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Abstract: Wildfire activity has surged in North America’s temperate grassland biome. Like many
biomes, this system has undergone drastic land-use change over the last century; however, how various
land-use types contribute to wildfire patterns in grassland systems is unclear. We determine if certain
land-use types have a greater propensity for large wildfire in the U.S. Great Plains and how this
changes given the percentage of land covered by a given land-use type. Almost 90% of the area
burned in the Great Plains occurred in woody and grassland land-use types. Although grassland
comprised the greatest area burned by large wildfires, woody vegetation burned disproportionately
more than any other land-use type in the Great Plains. Wildfires were more likely to occur when
woody vegetation composed greater than 20% of the landscape. Wildfires were unlikely to occur
in croplands, pasture/hay fields, and developed areas. Although these patterns varied by region,
wildfire was most likely to occur in woody vegetation and/or grassland in 13 of 14 ecoregions we
assessed. Because woody vegetation is more conducive to extreme wildfire behaviour than other
land-use types in the Great Plains, woody encroachment could pose a large risk for increasing wildfire
exposure. Regional planning could leverage differential wildfire activity across land-uses to devise
targeted approaches that decrease human exposure in a system prone to fire.
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1. Introduction

Natural disasters result when human populations are unable to cope with biophysical processes
that push systems to the extreme ranges of variability in system functioning [1–3]. Increases in
natural disasters have been recorded globally [2,4], leading to high economic costs and loss of life.
Almost 1 million fatalities worldwide resulted from natural disasters between 2004 and 2013 [5]. The
damages resulting from weather and climatic disasters alone in the United States cost over $1.5 trillion
between 1980 and 2018 [6]. With increases in the frequency and magnitude of extreme events occurring
around the world [7,8], it is a growing priority to identify patterns and processes associated with
a heightened propensity for extreme events so that we can better identify and manage current and
future risk.

Natural disasters resulting from wildfire are increasing [9], fuelling the need to understand
patterns in wildfire in regions experiencing rapid increases in wildfire trends. North America’s
grassland biome saw a surge of large wildfire activity in recent decades [10]. The average number
of large wildfires per year increased from 33 between 1985 and 1994 to 117 between 2005 and 2014
while total hectares burned increased by 400% during this time [10]. Multiple Great Plains states,
including Texas, Oklahoma, Montana, and North Dakota, were part of wildfire disaster events that
each individually exceeded $1 billion in losses between 2008 and 2018 [6]. The Wildland Fire Executive
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Council lists the Great Plains as a region that is mostly at low to moderate risk for large, long duration
wildfire (Figure 1). While this may still be true relative to the forested west, more large wildfires have
been occurring across this region than in the historical past [10]. Many of these wildfires have similar
duration to large wildfires in the west (e.g., the Rhea fire in Oklahoma burned 14 days in 2018; National
Wildfire Coordinating Group).
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Figure 1. Areas designated as high risk for large, long-duration wildfire (red) by the National Cohesive
Wildland Fire Management Strategy [11]. The black outline delineates the Great Plains L1 ecoregion.

Wildfire used to be frequent in the Great Plains, with an average fire return interval between 2
and 14 years [12]. However, a shift in land management practice from the application of fire by Native
Americans to post-European land management practices of fire suppression almost eradicated large
fire from the Great Plains over the last century [12–15], and it is this characterisation of fire that shapes
most assessments of current wildfire risk. However, past trends are incapable of predicting current and
future risks in systems that are rapidly transitioning and reorganizing [16,17]. Four of the top 10 largest
wildfire complexes since 2010 within the conterminous U.S. occurred in the Great Plains, and the largest
wildfire on record in the conterminous U.S. occurred in Texas in 2006 [18]. The western United States
experienced abrupt increases in wildfire that contrasted with previously recorded wildfire patterns
resulting in an altered and more hazardous wildfire regime [19]. Increases in wildfire across the Great
Plains could similarly represent a shift in wildfire regime tied to a rapidly changing environment.

Understanding recent changes in wildfire in the Great Plains needs to begin with investigations
of the dominant constraints on wildfire occurrence and distribution: (1) fuel availability, (2) ignition
sources, and (3) climatic and weather conditions conducive to combustion [20–22]. Patterns in
ignitions have been documented across the conterminous U.S., with 84% of wildfires started by
humans, e.g., [23]. Similarly, climate has been tied to wildfire across western forested regions,
e.g., [24,25]. It is well-established that fire patterns are also strongly limited by fuel type, abundance,
and distribution [21,26,27]. In fuel-limited systems like grasslands, fuel structure and availability
have been shown to constrain fire activity to a greater extent than climate [21,27]. Shifts in wildfire
occurrence have been linked to unintended shifts in fuel composition and contiguity in a number of
grassland regions (e.g., sagebrush to cheatgrass dominance in western North America [28,29], invasion
of jaragua grass in Central America [30,31], and gamba grass invasion in Australia [32,33]).
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Land-use plays a predominant role in shaping wildfire distributions from global to local scales
because of strong ties to fuel patterns [20,34]. In the Great Plains, shifting land management practices
over the last century have led to substantial changes in land-use. Historically, the Great Plains was
dominated by grassland interspersed with rare patches of woody vegetation that managed to escape
frequent grassland fires [15,35]. Like many contemporary biomes, human development has now
created a patchwork of intact grassland and forested vegetation interspersed with croplands, pastures,
and developed areas. Fire suppression combined with extensive tree planting has allowed for recent
regional-scale increases in the distribution and cover of woody vegetation [15,36,37]. Understanding
how wildfire is associated with different land-use types across the Great Plains would allow us to
better deduce the potential exposure of people to the changes in large wildfires in the Great Plains and
how land-use could be utilised to decrease risk of human exposure to wildfire in the future.

This study determines how large wildfire (>400 ha) activity is linked to land-use across North
America’s temperate grassland biome. We expect that large wildfires will be most frequent in intact
grasslands, which are highly pyrogenic and historically hosted a frequent fire cycle in the Great
Plains [12,15,38], and less frequent in woody-dominated land-use types, croplands, and pasture
lands. Moreover, Donovan et al. [10] found regional differences in large wildfire trends across Great
Plains ecoregions. For instance, Cross Timbers and Edwards Plateau ecoregions of the Great Plains
experienced some of the greatest increases in large wildfire number between 1985 and 2014 (3900%
and 2600%, respectively), while the number of large wildfires in the Nebraska Sandhills remained
relatively consistent [10]. We predict that trends in area burned by large wildfires and the degree to
which different land-use types are implicated will vary spatially across Great Plains ecoregions tied
to differences in climate-vegetation relationships. We quantify the percent of area burned by large
wildfires of each dominant land-use type at both the Great Plains and ecoregion scale between 1993 and
2014. We then contrast this with regional abundance and distribution of land-use types to determine
on which land-use types large wildfires were more likely to occur over the last two decades.

