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Abstract—Most mobile network operators generate revenues
by directly charging users for data plan subscriptions. Some
operators now also offer users data rewards to incentivize them
to watch mobile ads, which enables the operators to collect
payments from advertisers and create new revenue streams.
In this work, we analyze and compare two data rewarding
schemes: a Subscription-Aware Rewarding (SAR) scheme and a
Subscription-Unaware Rewarding (SUR) scheme. Under the SAR
scheme, only the subscribers of the operators’ data plans are
eligible for the rewards; under the SUR scheme, all users are
eligible for the rewards (e.g., the users who do not subscribe to
the data plans can still get SIM cards and receive data rewards
by watching ads). We model the interactions among an operator,
users, and advertisers by a two-stage Stackelberg game, and
characterize their equilibrium strategies under both the SAR
and SUR schemes. We show that the SAR scheme can lead to
more subscriptions and a higher operator revenue from the data
market, while the SUR scheme can lead to better ad viewership
and a higher operator revenue from the ad market. We further
show that the operator’s optimal choice between the two schemes
is sensitive to the users’ data consumption utility function and the
operator’s network capacity. We provide some counter-intuitive
insights. For example, when each user has a logarithmic utility
function, the operator should apply the SUR scheme (i.e., reward
both subscribers and non-subscribers) if and only if it has a small
network capacity.

Index Terms—Stackelberg game, network economics, mobile
data rewards, business model.

I. INTRODUCTION

Despite the rapid growth of global mobile traffic, several
leading analyst firms estimate that global mobile service
revenue has nearly reached a saturation point. For example,
Strategy Analytics forecasts that the global mobile service
revenue will only increase by 3% between 2018 and 2021
[2]. As suggested in [3], one promising approach for the
mobile network operators to create new revenue streams is
to offer mobile data rewards: the network operators reward
users with free mobile data every time the users watch mobile
ads delivered by the operators, and the operators are paid by
the corresponding advertisers.

The data rewarding paradigm leads to a “win-win-win”
outcome [3]. First, the operators monetize their services based
on the mobile advertising, the global revenue of which was
estimated to reach $80 billion at the end of 2017 [3]. Second,
the advertisers gain incentivized advertising, where the rewards
incentivize the users to better engage with ads and the advertis-
ers allow the users to have more control over their experiences
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(e.g., whether and when to watch ads). According to surveys
conducted by Forrester Consulting, IPG Media Lab, and Kiip,
most mobile app users prefer to watch ads with rewards than
to watch targeted ads [4]. Third, the users earn free mobile
data to satisfy their growing data demand.

There has been an increasing number of businesses entering
this space. Aquto and Unlockd are two leading companies
that provide technical support for data rewarding (e.g., they
develop mobile apps that display ads and track the amount
of rewarded data). Aquto has collaborated with operators,
such as Verizon and Telefonica [5]. Unlockd has collaborated
with Tesco Mobile (in the United Kingdom), Boost Mobile
(in the United States), Lebara Mobile (in Australia), and
AXIS (in Indonesia) [6]. Other examples of operators that
have offered data rewards include DOCOMO, Optus, and
ChungHwa Telecom [7], [8]. Furthermore, AT&T recently ac-
quired AppNexus (a leading online advertising company) and
will make a significant investment in the advertising business
[9]. Offering mobile data rewards could become a natural and
effective approach to further monetize an operator’s mobile
service.

We use an example in Table I to show that offering data
rewards might lead to a significant revenue improvement for
an operator. Suppose that an operator rewards 0.5MB of data
per image ad.1 If a user watches 40 image ads every day, it
can get 600MB of data after 30 days. When the CPM (cost
per thousand impressions, also called cost per mille) is $8.2
[11], the operator’s corresponding ad revenue is $9.84. In other
words, the operator gets $9.84 by rewarding 600MB of data
to the user. As a comparison, the conventional data pricing
is less profitable to the operator. As shown in [12], operators
only charge a user an extra $4 when the user switches from a
1GB data plan to a 2GB data plan.

Based on the eligibility of receiving rewards, there are two
basic types of data rewarding schemes. In the Subscription-
Aware Rewarding (SAR) scheme, the operators only allow the
users who subscribe to the operators’ existing data plans (with
monthly fees) to watch ads for rewards. In the Subscription-
Unaware Rewarding (SUR) scheme, the operators reward
all users for watching ads, regardless of whether the users
subscribe to the data plans.2 Intuitively, the SAR scheme leads
to more subscriptions and the SUR scheme incentivizes more
users to watch ads. The optimal design and comparison of the
two schemes are crucial for realizing the full potential of the
mobile data rewards, which motivates our work.

1To ensure that users carefully watch the ads, the operator can ask ad-related
questions before giving the rewards [10].

2The operators can offer free specialized SIM cards to the users who do
not subscribe to the data plans. These users can top up the cards by watching
ads, as shown in [7].



TABLE I: Example of Data Rewards

Rewarding Plan A User’s Views and Reward (Per Month) Calculation of Operator’s Ad Revenue
Views Reward CPM Views/1000×CPM=Ad Revenue

0.5MB per image ad 1200 image ads 600MB $8.2 1200/1000×$8.2=$9.84
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Fig. 1: Data rewarding ecosystem (user 4 is feasible under the SUR scheme,
but is infeasible under the SAR scheme).

A. Our Contributions

We illustrate the data rewarding ecosystem in Fig. 1. The
purple arrows indicate that an operator charges the users for
data plan subscriptions. The orange arrows indicate that the
operator rewards the users for watching ads and gets payments
from the advertisers.

We model the interactions among the operator, users, and
advertisers by a two-stage Stackelberg game. In Stage I, the
operator decides the unit data reward (i.e., the amount of
data rewarded for watching one ad) for the users, and the
ad price (i.e., the payment for purchasing one ad slot) for the
advertisers. In Stage II, the users with different valuations for
the mobile service make their data plan subscription and ad
watching decisions. We consider a general data consumption
utility function and a general distribution of user valuation.
Meanwhile, the advertisers decide the number of ad slots to
purchase, considering the advertising’s wear-out effect (i.e.,
an ad’s effectiveness can decrease if it reaches a user who has
watched the same ad for several times [13], [14]).

We analyze the two-stage game for both the SAR and SUR
schemes. In particular, we characterize the operator’s optimal
strategy that maximizes the total revenue from the data market
and ad market. Our key findings in this work are as follows.

I. Design of Unit Data Reward (Theorems 2 and 3):
Under both the SAR and SUR schemes, the operator should not
always use up the available network capacity for data rewards.
Under the SAR scheme, increasing the unit data reward can
lead to more data plan subscriptions and motivate more users
to watch ads. However, it also allows a user to obtain a larger
amount of data after watching a few ads. Hence, a user may
watch fewer ads under a larger unit data reward. As a result,
increasing the unit data reward may decrease the operator’s
revenue. Under the SUR scheme, (besides the above negative
impact) increasing the unit data reward may lead to a loss in
data plan subscriptions, and even generate a revenue that is
lower than the revenue when the operator does not offer any
data reward. In our work, we derive two sufficient conditions,

under which the operator does and does not use up the capacity
for data rewards, respectively.

