
Biometrika (2020), 107, 1, pp. 173–190 doi: 10.1093/biomet/asz064
Printed in Great Britain Advance Access publication 5 December 2019

A conditional density estimation partition model using
logistic Gaussian processes

By R. D. PAYNE

Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, U.S.A.
richard.payne@lilly.com

N. GUHA

Department of Mathematical Sciences, University of Massachusetts Lowell, 220 Pawtucket St,
Lowell, Massachusetts 01854, U.S.A.

nilabja_guha@uml.edu

Y. DING

Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU,
College Station, Texas 77843-3131, U.S.A.

yuding@tamu.edu

AND B. K. MALLICK

Department of Statistics, Texas A&M University, 3143 TAMU, College Station,
Texas 77843-3143, U.S.A.

bmallick@stat.tamu.edu

Summary

Conditional density estimation seeks to model the distribution of a response variable condi-
tional on covariates. We propose a Bayesian partition model using logistic Gaussian processes
to perform conditional density estimation. The partition takes the form of a Voronoi tessellation
and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The
methodology models data in which the density changes sharply throughout the covariate space,
and can be used to determine where important changes in the density occur. The Markov chain
Monte Carlo algorithm involves a Laplace approximation on the latent variables of the logistic
Gaussian process model which marginalizes the parameters in each partition element, allowing
an efficient search of the approximate posterior distribution of the tessellation. The method is
consistent when the density is piecewise constant in the covariate space or when the density is
Lipschitz continuous with respect to the covariates. In simulation and application to wind turbine
data, the model successfully estimates the partition structure and conditional distribution.

Some key words: Bayesian conditional density estimation; Laplace approximation; Logistic Gaussian process; Partition
model; Reversible jump Markov chain Monte Carlo.
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174 R. D. Payne, N. Guha, Y. Ding AND B. K. Mallick

1. Introduction

Conditional density estimation, sometimes referred to as density regression, is used to estimate
the conditional distribution of a response variable, y, given a vector of covariates, x. Regression
methods are a type of conditional density estimation which usually focus on modelling a location
change while assuming few, or no, distributional changes in the spread or shape of y. The term
conditional density estimation as used in this paper refers to more general methods that model
changes in location, spread and shape of the distribution of y throughout the covariate space.
These methods are useful when data violate standard parametric assumptions, and the shape of
the distribution of y is an important part of inference or prediction.

There are a number of existing frequentist approaches to performing conditional density esti-
mation, including kernel methods (Fan et al., 1996; Fu et al., 2011), spline methods (Kooperberg
& Stone, 1991; Stone et al., 1997) and mixtures of experts (Jacobs et al., 1991). There are
also Bayesian approaches to conditional density estimation, a popular one being to use mixture
models for the conditional distribution of p(y | x) and allow the mixing weights and parameters
to depend on the covariates (Griffin & Steel, 2006; Dunson et al., 2007; Dunson & Park, 2008;
Chung & Dunson, 2009). An alternative is to apply the logistic Gaussian process model in the
conditional density estimation setting (Tokdar et al., 2010). Latent variable models have been
utilized by Bhattacharya & Dunson (2010) and Kundu & Dunson (2011). A multivariate spline-
based method (Shen & Ghosal, 2016) and an optional Pólya tree-based method (Ma & Wong,
2011) have recently been proposed.

The method proposed in this paper provides a novel Bayesian partition model (Denison et al.,
2002a; Holmes et al., 2005) to perform conditional density estimation using logistic Gaussian
processes. The data are partitioned using a Voronoi tessellation on the covariate space x and the
distribution of y within each partition region is modelled using a univariate logistic Gaussian
process which is independent of x. The primary goal of the partition model is to infer the par-
tition structure and the distribution of y within each partition element. In parametric partition
models, this is typically done through Markov chain Monte Carlo; priors are selected such that
the parameters in each partition element can be integrated out analytically, providing the marginal
probability for the data given the partition and allowing for an efficient search of the partition’s
posterior (Denison & Holmes, 2001; Kim et al., 2005). The logistic Gaussian process model
does not have an analytical form for the marginal of y, but this can be estimated using a Laplace
approximation (Riihimäki & Vehtari, 2014), allowing an effective search of the approximate
posterior tessellation structure via Markov chain Monte Carlo methods.

Logistic Gaussian processes have been used in other contexts to perform conditional density
estimation. Tokdar et al. (2010) use the logistic Gaussian process to model the joint distribution
of the response y and the covariates x, and use a subspace projection method to reduce the dimen-
sion of the covariates. Conversely, we are fitting univariate logistic Gaussian processes within
each region of x, hence avoiding the curse of dimensionality. Furthermore, in joint modelling
approaches, y and x are not identified as the response and covariates. Our experience is that the
distribution of the response y is highly influenced by the distribution of x, especially when the
dimension of x is high.

Most conditional density estimation techniques assume that the density of y changes smoothly
over the covariate space, but this may be false. One motivating example for the present method
is wind turbine data, where it is known that the distribution of power output changes sharply
over wind speed and wind direction. Figure 1 plots normalized power output against wind speed
and illustrates the sharp change in power output as wind speeds increase. The density of power
output is also known to change sharply over different wind directions due to the terrain around the
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Fig. 1. A plot of normalized power output against wind speed (m/s).

turbine and wake effects from upwind turbines. Conditional density estimation methods which
assume that the density of y changes smoothly throughout the covariate space are generally not
designed to handle these sharp boundaries, nor do they provide information as to where they
occur.

