
Position: A Novice Oriented Dual-Modality
Programming Tool for Brain-Computer Interfaces

Application Development
Ajay Mehul

Dept. of Computer Science
University of Alabama
Tuscaloosa, AL, US

aanbuselvam@crimson.ua.edu

Nicholas Cioli
Dept. of Computer Science

University of Alabama
Tuscaloosa, AL, US
ncioli@crimson.ua.edu

Chris S. Crawford
Dept. of Computer Science

University of Alabama
Tuscaloosa, US

crawford@cs.ua.edu

Andre Denham
College of Education
University of Alabama

Tuscaloosa, US
adenham@ua.edu

Abstract—Brain-Computer Interfaces (BCI) are commonly
used to translate brain activity to commands. The emergence
of more affordable electroencephalography (EEG) hardware is
gradually making neurotechnology more accessible to a broader
audience. However, there is limited work investigating ways to
design software that supports novice BCI developers. To address
these issues, we have designed NeuroSquare, a hybrid block-
flow based programming tool that provides a live environment
designed to assist educators with introducing novice program-
mers to BCI. NeuroSquare divides applications into three parts:
signal acquisition, signal processing, and application logic. It
provides a flow-based environment for signal processing and
a block-based environment for the application logic. The flow-
based section provides the freedom to process EEG signals.
Furthermore, the hybrid design may also provide insights into
the efficacy of dual-modality environments in the context of
neurofeedback application development. This paper discusses
NeuroSquares software design, limitations, and future work.

Index Terms—Block-based programming; Programming Envi-
ronments; Design; CS Education; BCI; EEG

I. INTRODUCTION

As computing continues to spread across various disci-
plines, interdisciplinary educational approaches have gradually
emerged. Educators have previously explored courses that
attempt to combine computer science concepts with areas such
as robotics [1], art [2], law [3], and biology [4]–[6].
Recently, physiological sensing hardware technologies, such as
electrocardiogram (ECG, electrical heart activity), electromyo-
graphy (EMG, electrical muscle activity), and electroen-
cephalogram (EEG, electrical brain activity), have gradually
become more affordable. This class of emerging consumer-
grade hardware presents more affordable opportunities to users
interested in learning more about novel physiological sensor
technologies. Furthermore, affordable physiological sensors
may supplement an interdisciplinary curriculum that involves
aspects of computer science, human-computer interaction, and
physiology. While cost-related barriers may be gradually fad-
ing, current software platforms for physiological application
development are commonly designed for domain experts.
Furthermore, previous block-based-only approaches to physi-
ological application development may hinder users’ ability to

design custom signal processing pipelines [7]. In this paper, we
present a dual-modality concept that explores the combination
of block- and flow-based visual interfaces to assist users with
designing both the application logic (e.g. game rules) and
signal processing procedures of a physiological-computing
application.

II. BACKGROUND

A. BCI Tools

Several tools have been developed for programming BCI
(brain-computer interface) applications with varying levels of
difficulty. BCI2000 is a visual programming tool that allows
users to develop BCI applications but requires C++ knowledge
in order to do so [8]. OpenVibe provides a visual, flow-based
environment for creating BCI applications [9] but requires
experience to set up and interface with external software.
BCILAB is a BCI development toolbox for MATLAB [10]
but requires MATLAB which can be expensive for novice
programmers. Moreover, these tools target experienced re-
searchers and are not designed for novice programmers. Ease-
of-setup and ease-of-use are significant design considerations
when designing tools for users unfamiliar with existing phys-
iological computing workflows.

B. Psychology of programming modalities

Green et al. and Vessey et al. developed extensive research
bodies on the effects of the notational structure of program-
ming languages and tools [11]–[14]. Green et al. summed up
their work into two maxims [15]:

• Every notation highlights some kinds of information at
the expense of obscuring other kinds.

• When seeking information, there must be a cognitive
fit between the mental representations and the external
representation.

A flow-based programming tool obscures the program struc-
ture while a block-based programming tool obscures the flow
of data.

2019 IEEE Blocks and Beyond Workshop

 978-1-7281-4849-6/19/$31.00 ©2019 IEEE 27

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 31,2020 at 16:42:44 UTC from IEEE Xplore. Restrictions apply.

Highlighting dataflow can be useful for data processing
sections of a program, as shown by existing data-intensive
programs such as LabView, Simulink, and OpenVibe.

C. Block-based educational tools
Block-based programming languages preserve structured

flow in programs and are employed in several novice pro-
gramming tools, like Scratch [7], [16], [17]. Weintrop et
al. studied the advantages of these types of programming
languages over those of traditional text-based languages for
novice programmers [18] and theorize that, while novices find
that there are limitations with block-based tools, those novices
show higher interest and better performance in computer
science over novices learning with text-based programming
languages. In a similar vein, Crawford et al. developed a
block-based BCI programming tool for novice programmers
and suggest that while students found Neuroblock limiting due
its lack of signal processing capabilities, the tool improved the
confidence of novice BCI programmers [7], [19].

D. Dual-modality programming
Weintrop et al. researched dual-modality programming en-

vironments for learners, comparing a hybrid, block-text-based
programming tool with exclusive text or block-based envi-
ronments [20]. Their research showed that students perceived
the hybrid environment to be more authentic. Weintrop et al.
hypothesize that this could be due to how hybrid environments
highlight the polymorphic nature of programming in how it
exists in various modalities, environments, and technologies.