II. Design of Ad Price (Theorems 1 and 4): Given the
unit data reward, the operator’s optimal ad price is affected by
the wear-out effect if and only if the wear-out effect is small.
If the wear-out effect is small, the operator should sell all ad
slots and its optimal ad price should decrease with the wear-
out effect; otherwise, the operator should not sell all ad slots
and its optimal ad price will be independent of the wear-out
effect. Moreover, under the SUR scheme, the operator can
differentiate the ad slots generated by the subscribers and
non-subscribers when selling the ad slots to the advertisers
and displaying the ads to the users. We numerically show
that this can improve the operator’s total revenue by up to
20.3%. Under the SUR scheme, both the subscribers and non-
subscribers watch ads. Since the subscribers also obtain data
from the data plan, the subscribers and non-subscribers may
watch different numbers of ads. Because of the advertising’s
wear-out effect, each advertiser has a different willingness to
purchase the ad slots generated by the subscribers and non-
subscribers, and it is beneficial for the operator to differentiate
these ad slots.

III. Choice of Rewarding Scheme (Theorem 5; Obser-
vations 1, 2, and 3): The operator’s choice between the
SAR and SUR schemes is heavily affected by the users’ data
consumption utility function and network capacity. When each
user has a logarithmic utility function or each user has a
generalized α-fair utility function [15], if the network capacity
is limited, the operator should apply the SUR scheme (i.e.,
reward both subscribers and non-subscribers); if the capacity
is large, it should apply the SAR scheme (i.e., only reward
the subscribers). When each user has an exponential utility:
(i) under a large wear-out effect, the choice between the two
schemes is similar to the logarithmic utility case; (ii) under
a small wear-out effect, the operator should always apply the
SUR scheme, regardless of the capacity.

B. Related Work

1) Provision of Fee-Based and Ad-Based Services: There
has been some work studying markets where providers offer
both a fee-based service and an ad-based free service. In
[16], a Wi-Fi network provider allows users to either directly
pay or watch ads to access the Wi-Fi network. In [17], an
app developer offers virtual items, and each app user will
either pay or watch ads to obtain them in the equilibrium. In
these studies, the fee-based and ad-based services are always
substitutes, and each user chooses between these two options.
In our work, their relation is more complicated, since a user
may subscribe to the data plan and meanwhile watch ads for
more data. Under the SAR scheme, increasing the reward for
watching ads can increase the number of subscribers, which



shows the complementary relation between the subscription
and data rewards. Therefore, our work studies a novel struc-
ture, and derives new insights for the joint provision of fee-
based and ad-based services.

2) Sponsored Mobile Data: As studied in [15], [18]–[20],
sponsored data provides another way for operators to create
new revenue streams: content providers sponsor the data usage
of their content, and users can access the content free of
charge. There are several key differences between sponsored
data and data rewards as studied here. First, the users can
consume sponsored data only for the content specified by the
content providers, while they can use reward data to access
any online content. Second, with sponsored data, the content
providers benefit from the users’ data consumption on the
corresponding content. With data rewards, the advertisers aim
to deliver ads effectively, and do not benefit from the users’
data consumption.

3) Other Related References: Other related work includes
[21]–[23]. Bangera et al. in [21] conducted a survey, which
shows that 76% of the respondents are interested in watching
ads in exchange for mobile data. Sen et al. in [22] conducted
an experiment to study the effectiveness of monetary rewards
in increasing ads’ viewership. Both [21] and [22] did not
analyze the equilibrium strategies of the entities, such as
operators, advertisers, and users. Harishankar et al. in [23]
studied monetizing the operator’s idle network capacity by
providing users with supplemental discount offers, which are
not related to advertising.

II. MODEL

In this section, we model the strategies of the operator,
users, and advertisers, and introduce the two-stage game. We
use capital letters to denote parameters, and lower-case letters
to denote decision variables or random variables.

A. Network Operator

We consider a monopolistic operator, who offers a predeter-
mined (monthly) flat-rate data plan (F,Q) to users. Parameter
F > 0 denotes the subscription fee, and Q > 0 denotes the
data amount associated with a subscription. To derive insights
into the data reward design, we focus on a single-operator,
single-data plan scenario, which has been widely considered
in literature (e.g., [15], [20]).

The operator decides two variables: (i) a unit data reward
ω ∈ [0,∞), which is the amount of data that a user receives
for watching one ad; (ii) an ad price p ∈ (0,∞), which is the
price that the operator charges the advertisers for buying one
ad slot. Here, we consider a price-based mechanism, where
the operator sells the ad slots in advance at a fixed price.

B. Users

We consider a continuum of users, and denote the mass of
users by N . Let θ denote a user’s type, which parameterizes its
valuation for mobile service. We assume that θ is a continuous
random variable drawn from [0, θmax], and its probability
density function g (θ) satisfies g (θ) > 0 for all θ ∈ [0, θmax].

Let r ∈ {0, 1} denote a user’s data plan subscription
decision, and x ∈ [0,∞) denote the number of ads that a user
chooses to watch (during one month). We allow x and the
advertisers’ purchasing decisions to be fractional [16], [24].
The amount of data that a user obtains from its subscription
and ad watching is Qr+ωx. We use θu (Qr + ωx) to capture
a type-θ user’s utility of using the mobile service. Here,
u (z) , z ≥ 0, is the same for all users, and can be any strictly
increasing, strictly concave, and twice differentiable function
that satisfies u (0) = 0 and limz→∞ u′ (z) = 0. The concavity
of u (z) captures the diminishing marginal return with respect
to the data amount. Unless otherwise specified, our results are
derived under a general u (z) that satisfies these properties. To
study the impact of u (z)’s shape, we will also consider three
concrete choices of u (z) used in the literature:
• Logarithmic function [25], [26]: u (z) = ln (1 + z);
• Generalized α-fair function [15]: u (z) = (z+µ)1−α

1−α −
µ1−α

1−α , 0 < α < 1, µ ≥ 0;
• Exponential function [27]: u (z) = 1− e−γz, γ > 0.

One reason for considering these is that the logarithmic
function and generalized α-fair function are not upper bounded
for z ≥ 0, while the exponential function is upper bounded.
This difference will affect the optimal choice between the SAR
and SUR schemes. For ease of exposition, we call u (·) a user’s
utility function (although the actual utility is θu (·)).