A few partition models exist for performing conditional density estimation. Petralia et al.
(2013) used multiscale dictionaries and a tree decomposition to make density predictions using
a large number of features. Their method constructs the partition independent of y, whereas we
use y to influence the partitioning. Ma (2017) used optional Pólya trees to construct the partition
and estimate the densities, but this method fails to model the densities adequately for small
sample sizes. Tree models often have a nice interpretation, but they can become overly complex
even in low dimensions, if the true partition structure is not oriented to the block partitions of
the tree model. The tessellation structure in this paper is more flexible than tree methods since
it is constructed using a weighted Euclidean distance, which allows the model to partition the
covariate space into regions of varying shapes, rather than sets of hyper-rectangles.

The main advantage of partition models over smooth conditional density estimation is the
inference of the partition structure. In smooth models, the user must specify at which points
in the covariate space to view the density of y. It is possible when exploring the relationship
between y and x that interesting relationships may be missed due to the volume of x, even in
small dimensions. On the other hand, the partition model is designed to determine where important
changes in y occur throughout x, providing greater interpretability. Indeed, the model is similar
in spirit to the Bayesian classification and regression tree model (Chipman et al., 1998; Denison
et al., 1998) as a decision tool to understand how and where the density of y changes for different
x. By using logistic Gaussian processes to model the densities, the method can flexibly model
the densities in each partition element while simultaneously providing interpretability through
the tessellation’s posterior.

An important contribution of this paper is to provide theoretical properties of the proposed
partition model. To our knowledge, this is the first paper that considers the posterior consistency in
estimating conditional distributions for partition models with Voronoi tessellations. Indeed, there
are a few papers which have considered theoretical properties of conditional density estimation
models using other modelling frameworks (Tokdar & Ghosh, 2007; Bhattacharya & Dunson,
2010; Norets & Pelenis, 2012; Pati et al., 2013).
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176 R. D. Payne, N. Guha, Y. Ding AND B. K. Mallick

2. Bayesian hierarchical conditional density estimation partition model

2.1. Modelling the partition structure using a Voronoi tessellation

The partition model divides the d-dimensional covariate space D into M distinct pieces where y
is assumed to independently follow a different density pi(·) (i = 1, . . . , M ) within each partition.
The partitioning of the covariate space is done through a Voronoi tessellation. The tessella-
tion is defined by M centres cD

1 , . . . , cD
M that divide the covariate space into M disjoint regions

R1, . . . , RM , where Ri consists of all the observed x that are closest to centre cD
i . Formally, Ri =

{x ∈ D : ||x − cD
i || < ||x − cD

j || for all i =| j}. Here, ||x||2 = ||(x1, . . . , xd)||2 = ∑d
i=1 wi(xi)2

where w = (w1, . . . , wd) is a normalized weighting vector,
∑

wi = 1, that places different
weights on each of the covariates (Holmes et al., 2005). The weighting provides additional
flexibility in the class of tessellations.

For simplicity, we assume that the possible centres of the tessellation are restricted to the
observed covariate values. Next, we assign prior distributions for both the number of centres and
the centre locations. The prior is p(cD, M , w) = p(cD | M )p(M )p(w), where

p(M ) = Du(M | 1, . . . , Mmax),

p(cD | M ) = Du
(
cD | 1, . . . , [n!{(n − M )!M !}−1]),

p(w) = Dir(w | 1, . . . , 1),

where Du(x | 1, . . . , n) means discrete uniform on 1, . . . , n, and Mmax is the maximum number
of allowable centres, a hyperparameter chosen by the user. The prior on p(cD | M ) gives equal
weight to all possible combinations of M centres with possible centre locations corresponding to
the n observed values of the covariates. This prior penalizes larger models as long as M < �n/2�,
which should always be the case since one cannot adequately model the density in each partition
element with so few points. The vector w has the Dirichlet prior which is uniform on the simplex.

2.2. Likelihood and prior

Let ỹ = {y1, . . . , yn} be the observed responses and ỹi = {yj : xj ∈ Ri, j = 1, . . . , n}
(i = 1, . . . , M ) be the ni observed response variables whose covariates are in the ith region of
the tessellation. We assume that within the ith region, each observation is drawn independently
from the same density, which is modelled by a univariate logistic-Gaussian model (Lenk, 1988).
Given a partition, the density of y within each partition region is independent of x. The logistic
Gaussian process models the density using an exponentiated Gaussian process over a bounded
interval, Vi. The density in the ith partition region is expressed as (Riihimäki & Vehtari, 2014)

pi(y) = exp{fi(y)}∫
Vi

exp{fi(s)} ds
,

where fi(·) is modelled with a latent Gaussian process as

fi(·) = μi(·) + gi(·), gi(·) ∼ gp{0, κθi(·, ·)}, μi(·) = h(·)Tβi, (1)

with κθi(·, ·) a covariance function that depends on the smoothing hyperparameter vector θi. For
simplicity in exposition, assume θi is known; its selection via empirical Bayes will be detailed
later in this subsection. The function h(z) = (z, z2)T is used to encourage decreasing tails in the
density function pi(·) near the boundary where data may be sparse (Riihimäki & Vehtari, 2014).
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Conditional density estimation partition model 177

By placing a Gaussian prior on βi ∼ N (b, B), βi can be integrated out to yield the marginal prior
fi(·) ∼ gp

{
h(·)Tb, κθi(·, ·) + h(·)TBh(·)}.

