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Abstract—Electricity distribution networks have undergone
rapid change with the introduction of smart meter technology,
that have advanced sensing and communications capabilities,
resulting in improved measurement and control functions. How-
ever, the same capabilities have enabled various cyber-attacks.
A particular attack focuses on electricity theft, where the attacker
alters (increases) the electricity consumption measurements
recorded by the smart meter of other users, while reducing her
own measurement. Thus, such attacks, since they maintain the
total amount of power consumed at the distribution transformer
are hard to detect by techniques that monitor mean levels of
consumption patterns. To address this data integrity problem,
we develop statistical techniques that utilize information on
higher order statistics of electricity consumption and thus are
capable of detecting such attacks and also identify the users
(attacker and victims) involved. The models work both for
independent and correlated electricity consumption streams. The
results are illustrated on synthetic data, as well as emulated
attacks leveraging real consumption data.

Index Terms—False data injection mechanism, anomaly
detection and diagnosis, higher order information, smart grid,
inverse problem, thresholded covariance matrix.

I. INTRODUCTION

LECTRICITY theft has been a major concern world-

wide and costs utility companies significant revenue
losses [1], [2]. It takes various forms, ranging from physical
interventions through illegal connections and meter tamper-
ing, to billing irregularities and unpaid bills by customers.
The introduction of advanced metering infrastructure has
the potential to reduce the risk of electricity theft through
its increasing frequency monitoring capabilities. In addition,
smart meter technology can lead to effective and accurate load
forecasting and on-time troubleshooting for outage remedi-
ation and network controllability (see, e.g., [3]-[5]). At the
same time, it offers new opportunities for tampering with
operations of the power grid through cyber-attacks both locally
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and remotely, that take the form of false data injections.
The consequences range from compromising demand response
schemes for selected targeted areas, to endangering the
power grid’s state estimation process or even inducing power
outages [6].

There is a growing literature on false data injection (FDI)
attack activities (a brief summary is given in [7]). A lot
of attention has been paid to the impact of FDI on the
grid’s state estimation problem [8] and how coordinate attacks
can occur [9], [10]. [11] proposes an adaptive procedure to
test whether there is a data attack activity combined with
a multivariate hypothesis testing method in order to avoid
the wrong grid-state estimate. Addressing the problem from
a different angle, [12] attempts to prevent the state estimation
from being compromised, by approaching the problem from
a graph theoretic method aiming to design an optimal set of
meter measurements. Reference [13] considers a setting where
multiple simultaneous nefarious data attacks are launched
and proposes a game theoretic framework to build a defense
system.

Another thrust has focused on the electricity theft problem
and there are two general streams in the literature. One of
them focuses on using machine learning and data mining
techniques to detect anomalies in the consumption patterns
of a household or business, based on smart meters’ historical
data -see e.g. [14]-[20]- potentially augmented with infor-
mation about the consumer type [20]. These methods can
be further subdivided to supervised ones that leverage labels
(known FDI vs non-FDI) samples in the training data, and
unsupervised ones that try to identify abrupt changes from
normal consumption patterns. Supervised methods can be
powerful, but availability of labeled FDI samples remains a big
challenge. Unsupervised methods are susceptible to the impact
of non-malicious factors that alter consumption patterns; e.g.
seasonality, change of appliances, change of occupants, and
so forth [21].

A different stream in the literature utilizes information
about the architecture of a neighborhood area network in
the smart grid [22]-[26]. Specifically, it assumes that the
electricity provider builds a distribution station within every
neighborhood that acts as an “electricity router” to distribute
power from the substation to all consumers, A master smart
meter (known as the collector) measures aggregate power
supply from the power provider to all consumers within a
certain time interval. Further, smart meters installed at each
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Z: Parent Meter Node
Yi: End Meter Node

Fig. 1. Structure of the neighborhood area network, with a central smart
meter node (collector) for the distribution transformer and smart meters at
consumption points.

consumer (households or businesses) record their corre-
sponding energy consumption for the same time interval.
Reference [24] proposed a method that utilizes such mea-
surements, together with information about the resistances of
lines connecting the consumption points to the distribution
transformers to estimate technical losses due to low voltage
power lines, as well as intrinsic inefficiencies in the trans-
formers. References [25], [26] employed such measurements
and a linear regression framework to identify electricity theft,
wherein the dependent variable corresponds to the aggregate
measurement by the collector, and the predictor variables to the
household/business smart meter measurements. However, for
this approach to work, it is assumed that the predictor variables
are uncorrelated, an assumption that is automatically violated
when theft occurs, as technically demonstrated in Section II
below. Note that this regression framework would work to
identify faulty individual smart meters, since their measure-
ments will most likely be random and hence uncorrelated.

In this paper, we adopt the architecture of the neighbor-
hood area network, as previously described. In this setting,
electricity theft involves an attacker who attempts to lower
her energy bill by injecting false measurements to her own
smart meter, but to avoid detectability by the utility company
compensates with another false injection to smart meters
within the neighborhood area network. Specifically, consider
a set of smart meters in a neighborhood under a common
distributional transformer, as depicted in Figure 1. If the
attacker alters (increases) the electricity consumption mea-
surements recorded by the smart meters of other users, while
reducing her own measurement, the total consumption reported
at the collector is not altered. Hence, various machine learning
based monitoring schemes that focus on alterations in mean
consumption patterns will fail to detect such an attack when
considering measurements from the central node, or when used
in end user smart meters, especially if the attacker injects small
magnitude false data'

On the other hand, examining correlations between the
measurements (and in certain cases, information encapsulated
in 3rd moments of the data distribution) proves a powerful

'Note that this attack mechanism violates the assumption of uncorrelated
predictors in the regression framework proposed by [25], and thus renders it
inapplicable.

strategy, not only to detect an attack, but also identify the
attacking node, as well as the “victim” nodes. Further, the pro-
posed strategy works even when the consumption patters
amongst end users are correlated. The key message of the
work is that examining correlation patterns can be a powerful
approach for the electricity theft problem.

