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Summary

We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-
sparse matrices in a high-dimensional multiple-response linear regression model. We consider a
carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need
to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse
structures. We provide theoretical support to the proposed methodology by proving minimax
optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where
the number of predictors can grow subexponentially relative to the sample size. A one-step post-
processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix
is proposed for variable selection, with default choices of tuning parameters. We additionally
provide an estimate of the rank using a novel optimization function achieving dimension reduction
in the covariate space. We exhibit the performance of the proposed methodology in an extensive
simulation study and a real data example.

Some key words: Dimension reduction; High dimension; Posterior concentration; Scalability; Shrinkage; Variable
selection.

1. Introduction

Studying the relationship between multiple response variables and a set of predictors has broad
applications ranging from bioinformatics, econometrics and time series analysis to growth curve
models. The least squares solution in a linear multiple response regression problem is equivalent
to performing separate least squares on each of the responses (Anderson, 1984) and ignores
any potential dependence among the responses. In the context of multiple response regression,
a popular technique to achieve parsimony and interpretability is to consider a reduced-rank
decomposition of the coefficient matrix, commonly known as reduced rank regression (Anderson,
1951; Izenman, 1975; Velu & Reinsel, 2013). Although many results exist about the asymptotic
properties of reduced rank estimators (Anderson, 2002), formal statistical determination of the
rank remains difficult, even with a fixed number of covariates and a large sample size, due
mainly to the discrete nature of the parameter. The problem becomes substantially harder when
a large number of covariates are present, and has motivated a series of recent works on penalized
estimation of low-rank matrices, where either the singular values of the coefficient matrix (Yuan
et al., 2007; Chen et al., 2013) or the rank itself (Bunea et al., 2011) are penalized. Theoretical
evaluations of these estimators focusing on adaptation to the oracle convergence rate when the
true coefficient matrix is of low rank have been conducted in Bunea et al. (2011). Bunea et al.
(2012) also noted that the convergence rate can be improved when the true coefficient matrix has
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rows of zeros and variable selection is incorporated within the estimation procedure. Methods that
simultaneously handle rank reduction and variable selection include Yuan et al. (2007), Bunea
et al. (2012) and Chen & Huang (2012). To the best of our knowledge, uncertainty characterization
for the parameter estimates from these procedures is not currently available.

The first fully systematic Bayesian treatment of reduced rank regression was carried out in
Geweke (1996), where, conditioned on the rank, independent Gaussian priors were placed on
the elements of the coefficient matrix. While formal Bayesian model selection can be performed
to determine the rank (Geweke, 1996), calculation of marginal likelihoods for various candidate
ranks gets computationally burdensome with increasing dimensions. The problem of choosing the
rank is not unique to reduced rank regression and is ubiquitous in situations involving low-rank
decompositions, with factor models being a prominent example. Lopes & West (2004) placed a
prior on the number of factors and proposed a computationally intensive reversible jump algorithm
(Green, 1995) for model fitting. As an alternative, Bhattacharya & Dunson (2011) proposed to
increasingly shrink the factors, starting with a conservative upper bound, and adaptively collapse
redundant columns inside their Markov chain Monte Carlo algorithm. Recent advancements in
Bayesian matrix factorization have taken a similar approach (see, for example, Lim & Teh, 2007;
Salakhutdinov & Mnih, 2008; Babacan et al., 2011; Alquier, 2013).

From a Bayesian point of view, a natural way to select variables in a single-response regression
framework is to use point mass mixture priors (George & McCulloch, 1993; Scott & Berger,
2010), which allow a subset of the regression coefficients to be exactly zero. These priors were
also adapted to multiple response regression by several authors (Brown et al., 1998; Lucas et al.,
2006; Wang, 2010; Bhadra & Mallick, 2013). Posterior inference with such priors involves a
stochastic search over an exponentially growing model space and is computationally expensive
even in moderate dimensions. To alleviate the computational burden, a number of continuous
shrinkage priors have been proposed in the literature which mimic the operating characteristics
of the discrete mixture priors. Such priors can be expressed as Gaussian scale mixtures (Polson
& Scott, 2010), leading to block updates of model parameters; see Bhattacharya et al. (2016) for
a review of such priors and efficient implementations in high-dimensional settings. To perform
variable selection with these continuous priors, several methods for post-processing the posterior
distribution have been proposed (Bondell & Reich, 2012; Kundu et al., 2013; Hahn & Carvalho,
2015).

In this article we simultaneously address the problems of dimension reduction and variable
selection in high-dimensional reduced rank models from a Bayesian perspective. We develop a
novel shrinkage prior on the coefficient matrix which encourages shrinkage towards low-rank
and row-sparse matrices. The shrinkage prior is induced from appropriate shrinkage priors on the
components of a full-rank decomposition of the coefficient matrix, and hence bypasses the need to
specify a prior on the rank. We provide theoretical understanding of the operating characteristics
of the proposed prior in terms of a novel prior concentration result around rank-reduced and row-
sparse matrices. The prior concentration result is utilized to prove minimax concentration rates
of the posterior under the fractional posterior framework of Bhattacharya et al. (2019) in an ultra-
high-dimensional setting where the number of predictor variables can grow subexponentially in
the sample size.