Although a full Gaussian process prior is flexible, it does present some computational chal-
lenges, particularly when trying to integrate out the latent function fi(·) to obtain the marginal
distribution of ỹi. To aid in providing a computationally feasible solution, we follow Riihimäki
& Vehtari (2014) and approximate the logistic-Gaussian density by discretization. The bounded
region Vi is discretized into a regular grid of ri subregions centred at Zi = (zi1, . . . , ziri)

T. This
discretization occurs over the one-dimensional range of y, not x. The function fi(·) is evaluated
at ri points in the vector fi = {fi(zi1), . . . , fi(ziri)}T, and the continuous density is approximated
with the discrete version. That is, the likelihood of an observation falling into the j′th subregion
would be

ωj′ exp(fij′)∑ri
j′=1 ωj′ exp(fij′)

, (2)

where ωj′ is the width of the region centred at zij′ and fij′ = fi(zij′), the j′th element of fi. Since
we are using a regular grid, the wj′ cancel out in (2). This leads us to the joint likelihood of yi as

p(ỹi | fi) = exp
[

y�
i

Tfi − ni log
{ ri∑

j′=1

exp(fij′)

}]
,

where ni is the length of ỹi, and y�
i is a column vector of length ri with the j′th element as the

number of elements of ỹi that fall into the subregion centred at zij′ . Since we are modelling fi(·)
as a Gaussian process, fi has a multivariate normal distribution fi ∼ N (Hib, Ki +HiBH T

i ), where
Ki is an ri × ri matrix with (j′, k ′)th element κθi(zij′ , zik ′), and Hi is an ri × 2 matrix with j′th row
h(zij′)T. The partition model assumes independence between data in different partitions, therefore
the posterior distribution can be expressed as a product:

p(T , f1, . . . , fM | y1, . . . , yn) ∝ p(T )

M∏
i=1

p(ỹi | fi)p(fi),

where T = {M , cD, w} denotes the tessellation parameters. In our case, as in many other partition
models, interest lies in obtaining samples from the posterior of the tessellation, p(T | y1, . . . , yn).
This is typically accomplished using reversible jump Markov chain Monte Carlo simulation
(Green, 1995) after integrating out the partition-specific parameters. In this framework we seek

p(T | ỹ) ∝ p(T )p(ỹ | T ) = p(T )

M∏
i=1

∫
p(ỹi | fi)p(fi) dfi = p(T )

M∏
i=1

p(ỹi). (3)

The integrals can be estimated by a Laplace approximation within each partition. Laplace’s
method requires finding f̂i = arg maxfi p(ỹi | fi)p(fi) via Newton’s method and using a Taylor
expansion to construct the normal approximation. Indeed, the model presented is constructed
primarily by embedding the univariate model of Riihimäki & Vehtari (2014) into a partition
model framework to infer the effect of covariates via the partition structure. Riihimäki & Vehtari
(2014) provided the form of the Laplace approximation to obtain p(ỹi) in equation (16) of their
paper.
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178 R. D. Payne, N. Guha, Y. Ding AND B. K. Mallick

Lastly, we discuss the form of κθi(·, ·) and the selection of θi in each partition. For the purposes
of this paper, we assume that the covariance function κθi(·, ·), which depends on hyperparameters
θi = (σi, li), is the stationary squared exponential covariance function

κθi(z, z′) = σ 2
i exp

{
− 1

2l2
i

(z − z′)2

}
, z, z′ ∈ R, σi, li ∈ (0, ∞),

where σi is the magnitude hyperparameter and li is a length-scale hyperparameter; together,
these govern the smoothness properties of fi(·). The value of θi is chosen by empirical Bayes by
maximizing the posterior p(σi, li | ỹi) proportional to p(σi)p(li)

∫
p(ỹi | fi)p(fi) dfi, which we

shall denote θ̂i = (σ̂ 2
i , l̂2

i ) in each partition. We choose temporary hyperpriors, p(σi) and p(li),
to guide the selection of θi. We place a weakly informative half Student t distribution with one
degree of freedom and a variance equal to 10 for the magnitude parameter, and the same prior
with a variance of 1 for the length-scale hyperparameter (Riihimäki & Vehtari, 2014).

Thus, computing p(y1, . . . , yn | T ) in (3) is done by: (i) Determining ỹi (i = 1, . . . , M ), based
on covariate values; (ii) For each ỹi, finding θ̂i by maximizing p(ỹi) subject to the temporary
hyperprior on θi and setting θi = θ̂i; (iii) Computing p(ỹi) in each partition region via the Laplace
approximation using the fixed values of θi.

2.3. Reversible jump Markov chain Monte Carlo algorithm

The reversible jump Markov chain Monte Carlo algorithm to sample from the posterior of
the tessellation has four possible moves: birth, death, move and change. A birth step adds a
new tessellation centre randomly from x which is not currently a tessellation centre. A death
step randomly removes an existing tessellation centre. A move step randomly moves an existing
tessellation centre to another value of x which is not currently a tessellation centre. A change step
randomly selects an element of w, modifies it according to q(·, ·), and normalizes the resulting
vector.

In our implementation we place an equal probability of 1/4 for each of the moves in the
algorithm, but these probabilities can be changed if desired. Algorithm S1 in the Supplementary
Material shows the pseudocode for performing the reversible jump algorithm. After choosing
an initial tessellation, the algorithm consists of iteratively choosing one of the four moves with
probability 1/4, and accepting the proposed moves from the current tesselation T to a proposed
tesselation T ′ with probability

α = min
{

1,
q(w | w′)p(ỹ | T ′)
q(w′ | w)p(ỹ | T )

}
, (4)

where q(w′ | w) is the proposal used to modify an element of w. In our implementation we set
q(w′ | w) to be a truncated normal distribution centred at w and truncated to allow only positive
values; it applies only to the randomly selected single element of w which is modified in a change
step. The ratio involving q(· | ·) is 1 if a birth, death or change step is proposed, since w remains
unchanged. The only tuning parameters for the algorithm are the probabilities of proposing birth,
death, move and change steps and the proposal variance of q(· | ·).