The remainder of this paper is organized as follows:
Section II introduces the modeling framework for the problem
at hand. Section III describes the detection and identification/
diagnosis strategies, while Section IV discusses implementa-
tion issues and evaluates the strategies based on synthetic data,
as well as emulated attacks based on real consumption data.
Finally, some concluding remarks are drawn in Section V.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

Let Y1, Y5, ..., Yp correspond to the smart meter” variables
that measure electricity consumption over a time interval, and
further assume that Y; = p;W + U;, where E(W) = puy,

Var(W) = oy, p € (—1,1) and U; 5y F(u). In words,
the smart meter measurements are correlated, namely
Corr(Y;,Yj) = \/pipj, ¥V i # j. This is a reasonable assump-
tion, since neighboring households can exhibit a certain degree
of similarity in their electricity consumption patterns [27].
The idiosyncratic component U; of each measurement Y;
(that captures the heterogeneity among electricity consumers)
has a distribution F', whose first two moments are denoted by
1 and o, respectively. Finally, denote the P x P covariance
matrix of the measurements by Y = (Y3,---,Yp)’ by

Y = Var(Y) = E[(Y —E(Y))(Y —E(Y))]. (L)

Let Z denote the measurement variable at the collector node
(e.g. distributional transformer smart meter) controlled by the
power utility company, where the smart meter measurements
are communicated to; hence, assuming absence of technical
losses due to power distribution and transmission issues (see

P
discussion in [24]), we have by definition that Z = > Y;.3

An electricity theft attacker aims to distort the Zr?léasure-
ments recorded by the end node smart meters, while not
changing their sum. For example, if the attacker can lower
the measurement of meter ¢ by an amount o and increase
that of meter j by an equal amount, then the attacker can
benefit financially. We coin the smart meter (end node),
whose electricity consumption measurement is decreased as
the “Attacker Node”, and the end node whose electricity
consumption measurement is increased as the “Victim Node”.

Next, we impose a number of assumptions on Y and « that
are used in future technical developments. We start by defining
the key variables.

Notation:

Y;: value of i*" smart meter measurement;

W: the variable of the common component for each smart
meter measurement;

2End nodes of the distribution network; for example, deployed at house-
holds or businesses.

3In the presence of technical losses, the techniques in [24] can be used to
adjust the controller and individual smart meter measurements, so that equality
holds.
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pi: the relative contribution of W for Y;;

U;: idiosyncratic component for each measurement Yj;

«: data attack variable;

<: approximate to or close to. For example, a—b =< 0 means
the value of a — b is close to 0.

Assumptions:

Assumption 1: Assume that all smart meter measurements
are non-negative, i.e., ¥Y; > 0,V ¢ and in addition that their
3rd moments exist; i.e, E(Y;?) < .

Assumption 2: | p; — p;j |< 0 for any 1 < ¢ # j < P;
namely that the magnitude of p;’s is similar.

Assumption 3: Cov(U;, W) = 0 for any 1 < i < P;
namely, the common and idiosyncratic components of each
smart meter measurement are uncorrelated.

Assumption 4: Each smart meter measurement is uncor-
related with any attack variable, i.e., Cov(Y;, o) = 0 for
1 <4 < Pand j € N, the latter being the set of nodes
involved in the attack either as attacker or victims.

Assumption 5: All attack variables are positive, i.e., o > 0,
and independently distributed with Var(«) = o,. In addition,
we assume that E(a?) < oo.

Assumption 6: The attacker manages to coordinate the
attacks, so that there is a single one during a reporting period
by the smart meters to the utility company.

Remark (Discussion of Assumptions): Assumption 2.1 is
mild, since it is easily satisfied by distributions for elec-
tricity consumption; only, fairly heavy tailed distribu-
tions are excluded. The same holds for Assumption 2.5.
Assumptions 2.2 and 2.3 posit a mechanism that induces cor-
relations amongst the end node smart meter measurements that
can be leveraged by the proposed approach for both electricity
theft detection and identification of the attacker and the victim
nodes. At the same time, it is a very general mechanism that
allows for both strongly and weakly correlated data, depending
on the magnitude of the p;’s and the variance of W.* Finally,
Assumption 2.4 posits that the magnitude of the attack is
uncorrelated with any of the smart meter measurements. This
is reasonable in practice; otherwise, the attacker would need
to continuously adjust the amount of electricity to that of the
measurement, which implies a high level of sophistication on
the attacker’s part.

Finally, note that the proposed model assumes that the
variances of all variables involved remain constant over time.
Hence, the model can naturally accommodate shifts in the
mean electricity consumption.

A. Identifying Attacks: The Independent Case

To gain insight into the issue of whether and how an
attack can be identified, we first consider the special case
where p; = 0,V 0 < ¢ < P; namely, that the smart meter
measurements are independent since Y; = U,;. Consequently,
we have that Y7,Ys,...,Yp are iid with EY; = p and
Var(Y;) = o. Therefore, the covariance matrix 3 becomes
a diagonal matrix, i.e., ¥ = oL

We start our analysis by examining an attack scenario
involving a single Victim Node.

4The case of uncorrelated data requires special treatment and is examined
in Section IL.A

A Pairwise Attack Scenario: This setting involves nodes ¢
(Attacker) and 7 (Victim) with respective measurements Y; —«
and Y);-+a. Then, the following result can be easily established.

Theorem 7: The pairwise attack is undetectable by only
monitoring the mean levels of electricity consumption at the
smart meters (end nodes) and the central node.