2. Materials and Methods

2.1. Data

The Environmental Protection Agency (EPA) L1 Great Plains ecoregion was used to designate
the boundary of our study area [39]. L3 ecoregions were used to subdivide the Great Plains to assess
regional patterns. EPA ecoregion designations are based on similarities in climate, vegetation, land-use,
soils, geology, landforms, hydrology, and wildlife [40]. Only ecoregions with 5 or more large wildfires
were included in our analysis, consistent with Donovan et al., [10]. Areas with less than 5 fires were
considered to have too few wildfires to assess broad-scale wildfire trends. All ecoregions we assessed
had greater than 5000 ha burned by large wildfires (Table 1). Palmer Drought Severity Index (PDSI)
values, used to assess relative dryness of an area, demonstrate that dryness at wildfire initiation
averaged across ecoregions ranged from Near Normal (PDSI of −1.9 to 1.9) to Moderate Drought (PDSI
of −2.0 to −2.9) conditions based on U.S. National Oceanic and Atmospheric Administration PDSI
categories (Table 1). Mean population density per square kilometre ranged from an average of 1 to 90
across ecoregions (Table 1).

Large wildfire perimeter information (wildfires > 400 ha in size) was collected from 1993 to 2014
from the Monitoring Trends in Burn Severity (MTBS) project [41]. MTBS includes 30 m resolution
large wildfire data for the entire conterminous United States. Fire perimeters are delineated using
pre- and postfire satellite imagery along with Normalised Burn Ratio (NBR), differenced Normalised
Burn Ratio (dNBR), and Relativized differenced Normalised Burn Ratio (RdNBR) images [41]. MTBS
covers both private and public lands, ensuring a continuous spatial distribution of large wildfire data.
Moreover, burn areas are collected using a standardized methodology, creating consistency in spatial
and temporal reporting across the dataset. MTBS wildfire perimeters have been used to assess wildfire
trends across a number of studies in the U.S., e.g., [7,10,42], though have been found to overestimate
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total area burned by including unburned patches within the fire [43]. Only perimeters classified as
“wildfire” by MTBS were included in our analysis. Because MTBS does not map wildfires greater than
~400 ha in size (≥1000 acres) in the western U.S., we restricted our analysis to large wildfires >400 ha.

Table 1. L1 and L3 ecoregion statistics between 1993 and 2014 in the U.S. Great Plains.

Ecoregion Ecoregion
Area (ha)

Number of
Wildfires a

Total Area
Burned (ha)

Average PDSI
at wildfire
initiation b

Average Population
Density per km2

in 2010c

Great Plains 2.23 × 108 1870 5.04 × 106 −1.46 ± 2.27 SD 16 ± 133 SD
Central Great Plains 2.75 × 107 180 3.17 × 105 −1.98 ± 2.31 SD 12 ± 104 SD

Central Irregular Plains 1.14 × 107 19 1.31 × 104 −2.35 ± 2.20 SD 30 ± 158 SD
Cross Timbers 8.81 × 106 234 4.39 × 105 −2.78 ± 1.93 SD 35 ± 167 SD

Edwards Plateau 7.49 × 106 102 3.84 × 105 −1.47 ± 2.24 SD 12 ± 90 SD
Flint Hills 2.79 × 106 49 1.13 × 105 −1.65 ± 2.39 SD 9 ± 87 SD

High Plains 2.88 × 107 299 7.92 × 105 −1.60 ± 1.76 SD 15 ± 150 SD
Lake Agassiz Plain 4.51 × 106 60 2.87 × 104 −1.17 ± 2.16 SD 8 ± 87 SD
Nebraska Sandhills 5.91 × 106 41 8.17 × 104 −0.92 ± 2.56 SD 1 ± 11 SD

Northern Glaciated Plains 1.35 × 107 5 5.10+3 −2.01 ± 1.43 4 ± 52 SD
Northwestern Glaciated Plains 1.74 × 107 63 8.62 × 104 −0.32 ± 1.15 SD 2 ± 35 SD

Northwestern Great Plains 3.58 × 107 414 1.39 × 106 −0.78 ± 2.34 SD 2 ± 35 SD
Southern Texas Plains 5.34 × 106 12 3.11 × 104 0.71 ± 2.26 SD 10 ± 111 SD

Southwestern Tablelands 1.99 × 107 350 1.13 × 106 −1.73 ± 1.99 SD 5 ± 72 SD
Western Gulf Coastal Plain 7.54 × 106 163 2.26 × 105 −0.98 ± 2.53 SD 90 ± 146 SD
a The number of wildfires across L3 ecoregion does not sum to the number of wildfires that occurred within the Great
Plains as some wildfires occurred across multiple L3 ecoregion boundaries and thus were counted multiple times.
b Palmer Drought Severity Index (PDSI) data was summarized using Google Earth Engine [44] from Abatzoglou et al., [45].
c Population data was summarized from 2010 data sets generated by CIESIN, [46] using Google Earth Engine [44].

We used 30 m resolution National Land Cover Database (NLCD) land cover classifications for 1992,
2001, 2006, and 2011 (all years available at the time this study was conducted) to identify land-use types
across the Great Plains (https://www.mrlc.gov/). NLCD is the most temporally extensive fine-resolution
land-use classification currently publicly available for the United States. Unlike when merging data sets
from multiple sources, NLCD data has relatively consistent thematic land-use classes and classification
criteria across land cover years, making this the most comprehensive and temporally extensive data
set available to assess land-use and large wildfire patterns for this biome.

2.2. Analysis

We created five dominant land-use types across the Great Plains using NLCD information:
grassland, woody vegetation, crop, pasture and hay fields, and developed areas (Table S1). Woody
vegetation represented a consolidation of evergreen, deciduous, and mixed forest types along with
shrublands (Table S1). NLCD does not distinguish between shrubs, young trees, and trees stunted from
environmental conditions (Table S1). Developed areas included regions with constructed materials
including parks, single-family homes, and apartment complexes (Table S1). To determine land-use type
abundance across regions, we calculated the average percent cover of each land-use type in the Great
Plains and each L3 ecoregion across the 1992, 2001, 2006, and 2011 NLCD land cover classifications,
separated by year.

We overlay large wildfire perimeter information from 1993 to 2014 with our land-use information
to calculate the percent of the total area that burned that was composed of different land-use types
(Figure 2). In order to sample the most accurate representation of land-use types that burned each year,
we extracted land-use information from the 1992 NLCD land cover classification with large wildfires
from 1993 to 2001, from the 2001 NLCD land cover classification with large wildfires from 2002 to 2006,
from the 2006 NLCD land cover classification with large wildfires from 2007 to 2011, and from the 2011
NLCD land cover classification with large wildfires from 2012 to 2014.

https://www.mrlc.gov/
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Figure 2. The distribution of large wildfire (>400 ha) perimeters (red) across land-use types (grassland
in yellow, woody vegetation in green, crops in orange, pasture/hay fields in brown, and developed
areas in grey) in the U.S. Great Plains and level 3 ecoregions designated by the EPA (1 = Northwestern
Glaciated Plains, 2 = Northern Glaciated Plains, 3 = Lake Agassiz Plain, 4 = Northwestern Great Plains,
5 = Nebraska Sandhills, 6 = Western Corn Belt Plains, 7 = High Plains, 8 = Southwestern Tablelands,
9 = Central Great Plains, 10 = Central Irregular Plains, 11 = Flint Hills, 12 = Cross Timbers, 13 = Edwards
Plateau, 14 = Texas Blackland Prairies, 15 = Southern Texas Plains, 16 = Western Gulf Coastal Plain).

To determine land-use types that have the greatest propensity for large wildfire, we measured
which land-use types disproportionately appeared in large wildfire perimeters. We took the difference
between the percent of the total area burned of each land-use type and the average percent cover of
each land-use type within the Great Plains and each L3 ecoregion. Values near zero indicate that large
wildfire occurrence is not influenced by a given land-use type. Positive values indicate land-use types
where large wildfires are more likely to occur, and thus that have a higher propensity for large wildfire.
Negative values indicate where large wildfires are less likely to occur, and thus that have a lower
propensity for large wildfire.