For most nonboundary cases, the prior on the tessellation structure does not appear in α due
to cancellations with itself and the proposal distribution for the birth, death, move and change
steps in the reversible jump algorithm. When M is at or near the boundary, however, adjustments
to α need to be made in order to maintain the reversibility of the Markov chain. When M = 1
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Conditional density estimation partition model 179

and a birth step is proposed, or when M = Mmax and a death step is proposed, we must multiply
the ratio in (4) by 3/4. When M = 2 and a death step is proposed, or M = Mmax − 1 and a birth
step is proposed, the ratio must be multiplied by 4/3.

The mixing of a single Markov chain may be poor due to multiple posterior nodes, so we
use parallel tempering similar to that of Gramacy (2007) and Gramacy & Taddy (2010) to better
explore the posterior distribution. See the Supplementary Material.

3. Some results on convergence

3.1. Preliminaries

In this section we establish consistency of our method. If the true data-generating model is
a partition model, then as n, the number of observations, goes to infinity, the posterior density
concentrates on a small total variation neighbourhood around the true density. We state the
result for the Euclidean metric d(·, ·). The details for the general weighted norm are given in
the Supplementary Material. First, we show consistency under the true model where the target
density has partition form. Later we show consistency under model misspecification where the true
conditional density is Lipschitz continuous. Under smoothness conditions and if the underlying
true model corresponds to a Voronoi partition, then the fitted joint density lies in an εn-radius
Hellinger ball around the true density with high probability, where εn = n−(0.5−cδ) and cδ > 0
can be any constant.

Under model misspecification, we show that the posterior probability of any small total varia-
tion neighbourhood around the true joint density goes to unity as the number of observations goes
to infinity, under Lipschitz-type conditions. Further, it can be shown that the fitted conditional
distribution would be arbitrarily close to the true conditional distribution for all values of the
covariates outside a small probability set of the covariate space.

3.2. Consistency under the true model

First, we show that the partitions formed by a Voronoi tessellation can adequately approximate
the true partition. We then establish that we have sufficient prior probability for the approximating
partition around any small neighbourhood of the true Gaussian process paths in the supremum
norm. Finally, if we have sufficient prior mass around the true density, the likelihood pulls the
posterior density towards the data-generating density under the true model.

Let cD
1 , . . . , cD

m be the centres of someVoronoi tessellation and R1, . . . , Rm be the corresponding
Voronoi regions in �, a subset of R

d with associated Lebesgue measure L . Let V1, . . . , Vk be
any given partition of �, which is the covariate space D in our case. We assume that each region
Vi is a finite union of rectangular regions. Our result holds for a general region approximated by
a finite union of rectangles.

Proposition 1. Given ε1 > 0 there exist M, cD
1 , . . . , cD

M and a partition J1, . . . , Jk of

{1, . . . , M } such that Ul = ∪i∈Jl Ri and so forth, and
∑k

l=1 L (Ul�Vl) � ε1, where � denotes
the symmetric differences of sets.

In our proposed method we use the observed values of the covariates for the centres of the
tessellation. Next, we show that a small perturbation of cD

1 , . . . , cD
M from Proposition 1 does

not change the partition dramatically and provides an approximation for regions V1, . . . , Vk .
Then, we show that any small neighbourhood of cD

1 , . . . , cD
M contains observed covariates with

probability 1 as n goes to infinity, since we assume that the probability measure on x, H (·), has
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180 R. D. Payne, N. Guha, Y. Ding AND B. K. Mallick

a strictly positive, bounded away from zero, density function. We summarize these two results
in the two following propositions. Let x1, . . . , xn be the observed covariate vectors, which are
independent and xj ∼ H (·).

Proposition 2. Given ε1 > 0, cD
1 , . . . , cD

M and R1, . . . , RM from Proposition 1, we can
have δ > 0 and Voronoi centres cD

1
′
, . . . , cD

M
′

and corresponding R′
1, . . . , R′

M such that if

d(cD
i , cD

i
′
) < δ then

∑k
l=1 L (U ′

l �Vl) � 2ε1, where U ′
l = ∪i∈Jl R

′
i and d(·, ·) denotes the

distance under the Euclidean norm.

Proposition 3. Under the set-up of Proposition 1, as n → ∞, for any δ > 0, there exists xji
for some 1 � ji � n in the δ-radius ball around cD

i , for all 1 � i � M, with probability one.

Let

gx(y) =
∑

i

eμi+ηi(y)1x∈Ui , p(y | x) ∝gx(y), (5)

where the μi are the mean function given in (1), Ui denote partitions of the covariate space and
p∗(y | x) denotes the true conditional density, which we assume to be bounded away from zero
and infinity. Let |η∗

i (y)| < k0/2 and |μ∗
i | < k0/2, k0 > 1, corresponding to p∗, and we have

corresponding coefficients β∗
i . Let ε1 < ε2. Let V ∗

1 , . . . , V ∗
k be the true underlying partition of

�; from Proposition 1, there exist U ∗
1 , . . . , U ∗

k from the Voronoi approximation. Consider the
following neighbourhood in the supremum norm (‖ · ‖∞):

N1 = {‖ηi(y) − η∗
i (y)‖∞ < ε2 in x ∈ U ∗

i ∩ V ∗
i and ‖ηi(y)‖∞ < k0 for x ∈ U ∗

i �V ∗
i },

N2 = {‖βi − β∗
i ‖∞ < ε2 in x ∈ U ∗

i ∩ V ∗
i and ‖μi(y)‖∞ < k0 for x ∈ U ∗

i �V ∗
i }.