III. DESIGN

In this section, we present an example physiological-
computing development environment that leverages EEG data
in order to develop BCI applications. Wolpaw proposed the
one of the popular [21], [22] designs for BCI systems which
separated applications into three parts: signal acquisition,
signal processing, and application [23]. We have designed
a dual-modality programming environment which provides a
flow-based environment for data acquisition/signal processing
and a block-based environment for application logic (see Fig.
1).

Fig. 1. System design for applications developed on our hybrid environment

IV. NEUROSQUARE

NeuroSquare is a front-end web application that provides a
hybrid environment for programming BCI applications. Kelle-
her and Pausch [24] suggest that programming barriers can
be lowered “by simplifying the mechanics of programming,
by providing support for learners, and by providing students
with motivation to learn to program” (p. 131). NeuroSquare’s
hybrid block- and flow-based approach prevents syntactical
errors and provides engaging feedback by allowing users to
modify the program in real time with no added set up.

A. EEG Device
Real-time EEG data drives the interactivity of this ap-

plication and requires a compatible BCI device. Muse is
an affordable, non-invasive EEG headset that streams data
through Bluetooth. The Muse collects EEG data from four
electrodes (TP9, AF7, AF8, TP10) and 1 reference electrode
(FPZ) based on the international 10-20 electrode positioning
system and streams it at 256 Hz over Bluetooth. Basic signal
processing can be performed using JavaScript libraries in
under 4ms [25] which makes the processing functions near
real-time.

B. Flow-based component
NeuroSquare uses Rete.js (a JavaScript framework for vi-

sual programming) to implement its flow-based programming
features. The tool provides users with drag and drop boxes that
can be connected to each other. Each box in NeuroSquare has
input sockets, controls, and output sockets. Controls in each
box are Vue.js (a JavaScript front end framework) applications
that execute the purpose of the box using its inputs and return
information using the output sockets.

The boxes provided by NeuroSquare can be categorized
into two types: signal acquisition and signal processing. The
following subsections provide details about the functions of
these boxes.

1) Signal Acquisition: Signal acquisition boxes provide the
communication component for NeuroSquare to receive data
from EEG headsets or the user’s computer. The Muse Device
box streams data directly to the browser from the Muse
Headset using web-Bluetooth. The CSV Load box allows users
to upload a CSV file to the browser. The output sockets make
the raw EEG data available to other boxes for processing or
display.

2) Signal Processing: Signal processing boxes abstract
algorithms used for analyzing the raw EEG data. Signal
processing boxes take input from signal acquisition boxes and
other signal processing boxes to compute data for interactive
feedback boxes. Bci.js [25] is an open source JavaScript
library that provides algorithms for real-time analysis for EEG
data. NeuroSquare provides boxes for Bci.js algorithms (see
Fig. 3) and basic mathematical operations which allow users
to create logic for their application. Although there is limited
research on performing heavy, real-time computation in the
browser, prior research has shown that browsers can handle
simple EEG processing in real time [25].

28

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 31,2020 at 16:42:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Example application with Flow-based environment calculating Alpha power and outputting it to a hybrid variable (alpha), Block-based environment
controlling a player using hybrid variable (alpha) .

Fig. 3. Power Spectral Density box (left), Band Power Box(right)

C. Block-based component

The block-based component of the tool is adapted from
NeuroBlock, a block-based programming tool for developing
neurofeedback applications [19]. The block-based component
of NeuroSquare was developed using Blockly. A WebGL
stage panel (see Fig. 3 top left) was developed to provide
graphical neurofeedback [26]. The tool allows you to create
hybrid variables that appear on both the flow and block based
environments. This allows users to perform signal processing
in the flow-based environments and use that information to
drive logic in block-based environments.

D. Hybrid variables

Creating a hybrid variable creates a flow-based box with an
input socket and a block-based variable that returns this data.
The hybrid variable is updated in the block-based component
every time it is evaluated by the flow-based component.

V. DISCUSSION

Our position is that different visual programming paradigms
suit different purposes better and by analyzing a specific use-
case, we can develop systems that combine the advantages of
multiple programming paradigms in a dual-modality system.
Studies on NeuroBlock suggest that, while students gained
confidence in BCI programming, the small array of affective
states (alpha, beta, and engagement) was a drawback [7]. We
hypothesize that the flow-based signal processing environment
will mitigate this issue by allowing students to calculate their
preferred states. The higher flexibility of NeuroSquare may
make students more confident with BCI. Furthermore, skills
learned with NeuroSquare’s flow-based interface may prove
useful once users move on to more advanced environments
(e.g. OpenVibe, BCILAB, BCI2000).

VI. LIMITATIONS

One of the potential limitations to this tool is the transition
from the flow-based environment to the block-based environ-
ment. While students may find this hard to grasp due to the
concealed flow of data, this may also provide insights on how
students relate physiological activity and dataflow. Knowledge
gained through evaluating these systems could inform ways
to design better tools for physiological computing education.
Although NeuroSquare only provides acquisition boxes for
Muse and OpenBCI Ganglion at this time, the application can
be easily extended to any headsets that supports Bluetooth.

VII. ACKNOWLEDGEMENTS

This work was supported in part by a National Science
Foundation (NSF) grant (#1838815).

29

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 31,2020 at 16:42:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES Trans. Comput. Educ., vol. 18, no. 1, pp. 3:1–3:25, Oct. 2017. [Online].
Available: http://doi.acm.org/10.1145/3089799

30

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 31,2020 at 16:42:44 UTC from IEEE Xplore. Restrictions apply.

