CHI 2020 Late-Breaking Work

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Changing Minds: Exploring
Brain-Computer Interface Experiences
with High School Students

Bryan Hernandez-Cuevas
University of Alabama

Dept. of Computer Science
byhernandez@crimson.ua.edu

Ajay Mehul

University of Alabama

Dept. of Computer Science
aanbuselvam@crimson.ua.edu

William Egbert
University of Alabama
Electrical and Computer
Engineering
wegbert@crimson.ua.edu

Chris S. Crawford
University of Alabama
Dept. of Computer Science
crawford@cs.ua.edu

Andre Denham
‘University of Alabama
College of Education
adenham@ua.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI '20 Extended Abstracts, April 25-30, 2020, Honolulu, HI, USA.

© 2020 Copyright is held by the author/owner(s).

ACM ISBN 978-1-4503-6819-3/20/04.

DOI: https://doi.org/10.1145/3334480.3382981

Abstract

Relatively little research exists on the use of experiences
with EEG devices to support brain-computer interface (BCI)
education. In this paper, we draw on techniques from BCI,
visual programming languages, and computer science ed-
ucation to design a web-based environment for BCI edu-
cation. We conducted a study with 14 10th and 11th grade
high school students to investigate the effects of EEG ex-
periences on students’ BCI self-efficacy. We also explored
the usability of a hybrid block-flow based visual interface for
students new to BCI. Our results suggest that experiences
with EEG devices may increase high school students’ BClI
self-efficacy. Furthermore, our findings offer insights for en-
gaging high school students in BCI.

Author Keywords
Brain-Computer Interface, Computers and Children, EEG,
Neurofeedback, Scientific Outreach, Constructionism

CCS Concepts

*Social and professional topics — Information systems
education; ‘Human-centered computing — Interactive
systems and tools;

Introduction
Recently, brain-computer interface (BCl) advances have
provided innovative input mediums for various applications.
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BCI devices measure central nervous system (CNS) infor-
mation that can be interpreted to represent different men-
tal states from the user. A common type of signal is elec-
troencephalography (EEG), a measure of electrical activity
of the brain from the scalp, which can provide user states
like drowsiness, attention, engagement, and more. BClI re-
search often involves clinical applications such as prosthetic
devices [30], brain-controlled wheelchairs [8] and virtual
keyboards [5]. However, recent work have began to explore
non-medical BCI applications. Examples of these include
gaming [9], engagement monitoring [42], workload estima-
tion [15] and education [1].

Existing software can leverage EEG data effectively for
many purposes, but there is limited research on providing
tools to assist novice programmers on the design and cre-
ation of such neurofeedback applications. A common pur-
pose involves educational BCl implementations focused

on the use of EEG data as an input for specific goals in

an application. Example studies include educational and
adaptive agents [45], contextual reading [25] and adaptive
content reviews [43]; where the EEG data from users is a
medium to understand their current mental state and adapt
the application to their needs. Crawford et al. presents an
example study where BCI development skills were explored
[14]. This study observed that novice programmers can use
block-based programming environments to ease their entry
into the field. However, in this system, users have a limited
ability to create custom filters for the neurophysiological
data, which may limit their creativity.

This paper presents Neuroflow, a hybrid block-flow based
visual programming environment for BCI education. This
paper also discusses a study on the effects of EEG ex-
periences on students’ BCI self-efficacy. We observed 14
high school students experiencing the design and creation
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process of BCI applications via Neuroflow. Our evaluation
results indicate that experiences with EEG devices can im-
prove high school students’ BCI self-efficacy and reveal
insights on their potential engagement in BCI.

Related Works

HCI and EEG Technology

Due to EEG’s ability to provide insights on covert users’
states [48], a wealth of Human-Computer Interaction (HCI)
EEG research has focused on ways to leverage EEG data
to evaluate or enrich users’ experiences.

EEG-based evaluation research in HCI has explored var-
ious promising applications. This work often explores the
use of EEG information to supplement performance (i.e.,
task completion times), qualitative (i.e., interviews), and
behavior measures [15]. In particular, recent HCI EEG re-
search has been used to evaluate areas such as workload
[22, 18, 24], face perception [31], icon design [11], audio
notification [11], and haptic devices [20]. EEG-based re-
search focused on enriching user experience is also promi-
nent in previous HCI literature. Much of this work features
investigations of adaptive experiences driven by passive
measurements of brain activity [37, 3, 34, 23, 35, 42, 10].

Previous EEG education work in HCI has been used to both
evaluate and enrich students’ learning experiences. For ex-
ample, Yuan et al. investigated the feasibility of using EEG
to evaluate students’ reading comprehension [47]. Szafir et
al. presented a concept where attention levels measured by
EEG data assisted teachers with evaluating which topics to
review in a flipped learning scenario [44].
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Figure 1: Neuroflow user interface.