Without loss of generality, we assume here Rl = U ∗
l in Proposition 1. Otherwise, ηi, βi can be

replaced with ηij , βij in N1, N2 where ij ∈ Ji, and we have ‖ηij − η∗
i ‖∞, ‖βij − β∗

i ‖∞ < ε2 in
U ∗

i ∩ V ∗
i for all j.

Proposition 4. For {μi, ηi} pairs such that μi ∈ N2 and ηi ∈ N1 for all i, we have
∫ |p(y |

x) − p∗(y | x)| dH (x) dy < kε2 and Ep∗(y, x)[log{p∗(y, x)/p(y, x)}] < kε2, for some k > 0, where
Ep∗ implies expectation with respect to p∗.

The covariance kernel between points s and t can be written as K(s, t) = σ 2
i K0(s/li, t/li) =

σ 2
i Kli(s, t) = κθi(s, t) for the ith region Ri, where K0(·, ·) is a smooth kernel, which in our case

is the Gaussian kernel, and Kli(·, ·) corresponds to a kernel with roughness parameter li. Let
θi ∼ π(·) be independent priors on θi.

Let η(·), or in particular ηi(·), be any Gaussian process path under the proposed Gaussian kernel
on the closed interval I that is the support of y. Under the smoothness of the covariance kernel the
paths are smooth and the derivative process is again a Gaussian process (Ghosal & Roy, 2006).
For any density based on m � M partitions we have an m-dimensional product function space.
We construct sieves on the function space where the probability outside the sieves decreases
exponentially with n, and establish an entropy bound for the sieves. We use this construction to
prove our following convergence results. We also require enough prior probability around the
truth.

Prior probability around the η∗
i (·) depends on the underlying reproducing kernel Hilbert space

structure (van derVaart & van Zanten, 2007, 2008a). For a Gaussian process prior with covariance
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Conditional density estimation partition model 181

kernel K (·, ·), the reproducing kernel Hilbert space is constructed by completing the linear span
of the K (·, sl) with inner product 〈K (·, sl), K (·, sm)〉 = K (sl , sm). We assume that η∗

i (·) lies in
the closure of the underlying reproducing kernel Hilbert space support in the supremum norm for
an open set of hyperparameters. Then, under a Gaussian process prior, any small supremum norm
neighbourhood around η∗

i (·) has positive probability (Tokdar & Ghosh, 2007). Under a Gaussian
kernel, the set of reproducing kernel Hilbert space elements over all the li will have continuous
functions in its closure under the supremum norm (Tokdar & Ghosh, 2007, Theorem 4.4). The
next assumption summarizes this support restriction.

Assumption 1. Let the closure of ARl = {η(t) = ∑k
i=1 aiKl(t, t∗i ) : ai ∈ R, k ∈ N and

t, t∗i ∈ I } corresponding to the Hilbert space norm be the reproducing kernel Hilbert space for
roughness parameter l > 0. Assume that η∗

i (·) are in the sup-norm closure of AR = ∪lARl .
Here, R, N are the sets of real and natural numbers, respectively.

Let �(·) = �n(·) denote the joint prior distribution on the model space from § 2, specified by

ηi(·) ∼ gp{0, κθi(·, ·)}; μi(·) = h(·)Tβi, βi ∼ N (b, B); θi ∼ π(·), (6)

and

M ∼ Du(M | 1, . . . , Mmax); cD | M ∼ Du
(
cD | 1, . . . , [n!{(n − M )!M !}−1]), (7)

and �(S | ·) denote the posterior probability of a measurable subset S of the model space given
observed data {yj, xj} (j = 1, . . . , n). We assume that the η∗

i (·) satisfy the reproducing kernel
Hilbert space condition stated in the last paragraph.

Assumption 2. We assume the following regarding hyperparameters:

(a) log[max{�(σi > λn), �(1/li > νn)}] = O(−n);
(b) M 2

n λ−2
n ν−2α

n /n → ∞;
(c) Mn

1/α = O(nγ ), 0 < γ < 1.

Here, Mn is polynomial, of order of n; {Mn}n�1, {λn}n�1 and {νn}n�1 are sequences going to
infinity; and α � 1 is an integer.

Theorem 1. Let Uε′ = {p :
∫ |p(y | x) − p∗(y | x)| dy dH (x) < ε′}, ε′ > 0. Then, for

Mmax > M0, where M0 is a constant, under Assumptions 1 and 2 and the Voronoi log Gaussian
process prior given in (6) and (7) for the model in (5), �(Uε′ | ·) → 1 with probability one as
n, the number of observations, goes to infinity.

Even though the main results focus on the neighbourhood of the estimated density, the prior
favours smaller partitions. Heuristically, if the true partition is further partitioned into smaller
partitions, then the true likelihood remains the same over the smaller partitions, but the prior puts
O(n−m) weight on a partition with m centres. Hence, extra subpartitions will reduce the posterior
probability. Therefore, we should have higher posterior probability for the smaller number of
Voronoi centres, as long as it can capture the true data-generating partition. We can use a prior
satisfying Assumption 2, or truncate the hyperparameters at λn and νn.

If the true model is in partition form and has an underlying true data-generating Voronoi
partition, and η∗

i (·) is smooth and in the reproducing kernel Hilbert space in each partition,
we can achieve a convergence rate arbitrarily close to the minimax rate in terms of Hellinger

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/107/1/173/5658674 by Texas A&M
 U

niversity user on 31 July 2020



182 R. D. Payne, N. Guha, Y. Ding AND B. K. Mallick

distance, as given in the following theorem. To prove this result we need to have sufficient prior
probability in a small neighbourhood around the true η∗

i (·) under the Gaussian kernel, which can
be established through the underlying reproducing kernel Hilbert space.