A type-θ user’s payoff is

Πuser (θ, r, x, ω) = θu (Qr + ωx)− Fr − Φx, (1)

where F is the subscription fee, and Φ > 0 denotes a user’s
average disutility (e.g., inconvenience) of watching one ad.
We assume that the total disutility of watching ads linearly
increases with the number of watched ads [17], [28].

In Sections III-A and IV-A, we will analyze the users’
optimal decisions r∗ (θ, ω) and x∗ (θ, ω). Next, we introduce
two notations to capture the total number of ad slots created by
users. Let Nad (ω) denote the mass of users with x∗ (θ, ω) > 0
(i.e., who watch ads), and let y be the value of x∗ (θ, ω) chosen
by one of these Nad (ω) users. Because these Nad (ω) users
may have different types θ, they may have different values of
x∗ (θ, ω), i.e., watch different numbers of ads. Therefore, y is
a random variable. The distribution of y gives the distribution
of the number of ads watched by a user given that the user
watches ads.3 The expected total number of created ad slots is
simply the expected total number of ads watched by the users,
given by E [y]Nad (ω).

C. Advertisers

We consider K homogeneous advertisers. When Nad (ω) >
0, we assume that to display the ads to a user, the operator
randomly draws ads from all the E [y]Nad (ω) ad slots without
replacement.

Suppose an advertiser purchases m ∈ [0,∞) ad slots from
the operator (in Sections III-C and IV-C, the operator will
choose its ad price p to ensure that the total number of sold

3The distribution of y depends on the operator’s decision ω. For the
simplicity of presentation, we omit this dependence in the notation.



ad slots does not exceed E [y]Nad (ω)). If a user watches
y ads, on average, my

E[y]Nad(ω)
ads among the y watched ads

belong to this advertiser. We let ψ (m, y, ω) denote the overall
effectiveness of the advertiser’s advertising on the user (e.g., a
large ψ (m, y, ω) implies that the user has a good impression
of the advertiser’s product). We model ψ (m, y, ω) by

ψ (m, y, ω) = B
my

E [y]Nad (ω)
−A

(
my

E [y]Nad (ω)

)2

, (2)

where B > 0 and A ≥ 0 are parameters. In (2), the
first term linearly increases with my

E[y]Nad(ω)
, and the second

term quadratically decreases with my
E[y]Nad(ω)

. This reflects the
advertising’s wear-out effect: the advertising’s effectiveness
may first increase and then decrease with the number of ads
delivered by this advertiser to the user. This is because too
much repetition may lead the user to have a bad impression
of the product. The wear-out effect has been widely observed
in the literature [13], [14]. Some studies, such as [29] and
[30], explicitly considered a quadratic relation between the ad
repetition and the advertising’s effectiveness, which is similar
to (2). A larger A reflects a stronger degree of wear-out effect.4

We define an advertiser’s utility as the expected total value
of its advertising’s effectiveness on all users. If a user does
not see the advertiser’s ads, the advertising’s effectiveness
on the user is zero. Therefore, an advertiser’s utility is
simply Ey [ψ (m, y, ω)]Nad (ω). Considering the advertiser’s
payment for purchasing m ad slots, the advertiser’s payoff is

Πad (m,ω, p) = Ey [ψ (m, y, ω)]Nad (ω)−mp

= (B − p)m−
AE

[
y2
]

(E [y])
2
Nad (ω)

m2. (3)

When Nad (ω) = 0, we simply define Πad (m,ω, p) ,
−mp, and it is easy to see that the advertiser will not purchase
any ad slot in this case.

D. Two-Stage Stackelberg Game
We model the interactions among the operator, users, and

advertisers by a two-stage Stackelberg game. In Stage I, the
operator decides the unit data reward ω and ad price p. In
Stage II, each type-θ user chooses the subscription decision r
and the number of watched ads x, and each advertiser decides
the number of purchased ad slots m.

We assume that the users’ maximum valuation θmax satisfies
θmax > u′(0)F

u′(Q)u(Q) . Similar assumptions about the range of
users’ attributes have been made in [31]–[33]. As shown in
Sections III and IV, this assumption implies that the high-
valuation users may both subscribe to the data plan and watch
ads under a small reward ω. In fact, we can easily see that
the user equilibrium under θmax ≤ u′(0)F

u′(Q)u(Q) will be a special

case of that under θmax >
u′(0)F

u′(Q)u(Q) .

III. SUBSCRIPTION-AWARE REWARDING

In this section, we analyze the two-stage game under the
SAR scheme, i.e., the operator only allows the subscribers of

4When advertising its product, the advertiser can make several different
versions of ads, and fill the m purchased ad slots with them. This can reduce
A, as it mitigates the feeling of repetition from the perspective of the users.

the data plan to watch ads for rewards. Note that we do not
study the scheme which only rewards the non-subscribers for
watching ads. This scheme is less reasonable in practice, i.e.,
the subscribers should not have a lower priority of using the
service than the non-subscribers.

A. Users’ Decisions in Stage II

Given ω, a type-θ user solves the following problem:

max
r∈{0,1}, x∈[0,∞)

Πuser (θ, r, x, ω) , s.t. x = xr, (4)

where Πuser (θ, r, x, ω) is given in (1), and x = xr implies that
a user can watch ads (x > 0) only if it subscribes (r = 1).

We use (u′)
−1

(·) to denote the inverse function of u′ (·). In
Lemma 1, we introduce several thresholds of θ, which will be
used to characterize the users’ decisions (due to space limits,
we leave all proofs in our online report [34]).

Lemma 1. Define θ0 , F
u(Q) and θ1 , Φ

ωu′(Q) . When ω ∈(
Φu(Q)
Fu′(Q) ,∞

)
, there is a unique θ ∈ (θ1, θ0) that satisfies

θu
(

(u′)
−1 ( Φ

ωθ

))
− F − Φ

ω

(
(u′)

−1 ( Φ
ωθ

)
−Q

)
= 0, and we

denote it by θ2.

Although θ1, θ2 in Lemma 1 (and θ3, θ4 in Lemma 2)
are functions of ω, we omit this dependence in the notation
to simplify the presentation. Based on these thresholds, we
characterize the users’ decisions in the following proposition.

Proposition 1. Under the SAR scheme, the optimal decisions
of a type-θ user (θ ∈ [0, θmax]) are as follows:5

Case A: When ω ∈
[
0, Φ

u′(Q)θmax

]
,

r∗ (θ, ω) = 1{θ≥θ0}, x∗ (θ, ω) = 0;

Case B: When ω ∈
(

Φ
u′(Q)θmax

, Φu(Q)
Fu′(Q)

]
,

r∗(θ, ω)=1{θ≥θ0}, x
∗(θ, ω)=

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q

)
1{θ≥θ1};

Case C: When ω ∈
(

Φu(Q)
Fu′(Q) ,∞

)
,

r∗(θ, ω)=1{θ≥θ2}, x
∗(θ, ω)=

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q

)
1{θ≥θ2}.

