºC for being outside the study area (Andes) and plots with MAT lower than 10ºC for 
lacking enough sample size. The exclusion of these plots was pre-established; the excluded plots were not used for any calculation or 
summary included in the manuscript.

Reproducibility All results can be reliably reproduced by using the written R code based on publically available R packages.

Randomization Each plot had associated coordinates and census years that were used to calculate Mean Annual Temperature (MAT) and Community 
Thermal Index (CTI). Plots were not clumped into groups but subsets were used to calculate the Thermophilization Rate per plot 
(TRplot) (only plots with multiple census) or to calculate the Thermophilization Rate per thermal band (TRmat) (plots on an specific 
MAT moving range).

Blinding Plots included in the analysis were part of seven independent projects, leaded by different researchers, and established for different 
purposes. These plots were not initially established in order to test for thermophilization but to understand forest dynamics, biomass 
and diversity. Other than that, blinding to group allocation is not relevant nor possible in this study.

Did the study involve field work? Yes No
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Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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