Proof: If there is no attack, we have that E(Z) =

P
S>> E(Y}). In the pairwise attack scenario, we obtain E(Z) =
=1

P
S EY)+EY;—a)+E(Y;+a) = > E(Y;). Consequently,
I#i,j =1

the meter in the central node Z has measurements that agree

with the sum of those obtained at the smart meters. |
The key to detect the attack, as well as identify the nodes
involved is to examine higher moment (variance, etc.) infor-
mation of the consumption measurements.
Under a pairwise attack mechanism, let an attack of mag-
nitude o, be launched by node 7 with victim node j, and
similarly let another attack of magnitude «y be launched with
Attacker node k and Victim node [. Denote by Var(a.) = 04,
and Var(ay) = 04,; then, the following relationships hold:
o Var(Y; — a.) = 0+ 04, Var(Y; + a.) = o0 + 0a..
Var(Yy —ay) =0 +04;, Var(Yi + ayp) = 0 + 0a,.

o Cov(Yi—ae,Y+ae) = —0q,, Cov(Yy—ay,Yi+ay) =
—Cay-

Some straightforward algebra shows that

Var(Y; £ ae) = Var(V;) + Var(ae) £ 2Cou(Y;, a.)
Then, by Assumption 4, we obtain Cov(Y;, ) = 0. Hence,
Var(V; £ a.) = Var(V;) + Var(a,) =0 + 0a,,

and
Cov(Y; — e, Yj + ac) = Cov(Y;,Y;) + Cov(Y;, ae)
—Cov(ae,Y;) — Cov(ae, ac)
Since Cov(Y;,Y;) = 0 and Cov(Y;, ;) =0 for 1 <7 < P
and j € N, we have
Cov(Y; — ae,Y; + ae) = —Var(ae) = —0a,
Similarly,
Cov(Y; — ae, Yy, — ay) = Cov(a, ay)

By Assumption 5, we then get Cov(a;, o) = 0forV i, j € N,
and thus

Covi(Y; — e, Yo — 7)) =0

The other relationships can be obtained analogously. These
calculations imply that in the presence of an attack of magni-
tude « involving nodes 1 and 2, the covariance matrix ¥ will
change its pattern from a diagonal matrix to a block diagonal
matrix given by

o+ 04 —0q o --- 0

—0q c+o, O 0

- 0 0 o 0
0 0 0 o
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Analogously, if there are s different pairwise attacks involv-
ing the first 2s end nodes with the first one designated as
the Attacker and the second as the Victim, the corresponding
covariance matrix of the smart meter measurements will have
the following form

By
B
¥ = B,
o
B 91 pxp
where B, h = 1,...,s, is the sub-covariance block matrix
g g, —0
for attack oy, and Bj, = +0ay on |
—Oq;, O + Oqy,

This explicit pattern dictates the following algorithmic
strategy to detect an electricity theft attack and identify the
pairs of nodes involved in it.

o If Cov(Y;,Y;) < 0, i # j, we can conclude that end
nodes ¢ and j are involved in the same attack; i.e. they
belong to the same attack group;

o Similarly, if Cov(Yi,Yj) =0, i # j, we can conclude
that there is no attack involving nodes ¢ and j; rather,
they belong to different attack groups.

Hence, the above simple strategy detects electricity theft and
the nodes involved as Attacker and Victim in it.

Remark: In practice, the s attacks will involve random pairs
of nodes and not the first 2s ones. Then, one needs to reorder
the rows and columns of the covariance matrix to obtain the
desired structure previously discussed.

The previously outlined strategy identifies the s attack
groups, but not which node in the pair is the Attacker
and which is the Victim. To address this issue, information
involving the 3rd moment of the smart meter measurements
is required, as the following result shows.

Theorem 8: Under the pairwise attack scenario, if end
nodes ¢ and 7 are in the same attack group with magnitude «,
then E(Y; + @) —E(Y; — a)® > 0.

Proof: Note that

E(Y; +)® = E(Y;)® + 3E(Y,)’E(a)

+3E(Y;)E(a)? + E(a)®  (IL.2)
Similarly,
E(Y; - a)® = E(Y;)® - 3E(Y;)*E(a)

+3E(Y;)E(a)® — E(a)®, (IL3)

where nodes ¢ and j are the Victim and Attacker nodes,
respectively. Further, since o > 0, we obtain

Ea > 0,Ea® > 0

A subtraction of the the last two relationships [i.e., (IL.2) —
(I1.3)] yields
E(Y; + @) ~ E(Y; - a)® = E(Y))? — E(Y;)°
+ 3E(a)(EY? + EY;?)
+3E(a)(EY; — EY;)
+ 2E(a)?
It is easy to check that
E(Y:)? —E(Y;)° = (o] — pj)EW®
+ 3(pEU; — p2EU; ) EW?
+3(pEU} — p,EUZ)EW
+EU} - EU}
and

By Assumption 3, we have E(Y;)® — E(Y;)® =< 0 and
EY; — EY; < 0. Since Ea > 0 and Ea?® > 0, then

E(Y; +a)® —E(Y; —a)® >0
This proves the result. |

A direct consequence of Theorem 8 is that the 3rd moment
of the Victim node is strictly larger than that of the Attacker
node within the same attack group. Hence, leveraging the
results of Theorem 7, the block diagonal structure of the
covariance matrix and Theorem 8, give rise to the following
detection and identification algorithm for the pairwise attack
scenario.