In Fig. 2, we illustrate the data that users with different val-
uations θ obtain from data plan subscriptions (i.e., Qr∗ (θ, ω))
and watching ads (i.e., ωx∗ (θ, ω)).

In Case A, only the users with θ ≥ θ0 subscribe, and no
user watches ads because of the small unit data reward ω.

In Case B, the users who subscribe are the same as those
in Case A. Users with θ ≥ θ1 watch ads, and the threshold θ1

decreases (i.e., more users watch ads) as ω increases. Next,
we focus on the users with θ ≥ θ1. We can show that the
number of watched ads x∗ (θ, ω) increases with θ (note that
(u′)

−1
(·) is decreasing because of the strict concavity of

u (·)). In particular, the marginal increase of x∗ (θ, ω) with
respect to θ is affected by the utility function u (z):

5Here, 1{·} denotes the indicator function. It equals 1 if the event in braces
is true, and equals 0 otherwise.
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Fig. 2: Illustration of data obtained under the SAR scheme (based on
Proposition 1). For u (z) = ln (1 + z), the amount of data obtained via
watching ads (i.e., ωx∗ (θ, ω)) linearly increases with θ when x∗ (θ, ω) > 0.
The red arrows indicate the change of θ1 and θ2 as ω increases.

• If u (z) = ln (1 + z), we can show that x∗ (θ, ω) linearly
increases with θ (as illustrated in Fig. 2);

• If u (z) = (z+µ)1−α

1−α − µ1−α

1−α , 0 < α < 1, µ ≥ 0, then
x∗ (θ, ω) convexly increases with θ;

• If u (z) = 1 − e−γz, γ > 0, then x∗ (θ, ω) concavely
increases with θ.

In Case C, more users subscribe compared with Cases A and
B, i.e., the subscription threshold θ2 is smaller than θ0. This is
because the unit reward ω is large and users with θ ∈ [θ2, θ0)
subscribe to be eligible for the data rewards. In Appendix D
in our report [34], we prove that θ2 decreases (i.e., more users
subscribe) as ω increases. Moreover, each subscriber watches
a positive number of ads, i.e., x∗ (θ, ω) > 0 for θ ≥ θ2.

Based on these results, we can see one key advantage of
the SAR scheme: it leads to a large number of data plan
subscriptions.

B. Advertisers’ Decisions in Stage II

Given p and ω, each advertiser solves the following problem:

max
m∈[0,∞)

Πad (m,ω, p) , (5)

where the payoff Πad (m,ω, p) is given in (3). We characterize
the optimal number of purchased ad slots in Proposition 2.

Proposition 2. If Nad (ω) = 0 or p ≥ B, then m∗ (ω, p) = 0;
otherwise,

m∗ (ω, p) =
B − p

2A

(E [y])
2

E [y2]
Nad (ω) . (6)

Recall that the random variable y denotes the value of
x∗ (θ, ω) when x∗ (θ, ω) > 0, and Nad (ω) is the mass of users
watching ads. In (6), m∗ (ω, p) decreases with the degree of
wear-out effect A. Moreover, since E

[
y2
]

= (E [y])
2
+Var [y],

we can see that m∗ (ω, p) decreases with Var [y] (i.e., the
variance of y). This implies that the advertisers prefer a low
variation in the number of ads watched by each of the Nad (ω)
users. The reason is that the advertising’s effectiveness is
concave in y given E [y] (as shown in (2)).

Given the concrete utility function u (·) and the distribution
of θ, we can derive x∗ (θ, ω) based on Proposition 1, and
further compute E [y], E

[
y2
]
, and Nad (ω) in (6).

C. Operator’s Decisions in Stage I
The operator obtains revenue from both the mobile data

market and ad market. In the mobile data market, each user
who subscribes to the data plan should pay F to the operator.
The operator’s corresponding revenue is

Rdata (ω) = NF

∫ θmax

0

r∗ (θ, ω) g (θ) dθ. (7)

In the ad market, each advertiser pays p for each purchased
ad slot. The operator’s corresponding revenue is

Rad (ω, p) = Km∗ (ω, p) p. (8)

Let D (ω) denote the total data demand, i.e., the total
amount of mobile data that users request (by subscription and
watching ads) under reward ω. We can compute D (ω) as

D (ω) = N

∫ θmax

0

(Qr∗ (θ, ω) + ωx∗ (θ, ω)) g (θ) dθ, (9)

where Qr∗ (θ, ω) and ωx∗ (θ, ω) are illustrated in Fig. 2.
Based on Rdata (ω), Rad (ω, p), and D (ω), we formulate

the operator’s problem as follows:

max
ω≥0,p>0

Rtotal (ω, p) , Rdata (ω) +Rad (ω, p) (10)

s.t. D (ω) ≤ C, (11)

Km∗ (ω, p) ≤ E [y]Nad (ω) . (12)

Here, Rtotal (ω, p) is the operator’s total revenue. Constraint
(11) implies that the total data demand D (ω) cannot exceed a
capacity C [15], [20]. To ensure that choosing ω = 0 (i.e., no
data reward) is feasible to the problem, we assume that C ≥
D (0). Here, D (0) is the data demand when the operator only
offers the data plan without any data reward. Constraint (12)
implies that the total number of sold ad slots (i.e., Km∗ (ω, p))
should not exceed the number of available ad slots. When the
operator does not sell all ad slots, it can fill the unsold slots
with content like public news and pictures to guarantee the
fairness among the users choosing to watch ads (e.g., Optus
displayed wallpapers to users when there were unsold ad slots
[35]).

To solve (10)-(12), we first analyze p∗ (ω), which is the
optimal ad price under a given ω. Then, we substitute p =
p∗ (ω) into Rtotal (ω, p), and analyze the optimal unit data
reward ω∗. We characterize p∗ (ω) in the following theorem.

Theorem 1. If ω ∈
[
0, Φ

u′(Q)θmax

]
, any positive price is

optimal; if ω ∈
(

Φ
u′(Q)θmax

,∞
)

,

p∗ (ω) = max

{
B

2
, B −

2AE
[
y2
]

KE [y]

}
. (13)

Note that the random variable y is the value of x∗ (θ, ω)
whenx∗ (θ, ω)>0. Hence, both E

[
y2
]

and E [y] depend on ω.
If ω ∈

[
0, Φ

u′(Q)θmax

]
, no user watches ads (based on Propo-

sition 1). In this case, the advertisers do not purchase ad slots,
regardless of the ad price p. If ω ∈

(
Φ

u′(Q)θmax
,∞
)

, Eq. (13)
implies that p∗ (ω) decreases with A (the degree of wear-out
effect) when A is small, but does not change with A when A is



large. When A < BKE[y]
4E[y2] , the wear-out effect is small, and the

advertisers have high willingness to purchase ad slots. Hence,

the operator chooses p∗ (ω) = B − 2AE[y2]
KE[y] to sell all the

ad slots (which leads to Km∗ (ω, p∗ (ω)) = E [y]Nad (ω)).
When A ≥ BKE[y]

4E[y2] , the large wear-out effect decreases the
advertisers’ willingness to purchase slots. The operator will
not sell all slots, and will choose p∗ (ω) = B

2 , which is
independent of A.