In our context, for a Gaussian process prior �G with covariance kernel K (·, ·), let �G
ε,η̃ =

�G (η(·) : ‖η(·) − η̃(·)‖∞ < ε) be the probability of the sup-norm ε-neighbourhood of η̃(·).
Then φη̃(·)(ε) = infh̄∈H:‖h̄−η̃‖∞<ε

1
2‖h̄‖2

H
− log �G (‖η(·)‖∞ < ε) and φη̃(·)(ε) � − log �G

ε,η̃ �
φη̃(·)(ε/2). The preceding inequality is from van der Vaart & van Zanten (2008b). Here, H is
the reproducing kernel Hilbert space associated with K (·, ·). We assume all the η∗

i (·) belong
to the reproducing kernel Hilbert space support on an open neighbourhood of σi, and the li are
bounded away from zero and infinity, and have bounded norm induced by the reproducing kernel
Hilbert space in that neighbourhood. See Smola et al. (1998) and van der Vaart & van Zanten
(2011) for an explicit form for the reproducing kernel Hilbert space norm of the smooth function
for the Gaussian kernel. Let AC

Rl
be the set containing the functions in ARl and the convolutions∫

I w(s)Kl(t, s) ds for bounded continuous convolution functions w(·) on I , the domain of y.

Assumption 3. For ARl = {η(t) = ∑k
i=1 aiKl(t, t∗i ) : ai ∈ R, k ∈ N, and t, t∗i ∈ I }, let AH

Rl

be the closure of ARl corresponding to the Hilbert space norm. Assume that η∗
i (·) are in AH

Rli
for

li lying in an open subset of the positive real line with uniformly bounded Hilbert space norm,
or η∗

i (·) are in AC
Rli

s for some li.

Assumption 4. For a sequence ε2
n going to zero, we assume:

(a) εn = n−(0.5−cδ), where 0 < cδ < 0.5;
(b) εn

−2/αMn
1/α = o(nε2

n) for some integer α;
(c) − log

[
max

{
�(σi > λn), �

( 1
li

> νn
)}]

/(nε2
n) → ∞;

(d) M 2
n λ−2

n ν−2α
n /(nε2

n) → ∞.

Assumption 5. For large n we have observations at the true Voronoi centres.

The above condition can be replaced with:

Assumption 6. First, M � Mmax observation points are chosen from the discrete uniform prior
from (7). Then, the M Voronoi centres are chosen with independent discrete uniform priors inside
d-dimensional rectangles with centres of mass at M observation points and side length 2ε

2/d
n on

the grid points, induced by ε2
nd−1/2-distance equispaced grid points on each side of the rectangle.

Here, d is the dimension of the covariate space. That is, we have less than (2ε
2/d
n ε−2

n d1/2)d grid
points inside one such rectangle.

Then we have the following result.

Theorem 2. Let U h
εn

= {p :
∫ [{p(y | x)}1/2−{p∗(y | x)}1/2]2 dy dH (x) < ε2

n} be the εn-radius
Hellinger ball around the true density. Under Assumptions 3 and 4, and either of Assumptions 5
or 6, with the Voronoi log Gaussian process prior given in (6) and (7) for the model in (5), if the
true partition of the covariate space is induced by a Voronoi partition and Mmax is greater than
the total number of true Voronoi regions, then �(U h

Mhεn
| ·) → 1 in probability for some large

constant Mh.
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3.3. Consistency under misspecification

We have shown posterior consistency for densities where the true density has the partition
form. Even though the motivation for this method is to model this class of densities by a Voronoi
partition, here we extend our result to a more general case when the true conditional density is
continuous and the covariate space is a d-dimensional rectangle. We consider a general Lipschitz
condition for conditional densities in the following assumption.

Assumption 7. Assume |p∗(y | x1) − p∗(y | x2)| � cld(x1, x2), for some constant cl > 0.

We show that the class of Voronoi approximations of conditional density functions is dense in
the class of Lipschitz continuous functions. For Uε′ = {p :

∫ |p(y | x)−p∗(y | x)| dH (x) dy < ε′}
we show that the posterior probability of Uε′ goes to one with probability one as n goes to infinity.
We assume the following.

Assumption 8. The log of the conditional density log p∗(y | x) belongs to the sup-norm closure
of AR from Assumption 1.

Theorem 3. For ε′ > 0 and Uε′ = {p :
∫ |p(y | x) − p∗(y | x)| dy dH (x) < ε′} there exists

M0 > 0 such that for Mmax > M0, under Assumptions 2, 7, and 8, and the Voronoi log Gaussian
process prior given in (6) and (7) for the model in (5), �(Uε′ | ·) → 1 with probability one, as
the number of observations, n, goes to infinity.

Next, we show a result for conditional density convergence. We define the set U c
ε, δ = {

p :
H (νε

x, p) > δ
}
, where νε

x, p = {x such that
∫ [{p(y | x)}1/2 − {p∗(y | x)}1/2]2 dy > ε}, as the set

of densities that have conditional Hellinger distance from the true density more than ε on a set
of points in the covariate space which has measure greater than δ under H .

Let M n
max be the maximum number of Voronoi centres selected, depending on the number of

observed data points. As we observe more and more data, we let the number of Voronoi regions go
to infinity at a certain rate given by Assumption 10 below, and establish that under the posterior
measure the set of densities having conditional Hellinger distance more than ε′ > 0 over the set
of covariate points with measure δn or more will have small probability, where δn goes to zero.
We show the following result under the following conservative assumptions.