The propensity for large wildfire in a given land-use type may be dependent upon its relative
cover within an area. We measured the percent cover of each land-use type within each large wildfire
perimeter that burned between 1993 and 2014 (n = 1870) in the Great Plains. We used this information
to generate frequency distributions of large wildfire occurrence relative to the percent cover for each
land-use type using 10 bins of land-use type cover ranging from <0 to 100%. This was repeated for
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each L3 ecoregion (wildfire numbers per ecoregion are summarised in Table 1). To determine how the
propensity for large wildfire changes relative to a land-use type’s cover on the landscape, we compared
these measured fire frequency distributions to null distributions, created by randomly distributing large
wildfire across land-use types. In the Great Plains, our null distribution was generated by distributing
5000 random points across the Great Plains and creating buffer zones around each point that matched
the average large wildfire size in the Great Plains (2698 ha). In each L3 ecoregion, we distributed
500 random points across the ecoregion and created buffer zones around each point matching the
average large wildfire size within that ecoregion (Table S2). Within each buffer zone, we measured the
percent cover of each land-use type for each NLCD land cover classification for each year (1992, 2001,
2006, and 2011). The number of buffer zones sampled was equal to the number of large wildfires that
occurred within the Great Plains and each L3 ecoregion. For instance, in the Great Plains, we sampled
490 buffer zones (the number of large wildfires that burned in the Great Plains between 1993 and 2001)
from the 1992 NLCD land cover classification, 505 (the number of large wildfires that burned in the
Great Plains between 2002 and 2006) from the 2001 NLCD land cover classification, 688 (the number of
large wildfires that burned in the Great Plains between 2007 and 2011) from the 2006 NLCD land cover
classification, and 187 (the number of large wildfires that burned in the Great Plains between 2012
and 2014) from the 2011 NLCD land cover classification. This totalled to 1870 sampled buffer zones
(the total number of large wildfires in the Great Plains over our study period). We repeated random
sampling an additional 999 times within the Great Plains and each L3 ecoregion. Data were used to
generate 1000 null frequency distributions. We averaged these frequency distributions to create a single
null distribution for each land-use type in the Great Plains and each L3 ecoregion. We then subtracted
the values of our generated null frequency distribution from the measured large wildfire frequency
distribution for each land-use type to determine how the relative cover of each land-use type altered
the propensity for large wildfire. A value near zero indicates that large wildfires are not influenced by
the relative abundance of a given land-use type on a landscape. A positive value indicates that large
wildfires are more likely to occur, and thus there is a higher propensity for large wildfire, given the
relative abundance of a land-use type. A negative value indicates that large wildfires are less likely to
occur, and thus there is a lower propensity for large wildfire, given the abundance of a land-use type.

This comparison was further supplemented with nonparametric Fisher Exact Tests with R statistical
software (version 3.5.2) to determine if there was a significant difference between the measured wildfire
frequency distribution and our generated null distribution. P-values were simulated using Monte
Carlo tests with 10,000 replicates.

Assumptions associated with our approach need to be articulated. Our assessment is limited by
the assumptions that were used to develop NLCD and MTBS geospatial data sets. It is important
to note that NLCD is unable to provide associated fuel flammability (including fuel availability,
condition, and connectivity) or ignition probability. Differences in land-use management (e.g., haying,
grazing) exist within and across land-use types in the Great Plains, however, there is no data available
across this biome that allow us to determine how these patterns influence intrinsic and extrinsic fuel
properties among land-use types. Moreover, our assessment does not directly incorporate patterns in
other factors that can influence wildfire distribution, like ignitions, weather, and climate, e.g., [23,24].
Thus, our assessment should represent a starting point for more in-depth mechanistic assessments of
ties between fuel pattern and large wildfire in the Great Plains.

3. Results:

3.1. Wildfire and Land-Use in the Great Plains

Woody vegetation and grasslands had the greatest propensity for large wildfire in the Great Plains
(Figure 3C). Woody vegetation burned disproportionately more than any other land-use type in the
Great Plains, composing over two times the percent land area in large wildfire perimeters than it did in
the Great Plains as a whole (Figure 3). Large wildfires were more likely to occur in woody vegetation
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and grassland as woody and grassland cover increased on the landscape (Figure 4F,G; p < 0.01, p < 0.01
respectively). Large wildfires occurred more frequently when woody cover exceeded 20% (Figure 4G)
and when grassland cover exceeded 60% of the landscape (Figure 4F).

Croplands had the lowest propensity for large wildfire. While crops were abundant across
the Great Plains, they burned over 15 times less than their proportional land coverage (Figure 3).
The propensity for large wildfire was lower when crop cover was higher. Large wildfires were more
likely when crop cover made up between >0 to 10% of the landscape (Figure 4H; p < 0.01) but were
unlikely to burn when crop cover exceeded 10% of the landscape. Only five large wildfires occurred in
regions where crop made up >90% to 100% of the landscape (Figure 4C).
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Figure 3. (A) The average percent of the U.S. Great Plains coved by grassland vegetation, woody
vegetation, crops, pasture and hay fields, and developed areas based on 1992, 2001, 2006, and 2012
National Land Cover Database land cover classifications. (B) The percent of the total area burned in
the Great Plains between 1993 and 2014 that occurred within grassland vegetation, woody vegetation,
crops, pasture and hay fields, and developed areas. (C) The propensity for large wildfire, calculated
from taking the difference between the percent total area burned and the percent cover of each land-use
type, where a positive value indicates land-use types where wildfires were more likely to occur.
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Figure 4. The number of wildfire perimeters between 1993 to 2014 that contained varying percent cover
of (A) grassland, (B) woody vegetation, (C) crops, (D) hay and pasture, and (E) developed areas, as
well as the relative propensity for large wildfire of varying land-use type cover (F–J), calculated by
subtracting the null wildfire frequency distribution (random distribution) from the recorded wildfire
frequency distribution (A–E), where positive values indicate land-use types where large wildfires were
more likely to occur.

Large wildfires were similarly unlikely to burn in pasture/hay fields and developed areas.
Pasture/hay fields burned eight times less than their proportional land coverage in the Great
Plains (Figure 3). Developed areas burned in large wildfires four times less than their proportional
representation in the biome (Figure 3). Almost no large wildfires occurred in locations with high
coverage of pasture/hay fields or developed areas (Figure 4D,E). Four hundred eighty-eight large
wildfires occurred in areas where pasture/hay fields covered less than 10% of the landscape, while large
wildfire numbers ranged from 0 to 22 when landscape coverage of pasture/hay fields exceeded 10%
(Figure 4D). Similarly, over 1000 large wildfires occurred where developed areas covered >0 to 10% of
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the landscape (Figure 4E); however, almost no large wildfires occurred in locations where developed
regions covered greater than 10% of the landscape (numbers ranging from 0 to 20 wildfires; Figure 4E).
Regardless of their abundance on the landscape, large wildfires were unlikely to occur in pasture/hay
fields or developed areas (Figure 4I,J; p < 0.01; p < 0.01).