Next, we analyze ω∗, which maximizes Rtotal (ω, p∗ (ω)),
subject to D (ω) ≤ C. We first introduce Proposition 3.
Proposition 3. Given C ≥ D (0), there is a unique ω ∈[

Φ
u′(Q)θmax

,∞
)

such that D (ω) = C. We denote this ω by
D−1 (C). Moreover, D−1 (C) strictly increases with C.

Based on Proposition 3, we can rewrite D (ω) ≤ C as ω ≤
D−1 (C). From numerical experiments, Rtotal (ω, p∗ (ω)) is
either always increasing or unimodal in ω ∈ [0,∞). Hence,
we can easily search for ω∗ in the interval

[
0, D−1 (C)

]
(e.g.,

when Rtotal (ω, p∗ (ω)) is unimodal, we can apply the Golden
Section method [36]). Next, we study when the operator will
choose ω to be D−1 (C), i.e., use up the network capacity for
data rewards. In Theorem 2, we show a sufficient condition
under which ω∗ = D−1 (C).

Theorem 2. Under the SAR scheme, if both (E[y])2

E[y2] N
ad (ω)

and E [y]Nad (ω) increase with ω for ω ∈
(

Φ
u′(Q)θmax

,∞
)

,
the operator’s optimal unit data reward is given by ω∗ =
D−1 (C).

A widely considered setting is that each user has a log-
arithmic utility function (e.g., [25], [26]) and a uniformly
distributed type (e.g., [16], [32]). We can verify that this setting
satisfies the sufficient condition in Theorem 2, and hence we
have the following proposition.

Proposition 4. When u (z) = ln (1 + z) and θ ∼ U [0, θmax],
the operator’s optimal unit data reward is given by ω∗ =
D−1 (C).

When each user has an exponential utility function (i.e.,
u (z) = 1−e−γz), E [y]Nad (ω) may decrease with ω and ω∗

can be smaller than D−1 (C) (i.e., the operator does not use up
the capacity for rewards). We show an example in Appendix
K in [34].

IV. SUBSCRIPTION-UNAWARE REWARDING

In this section, we consider the SUR scheme, i.e., both the
subscribers and non-subscribers can watch ads for rewards.

A. Users’ Decisions in Stage II

Since the users can watch ads without subscription, each
type-θ user simply chooses r and x to maximize its payoff
without the constraint x = xr, as in (4) in Section III-A.

In Lemma 2, we introduce two new thresholds of θ.

Lemma 2. Define θ3 , Φ
ωu′(0) . When ω ∈

(
Φu(Q)
Fu′(0) ,

ΦQ
F

)
,

there is a unique θ ∈ (θ3, θ1) that satisfies θu
(

(u′)
−1 ( Φ

ωθ

))
−

Φ
ω (u′)

−1 ( Φ
ωθ

)
= θu (Q)− F , and we denote it by θ4.
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Fig. 3: Illustration of data obtained under the SUR scheme (based on
Proposition 5). For u (z) = ln (1 + z), the amount of data obtained via
watching ads (i.e., ωx̂∗ (θ, ω)) linearly increases with θ when x̂∗ (θ, ω) > 0.
The red arrows indicate the change of θ1, θ3, and θ4 as ω increases.

Recall that (u′)
−1

(·) denotes the inverse function of u′ (·).
Based on the thresholds introduced in Lemmas 1 and 2, we
characterize the users’ decisions in the following proposition
(we use symbol ˆ to indicate that the results are obtained under
the SUR scheme).

Proposition 5. Under the SUR scheme, the optimal decisions
of a type-θ user (θ ∈ [0, θmax]) are as follows:

Case Â: When ω ∈
[
0, Φ

u′(Q)θmax

]
,

r̂∗ (θ, ω) = 1{θ≥θ0}, x̂∗ (θ, ω) = 0;

Case B̂: When ω ∈
(

Φ
u′(Q)θmax

, Φu(Q)
Fu′(0)

]
,

r̂∗(θ, ω)=1{θ≥θ0},x̂
∗(θ, ω)=

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q
)
1{θ≥θ1};

Case Ĉ: When ω ∈
(

Φu(Q)
Fu′(0) ,

ΦQ
F

)
,

r̂∗(θ,ω)=1{θ≥θ4},

x̂∗(θ,ω)=
1

ω
(u′)

−1
(

Φ

ωθ

)
1{θ3≤θ<θ4}+

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q
)
1{θ≥θ1};

Case D̂: When ω ∈
[

ΦQ
F ,∞

)
,

r̂∗ (θ, ω) = 0, x̂∗ (θ, ω) =
1

ω
(u′)

−1
(

Φ

ωθ

)
1{θ≥θ3}.

The users’ optimal decisions in Cases Â and B̂ are the same
as those in Cases A and B (under the SAR scheme), respec-
tively. Hence, in Fig. 3, we only illustrate the data obtained
by users via subscription (i.e., Qr̂∗ (θ, ω)) and watching ads
(i.e., ωx̂∗ (θ, ω)) in Cases Ĉ and D̂.

In Case Ĉ, two segments of users watch ads: users with
valuations θ ≥ θ1 watch ads and subscribe; users with
valuations θ3 ≤ θ < θ4 watch ads without subscription. We
characterize the properties of θ4 in the following lemma.

Lemma 3. When ω ∈
(

Φu(Q)
Fu′(0) ,

ΦQ
F

)
(i.e., Case Ĉ), (i) θ4 is

greater than θ0, and (ii) θ4 increases with ω.

In Case B̂, the subscription threshold is θ0. Hence, result
(i) of Lemma 3 implies that some low-valuation users who
subscribe in Case B̂ become non-subscribers in Case Ĉ.
This is because these low-valuation users’ marginal benefit of
consuming data decreases after earning the data rewards, and
it is no longer beneficial for them to subscribe to the data plan
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Fig. 4: Examples of D̂ (ω) and R̂total (ω, p̂∗ (ω)): We assume that u (z) = 1− e−0.7z and obtain the distribution of θ by truncating the normal distribution
N (125, 30) to interval [0, 250]. We choose N = 107, F = 42, Q = 2, Φ = 0.5, K = 13, A = 1, B = 5, and C = 2.015× 107.

in Case Ĉ. Result (ii) of Lemma 3 shows that more subscribers
become non-subscribers as the unit reward increases.