Algorithm 1 Pairwise Attack Detection and Identification
11
while 7 < P do
while i < 7 < P do
if Cov(y;,y;) <0 then
A =E(y;)® - E(ys)?
if A > 0 then
label y; as the Victim node for Attack Group ¢
and label y; as the Attacker node for the same
Group;
else[A < 0]
label y; as the Attacker for Attack Group ¢
and label y;» as the Victim for the same Group;
end if
else
end if
j=j+1
end while
t=1+1
end while

A Single Attacker-Many Victims Scenario: The pairwise
scenario is the simplest one to execute, since only one Victim
node is involved. However, if the Attacker node aims to
use a large a, this action may be flagged by either using
change point analysis techniques, since a sharp change in
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the electricity consumption pattern of the Victim node would
occur, or by the consumer under attack, who may in turn
complain to the utility company for a sharp and unexpected
increase in her/his electricity bill. In that case, the Attacker
may want to spread the attack among a larger group of nodes,
so as not to raise such suspicions. This leads to a more
involved setting, where the Attacker node decreases the smart
meter measurement at node ¢ by an amount «, and increases
cumulatively the measurements of the Victim group smart
meters by an equal amount. Specifically, when a magnitude «
attack is launched by node ¢, we have Y; — «; further, for the [
Victim Nodes we also have Y;, +k{' o, Yy, +k5c,....Y}, + ko,
where ) k% = 1.

Anal(;gously to the pairwise attack scenario, the single
Attacker-Many Victims case is undetectable by monitoring
discrepancies in the measurements at the controller and the
end node smart meters, since by construction the sum of the
latter measurements agree with the former; i.e. Z.

A similar analysis to the pairwise scenario shows that the
resulting covariance matrix exhibits again a block diagonal
pattern; namely,

B,
Bs

L 91 pxp

where By, h =1, ..., s, is the block of the covariance matrix
corresponding to the h-th attack. Each block B, has the
following form:

S —kg
_k.ah (kah)Q kah kgéh

1 1 1 d

Bh =~ 2 + aah . - . "
—kgr KGR - (Kgh)?

where X has (dp + 1) x (dp, + 1) dimensions and dj, is the
number of Victims in the «y, attack group, E(dh+1)x(dh+1) is
the original block of the covariance matrix of the end nodes

in the «y, attack group, and Y (dp, + 1) = m.

Thus, the same broad stratehg_ylto the pairwise attack scenario
is applicable. Specifically, under the single Attacker-Many
Victims attack mechanism,

o If Cov(Y;,Y;) # 0, i # j, we conclude that end nodes ¢

and j belong to the same attack group;

o If Cov(Y;,Y;) = 0,4 # j, we conclude that nodes ¢ and j

belong to different attack groups.
Hence, a close examination of such patterns in the covariance
structure of the smart meter measurements leads to detecting
such attacks.

Interestingly, even though in this scenario the attack mech-
anism is more involved, once an attack group has been
identified, it is straightforward to separate the Attacker node
from the Victim ones. A close examination of the Bj block

shows, that under this scenario only the Attacker node will
exhibit negative covariance values with all other nodes in the
same attack group; i.e., Cov(Y;,,Y;) < 0, Vj # ig. On the
other hand, all the Victim nodes in the same attack group will
have positive covariance values with each other. Hence, for
each attack group, labeling the Attacker and the Victim nodes
requires
1) Identify the node who has only negative covariance
values within the Bj, sub-block and laebl it is as the
Attacker node.
2) Label the remaining nodes in the block as the Victim
ones.
The following algorithm summarizes the detection and node
identification strategy.

Algorithm 2 Single Attacker-Many Victims Attack Detection
1e—1,9g—11;-1
while ¢ < P do
while i < 7 < P do
if Cov(y;,y;) # 0 then
denote y, = y; and let y, € Group,, and for each

j,thenletl, = l,+41, denote ylgg = y; and let ylg" € Groupy;
for Group,, find the node y s.t. Cov(yd,yl) <
0 for all b # a and b € (1,2,...,l,). Then label yg as
the Attacker for Groupy and label the remaining nodes as
Victims for Groupy. Then g =g +1, [ = 1.
else
end if
j=7+1
end while
i=1+1
end while

B. Identifying Attacks: The Dependent Case

Recall that in the general case, the smart meter measure-
ments are generated according to Y; = p;W + U;. Note
that Cov(Y;,Y;) = pipjow, which complicates detection and
attacker-victim(s) identification strategies. We start by defining
Xij=Y; =Y, fori,j=1,2,...,P and i # j. By using this
new set of (P — 1) measurement variables, we show next
that their covariance exhibits patterns that lead to detection
and identification.

Denote by X = (X12, Ce ,le,Xgl,ng, Ce
we then can obtain the following result.

Theorem 9: Cov(X;j, Xpy) <0if i # j#k # L.

Proof: Since U; are i.i.d,, we get

7X(P—1)P)T§

Cov(Xij, Xit) = (pi — pj)(px — p1)ow

Since by Assumption 2 | p; — p; |[< 0, we get
(pi — pj)(px — p1) =< 0. Therefore, Cov(X,;, X)) =< 0. [ ]

Note that Theorem 9 implies that the differencing transfor-
mation of the original set of measurements leads to reducing
their correlation to a large extent, which proves key to our
detection and identification strategy.

To illustrate, we start with the most general case. Without
loss of generality, we assume that there are four different attack
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variables a1, e, a3, g applied to Y3, Y;, Yy, Y, respectively
for any i # j # k # [. Then, X, = Y; —Y; £ (a1 +a2) and
X, =Y, — Y, + (a3 + ou), depending on whether they are
attackers or victims.

Theorem 10: Cov(X,;, Xy;) # 0, for i # j # k # [, only
if attack variables from the same attack group are separately
applied, i.e., one is on node i (or j or i&j) and the other is
on node k (or [ or k&l).