3.2. Ecoregional Differences

In the majority of ecoregions (11 of 14), areas burned by large wildfire were primarily composed
of woody vegetation and grassland (Figure 5B). For instance, 96% of the total area burned by large
wildfires in the Edwards Plateau was composed of woody vegetation, while 97% of the total area burned
by large wildfires in the Nebraska Sandhills was composed of grassland. Exceptions to this included
the Lake Agassiz Plain, where crops dominated the total area burned by large wildfires (Figure 5B).
Of the land-use types assessed in our study, crop and pasture/hay fields were the most common within
large wildfire perimeters in the Northern Glaciated Plains, though they only represented a small
portion of the total area burned by large wildfires (Figure 5B).
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Figure 5. (A) The average percent land coverage of each land-use type assessed in this study and
(B) the percentage of each land-use type that composed the total area burned within L3 ecoregions
that contained ≥5 large wildfires in the U.S. Great Plains between 1993 and 2014. Error bars represent
standard error. The percentage of land-use did not always add up to 100% because we only included
predominant land-use types of the Great Plains in our analysis. Percentages could also slightly exceed
100% (i.e., Southern Texas Plains) when there was a higher amount of variation in values averaged to
calculate percent land coverage.

Grassland or woody vegetation had the highest propensity for large wildfire in almost every
ecoregion (13 of 14; Figure 6). There was a high propensity for large wildfire in grassland vegetation in
eight ecoregions, while in four ecoregions (Edwards Plateau, Northwestern Great Plains, Southwestern
Tablelands, and Northern Glaciated Plains), wildfire was unlikely to burn in grasslands (Figure 6). In 6
of the 14 ecoregions assessed, large wildfires were more likely to occur with greater levels of grassland
cover on the landscape (Figures S1-S14; Table S3). This relationship was bimodal in both Cross Timbers
and the Northwestern Great Plains, where large wildfires were more likely to burn in an area when
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grassland cover was either of low or high dominance (Figures S2, S11). Woody vegetation had a
high propensity for large wildfire across nine ecoregions, however, in the southern most ecoregions
(Southern Texas Plains and Western Gulf Coastal Plain), wildfire was unlikely to occur in woody
vegetation (Figure 6). In 8 of the 14 ecoregions assessed, large wildfires were more likely to occur with
greater levels of woody vegetation cover on the landscape (Figures S1-S14; Table S3). In contrast, in the
Edwards Plateau and the Southern Texas Plains, large wildfires were more likely to occur within a
landscape when woody cover was at low or high dominance.
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While crops did make up a predominant portion of the total area burned by large wildfires in
some ecoregions (for instance, the Lake Agassiz Plain where crop made up 43% of the total area burned;
Figure 5), crops consistently had a low propensity for large wildfire across all ecoregions (Figure 6).
In the majority of ecoregions, large wildfires were more likely to occur when crops covered between
>0 to 10% or >10 to 20% of the landscape. Large wildfire was less likely when crop cover was greater
(Figures S1–S14; Table S3). However, in the Lake Agassiz Plain, large wildfires were more likely to
occur when crop cover made up less than 50% of the landscape.

Pasture/hay fields comprised a large portion of land-use in a number of ecoregions and was the
dominant land-use type within the Central Irregular Plains (Figure 5A). Despite this, pasture/hay
fields generally had a low propensity for large wildfire (Figure 6). Large wildfires were more likely to
occur when pasture/hay fields made up between >0 to 10% of the landscape in three ecoregions: the
Central Great Plains, Flint Hills, and Northern Glaciated Plains (Figures S1, S5, S9). The propensity for
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large wildfires was lower when pasture/hay cover was greater in all ecoregions except the Northern
Glaciated Plains and the Southern Texas Plains (Figure S9, S12).

Developed areas consistently made up less than 7% of the land-use across ecoregions, with the
exception of the Western Gulf Coastal Plain (Figure 5A). They also consistently made up less than 7%
of the total area burned (Figure 6). When wildfires occurred in developed areas, they were largely
concentrated in landscapes that were composed of >0 to 10% developed area (Figure S1–S14; Table S3).
However, in all other ecoregions, developed areas had a low propensity for large wildfire, regardless
of landscape coverage (Figure 6; Figures S1–S14).

4. Discussion

Propensity of large wildfire was highest in grasslands and woody vegetation in the Great Plains,
while developed areas, croplands, and pastures were less likely to burn in large wildfires. We expected
intact grasslands to host the highest number of large wildfires. Grasses in the Great Plains are the most
flammable fuel type that host important feedbacks with fire [15,38,47]. However, although grasslands
comprised the greatest area burned by large wildfires, woody vegetation burned disproportionately
more than any other land-use type in the Great Plains. In ecoregions that were found to have the
greatest increases in wildfire number and total hectares burned by Donovan et al., [10], wildfires were
most likely to occur in woody vegetation (e.g., Cross Timbers, Southwestern Tablelands, Edwards
Plateau, Northwestern Great Plains) or in woody and grassland vegetation combined (High Plains and
Central Great Plains). This pattern occurred across ecoregions with largely different woody vegetation
types, including ponderosa pine (Pinus ponderosa) which dominates the Northwestern Great Plains and
oak (Quercus) species which dominate the Cross Timbers [48]. Patches of shrubs or trees generally
have a lower probability of burning in a fire compared to grassland [49]. One potential explanation
could be that human driven fire suppression is a more dominant driver of large wildfire pattern than
differences in ignition potential and fire spread between woody and grassland vegetation types in
the Great Plains. Wildfire suppression capabilities can be greatly reduced or ineffective entirely when
crown fire is initiated in woody-dominated fuel types [50,51]. Fire suppression becomes ineffective
when flame lengths exceed 3.35 m [50]. Woody vegetation has the potential for flame lengths over
90 m, well above this threshold, when crown fires ignite [51]. Grassland fires do not produce such
flame lengths, though can still exhibit flame lengths well above the 3.35 m threshold [52]. Despite
greater ignition and fire spread potential in grasslands, greater ease of suppression could result in
proportionally fewer large wildfires in grass- versus woody-dominated land-use types. Other factors
like fragmentation by roads and highways could also play a role by impeding grassland fire spread to
a greater extent than woody fires [53].

Woody encroachment in the Great Plains is a biome-wide phenomenon tied to fire suppression
and active tree planting [15,54,55]. An ecological regime shift (a persistent shift in system structure,
function, and feedbacks [16]) from grassland to woody vegetation may pose a greater risk of wildfire
exposure for people in the Great Plains. Human populations and infrastructure are embedded within
both land-use types within the biome. Because woody fuels are conducive to much more extreme fire
behaviour than grasses, when woody fuels ignite, they are more difficult to control and suppress [15].
An increasing number of wildfires have been recorded along the wildland urban interface (WUI) in
the United States, where development and wildland vegetation intermingle [56]. Some states in the
Great Plains, like Montana, Wyoming, and New Mexico, have 50 to 100% of their population residing
in the wildland urban interface [56]. Areas with higher levels of fragmentation have been shown to
maintain higher woody cover in the southern Great Plains [57]. Urban and exurban sprawl have been
suggested to provide refuges for woody vegetation, allowing it to spread in the absence of controlling
processes near developed areas [57,58]. We found that large wildfires were more likely to occur when
woody vegetation comprised greater than 20% of the landscape, suggesting that relatively low levels
of woody encroachment (~20% of the landscape) could be sufficient to increase large wildfire risk.
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Further region-specific investigations tied to wildfire and land-use relationships will allow for a more
nuanced understanding of where woody encroachment can increase large wildfire exposure.