In Case D̂, since ω is large, all users simply watch ads to
earn the rewards, without paying for the subscription.

B. Advertisers’ Decisions in Stage II

Compared with the SAR scheme, the SUR scheme changes
each advertiser’s optimal decision through changing the mass
of users watching ads and the distribution of the number of
ads watched by each of these users.

Given r̂∗ (θ, ω) and x̂∗ (θ, ω) in Proposition 5, we can
compute N̂ad (ω) (i.e., the mass of users watching ads) and the
distribution of ŷ (i.e., x̂∗ (θ, ω)’s value when x̂∗ (θ, ω) > 0).
To compute m̂∗ (ω, p), we can simply replace Nad (ω), E [y],
and E

[
y2
]

in Proposition 2 by N̂ad (ω), E [ŷ], and E
[
ŷ2
]
.

C. Operator’s Decisions in Stage I

Based on r̂∗ (θ, ω), x̂∗ (θ, ω), and m̂∗ (ω, p), we can com-
pute R̂data (ω), R̂ad (ω, p), and D̂ (ω) in a similar manner as
in (7)-(9). The operator’s problem in Stage I is then given by:

max
ω≥0,p>0

R̂total (ω, p) , R̂data (ω) + R̂ad (ω, p) (14)

s.t. D̂ (ω) ≤ C, Km̂∗ (ω, p) ≤ N̂ad (ω)E [ŷ] , (15)

which is similar to problem (10)-(12).
To solve (14)-(15), we first compute p̂∗ (ω), i.e., the optimal

ad price under a given ω. The analysis of p̂∗ (ω) is similar to
that of p∗ (ω) in Theorem 1 under the SAR scheme. We can
prove that if ω ∈

[
0, Φ

u′(Q)θmax

]
, no user watches ads and

hence any positive ad price is optimal; otherwise, we have

p̂∗ (ω) = max

{
B
2 , B −

2AE[ŷ2]
KE[ŷ]

}
.

Then, we compute ω̂∗ by maximizing R̂total (ω, p̂∗ (ω)),
subject to D̂ (ω) ≤ C. The computation of ω̂∗ is differ-
ent from that of ω∗ under the SAR scheme, because (i)
D̂ (ω) can be decreasing in ω ∈

(
Φu(Q)
Fu′(0) ,

ΦQ
F

)
, and (ii)

R̂total (ω, p̂∗ (ω)) is discontinuous at ω = ΦQ
F . Specifically,

when ω ∈
(

Φu(Q)
Fu′(0) ,

ΦQ
F

)
, increasing ω reduces the number

of data plan subscribers, which may decrease D̂ (ω). More-
over, when ω increases to ΦQ

F , all data plan subscribers quit
their subscriptions and the distribution of users’ ad watch-
ing times also changes. This leads to the discontinuity of
R̂total (ω, p̂∗ (ω)) at ω = ΦQ

F . We illustrate examples of D̂ (ω)

and R̂total (ω, p̂∗ (ω)) in Fig. 4(a) and Fig. 4(b), respectively.
We can compute ω̂∗ as follows. First, we search for ω’s

feasible region, where D̂ (ω) ≤ C. We can numerically show
that ω’s feasible region consists of at most three intervals.
Then, we can show that R̂total (ω, p̂∗ (ω)) is either monotone
or unimodal in each interval.6 Hence, we can determine ω̂∗ by
comparing the local optimal unit data rewards found in these
intervals.

Under the SAR scheme, the operator always uses up the
capacity for rewards if u (z) = ln (1 + z) and θ ∼ U [0, θmax].
Under the SUR scheme, this does not hold, and a large ω may
even generate a total revenue that is lower than the revenue
when the operator does not offer any reward. This is because
a large ω may reduce the number of subscribers (as shown in
Case Ĉ) and hence decrease R̂data (ω). Next, we characterize
a sufficient condition under which the network capacity is not
used up for rewards (given general u (z) and g (θ)).

Theorem 3. Under the SUR scheme, when the network
capacity C > N (u′)

−1
(

F
θmaxQ

)
and the degree of wear-out

effect A > B2K

8F
∫ θmax
θ0

g(θ)dθ
, we have D̂ (ω̂∗) < C.

When the operator has a large capacity and the wear-
out effect is large, using up the capacity for rewards will
significantly decrease R̂data (ω) and will not significantly
increase R̂ad (ω, p̂∗ (ω)). Hence, we have D̂ (ω̂∗) < C in this
situation. We can show that both thresholds N (u′)

−1
(

F
θmaxQ

)
and B2K

8F
∫ θmax
θ0

g(θ)dθ
decrease with F (i.e., the subscription fee).

Intuitively, if the data plan is expensive, the operator should
not use up the capacity for rewards under the SUR scheme.

6For example, in Fig. 4(a), ω’s feasible region consists of the yellow, blue,
and purple intervals (denoted by intervals (1), (2), and (3)). In Fig. 4(b),
R̂total (ω, p̂∗ (ω)) is increasing when ω is in the yellow or purple intervals,
and is decreasing when ω is in the blue interval.



D. Extension: Differentiation of Ad Slots

In the above analysis, we assume that the operator does not
differentiate the ad slots generated by the users. It sells all
ad slots to the advertisers at the same price, and randomly
draws ads from all ad slots when a user watches ads. Under
the SUR scheme, the ad slots can be generated by both the
subscribers and non-subscribers. In this section, we consider
the differentiation of these two types of ad slots, which affects
both the pricing and ad display rule. The operator can sell these
two types of ad slots at different prices. When a subscriber or
non-subscriber watches ads, the operator draws ads only from
the corresponding type of ad slots (e.g., if an advertiser only
purchases the ad slots generated by the subscribers, its ads
will only be seen by the subscribers).

Given ω, we use N̂ad
I (ω) and N̂ad

II (ω) to denote the number
of the subscribers that watch ads and the number of the non-
subscribers that watch ads, respectively. Let random variables
ŷI and ŷII denote the numbers of ads watched by one of these
subscribers and one of these non-subscribers, respectively.
Similar to Proposition 2, we have the following results:
• For the ad slots generated by the subscribers, the operator

can set a price pI > 0. If N̂ad
I (ω) > 0, the number of

these slots purchased by each advertiser is m̂∗I (ω, pI) =
max{B−pI,0}

2A
(E[ŷI])

2

E[ŷ2I ]
N̂ad

I (ω); otherwise, m̂∗I (ω, pI) = 0;
• For the slots generated by the non-subscribers, the op-

erator can set pII > 0. If N̂ad
II (ω) > 0, the number of

these slots purchased by each advertiser is m̂∗II (ω, pII) =
max{B−pII,0}

2A
(E[ŷII])

2

E[ŷ2II]
N̂ad

II (ω); otherwise, m̂∗II (ω, pII)= 0.