Previous HCI literature relevant to education that leverages
EEG to enrich students’ experiences often features adap-
tive systems. This approach differs from evaluation work

in that the educational system dynamically changes in re-
sponse to shifts in the student’s cognitive state. This tech-
nique has been explored as a way to improve student out-
comes such as engagement [26, 1, 42] and self-regulation
[2, 3, 35].

Brain-Computer Interface Education

Additional EEG studies on ways to evaluate and enrich
users’ experiences are needed. However, the growing pop-
ularity of this novel technology often leads to misconcep-
tions surrounding systems such as brain-computer inter-
faces [19]. In response to this issue, researchers have pre-
viously leveraged spatial augmented reality and tangible
interaction to teach students about their brain activity in real

time [19, 21]. However, software built to support BCI appli-
cation development could still present barriers to users new
to BCI technology.

This paper offers a new novice-centric BCI perspective fo-
cused on BCI education through the construction of BCI
applications. The proposed construction perspective dif-
fers from previous evaluation and enrichment research in
that the goal is to teach new audiences about how BCI ap-
plications are built. With this approach, students can learn
how to construct EEG technology rather than being limited
to its use. Our approach is guided by constructionism, an
extension of the constructivist theory which views learning
as a reconstruction rather than as a transmission of knowl-
edge [32]. Furthermore, constructionism posits that learn-
ing takes place most reliably when the learner is engaged
in a personally meaningful activity that makes the learning
experience real and shareable [29]. While the existing body
of constructionism work spans HCI, learning sciences, and
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Figure 3: Student wearing Muse
EEG device.

computing education [16], there is limited work specifically
focused on BCI education.

The closest existing work to our approach offered a purely
block-based programming approach to BCI education [14].
However, block-based interfaces may present challenges
when trying to construct processes commonly used to con-
struct a BClI pipeline (i.e., feature extraction, feature trans-
lation [46]). Previous researchers have leveraged a flow-
based approach to address this issue [36, 12]. However, to
our knowledge, no existing environment aims to ease both
the creation of basic BCI application logic and signal filters
within a single interface. This paper presents our observa-
tions after introducing 14 high school students to our hybrid
block-flow based BCI development environment.

Neuroflow

Controls
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1
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Figure 4: Structure of a component in the flow-based environment

Neuroflow is a front-end web application that provides a
hybrid environment for programming BCI applications. Neu-
roflow uses a hybrid flow-block based environment that is
guided by the design of previous tools such as Scratch [27]
and OpenVibe [36]. NeuroFlow’s block-based component
builds on the concept of presenting traditional programming
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primitives as puzzle pieces. In contrast, Neuroflow’s flow-
based component is used to manage the flow of data from
one processing node to another. By combining flow and
block-based components, Neuroflow presents hybrid-block
variables. These hybrid variable blocks are used to con-
struct various frequency bands that have been associated
with various affective states (e.g., Theta/Deep Meditation
(4-8Hz), Alpha/Relaxation (8-13Hz), Beta/Attention (13-
30Hz)). The hybrid functionality was achieved by leverag-
ing features from the Blockly [17] and Rete.js [41] libraries.
The application requires zero setup, making it accessible to
novice programmers.

The application utilizes near real-time EEG data for inter-
activity by connecting with Muse EEG headsets (shown in
Figure 3) using Web Bluetooth. As shown in Figure 2 in the
Muse device features four channels (TP9, AF7, AF8, TP10)
and on reference based on the international 10-20 elec-
trode positioning system [33]. The Muse device performs
at a sampling rate of 220Hz. Signal processing boxes are
made available by abstracting JavaScript libraries such as
BCl.js [40].

Users can initiate a connection with the device using the
Bluetooth button featured in the top right corner of the web
application (Figure 1). Users can also use buttons in this
area to save and load their work via JSON files. Neuroflow
provides users access to hybrid variables that can be con-
structed and manipulated in the block and flow-based en-
vironments. Users can create flow-blocks outfitted with a
small button that presents a flow-based environment when
clicked.

Neuroflow uses Rete.js to implement its flow-based compo-
nents. Boxes inside these components have input sockets,
output sockets, and controls (seen in Figure 4). Users de-
sign a dataflow by connecting input and output sockets. For
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example, in figure 1 Beta values are calculated by passing
EEG data to the "Signal Band Power Range" box, entering
the frequency band range in its "controls", and passing the
result to output.

Processed data is output to the block-component when
data reaches the "Output box". This allows users to per-
form signal processing in the flow-based environment and
use that information to drive logic in block-based environ-
ments. When the program executes a flow-block, the latest
value at "Output” box is passed to the Blockly environment.