Unlike in a number of forested regions, agriculture and pastureland were not tied with higher
wildfire risk in the Great Plains. This finding differs from regions like central Africa, south-east
Asia, and regions of South America [59–61]. Tropical forests, like those in Indonesia and Brazil, have
experienced surges in large wildfires associated with slash-and-burn agricultural practices [59,61].
In South America, burned area increases when pasture cover exceeds 31% in comparison with the
surrounding rainforest where wildfire frequency tends to be low [62]. We found that large wildfires
burned disproportionately less in pastures, regardless of how much of the landscape they composed,
while treed areas burned disproportionately more when they composed greater than 20% of the
landscape. Croplands had a low propensity for wildfire; however, we found that croplands burned
more than expected when they composed >0 to 10% of the landscape. This could be linked to fires
burning along crop edges. Croplands can act as barriers to fire spread [63]. Low occurrence of
wildfire in croplands, pasture/hay field, and developed areas in the Great Plains is likely linked in part
to fuel properties that promote lower ignition probabilities and spread rates than native grassland
vegetation in the Great Plains [52]. For instance, high-moisture exotic grasses used in pastures have
been shown to require four times the wind speed to produce the same rate of fire spread as in
native grasses [64]. Similarly, irrigation in croplands and pastures decreases fuel aridity because of
increases in fuel moisture and effects of local climate [65], making fuels less conducive to wildfire [52].
However, irrigation is primarily concentrated in two ecoregions (Figure S15), while crops and pastures
consistently had a lower propensity for large wildfire across ecoregions (with the exception of pastures
in the Lake Agassiz Plain). There is also higher incentive to extinguish fires in croplands, pastures,
and developed areas which could influence the occurrence of wildfire. These findings are consistent
with Andela et al. [66], who found that agricultural conversion and intensification in grassland and
savannah areas has led to declining fire activity globally.

Coexisting with wildfire requires strategic regional planning. Knowledge of the differences
in wildfire occurrence across alternative land-use types holds promise for developing targeted
management actions that lower the exposure of people and infrastructure to wildfire when it occurs.
Large wildfires are an inevitable natural process that need to be reconciled with management and
policy goals, particularly as society attempts to balance priorities of protecting human safety and
economic interests with the conservation of intact ecosystems and their services. With increasing
wildfires across the Great Plains [10], shifting focus from reducing fire to designing a less vulnerable
wildland urban interface will allow for a more sustainable coexistence with fire by allowing fires to
burn where ecologically appropriate and avoiding fires in human environments [26,67]. WUI growth
rates in the Great Plains are equivalent to the western U.S. [56] and yet there has been relatively little
focus on wildland urban interface in the Great Plains, where national policy perceives wildfire risk to
be relatively low [11]. New housing was the cause of >80% of wildland urban interface growth in the
Great Plains [56]. Strategic placement of new development near land-use types that infrequently burn
(e.g., agricultural lands in the Great Plains) and avoidance of land-use types that burn with higher
probability (e.g., woody vegetation in the Great Plains) could assist in decreasing wildfire risk in the
face of rapid increases in large wildfire activity. The spatial arrangement of fuel types across a landscape
can alter the proportion of area burned by fire [68]. Strategic organisation of fuels less conducive to fire
spread are twice as effective at reducing fire growth compared to random distributions of wildland
fuel management [69]. Targeted fuels management (e.g., mechanical tree removal, prescribed fire, etc.)
in developed areas embedded within land-use types with the highest propensity for fire will also help
decrease exposure of developed areas to wildfire in a system with a long history and dependence on
frequent fire occurrence.

Our study represents a necessary first step toward developing ecosystem-specific solutions to
wildfire in the Great Plains [26,70]. Future assessments should investigate the roles of flammability,
ignition probability, weather, and climate in order to better isolate drivers behind region-specific



Remote Sens. 2020, 12, 1869 13 of 17

patterns in wildfire across land-use types. Fuel load and fuel connectivity can play a large role in
the spread of fire across a landscape, where patchy distributions of fuels can alter fire spread [68].
How the spatial arrangement of fuels within and among land-use types alter wildfire occurrence
and spread will be an important line of investigation for future studies. Similarly, fuel moisture
is critical to fire potential, largely dictating the amount of fuel available for combustion [52]. Fine
fuel moisture responds quickly to weather changes [71]. Similarly, climatic patterns across the Great
Plains could cause differing fuel moisture in the same land-use types among regions, altering the
probability of wildfire initiation and spread, e.g., [24]. Wind can alter the propagation of fire [72,73].
The distribution and sources of ignitions can similarly differ by location [23] and land-use type which
will likely influence wildfire distribution across the Great Plains. Our findings provide the baseline
determination necessary for targeting more spatially explicit and mechanistic analyses to isolate the
impacts of such factors.

While we found that land-use may in part drive large wildfire occurrence in the Great Plains, we
did not evaluate climate and ignitions, which are also strong drivers. An increasing number of human
ignitions have been recorded across the Great Plains [23]. Changes in climate have been tied to changing
wildfires patterns in neighbouring forested systems, e.g., [24,25,74]. However, the relative influence of
climate, land-use, and ignitions has yet to be compared. Determining the interdependence of these
factors in shaping large wildfire distribution in the Great Plains will help society prevent wildfire
driven natural disasters under future global change. In complex social-ecological systems like the Great
Plains, changes in human patterns and behaviours can have large impacts on ecosystem processes [20].
Continued changes in the number and distribution of ignitions may increase wildfire number or alter
how wildfires are distributed across different land-use types. Drought patterns are predicted to change
in the Great Plains under future climate change scenarios [75,76]. Changing precipitation patterns
could shift vegetation distribution [77], creating fuels more conducive to ignition and fire spread or in
extreme cases could lead to desertification (i.e., absence of fuels [78]). Thus, wildfire risk will likely be
altered by changing social and ecological responses to drought. Future analyses could target areas
and land-use types determined by our study to be highly impacted by wildfires with more nuanced
assessments of the three major drivers of wildfire occurrence—fuels, climate, and ignitions—so we can
better prepare for future change.