Proof: First, calculate
Cov(X]

e

X)) = Cov((pi — p))W +U; = Uj * (cu + ),
(o — )W + Ui, — U = (a3 + aa))
= (pi — pj)(pr — p1)ow
+ (Cov(ay, as) + Cov(aq, ag)

+ Cov(ag, a3) + Cov(ae, o)) (1IL.4)
Since (p; — p;)(pr — p1) < 0, we have
Cov(X7;, Xi;) = & (Cov(ai, a3) + Cov(ar, o)
+ Cov(aa, as) + Cov(ae, ayq))) (L5)

It can then be easily seen that only if a; and a3 (or o and
Qy, or ag and ag, or o and oy ) are from the same attack
group, Cov(X/;, X3,;) # 0. O

Based on the nature of this property, we could develop an
easy-to-implement algorithm to identify and group nodes for
both the pairwise attack and the single Attacker-Many Victims

scenarios according to which attack groups they belong to.

Algorithm 3 Detection Algorithm for Dependent Case
while 1 <i#j#k#1<Pdo
if Al = COV(Xij,Xkl) 75 0 then
while 1 <U' < P&l' #£i#j#k#1do
if AQ = COV(Xij,Xkl/) =0 then
while 1 < ' < P&j' £ #i#j#+k#1do
if Ag = COV(Xij/,Xkl) = 0 then
conclude j & [ belong to the same attack

group
else
conclude 7 & [ belong to the same attack
group
end if
end while
end if
end while
end if
update ¢, j, k, [
end while

Remark: For example, if the output of Algorithm II-B
is {(1,2),(1,3),(2,3)}, we will conclude that (1,2,3) are
within the same attack group. The same logic applies to more
complicated outcomes.

III. IMPLEMENTATION ISSUES AND NUMERICAL RESULTS

The previous results discuss detection and identification
strategies, in the ideal case, when one has full knowledge of

population parameters (e.g. the true variances o,,,0). How-
ever, in practice one needs to replace them with their sample
counterparts. Thus, the estimate of the covariance matrix %
would be noisy. On the other hand, the previous analysis
established that the true covariance matrix is sparse and hence
we should aim to sparsify its sample analogue as well. To that
end, we employ the Universal Thresholding Method [28] to
regularize the sample correlation matrix in order to obtain
a sparse estimate of it, before running our detection and
identification algorithms.

We provide the necessary details of our estimation strat-
egy next. Let X = (X,... ,Xp)T be a p-variate random
vector with covariance matrix 3. Given an independent and
identically distributed random sample {X4,...,X,}, we can
calculate the covariance estimator as

Gg=0"1) (Er—8)EBn—8) bj=1.,P WOLD
t=1
where Z; =n=1 Y z4.
t=1
Then, the samplq correlation coefficient of x; and x; is
given by p;; = \/‘:J—U” Thus, the estimator of R = (p;;),

denoted by R = (j;;), is given by

. . . 1

Pij = Pl ([Pl > n"Zcq(P)],
i=1,2..,P-1,j=i+1,...,P,

where ¢,(P) =

level for this multiple hypothesis testing procedure. We select
_ P(P-1)
fP) = == _
Finally, the estimator of X, denoted by 3, is given by

®~'(1 — 57{py) and g is the significant

> = D'Y/?2RD'/? (IIL.2)

where D = diag(&11,622, i 56 ,&pp).

A. Simulation Studies Results

We start by providing the definition of the Variance Ratio,
an important quantity in the sequel. Assume there are [ victims
in the group of an arbitrary attack of magnitude «; we then
define the Variance Ratio (VR) for that group to be

_ Var(g) 1 Var(a)
C Var(Y)  2Var(Y)

The quantity VR can be thought of a signal-to-noise measure
for the problem at hand.

1) Independent Case: Recall that in this case, the model
reduces to Y; = U;, where U; " i F(p,0).

To illustrate the detection algorithms, we consider P = 100
smart meter nodes; Y = (Y1,...,Yio0)T. Further, the signifi-
cance level in the Universal Thresholding Method is set to be
g = 0.1. In the first simulation setting, we generate n = 200
independent sets of smart meter vectors, Yi,..., Yy, from
the following two distributions: (i) Uniform(625,675) and
(ii) Gamma(400, 1.5), respectively. The Uniform distribution
limits electricity consumption within a prespecified range,
which is the case for most consumers, while the Gamma

VR

(I11.3)
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Correlation Matrix Heat Map Before Filtering Correlation Matrix Heat Map After Filtering

Fig. 2. Heat maps of the correlation matrix and its filtered version in the
independent Uniform, no attack case.

Correlation Matrix Heat Map Before Filtering Correlation Matrix Heat Map After Filtering

Fig. 3. Heat maps of the correlation matrix and its filtered version in the
independent Gamma, no attack case.

distribution exhibits a longer tail and hence makes the detec-
tion problem more challenging. We employ the Universal
Thresholding Method to estimate the covariance matrix of Y.
Figures 2 & 3 amply illustrate that the method performs
well in filtering noisy information when obtaining the sample
covariance matrix.

Next, we describe the attack scenarios considered. For all
attack variables, let E(o) = 130, i.e., 20% of the mean
consumption level E(Y'); further, set the Variance Ratio
to be the same for each attack group. As a consequence,
we generate « from different Uniform Distributions, whose
parameters are calculated based on the prespecified mean
and VR=0.1 requirement. In addition, for the single attacker-
many victims attack, we let all the victim nodes in the same
attack group to be increased by the same amount; i.e., the
attack variable for the victim nodes are equally weighted.
To calculate the probability of detection, 50 data sets from
the respective Uniform and Gamma distributions, and for
both pairwise and single attacker-many victims cases were
generated. The probability of detection shown in Figure 4
corresponds to the relative frequency of both detecting and
identifying the attacker-victim groups in the 50 data sets.