Assumption 9. The log of the conditional density p∗(y | x) is in AH
Rl

from Assumption 3 for l
in an open subset of the positive real line, and assume that the norm induced by the reproducing
kernel Hilbert space is uniformly bounded for all x, or we assume that log p∗(y | x) belongs to
the convolution class AC

Rl′ for some l′ > 0, with Hilbert space norm uniformly bounded over all
x, for uniformly bounded convolution functions.

Assumption 10. We assume M n
max = O(nγ ′

), where 0 < γ ′ � 1/(2d + 2), and
(M n

max)
1+1/dM 1/α

n = o(nδ′
1) for δ′

1 = 1 − {(2d + 2)d}−1.

Theorem 4. Let, U c
ε, δ = {

p : H (νε
x, p) > δ

}
, where νε

x, p = {x such that
∫ [{p(y | x)}1/2 −

{p∗(y | x)}1/2]2 dy > ε}. For ε′ > 0, under Assumptions 2, 7, 9 and 10, and the Voronoi log
Gaussian process prior given in (6) and (7) for the model in (5), there exists δn going to zero
such that �(U c

ε′, δn
| ·) → 0 in probability, as the number of observations, n, goes to infinity.

The application of this model in practice differs slightly from the theory. The applied method-
ology uses two approximations: the discretized version of pi in each partition, and the Laplace
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approximation of the marginal of y. The theory is not based on these practical approximations,
but the validity of practical results depends on a reasonable approximation. A measure of the
closeness of these approximations to the true underlying model is not undertaken here, but the
empirical results of Riihimäki & Vehtari (2014) indicate that these approximations are reasonable
in practice for density estimation.

4. Simulations and applications

4.1. Preliminaries

For our applications, we choose the maximum number of partitions to be Mmax = 10 to
maintain simplicity in interpretation. We set the hyperparameters for the prior on β as b = (0, 0)T

and B = 102I , where I is the 2 × 2 identity matrix. Each Zi (i = 1, . . . , M ), the grid on which
the density of y is discretized in each partition element, is a subset of a larger regular grid of 400
points Z� = {z�

1, . . . , z�
400} with z�

1 = min{min(ỹ), ȳ − 3σ̂ 2} and z�
400 = max{max(ỹ), ȳ + 3σ̂ 2},

where ȳ and σ̂ 2 are the sample mean and variance of ỹ, the set of responses. Specifically, Zi =
{z�

j′ : z�
j′ ∈ [min{min(ỹi), ȳi −3σ̂i

2}, max{max(ỹi), ȳi +3σ̂i
2}] (j′ = 1, . . . , 400)}, where ȳi and σ̂ 2

i
are the mean and standard deviation of the data ỹi. We standardize the covariates and the response
variable to have a mean of 0 and standard deviation of 1. This standardization allows us to use
the priors selected generally without worrying about the range of the data.

4.2. Simulation

A total of 500 observations were simulated from the following model: X1, X2 ∼ Un(0, 1) and

Y | X1, X2 ∼

⎧⎪⎨
⎪⎩

Ga(10, 2) if X1 > X2, X2 < 0.75,

ζN (1, 1) + (1 − ζ )N (5, 1), ζ ∼ Ber(0.5) if X1 < X2, X1 < 0.75,

N (1, 0.51/2) if X1 > 0.75, X2 > 0.75,

where Ga(a, b) is a gamma distribution with shape parameter a and rate parameter b, and N (μ, σ)

denotes a normal distribution with mean μ and standard deviation σ . The Markov chain Monte
Carlo algorithm was run for 105 iterations. Details regarding the mixing of the Markov chain for
the partition model can be found in the Supplementary Material. The partition with the highest
posterior probability is plotted in Fig. 2(a). The method performed extremely well in this setting
and correctly captured the partition. The model also does well in capturing the distribution within
each partition element; see Fig. 2(b).

This dataset was also analysed by three other methods, including dependent Bernstein poly-
nomials (Barrientos et al., 2017), linear dependent tail-free processes (Jara & Hanson, 2011)
and the Dirichlet process mixtures of normals method (Müller et al., 1996). All three methods
are implemented in the DPpackage in R (R Development Core Team, 2020), and generally
assume that the density of y changes smoothly as a function of the covariates, a very dif-
ferent assumption than the data-generating model. The methods were run for a 104-iteration
burn-in period and kept every other draw for the next 40 000 iterations for a total of 20 000
posterior draws. We chose to evaluate the posterior density at four different covariate locations,
{(0.76, 0.76), (0.9, 0.9), (0.1, 0.8), (0.8, 0.1)}. The (0.76, 0.76) location is on the boundary of all
three partition elements, whereas the other three locations are away from the boundary. Of these
smooth methods, the Dirichlet process mixture of normals performed best, and the posterior den-
sities at the four selected points are plotted with the true density in Fig. 3. We generally see that
this method failed at the boundary, but performed adequately, albeit with wide credible intervals,
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Fig. 2. (a): The partition of the covariate space with the highest posterior probability from the simulated dataset in
§ 4.2. The true partition boundaries are denoted by the lines. The shape of the points designate the posterior partition to
which each point belongs. (b): The posterior mean (dashed, bold), 95% credible intervals (dashed) and the true density

(solid) in each partition element from the partition model.

at the points away from the boundary. The other two smooth methods had poorer fits, and their
plots are provided in the Supplementary Material.