5. Conclusions

Woody vegetation and grassland have the highest propensity for large wildfire in the Great
Plains, while croplands, pastures, and developed areas are less likely to burn in large wildfire. Woody
vegetation burned disproportionately more than any other land-use type, suggesting that it has the
highest propensity for large wildfire in the Great Plains. Our results can be used to assist strategic
regional planning with decreasing wildfire risk near human development. While our study represents
a necessary first step in understanding changing wildfire patterns in the Great Plains, assessments
tied to weather, climate, and ignitions, along with more detailed assessments of fuel patterns and
characteristics will be necessary to understand and better prepare for shifting wildfire patterns in the
Great Plains.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/11/1869/s1.
Figure S1. The number of wildfire perimeters and propensity for large wildfire relative to varying percent cover
of land-use types in the Central Great Plains. Figure S2. The number of wildfire perimeters and propensity for
large wildfire relative to varying percent cover of land-use types in the Central Irregular Plains. Figure S3. The
number of wildfire perimeters and propensity for large wildfire relative to varying percent cover of land-use types
in the Cross Timbers. Figure S4. The number of wildfire perimeters and propensity for large wildfire relative to
varying percent cover of land-use types in the Edwards Plateau. Figure S5. The number of wildfire perimeters and
propensity for large wildfire relative to varying percent cover of land-use types in the Flint Hills. Figure S6. The
number of wildfire perimeters and propensity for large wildfire relative to varying percent cover of land-use types
in the High Plains. Figure S7. The number of wildfire perimeters and propensity for large wildfire relative to
varying percent cover of land-use types in the Lake Agassiz Plain. Figure S8. The number of wildfire perimeters
and propensity for large wildfire relative to varying percent cover of land-use types in the Nebraska Sandhills.
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Figure S9. The number of wildfire perimeters and propensity for large wildfire relative to varying percent cover of
land-use types in the Northern Glaciated Plains. Figure S10. The number of wildfire perimeters and propensity for
large wildfire relative to varying percent cover of land-use types in the Northwestern Glaciated Plains. Figure S11.
The number of wildfire perimeters and propensity for large wildfire relative to varying percent cover of land-use
types in the Northwestern Great Plains. Figure S12. The number of wildfire perimeters and propensity for large
wildfire relative to varying percent cover of land-use types in the Southern Texas Plains. Figure S13. The number
of wildfire perimeters and propensity for large wildfire relative to varying percent cover of land-use types in the
Southwestern Tablelands. Figure S14. The number of wildfire perimeters and propensity for large wildfire relative
to varying percent cover of land-use types in the Western Gulf Coastal Plain. Figure S15. Irrigated Lands in the U.S.
Great Plains. Table S1. A summary of National Land Cover Database (NLCD) land cover classes consolidated into
the five dominant land-use types analysed in our study, along with NLCD land cover classification descriptions.
Table S2. Buffer zone areas, based on the average large wildfire size (>400 ha), used to calculate the percent cover
of each dominant land-use type assuming a random distribution of wildfire across each Level 3 ecoregion in the
U.S. Great Plains. Table S3. Simulated p-values comparing true count of wildfires across varying percent cover
categories relative to the null distribution.

Author Contributions: Conceptualization, V.M.D., D.T., C.L.W.; Methodology, V.M.D.; C.L.W.; Formal Analysis,
V.M.D.; Investigation, V.M.D.; Writing—Original Draft Preparation, V.M.D.; Writing—Review & Editing, V.M.D.,
D.T., C.L.W., D.A.W.; Visualization, V.M.D.; Supervision, D.T.; Funding Acquisition, D.T., D.A.W. All authors have
read and agreed to the published version of the manuscript.

Funding: Funding support for this project was provided by the USDA National Institute of Food and Agriculture
(NIFA; M1903198), McIntire Stennis project (1008861), the Nebraska Game & Parks Commission (W-125-R-1),
National Science Foundation (OIA-1920938), and the University of Nebraska Agricultural Research Division.

Acknowledgments: Wildfire data were generated by the Monitoring Trends in Burn Severity (MTBS) project
(www.mtbs.gov), supported by the USDA Forest Service Remote Sensing Applications Center (RSAC) and
the USGS Earth Resource Observation Systems (EROS) Data Center. Land-use data were generated by USGS
National Land Cover Database, sponsored by the Multi-resolution Land Characteristics (MRLC) Consortium
(https://www.mrlc.gov/). Ecoregion divisions were generated by the Environmental Protection Agency (EPA;
www.epa.gov). Population density data were generated by Center for International Earth Science Information
Network (CIESIN). Palmer Drought Severity Index data were provided by the University of Idaho, generated by
Abatzoglou et al., [45]. Population density and PDSI data can be accessed from the Earth Engine Data Catalog
(https://developers.google.com/earth-engine/datasets).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fraterrigo, J.M.; Rusak, J.A. Disturbance-driven changes in the variability of ecological patterns and processes.
Ecol. Lett. 2008, 11, 756–770. [CrossRef] [PubMed]

2. IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge
University Press: New York, NY, USA, 2012.

3. Sorensen, C.J.; Borbor-Cordova, M.J.; Calvello-Hynes, E.; Diaz, A.; Lemery, J.; Stewart-Ibarra, A.M.
Climate variability, vulnerability, and natural disasters: A case study of Zika Virus in Manabi, Ecuador
following the 2016 earthquake. GeoHealth 2017, 1, 298–304. [CrossRef] [PubMed]

4. Alexander, D.C. Natural Disasters, 1st ed.; Routledge: London, UK, 1993; ISBN 978-1-351-42923-8.
5. IFRC. World Disasters Report 2014-Data. 2014. Available online: http://www.ifrc.org/world-disasters-report-

2014/data (accessed on 19 December 2018).
6. NOAA. NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate

Disasters; 2018. Available online: https://www.ncdc.noaa.gov/billions/ (accessed on 19 December 2018).
7. Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States,

1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [CrossRef]
8. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688.

[CrossRef] [PubMed]
9. Guha-Sapir, D.; Hargitt, D.; Hoyois, P. Thirty Years of Natural Disasters 1974–2003: The Numbers; Presses

Universitaires de Louvain: Louvain-le-Neuve, Belgium, 2004; ISBN 978-2-930344-71-3.
10. Donovan, V.M.; Wonkka, C.L.; Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett.

2017, 44, 5986–5993. [CrossRef]
11. Wildland Fire Executive Council. The National Strategy: The Final Phase in the Development of the National Cohesive

Wildland Fire Management Strategy; U.S. Departments of Interior and Agriculture: Washington, DC, USA, 2014.

www.mtbs.gov
https://www.mrlc.gov/
www.epa.gov
https://developers.google.com/earth-engine/datasets
http://dx.doi.org/10.1111/j.1461-0248.2008.01191.x
http://www.ncbi.nlm.nih.gov/pubmed/18422637
http://dx.doi.org/10.1002/2017GH000104
http://www.ncbi.nlm.nih.gov/pubmed/32158994
http://www.ifrc.org/world-disasters-report-2014/data
http://www.ifrc.org/world-disasters-report-2014/data
https://www.ncdc.noaa.gov/billions/
http://dx.doi.org/10.1002/2014GL059576
http://dx.doi.org/10.1038/nature03906
http://www.ncbi.nlm.nih.gov/pubmed/16056221
http://dx.doi.org/10.1002/2017GL072901


Remote Sens. 2020, 12, 1869 15 of 17

12. Guyette, R.P.; Stambaugh, M.C.; Dey, D.C.; Muzika, R.-M. Predicting fire frequency with chemistry and
climate. Ecosystems 2012, 15, 322–335. [CrossRef]

13. Frost, C.C. Presettlement fire frequency regimes of the United States: A first approximation. In Proceedings
of the Fire in Ecosystem Management: Shifting the Paradigm from Suppression to Prescription; Pruden, T.L.,
Brennan, L.A., Eds.; Tall Timbers Research Station: Talhassee, FL, USA, 1998; Volume 20, pp. 70–81.

14. Mouillot, F.; Field, C.B. Fire history and the global carbon budget: A 1◦ × 1◦ fire history reconstruction for
the 20th century. Glob. Change Biol. 2005, 11, 398–420. [CrossRef]

15. Twidwell, D.; Rogers, W.E.; Fuhlendorf, S.D.; Wonkka, C.L.; Engle, D.M.; Weir, J.R.; Kreuter, U.P.; Taylor, C.A.
The rising Great Plains fire campaign: citizens’ response to woody plant encroachment. Front. Ecol. Environ.
2013, 11, e64–e71. [CrossRef]

16. Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001,
413, 591–596. [CrossRef]

17. Walsh, J.R.; Carpenter, S.R.; Zanden, M.J.V. Invasive species triggers a massive loss of ecosystem services
through a trophic cascade. Proc. Natl. Acad. Sci. USA 2016, 113, 4081–4085. [CrossRef]

18. National Interagency Fire Center (NIFC) Statistics. Available online: https://www.nifc.gov/fireInfo/fireInfo_
statistics.html (accessed on 30 January 2017).

19. Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring.
Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [CrossRef]

20. Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.;
Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth.
J. Biogeogr. 2011, 38, 2223–2236. [CrossRef]

21. Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology
2011, 92, 121–132. [CrossRef]

22. Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Dorn, J.V.; Hayhoe, K. Global pyrogeography: The current
and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [CrossRef]

23. Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires
expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [CrossRef]

24. Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests.
Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [CrossRef]

25. Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S.
ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [CrossRef]

26. Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.;
Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [CrossRef]

27. Pausas, J.G.; Paula, S. Fuel shapes the fire–climate relationship: Evidence from Mediterranean ecosystems.
Glob. Ecol. Biogeogr. 2012, 21, 1074–1082. [CrossRef]

28. Coates, P.S.; Ricca, M.A.; Prochazka, B.G.; Brooks, M.L.; Doherty, K.E.; Kroger, T.; Blomberg, E.J.; Hagen, C.A.;
Casazza, M.L. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by
reshaping sagebrush ecosystems. Proc. Natl. Acad. Sci. USA 2016, 113, 12745–12750. [CrossRef]

29. Pilliod, D.S.; Welty, J.L.; Arkle, R.S. Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing
and fine fuel composition predict wildfire trends. Ecol. Evol. 2017, 7, 8126–8151. [CrossRef]

30. D’Antonio, C.M.; Vitousek, P.M. Biological invasions by exotic grasses, the grass/fire cycle, and global change.
Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [CrossRef]

31. Johnson, N.C.; Wedin, D.A. Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest
to grassland. Ecol. Appl. 1997, 7, 171–182. [CrossRef]

32. Rossiter, N.A.; Setterfield, S.A.; Douglas, M.M.; Hutley, L.B. Testing the grass-fire cycle: Alien grass invasion
in the tropical savannas of northern Australia. Divers. Distrib. 2003, 9, 169–176. [CrossRef]

33. Setterfield, S.A.; Rossiter-Rachor, N.A.; Hutley, L.B.; Douglas, M.M.; Williams, R.J. Turning up the heat:
The impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian
savannas. Divers. Distrib. 2010, 16, 854–861. [CrossRef]

34. Butsic, V.; Kelly, M.; Moritz, M. Land use and wildfire: A review of local interactions and teleconnections.
Land 2015, 4, 140–156. [CrossRef]

35. Wells, P.V. Scarp woodlands, transported grassland soils, and concept of grassland climate in the Great Plains
Region. Science 1965, 148, 246–249. [CrossRef]

http://dx.doi.org/10.1007/s10021-011-9512-0
http://dx.doi.org/10.1111/j.1365-2486.2005.00920.x
http://dx.doi.org/10.1890/130015
http://dx.doi.org/10.1038/35098000
http://dx.doi.org/10.1073/pnas.1600366113
https://www.nifc.gov/fireInfo/fireInfo_statistics.html
https://www.nifc.gov/fireInfo/fireInfo_statistics.html
http://dx.doi.org/10.1098/rstb.2015.0178
http://dx.doi.org/10.1111/j.1365-2699.2011.02595.x
http://dx.doi.org/10.1890/09-1843.1
http://dx.doi.org/10.1371/journal.pone.0005102
http://dx.doi.org/10.1073/pnas.1617394114
http://dx.doi.org/10.1073/pnas.1607171113
http://dx.doi.org/10.1890/07-1183.1
http://dx.doi.org/10.1038/nature13946
http://dx.doi.org/10.1111/j.1466-8238.2012.00769.x
http://dx.doi.org/10.1073/pnas.1606898113
http://dx.doi.org/10.1002/ece3.3414
http://dx.doi.org/10.1146/annurev.es.23.110192.000431
http://dx.doi.org/10.1890/1051-0761(1997)007[0171:SCNAMD]2.0.CO;2
http://dx.doi.org/10.1046/j.1472-4642.2003.00020.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00688.x
http://dx.doi.org/10.3390/land4010140
http://dx.doi.org/10.1126/science.148.3667.246


Remote Sens. 2020, 12, 1869 16 of 17

36. Briggs, J.M.; Knapp, A.K.; Blair, J.M.; Heisler, J.L.; Hoch, G.A.; Lett, M.S.; McCarron, J.K. An ecosystem in
transition: Causes and consequences of the conversion of mesic grassland to shrubland. BioScience 2005, 55,
243–254. [CrossRef]

37. Van Auken, O.W. Causes and consequences of woody plant encroachment into western North American
grasslands. J. Environ. Manag. 2009, 90, 2931–2942. [CrossRef]

38. Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New
Phytol. 2005, 165, 525–538. [CrossRef]

39. U.S. Environmental Protection Agency (EPA). US Level III Ecoregions without State Boundaries; EPA GIS Agency
Central Support: Research Triangle Park, NC, USA, 2012.

40. Omernik, J.M. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125.
[CrossRef]

41. MTBS Project (USDA Forest Service/U.S. Geological Survey). MTBS Data Access: National Geospatial Data;
MTBS Project (USDA Forest Service/U.S. Geological Survey): Washington, DC, USA, 2017.

42. Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming
larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681.
[CrossRef]

43. Sparks, A.M.; Boschetti, L.; Smith, A.M.; Tinkham, W.T.; Lannom, K.O.; Newingham, B.A. An accuracy
assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States.
Int. J. Wildland Fire 2015, 24, 70–78. [CrossRef]

44. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

45. Abatzoglou, J.T.; Barbero, R.; Wolf, J.W.; Holden, Z.A. Tracking Interannual streamflow variability with
drought indices in the U.S. Pacific Northwest. J. Hydrometeorol. 2014, 15, 1900–1912. [CrossRef]

46. Center for International Earth Science Information Network—CIESIN—Columbia University.
Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11; NASA Socioeconomic Data
and Applications Center (SEDAC): Palisades, NY, USA, 2018.

47. Gagnon, P.R.; Passmore, H.A.; Platt, W.J.; Myers, J.A.; Paine, C.E.T.; Harms, K.E. Does pyrogenicity protect
burning plants? Ecology 2010, 91, 3481–3486. [CrossRef]

48. Hoagland, B.; Butler, I.; Johnson, F.; Glenn, S. The Cross Timbers. In Savannas, Barrens, and Rock Outcrop Plant
Communities of North America; Anderson, R.C., Fralish, J.S., Baskin, J.M., Eds.; Cambridge University Press:
Cambridge, UK, 1999; pp. 231–245.

49. Ratajczak, Z.; Nippert, J.B.; Hartman, J.C.; Ocheltree, T.W. Positive feedbacks amplify rates of woody
encroachment in mesic tallgrass prairie. Ecosphere 2011, 2, 1–14. [CrossRef]

50. Andrews, P.L.; Rothermel, R.C. Charts for Interpreting Wildland Fire Behavior Characteristics; U.S. Department
of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982.

51. Rothermel, R.C. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains; U.S. Department
of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1991.