The operator’s problem with differentiation is given by:

max
ω≥0,pI,pII>0

R̂data(ω)+Km̂∗I (ω, pI) pI+Km̂
∗
II(ω, pII) pII (16)

s.t. D̂ (ω) ≤ C, (17)

Km̂∗I (ω, pI) ≤ E [ŷI] N̂
ad
I (ω) , (18)

Km̂∗II (ω, pII) ≤ E [ŷII] N̂
ad
II (ω) . (19)

Constraint (18) means that the total number of sold ad slots
that correspond to the subscribers should not exceed the num-
ber of ad slots generated by the subscribers. Constraint (19)
can be explained similarly for the non-subscribers. In fact, only
when ω satisfies Case Ĉ in Proposition 5, both the subscribers
and non-subscribers watch ads (i.e., N̂ad

I (ω) , N̂ad
II (ω) > 0),

and problem (16)-(19) is different from problem (14)-(15) (i.e.,
the problem without differentiation). In the remaining cases,
problem (16)-(19) reduces to problem (14)-(15).

We define ΠSUR , R̂total (ω̂∗, p̂∗ (ω̂∗)), which is the
optimal objective value of problem (14)-(15). Let ΠSURD

denote the optimal objective value of problem (16)-(19), i.e.,
ΠSURD is the operator’s optimal total revenue under the SUR
scheme with differentiation. We compare ΠSUR and ΠSURD

in the following theorem.

Theorem 4. We always have ΠSURD ≥ ΠSUR.

Hence, differentiation does not decrease the operator’s op-
timal total revenue (given general u (z) and g (θ)). Intuitively,
if the optimal unit data reward satisfies Case Ĉ and the
distributions of ŷI and ŷII are significantly different, the gap

between ΠSURD and ΠSUR will be large. In the next section,
we will show this gap numerically.

V. COMPARISON BETWEEN REWARDING SCHEMES

We define ΠSAR , Rtotal (ω∗, p∗ (ω∗)), which is the
operator’s optimal total revenue under the SAR scheme. In
this section, we compare ΠSAR, ΠSUR, and ΠSURD. Since
the comparison is challenging under a general user type
distribution and a general utility function, we focus on specific
user type distributions and utility functions. In Sections V-A
and V-B, we consider uniformly distributed user types and
truncated normally distributed user types, respectively.

A. Uniformly Distributed User Types

In this section, we assume that each user’s type θ follows
a uniform distribution. We will consider logarithmic utility,
generalized α-fair utility, and exponential utility.

1) Logarithmic Utility Function: We assume that u (z) =
ln (1 + z). Theorem 5 characterizes the analytical comparison
between different schemes as C →∞.

Theorem 5. When θ ∼ U [0, θmax] and u (z) = ln (1 + z), if
network capacity C →∞, then ΠSAR > ΠSURD ≥ ΠSUR.

Theorem 5 implies that if the operator has sufficiently large
network capacity, it should only reward the subscribers for
watching ads. Intuitively, this allows the operator to motivate
all users to subscribe and watch ads via high data rewards. It
maximizes the operator’s revenue from both the data market
and the ad market.

Under a finite network capacity C, none of ΠSAR, ΠSUR,
or ΠSURD has a closed-form expression, and their analytical
comparison is challenging. Next, we compare them numer-
ically. In the numerical experiment, we choose N = 107,
F = 30, Q = 0.8, θ ∼ U [0, 155], Φ = 0.3, K = 23,
A = 0.6, and B = 5. Here, we consider an area with 10
million users. In Appendix R in [34], we consider different
parameter settings (e.g., different values of N ), and the key
observations summarized in this section still hold under those
settings.

In Fig. 5(a), we plot ΠSAR, ΠSUR, and ΠSURD against C.
We can see that only ΠSAR strictly increases with C. As shown
in Proposition 4, when each user has a logarithmic utility
and a uniformly distributed type, the operator always uses up
the capacity for rewards under the SAR scheme. Hence, the
operator can always benefit from C’s increase in this situation.

First, we compare ΠSAR and ΠSUR. When C is close
to D (0), ΠSAR and ΠSUR are equal. In this situation, the
operator can only choose a very small unit reward ω. As shown
in Case B in Proposition 1 and Case B̂ in Proposition 5, the
users’ optimal decisions under the two schemes are the same,
which leads to the same operator’s revenue. When C is from
0.84 × 107 to 1.54 × 107, ΠSAR is smaller than ΠSUR. This
is because the SUR scheme can motivate two segments of
users to watch ads (by setting ω ∈

(
Φu(Q)
Fu′(0) ,

ΦQ
F

)
, as shown in

Case Ĉ in Proposition 5), which generates a higher ad revenue
than the SAR scheme. When C is greater than 1.54 × 107,
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Fig. 5: ΠSAR, ΠSUR, and ΠSURD Under Different Network Capacity (Uniformly Distributed θ).

ΠSAR is greater than ΠSUR. The operator will fully utilize
the large network capacity under the SAR scheme, and set a
large ω to motivate more users to both subscribe and watch
ads. This is consistent with Theorem 5 (i.e., if C →∞, then
ΠSAR > ΠSUR). We summarize the results in Observation 1
(the comparison between ΠSAR and ΠSURD is similar to the
comparison between ΠSAR and ΠSUR).

Observation 1. When u (z) = ln (1 + z), if C is small, the
SUR scheme achieves a higher operator’s revenue; otherwise,
the SAR scheme achieves a higher operator’s revenue.

Second, we compare ΠSUR and ΠSURD. When C =
1.24 × 107, Fig. 5(a) shows that the ad slots’ differentiation
can improve the operator’s revenue under the SUR scheme
by 9.4%. This is because the value of ω̂∗ under the SUR
scheme satisfies Case Ĉ in Proposition 5, which implies that
both subscribers and non-subscribers watch ads. Moreover,
the subscribers and non-subscribers have quite different ad
watching behaviors. In Fig. 6(a), we illustrate the distributions
of ŷI (i.e., the number of ads watched by a subscriber) and ŷII

(i.e., the number of ads watched by a non-subscriber) when
C = 1.24 × 107 and the operator uses the SUR scheme. We
can see that both ŷI and ŷII follow uniform distributions, but
their mean values are significantly different.

2) Generalized α-Fair Utility Function: We assume that
u (z) = (z+µ)1−α

1−α − µ1−α

1−α . We choose α = 0.8 and µ =
0.8, and the other settings are the same as those in Fig. 5(a).
In Fig. 5(b), we plot ΠSAR, ΠSUR, and ΠSURD against C.
We can see that the comparison among the operator’s optimal
revenues under different schemes is similar to that in Fig. 5(a).
We summarize the key results about the comparison between
ΠSAR and ΠSUR in the following observation.