NeuroSquare provides a WebGL based stage panel for cre-
ating characters and allows users to control them using
block-based programming. It also provides a graphing win-
dow in the bottom left corner, where users can plot graphs
by attaching variables to the "plot" block. For example,
students can plot Alpha band power by passing the data
through a "Signal Band Power Range" flow component,
and returning the results to the block-based environment.
Here, the "plot" block reads this calculated value and plots
it on the graph panel. Along with performing basic data vi-
sualization, students can also use the processed EEG data
to change the behavior of characters in the WebGL envi-
ronment. This design allows students to construct basic
neurofeedback applications rapidly.

Study Description

We worked with a local high school to investigate the devel-
oped tool’'s usability and influence on students’ self-efficacy.
A total of 14 participants (9 girls and 5 boys) took part in
the experiment during a 1-day camp at the University of
Alabama. The average age was 16.15 (SD=1.14) with a
range from 14 to 18. Students’ demographics were as fol-
lows: Asian (n=1); Caucasian (n=2); Black (n=10); and Pa-
cific Islander (n=1). All subjects signed a consent form ap-
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proved by the University of Alabama’s Institutional Review
Board (IRB).

Three lessons were designed to evaluate students’ abil-

ity to construct neurofeedback applications. The design of
each lesson was guided by previous visual programming
resources that have been used by high school educators
[28]. Lessons were modified to task students with creating
programs that relied on neurophysiological blocks related to
various user states. Students’ were scaffolded through ex-
plicit instructions to assists them with getting started (e.g.,
"Create a beta band (13-30Hz) power flow-block."). As stu-
dents progressed through the activities, tasks became more
abstract in an effort to challenge students with creating their
own custom neurofeedback programs (e.g., "Try creating a
game that uses new custom EEG flow blocks.").

Procedures

The sessions began with students completing a pre-survey
that captured demographic and BClI self-efficacy infor-
mation. The BCI assessment featured a slightly modified
version of Compeau and Higgins validated computer self-
efficacy scale [13]. The modifications made the survey
questions specific to BCI applications (seven-point Likert
scale). Afterwards, facilitators provided a brief description
of EEG frequency bands and the tool’s features. Once the
student preparation was complete, they were provided a
handout with instructions to reference while building their
neurofeedback programs. Students had 75 minutes to com-
plete all three programs. Afterwards, students completed a
post-survey on their BCI self-efficacy. Students also com-
pleted a System Usability Scale (SUS) survey which en-
abled us to gather insights regarding the system’s usability

[7].
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Figure 5: Self-efficacy scores

Results

To evaluate changes in students’ BCI self-efficacy we sur-
veyed students before and after they interacted with the
hybrid block-flow based visual interface. Students reported
numerically different scores before (M = 47.3, SD = 15.13)
and after (M = 54.6, SD = 13.20). Furthermore, a paired
t-test also showed that there was a significant difference
between pre and post BCI self-efficacy score (t =-2.88, p =
0.012). Participants’ also reported an average SUS score
of 75.0 (SD= 19.43). Given insights from a previous study
of over 2,000 students, scores greater than 70 are generally
considered above average [4].

Limitations and Future Work

Despite our positive results, there is a chance that the sig-
nal quality of the consumer-grade EEG devices could hin-
der students from creating robust neurofeedback programs.
Poor signal quality is mainly due to noisy data captured in
our dynamic informal learning setting. While challenges
related to accuracy may exist, these circumstances also
present opportunities for students to develop new computa-
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tional perspectives related to questioning neurophysiologi-
cal technology [6].

Going forward, we plan to explore the feasibility of teaching
students ways to build applications with functional near-
infrared spectroscopy (fNIRS). This neurophysiological
technology may be more resilient in a dynamic classroom
environment [38]. In the future, we also will expand the
study to evaluate if similar patterns emerge with a larger
sample of students that have no previous experience with
visual programming environments. Currently, Neuroflow
only provides support for average band power calculations
(see BCl.js [39] documentation for more details). Going
forward, we plan to add additional support for EEG func-
tionalities, such as ERP detection. Furthermore, additional
studies are needed to understand further how our approach
compares to other methods of BCI education (i.e. spatial
augmented reality and tangible interaction)

During our conversations with participants, we observed
that students sought to use the technology to assist friends
and family members suffering from issues related to mental
health. In the future, the approach discussed in this paper
may be used to cultivate students’ computational perspec-
tives related to "creating for others" [6].

Conclusion

In this paper, we present Neuroflow, a web-based environ-
ment for brain-computer interface (BCl) education. Our ex-
periment showed that experiences with Neuroflow may pos-
itively influence high school students’ belief in their ability

to create BCI applications. Furthermore, our quantitative
assessment of NeuroFlow’s usability suggests that students
were able to build simple neurofeedback programs without
many critical barriers.
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