52. Payne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire, 2nd ed.; John Wiley & Sons:
New York, NY, USA, 1996.

53. Wilson, A.A.G. Width of firebreak that is necessary to stop grass fires: Some field experiments. Can. J. For.
Res. 1988, 18, 682–687. [CrossRef]

54. Donovan, V.M.; Burnett, J.L.; Bielski, C.H.; Birgé, H.E.; Bevans, R.; Twidwell, D.; Allen, C.R. Social–ecological
landscape patterns predict woody encroachment from native tree plantings in a temperate grassland.
Ecol. Evol. 2018, 8, 9624–9632. [CrossRef]

55. Ratajczak, Z.; Nippert, J.B.; Collins, S.L. Woody encroachment decreases diversity across North American
grasslands and savannas. Ecology 2012, 93, 697–703. [CrossRef]

56. Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.;
Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises
wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [CrossRef]

57. Scholtz, R.; Polo, J.A.; Tanner, E.P.; Fuhlendorf, S.D. Grassland fragmentation and its influence on woody
plant cover in the southern Great Plains, USA. Landsc. Ecol. 2018. [CrossRef]

http://dx.doi.org/10.1641/0006-3568(2005)055[0243:AEITCA]2.0.CO;2
http://dx.doi.org/10.1016/j.jenvman.2009.04.023
http://dx.doi.org/10.1111/j.1469-8137.2004.01252.x
http://dx.doi.org/10.1111/j.1467-8306.1987.tb00149.x
http://dx.doi.org/10.1111/geb.13058
http://dx.doi.org/10.1071/WF14131
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1175/JHM-D-13-0167.1
http://dx.doi.org/10.1890/10-0291.1
http://dx.doi.org/10.1890/ES11-00212.1
http://dx.doi.org/10.1139/x88-104
http://dx.doi.org/10.1002/ece3.4340
http://dx.doi.org/10.1890/11-1199.1
http://dx.doi.org/10.1073/pnas.1718850115
http://dx.doi.org/10.1007/s10980-018-0702-4


Remote Sens. 2020, 12, 1869 17 of 17

58. Coppedge, B.R.; Engle, D.M.; Fuhlendorf, S.D.; Masters, R.E.; Gregory, M.S. Urban sprawl and juniper
encroachment effects on abundance of wintering passerines in Oklahoma. In Avian Ecology and Conservation
in an Urbanizing World; Marzluff, J.M., Bowman, R., Donnelly, R., Eds.; Springer: Boston, MA, USA, 2001;
pp. 225–242. ISBN 978-1-4613-5600-4.

59. Cochrane, M.A. Fire science for rainforests. Nature 2003, 421, 913–919. [CrossRef]
60. Eva, H.; Lambin, E.F. Fires and land-cover change in the tropics: A remote sensing analysis at the landscape

scale. J. Biogeogr. 2000, 27, 765–776. [CrossRef]
61. Cochrane, M.A. Spreading like Wildfire: Tropical Forest Fires in Latin America and the Caribbean; United Nations

Environment Programme (UNEP): Mexico City, Mexico, 2002.
62. Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire.

Sci. Total Environ. 2011, 409, 3472–3481. [CrossRef]
63. Duncan, B.W.; Schmalzer, P.A. Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of

Florida, USA. Landsc. Ecol. 2004, 19, 153–165. [CrossRef]
64. McGranahan, D.A.; Engle, D.M.; Fuhlendorf, S.D.; Miller, J.R.; Debinski, D.M. An invasive cool-season grass

complicates prescribed fire management in a native warm-season grassland. Nat. Areas J. 2012, 32, 208–214.
[CrossRef]

65. Qian, Y.; Huang, M.; Yang, B.; Berg, L.K. A modeling study of irrigation effects on surface fluxes and
land–air–cloud interactions in the southern Great Plains. J. Hydrometeorol. 2013, 14, 700–721. [CrossRef]

66. Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; Werf, G.R.; van der Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.;
Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362.
[CrossRef]

67. Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.;
Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as
climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [CrossRef]

68. Kerby, J.D.; Fuhlendorf, S.D.; Engle, D.M. Landscape heterogeneity and fire behavior: Scale-dependent
feedback between fire and grazing processes. Landsc. Ecol. 2007, 22, 507–516. [CrossRef]

69. Finney, M.A.; Seli, R.C.; McHugh, C.W.; Ager, A.A.; Bahro, B.; Agee, J.K. Simulation of long-term
landscape-level fuel treatment effects on large wildfires. Int. J. Wildland Fire 2007, 16, 712. [CrossRef]

70. Murphy, B.P.; Yocom, L.L.; Belmont, P. Beyond the 1984 Perspective: Narrow focus on modern wildfire
trends underestimates future risks to water security. Earths Future 2018, 6, 1492–1497. [CrossRef]

71. Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78–92. [CrossRef]
72. Morandini, F.; Silvani, X.; Rossi, L.; Santoni, P.-A.; Simeoni, A.; Balbi, J.-H.; Louis Rossi, J.; Marcelli, T. Fire

spread experiment across Mediterranean shrub: Influence of wind on flame front properties. Fire Saf. J. 2006,
41, 229–235. [CrossRef]

73. Viegas, D.X. Slope and wind effects on fire propagation. Int. J. Wildland Fire 2004, 13, 143–156. [CrossRef]
74. Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western

U.S. forest wildfire activity. Science 2006, 313, 940–943. [CrossRef]
75. Bouchard, M.; Butman, D.; Hawbaker, T.; Li, Z.; Lui, J.; Lui, S.; McDonald, C.; Reker, R.; Sayler, K.; Sleeter, B.;

et al. Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in the Great Plains Region of the
United States; U.S. Geological Survey: Reston, VA, USA, 2011.

76. Wehner, M.; Easterling, D.R.; Lawrimore, J.H.; Heim, R.R.; Vose, R.S.; Santer, B.D. Projections of future
drought in the continental United States and Mexico. J. Hydrometeorol. 2011, 12, 1359–1377. [CrossRef]

77. Weltzin, J.F.; McPherson, G.R. Changing Precipitation Regimes and Terrestrial Ecosystems: A North American
Perspective; University of Arizona Press: Tucson, AZ, USA, 2003; ISBN 0-8165-2247-2.

78. Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.-P.; Harnik, N.; Leetmaa, A.; Lau, N.-C.
Model projections of an imminent transition to a more arid climate in southwestern North America. Science
2007, 316, 1181–1184. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nature01437
http://dx.doi.org/10.1046/j.1365-2699.2000.00441.x
http://dx.doi.org/10.1016/j.scitotenv.2011.05.032
http://dx.doi.org/10.1023/B:LAND.0000021714.97148.ac
http://dx.doi.org/10.3375/043.032.0214
http://dx.doi.org/10.1175/JHM-D-12-0134.1
http://dx.doi.org/10.1126/science.aal4108
http://dx.doi.org/10.1073/pnas.1617464114
http://dx.doi.org/10.1007/s10980-006-9039-5
http://dx.doi.org/10.1071/WF06064
http://dx.doi.org/10.1029/2018EF001006
http://dx.doi.org/10.1071/WF13005
http://dx.doi.org/10.1016/j.firesaf.2006.01.006
http://dx.doi.org/10.1071/WF03046
http://dx.doi.org/10.1126/science.1128834
http://dx.doi.org/10.1175/2011JHM1351.1
http://dx.doi.org/10.1126/science.1139601
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data 
	Analysis 

	Results: 
	Wildfire and Land-Use in the Great Plains 
	Ecoregional Differences 

	Discussion 
	Conclusions 
	References