We draw the following conclusions based on the results
depicted in Figure 4: (i) As the sample size increases, the prob-
ability of detection also increases; (ii) The probability of
detection will get lower when we have more complicated types
of attacks; (iii) If we are able to have adequate number of
repeated measurements from each smart meter, the detection
probability of an attack converges to one.

In the next setting, the smart meter data are generated from a
Uniform (600, 700) that has higher variance than the previous

Probability of Detection in Uniform for VR=0.1
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Fig. 4. Probability of detection for Uniformly(625.675) distributed
uncorrelated data.

Probability of Detection for Uniform(600,700) for VR=0.1
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Fig. 5. Probability of detection for Uniformly(600.700) distributed
uncorrelated data.

setting. In addition, the mean attack is set to E(a) = 80,
which is less than the range of the measurements. The same
mechanism is employed for generating the attack variables and
the same attack scenarios are considered. Figure 5 depicts the
detection probability calculated based on 50 simulated data
sets. Only a slight deterioration in the detection probability is
observed, compared to the previous setting.

Next, we consider 50 data sets generated from a
Gamma(625, 675), while the corresponding attacks « are also
Gamma distributed, so that the prespecified mean (130) and
VR (0.10) requirements are met. Figure 6 shows the probabil-
ity of detection for the Gamma distributed measurements. The
presence of a longer right tail in the smart meter measurement
leads to a higher sample size requirement for achieving the
same detection probability to the Uniform case. Further, all
the conclusions drawn from the Uniform distribution setting
continue to hold.

Next, we examine a scenario involving multiple attacks of
both pairwise and one attacker-many victims types, with mea-
surements generated from different distributions. Specifically,
Yi,..., Y, come from a Uniform(625,675) distribution,
and we consider 10 pairwise attacks, 5 One Attacker-Two
Victims attacks and 3 One Attacker-Three Victims attacks
from a Uniform(106.3,153.7) distribution, which results in
a minimum VR = 0.1. Further, we set the sample size
to n = 5000. Figure 7 shows the resulting heat map of the
correlation matrix estimate.
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Probability of Detection in Gamma for VR=0.1
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Fig. 6. Probability of detection Gamma distributed uncorrelated data.

Fig. 7. Heat map of the correlation matrix in the independent Uniform
“mixed attacks” case.

Correlation Matrix Heat Map

Fig. 8. Heat map of the correlation matrix in the independent Uniform
“mixed attacks” case 2.

For Yi,...,Y, from a Uniform(600,700) distribution,
we follow the same experiment set-up and generate the attack
variables from Uniform(33,127). Figure 8 illustrates the cor-
responding results.

For Yi,...,Y, from a Gamma(400,1.5) distribution,
we choose the same set-up, except for generating all the attack
variables from a Gamma(17.78,6.75) distribution. Figure 9
depicts the results.

The following Table I contains detection results, based on
50 replicates of the attacks. This table shows the average
number of successful detection for each type of attack, and
the number in the bracket is the standard deviation of detected

Fig. 9. Heat map of the correlation matrix in the independent Gamma “mixed
attacks” case.

TABLE I

WE REPEAT TO LAUNCH 10 PAIRWISE, 5 2-VICTIMS AND 3 3-VICTIMS
ATTACKS 50 TIMES, AND CALCULATE THE AVERAGE NUMBER OF
SUCCESSFUL DETECTION FOR EACH TYPE OF ATTACK

Pairwise 2 Victims 3 Victims
Uniform(625,675) 10(0.000) 5(0.000) 2.76(0.431)
Uniform(600,700) 10(0.000) 5(0.000) 2.82(0.388)
Gamma 9.98(0.141)  4.96(0.198)  2.84(0.370)

attack in 50 replications, which means that the bracketed
number is the smaller the better. The same format of table
holds for the rest of this paper.

It can be seen that for the pairwise setting, all 10 attacks are
(essentially) always detected for both Uniform and Gamma
distributed measurements. For the 3-victim setting, on aver-
age 2.76 (2.84) of the victims are successfully detected for
Uniform (Gamma) measurements. Hence, even in the “mixed
attack” scenario, our proposed detection algorithm nearly
captures all the electricity theft activities according to Figure 7,
Figure 9 and Table I for both Uniform and Gamma data
generating mechanisms.

Remark: On sample size requirements. We conclude by
commenting on the sample size needed for high detection and
identification accuracy. Note that in our simulation scenarios
we set VR=0.1, which as previously mentioned acts as a
signal-to-noise measure for the problem at hand. This is a very
stringent requirement which consequently requires a fairly
large sample size for high detection accuracy. Our simula-
tion results indicate that for measurements obtained every
2 minutes (see real data setting in Section III.B), an attack
becomes detectable with high probability if it goes on for
44 days. At lower sampling frequency (e.g. 15 minute inter-
vals, which is the case for many utilities) the attack needs to
last considerably longer.

However, note that [29] reports that for the supervised
learning approach used, wherein ground truth data for attacks
are needed, an attack becomes detectable if it is ongoing
for more than a week. Reference [18] simulates various
attacks leveraging an Irish data set comprising of 5,000 cus-
tomers, whose electricity profiles were monitored twice hourly
for 535 days. Various supervised learning techniques were
assessed, assuming that the simulated attacks lasted for one
week. In paper [26] that employs a similar neighborhood
area network architecture, the signal-to-noise ratio used in
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Uniform Correlation Matrix Heat Map After Filtering

Fig. 10. Heat map of correlation matrix under dependent, no attack case,
for data generated from a Uniform distribution.