Observation 2. When u (z) = (z+µ)1−α

1−α − µ1−α

1−α , if C is small,
the SUR scheme achieves a higher operator’s revenue; other-
wise, the SAR scheme achieves a higher operator’s revenue.

3) Exponential Utility Function: We assume that u (z) =
1 − e−γz , and choose γ = 0.7, N = 107, F = 45, Q = 2,
θ ∼ U [0, 250], Φ = 0.3, K = 23, and B = 5. In Fig. 5(c)
and Fig. 5(d), we show the comparison between ΠSAR, ΠSUR,
and ΠSURD under different degrees of the wear-out effect.

In Fig. 5(c), we consider a large wear-out effect (A = 0.9).
The comparison between ΠSAR and ΠSUR (or ΠSURD) is
similar to those in Fig. 5(a) and Fig. 5(b). The SAR scheme

achieves a higher revenue than the SUR scheme when C is
large. Comparing ΠSUR and ΠSURD in Fig. 5(c), we observe
that differentiation improves the operator’s revenue under the
SUR scheme by at most 9.9%.

In Fig. 5(d), we consider a small wear-out effect (A =
0.2), and have three observations. First, ΠSAR may not change
with C, which is different from the logarithmic utility situation
shown in Fig. 5(a). When each user has an exponential utility,
the operator may not benefit from the increase of C, since
it may not use up the capacity for the rewards (as discussed
in Section III-C). Second, ΠSAR is always no greater than
ΠSUR (even under a large C), which is different from the
logarithmic utility situation and the generalized α-fair utility
situation. Under the SAR scheme, each user has to pay the
subscription fee F > 0 before receiving the data rewards. The
exponential utility function is upper bounded (i.e., u (z) =
1 − e−γz ≤ 1), and hence the users with θ < F will never
subscribe and watch ads under the SAR scheme, regardless of
the unit data reward ω. When A is small, the advertisers are
willing to buy more slots, and having more users watching
ads significantly increases the operator’s revenue. Therefore,
the SUR scheme, which can motivate the users with θ < F to
watch ads, achieves a higher revenue than the SAR scheme.
Third, the ΠSURD curve overlaps the ΠSUR curve, because the
operator chooses a large ω to incentivize the users to watch
ads under a small A. In this situation, all the ad slots are
generated by non-subscribers under the SUR scheme (see Case
D̂ of Proposition 5), and the differentiation cannot improve the
operator’s revenue.

We summarize the key observations below.

Observation 3. When u (z) = 1− e−γz , (i) under a large A,
the SUR scheme achieves a higher operator revenue than the
SAR scheme if and only if C is below a finite threshold; (ii)
under a small A, the SUR scheme always achieves a higher
operator revenue than the SAR scheme.

B. Truncated Normally Distributed User Types

We next assume that each user’s type θ follows a truncated
normal distribution. We show that most observations under the
uniformly distributed user types still hold.

1) Logarithmic Utility Function: We assume that u (z) =
ln (1 + z), and obtain the distribution of θ by truncating the
normal distribution N (75, 40) to interval [0, 150]. We choose
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Fig. 7: ΠSAR, ΠSUR, and ΠSURD Under Different Network Capacity (Truncated Normally Distributed θ).

N = 107, F = 40, Q = 2, Φ = 0.03, K = 8, A = 0.5,
and B = 10. In Fig. 7(a), we plot ΠSAR, ΠSUR, and ΠSURD

against C. We can see that the SUR scheme outperforms the
SAR scheme if and only if C is below a threshold. This is
consistent with Observation 1.

2) Generalized α-Fair Utility Function: We next assume
that u (z) = (z+µ)1−α

1−α − µ1−α

1−α , where α = 0.8 and µ = 0.8.
The other settings are the same as those in Fig. 7(a). We plot
the operator’s optimal revenues under different schemes in Fig.
7(b). The influence of C on the comparison is consistent with
Observation 2.

3) Exponential Utility Function: We next assume that
u (z) = 1−e−γz , and obtain the distribution of θ by truncating
the normal distribution N (125, 30) to interval [0, 250]. We
choose γ = 0.7, N = 107, F = 40, Q = 2, Φ = 0.5,
K = 16, and B = 5. Fig. 7(c) and Fig. 7(d) show the
comparison between ΠSAR, ΠSUR, and ΠSURD under A = 0.9
and A = 0.2, respectively.

Fig. 7(c) shows that if the wear-out effect is large, the
SUR scheme outperforms the SAR scheme under a small C.
Fig. 7(d) shows that if the wear-out effect is small, the SUR
scheme always outperforms the SAR scheme. These results
are consistent with Observation 3.

In Fig. 7(c), when C = 2.07 × 107, the differentiation of
the ad slots improves the operator’s revenue under the SUR
scheme by 20.3%. To explain this large improvement, we
illustrate the distributions of ŷI and ŷII under C = 2.07× 107

and the SUR scheme in Fig. 6(b). We can observe that the
difference between the two distributions is greater than that in
Fig. 6(a) (where each user has a logarithmic utility function

and a uniformly distributed type). For example, the value of
E[ŷII]
E[ŷI]

in Fig. 6(b) is around 5.7, and the value of E[ŷI]
E[ŷII]

in Fig.
6(a) is around 2.9. Intuitively, when the difference between
the subscribers’ and non-subscribers’ ad watching behaviors is
larger, the benefit of differentiation is more obvious. Therefore,
the improvement of ΠSURD over ΠSUR in Fig. 7(c) is greater
than the improvement in Fig. 5(a) (which is 9.4%).

VI. CONCLUSION

Mobile data rewarding is an emerging approach to monetize
mobile services. We modeled the data rewarding ecosystem
and analyzed an operator’s rewarding scheme. Our results
reveal that: (i) increasing the unit data reward may decrease
the number of ads watched by the users, and the operator
may not use up its network capacity to reward the users; (ii)
under the SUR scheme, the operator can improve its revenue
by differentiating the ad slots generated by the subscribers and
non-subscribers; (iii) the operator’s optimal choice between the
SAR and SUR schemes is sensitive to the user utility function,
network capacity, and advertising’s wear-out effect.

In future work, we plan to first study the operator’s joint
optimization of the data plan and the data rewards. Under the
SAR scheme, the operator can reduce the subscription fee to
motivate more users to subscribe and watch ads. Under the
SUR scheme, the operator may increase the subscription fee,
which (i) extracts more revenue from the users with high θ and
(ii) pushes more users with low θ to become non-subscribers
and watch ads. Second, we are interested in relaxing the
assumptions of a monopolistic operator and homogeneous



advertisers. For example, when there are multiple operators,
they will compete for users as well as advertisers, which may
increase the unit data rewards and reduce the ad prices. Third,
we can study a general data rewarding scheme where the
operator can set different unit data rewards for the subscribers
and non-subscribers. The SAR and SUR schemes can be
treated as two special cases of this general scheme.
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