This dataset was also analysed with a Voronoi partition model which assumes normality within
each partition element, as described in Denison et al. (2002b, Ch. 7). The Markov chain ran for
80 000 iterations following a 20 000-iteration burn-in period. Since this partition model assumes
normality within each partition element, model averaging was employed to obtain the posterior
distribution at the same locations as the methods previously discussed. A plot of the result is
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Fig. 3. The posterior mean density (dashed, bold), 95% credible intervals (dashed) and the true density (solid) of the
Bayesian Dirichlet process mixture of normals model.

provided in the Supplementary Material and indicates that the normality modelling assumption
is too restrictive.

A direct comparison of this dataset to other partition models was not possible since Petralia
et al. (2013) did not provide public code, and the code provided by Ma (2017) lacks adequate
documentation. However, we replicate one of the scenarios in Ma (2017) where, for a small
sample size, our method outperforms Ma (2017). The details of this comparison are given in the
Supplementary Material.

4.3. Smooth changes

To demonstrate the partition model’s performance on data where the density changes smoothly
as a function of the covariates, 500 realizations of the vector (Y , X1, X2) were simulated from
a trivariate normal distribution with mean (1, 5, 7.5) and covariance matrix �, with �i, i = 1,
�i, j = 0.5 if |i − j| = 1, and �i, j = 0.1 if |i − j| = 2.

The Markov chain was run for 105 iterations. Figure 4(a) shows the partition with the highest
posterior probability; the other three panels plot the posterior mean, 95% credible intervals and
the true distribution at the tessellation centre. Since we are estimating the marginal density of y in
each region, there is no guarantee that the distribution at the tessellation centre will be contained
in the credible intervals, but the densities are used as a rough benchmark for where the marginal
density should lie. The partition model performs as expected: it identifies that both X1 and X2
influence the distribution of y and captures general shifts in the distribution over the covariate
space.

4.4. Wind turbine data

Conditional density estimation is particularly useful when it is unclear how the density of y
changes with respect to the predictors, x. The exact relationship of electrical power output in
wind turbines to covariates measuring wind speed, wind direction, air density, wind shear and
turbulence intensity is unknown, but is believed to be nonlinear (Lee et al., 2015). Furthermore,
the conditional density of power output is known to have sharp changes as a function of wind
speed and direction. For instance, modern wind turbines employ a pitch control mechanism to
protect the generator under high wind. When the wind speed is high enough, the turbine blades
start turning more parallel into the wind to reduce the energy absorption capability. Thus, for very
high wind speeds, the power output is concentrated near a maximum power level. This change
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Fig. 4. Panel (a) shows the partition of the covariate space with the highest posterior probability. The colours/shapes
designate partition assignments. The remaining three panels show the posterior mean density (dashed bold), 95%
credible intervals (dashed) and the density at the corresponding Voronoi centre (solid) in each of the three posterior

partition regions.

from a very broad and often skewed distribution to a very narrow distribution can happen within
a wind speed range of just 1 m/s. The change in the spread of power output as a function of wind
speed can be seen in Fig. 1.

Wind speed is not the only covariate which induces sharp changes in the distribution of power
output. When terrain is not flat and smooth, there may also be sharp changes in power output as
a function of wind direction, as the wind is affected by the terrain surrounding the turbine. When
a wind turbine is downwind of another turbine, the upwind turbine creates a narrow wake region
and when the downwind turbine is in the wake of the upwind turbine, it produces noticeably
less power, due to the reduction of kinetic energy in the air flow after the rotor of the upwind
turbine. The difference in power outputs of the downwind turbine in and out of the wake region
also presents a sharp change in the power output’s distribution. Combining all of these effects
together, we expect sharp changes in power output to occur in both wind speed and wind direction.

The wind turbine dataset consists of aggregated measurements of wind turbine power output
and several covariates over 10 minute increments from a single turbine, consisting of 10 000
observations randomly sampled from a larger dataset. We analyse the wind turbine dataset in
order to estimate the distribution of power output in various regions of the covariate space and
thus better understand where the most important changes occur. The partition model was fitted to
the data using five covariates: wind speed, wind direction, air density, wind shear and turbulence
intensity.The reversible jump Markov chain Monte Carlo algorithm was run for 100 000 iterations.

Figure 5 shows the tessellation with the highest posterior probability. The partition struc-
ture identifies major changes in power output across wind speed, and also identifies one
interesting change across wind direction at about 120◦. This change in power output is
believed to be caused by a wake effect from another turbine which caused the instruments
measuring wind speed to underestimate wind speed when the turbine is oriented at about 120◦.
The partition model also successfully captures the wind speed at which the maximum power
output is achieved, and can be seen at the partition boundary located near 12 m/s. Overlaps and
blurred edges of the partitions indicate the role of other covariates in determining the partition
structure. Figure 6 demonstrates the various forms the posterior densities take in four of the ten
tessellation regions.

Currently, the choice of Mmax is done in an ad hoc manner, taking into consideration computa-
tion and data size. It is important that Mmax is large enough to capture the distributional changes
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Fig. 5. Wind direction plotted against wind speed, with colours denoting the partition regions of the tessellation with
the highest posterior probability.
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Fig. 6. Posterior densities with 90% credible intervals (shaded) in four of the ten partitions of the final wind turbine
posterior tessellation.

in y, but not so large as to be computationally intractable. A theoretically optimum value of Mmax
for this partition model is still an open question.
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Supplementary material available at Biometrika online contains details of the proofs, the
parallel tempering used in the reversible jump Markov chain Monte Carlo algorithm, details of
the Markov chain performance, and additional information and comparisons. Code is available at
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https://github.com/richardbayes/bayes-cde and utilizes the GPstuffMatlab
code by Vanhatalo et al. (2013).
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