Gamma Correlation Matrix Heat Map After Filtering

Fig. 11. Heat map of correlation matrix under dependent, no attack case,
for data generated from a Gamma distribution.

their numerical work ranges between 1.1-9. For the proposed
approach, when VR=0.2, the probability of detection is close
to 1 for all attack scenarios and data generating distribu-
tions, for sample sizes around 2000. Finally, for VR=0.4,
a sample size of 500 suffices for detecting with probability
0.95 a pairwise attack based on Uniform(600, 700 distributed
independent data with E(a) = 0.80.

2) Dependent Case: For the general dependent (correlated)
scenario, we set P = 30 and the significance level in the
filtering technique to ¢ = 0.1. Since we need to generate
O(P?) differencing variables, to ensure an adequate detection
level, a large number of smart meter measurements needs
to be generated. In our experiments, we set n = 10,000
measurements from W ~ Uniform(625,675) and W ~
Gamma(400, 1.2) distributions, respectively. Further, we set
U; ~ N(0,100) and p; ~ Uniform(0.80,0.85).

Figure 10 and 11 show the heat maps of the correlation
matrix estimates of X, when there is no attack for different
generating procedures.

For W ~ Uniform(625, 675), we separately launch different
types of attacks. To make settings comparable to the inde-
pendent case, we let E(«) = 130, i.e., approximately 20%
of E(Y), and set Variance Ratio the same for each attack
group. Analogously to the independent case, we generate
«a from different Uniform distributions, whose parameters

Probability of Detection for VR=0.1  Probability of Detection for VR=0.1  Probability of Detection for VR=0.2

Wil 07

ty of detection
06
I
probabilty of detection
08
L

probabilty of detection

/ <= Pairwise
s s s

= Two Victims

a. =7 = o[ s + = Three Victims.
T T T T T T T T T T T T T T
10000 30000 50000 10000 30000 50000 10000 30000 50000

sample size sample size sample size

Fig. 12.  Probability of detection for various attack scenarios for Uniformly
distributed dependent data.
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Fig. 13. Probability of detection for various attack scenarios for Gamma
distributed dependent data.

are calculated based on the pre-specified mean and VR=0.1
(or 0.2) requirement. As before, we generate 50 data sets
to calculate the detection probability. Figure 12 depicts the
relationship between the probability of detection, sample size
and VR for different types of attacks.

Based on these results we conclude that: (i) an increased
sample size improves the probability of detection; (ii) a
larger VR, significantly improves the probability of detection;
(iii) the dependent case is considerably more challenging that
the independent case, since detection is based on differences of
the original measurements, that exhibit much higher variability
(see for example, equation (I1.7)).

For W ~ Gamma(400,1.5), we let E(ar) = 120 in order
to be approximately 20% of E(Y'). Figure 13 depicts the
relationship between probability of detection, sample size
and VR for different types of attacks for this setting. Due
to the long right tailed nature of the Gamma distribution,
the probability of detection is lower than that for the Uniform
distribution.

The counterpart of Table I is shown next. It can be seen
that performance deteriorates significantly for complex attack
scenarios.

B. A Residential Buildings Example

Next, we use electricity consumption data from buildings
at the University of Michigan, Ann Arbor. The form of
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TABLE II

AVERAGE NUMBER OF SUCCESSFUL DETECTIONS (WITH STANDARD
DEVIATION IN PARENTHESES) FOR 10 PAIRWISE, 5 TWO-VICTIM AND
3 THREE-VICTIMS ATTACKS, BASED ON 50 GENERATED
DATA SETS EXHIBITING DEPENDENCE

Pairwise 2 Victims 3 Victims
Uniform  4.68(1.096)  2.76(0.822)  0.92(0.274)
Gamma  2.60(1.979)  1.20(1.485)  0.40(0.495)

Electricity Consumption (natural log scale)
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Fig. 14.  Electricity consumption of 19 campus buildings (in natural log-
scale).
s | 3z g 5
Lot it
? : ° 8
= : 1 i H 8
8 8+ +—+1$I5%%—-$-—§-I%-§-ii$
> 1! b i ! | E [}
5 Bg S
i 2 E ! g @ 3
8 B o °
o, T T T T T ? T T T T T T T T T T T T T
2345678910 12 14 16 18
Building Number
Fig. 15. Boxplots of electricity consumption for the 19 selected buildings.

data is time series based and recorded by the smart meters
deployed in the buildings every 2 minutes. The data were
preprocessed following the procedure presented in [30] that
included exclusion of buildings with highly unusual behavior,
such as missing recorded values, long intervals of constant
values, abnormal spiky trends and so forth. The extracted data
set comprises of p = 19 buildings and covers a duration
of 5 days, for a total sample size of n = 3600. Figure 14
shows the electricity consumption patterns (in natural log-
scale) recorded by the selected smart meters.

Further, boxplots of electricty consumption of the 19 build-
ings under consideration are depicted in Figure 15. It can be
seen that the average consumption across all buildings is com-
parable and hence the emulated attacks launched (see below)
are of the same magnitude for all buildings.

Figure 16 shows the heat map for the filtered correlation
matrix estimate of the data. It is apparent that the correlation
coefficients between different buildings are 0, which helps
us to conclude that we fall under the independent scenario.
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Fig. 16. Filtered heat map for correlation matrix of residential data.
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Fig. 17. Probability of detection for emulated attacks on the residential
building data.

TABLE III

AVERAGE NUMBER OF SUCCESSFUL DETECTIONS (WITH STANDARD
DEVIATION IN PARENTHESES) FOR 2 PAIRWISE, | TWO-VICTIM AND
1 THREE-VICTIMS ATTACKS, BASED ON 50 GENERATED ATTACKS
BASED ON THE RESIDENTIAL BUILDINGS DATA

Pairwise 2 Victims 3 Victims
VR=0.05 1.92(0.274) 0.62(0.490) 0.70(0.463)
VR =0.10 1.94(0.240) 0.98(0.141)  0.98(0.141)
VR=0.15 1.94(0.240) 0.98(0.141)  0.98(0.141)
VR=0.20 1.94(0.240) 0.98(0.141) 0.98(0.141)

As a result, the detection algorithm for the independent case
is appropriate for this real data example.

To test the algorithm in the real data example, we generate
the attack variable from different Uniform distributions such
that E(a) is 20% of the mean consumption level of the
selected buildings, and set the Variance Ratio to the same
value in the set (0.05,0.10,0.15,0.20) for each attack group.
Figure 17 depicts the relationship between probability of
detection rate and VR for different types of attacks, based
on 50 generated attack data sets.

Moreover, we also launch different types of attacks simul-
taneously, i.e., mixed attacks, to test our detection method.
Specifically, we generate 2 pairwise attacks, one 2-Victims
attack and one 3-Victims attack. Figure 18 shows the resulting
heat map of the correlation matrix estimate, when VR = 0.15.

Finally, the following detection Table III is given by repli-
cating the mixed attacks scenario 50 times. It can be seen that
once VR> 0.10 performance becomes very satisfactory.
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Fig. 18. Filtered heat map for Uniform mixed attacks in real data.

The obtained results amply demonstrate that the proposed
detection methodology exhibits good performance and the key
conclusions obtained from the synthetic data are applicable to
real smart meter measurements.

Finally, we used time series techniques presented in [30]
that were applied to the same data set. They included sparse
vector autoregressive models and dynamic factor models.
Note that the average magnitude of the simulated attacks
is 20% of the mean consumption level of each building, which
translates to a signal to noise ratio of 1.2 for these models.
The detection probability for the simulated scenario presented
above is 80%; namely, it corresponds to the proportion of
“anomalies” detected in the 9 buildings involved in the attack
scenario under consideration. However, such techniques are
not able to go beyond the detection stage and thus identify
attackers and victims, unlike the proposed approach. The latter
constitutes a key property of the developed methodology that
is particularly useful to utility companies.

C. Some Practical Guidelines to Aid the Proposed
Detection Algorithms

Note that regularizing the sample correlation matrix may
result in more complicated patterns than expected according to
our theoretical results. Examples include setting more elements
to zero, the presence of opposite signs within sub-blocks,
etc. These issues will result in false positives/negatives for
the detection algorithm in the independent case. To address
them, we propose certain rules that can be applied as further
post-processing of the correlation matrix obtained from the
Universal Thresholding method.

Firstly, we denote two types of positions in the covariance
matrix, one is the Attacker-Victim position, where all the
elements should have negative sign theoretically; the other is
the Victim-Victim position, where all the elements should have
a positive sign.

1) Under the Pairwise Attack scenario, when dealing with
the covariance matrix estimate, if the entry in the
Attacker-Victim position has positive sign, we will con-
sider it as noise signal and conclude that there is no
attack between these two smart meters;

2) Under the One Attacker-Many Victims scenario,
we might have more than one meter node that has nega-
tive covariance values with the rest after regularization,

which will make it more difficult in identifying the
Attacker and Victims. For example, in One Attacker-
Three Victims case, the sub-covariance matrix block
estimate for attack « is B. We could see that node a
has negative covariance value with b and c. In the mean
time, node d has negative covariance value with b. But
based on the assumptions and detection method that we
propose in this paper, there could be one and only one
node that has negative covariance value with the rest
theoretically. Therefore, it is hard to identify which node
is the Attacker given B. To address this, we denote the
cardinality of node a as N(a) = |{k : Cov(a, k) < 0}|.
Then, for all the nodes in the sub-covariance matrix
block, we let the node with the largest cardinality be
the Attacker, and consequently the rest are the victims.
In the example below, node a is the Attacker.

abcecd
al+ — - +
b - 4+ + -
Bic - 4+ + +
dl+ — + +

3) We could also have some missing entries in the covari-
ance estimate after regularization. Considering the toy
example above for the three victims case, note that if the
covariance estimate B has the following form with some
missing entries in the Victim-Victim positions, we still
identify node a, b, c, d as being within the same attack

group.
abcecd
al+ — - -
B:b - 4+ +
c|l— + + +
d|— + +

If the missing values are in the Attacker-Victim posi-
tions, we could again use the cardinality rule to address
this issue. For example, if estimate B has the following
form, by applying our rules, we still identify a, b, ¢ and
d being within the same attack group, and the node a is
the Attacker.

a b ¢ d

al|l+ - -
b - 4+ +

Bic + + +

d| — +  +

By applying this rule, we could resolve this problem when
dealing with real noisy data sets.

IV. CONCLUSION

In this paper, we have primarily focused on how to address
coordinated power theft activities detection problem by consid-
ering independent and dependent smart meter data generating
mechanisms. For each case, two scenarios, pairwise and one
attacker-many victims, have been thoroughly investigated.

We have separately developed an easy-to-implement detec-
tion algorithm to detect attacks and identify attackers and
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victim nodes. The implementation of the strategy leverages
a regularized covariance estimator, followed by close exami-
nation of patterns in the resulting matrix. Extensive numerical
results based on both synthetic and real data illustrate the
superior performance of the proposed methodology.

Note that there is a plethora of machine learning approaches
that addresses the detection problem. However, identifying
“attackers” and their corresponding “victims” is a more chal-
lenging problem that few of these approaches can address.
Hence, this constitutes an important feature of the proposed
methodology.

There are some open problems that merit additional inves-
tigation, including scenarios involving multiple attackers and
multiple victims. However, such coordinated attacks are more
difficult to launch, since they require a higher level of sophis-
tication from the attacker’s perspective.
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