The continuous nature of the prior enables efficient block updates of parameters inside a Gibbs
sampler. In particular, we adapt an algorithm for sampling structured multivariate Gaussians from
Bhattacharya et al. (2016) to efficiently sample a high-dimensional matrix in a block leading to
a low per-iteration Markov chain Monte Carlo computational cost. We propose two independent
post-processing schemes to achieve row sparsity and rank reduction with encouraging perfor-
mance.A key feature of our post-processing schemes is to exploit the posterior summaries to offer

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/107/1/205/5638937 by Texas A&M
 U

niversity user on 31 July 2020



Bayesian sparse multiple regression 207

careful default choices of tuning parameters, resulting in a procedure which is completely free
of tuning parameters. The resulting row-sparse and rank-reduced coefficient estimate is called a
Bayesian sparse multi-task learner. We illustrate the superiority of our estimator over its com-
petitors through a detailed simulation study, and the methodology is applied to a yeast cell cycle
dataset.

2. Bayesian sparse multitask learner

Suppose, for each observational unit i = 1, . . . , n, we have a multivariate response yi ∈ R
q

on q variables of interest, along with information on p possible predictors xi ∈ R
p, a subset of

which are assumed to be important in predicting the q responses. Let X ∈ R
n×p denote the design

matrix whose ith row is xT
i , and Y ∈ R

n×q the matrix of responses with the ith row as yT
i . The

multivariate linear regression model is

Y = XC + E, E = (eT
1, . . . , eT

n)
T, (1)

where we follow standard practice to centre the response and exclude the intercept term. The
rows of the error matrix are independent, with ei ∼ N (0, �). Our main motivation is the high-
dimensional case where p � max{n, q}, although the method trivially applies to p < n settings
as well. We shall also assume the dimension of the response q to be modest relative to the sample
size.

The basic assumption in reduced rank regression is that rank(C) = r � min(p, q), whence
C admits a decomposition C = B∗AT∗ with B∗ ∈ R

p×r and A∗ ∈ R
q×r . While it is possible to

treat r as a parameter and assign it a prior distribution inside a hierarchical formulation, posterior
inference on r requires calculation of intractable marginal likelihoods or resorting to complicated
reversible jump Markov chain Monte Carlo algorithms. To avoid specifying a prior on r, we work
within a parameter-expanded framework (Liu & Wu, 1999) to consider a potentially full-rank
decomposition C = BAT with B ∈ R

p×q and A ∈ R
q×q, and assign shrinkage priors to A and

B to shrink out the redundant columns when C is indeed low rank. This formulation embeds all
reduced-rank models inside the full model; if a conservative upper bound q∗ � q on the rank is
known, the method can be modified accordingly. The role of the priors on B and A is important
to encourage appropriate shrinkage towards reduced-rank models, which is discussed below.

We consider independent standard normal priors on the entries of A. As an alternative, a
uniform prior on the Stiefel manifold (Hoff, 2009) of orthogonal matrices can be used. However,
our numerical results suggest significant gains in computation time using the Gaussian prior
over the uniform prior with no discernible difference in statistical performance. The Gaussian
prior allows an efficient block update of vec(A), whereas the algorithm of Hoff (2009) involves
conditional Gibbs update of each column of A. Our theoretical results also suggest that the
shrinkage provided by the Gaussian prior is optimal when q is modest relative to n, the regime
in which we operate. We shall henceforth use �A to denote the prior on A, i.e., ahk ∼ N (0, 1)

independently for h, k = 1, . . . , q.
Recalling that the matrix B has dimension p × q, with p potentially larger than n, stronger

shrinkage is warranted on the columns of B. We use independent horseshoe priors (Carvalho
et al., 2010) on the columns of B, which can be represented hierarchically as

bjh | λjh, τh ∼ N (0, λ2
jhτ

2
h ), λjh ∼ Ca+(0, 1), τh ∼ Ca+(0, 1), (2)
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independently for j = 1, . . . , p and h = 1, . . . , q, where Ca+(0, 1) denotes the truncated standard
half-Cauchy distribution with density proportional to (1 + t2)−11(0,∞)(t). We shall denote the
prior on the matrix B induced by the hierarchy in (2) by �B.

We shall primarily restrict our attention to settings where � is diagonal, � = diag(σ 2
1 , . . . , σ 2

q ),
noting that extensions to nondiagonal � can be incorporated in a straightforward fashion. For
example, for moderate q a conjugate inverse-Wishart prior can be used as a default. Furthermore,
if � has a factor model or Gaussian Markov random field structure, they can also be incorporated
using standard techniques (Rue, 2001; Bhattacharya & Dunson, 2011). The cost per iteration of
the Gibbs sampler retains the same complexity as in the diagonal � case; see § 3 for more details.
In the diagonal case, we assign independent improper priors π(σ 2

h ) ∝ σ−2
h (h = 1, . . . , q) on the

diagonal elements, and call the resulting prior �� .
The model augmented with the above priors now takes the shape

Y = XBAT + E, ei ∼ N (0, �), (3)

B ∼ �B, A ∼ �A, � ∼ �� . (4)

We shall refer to the induced prior on C = BAT by �C , and let

p(n)(Y | C, �; X ) ∝ |�|−n/2 e−tr{(Y−XC)�−1(Y−XC)T}/2

denote the likelihood for (C, �).

3. Posterior computation

3.1. Gibbs sampler

Exploiting the conditional conjugacy of the proposed prior, we develop a straightforward
and efficient Gibbs sampler to update the model parameters in (3) from their full conditional
distributions. We use vectorization to update parameters in blocks. Specifically, in what follows
we will make multiple use of the following identity. For matrices �1, �2, �3 with appropriate
dimensions, and vec(A) denoting columnwise vectorization, we have

vec(�1�2�3) = (�T
3 ⊗ �1)vec(�2) = (�T

3�
T
2 ⊗ Ik)vec(�1), (5)

where the matrix �1 has k rows and ⊗ denotes the Kronecker product.
Letting θ | − denote the full conditional distribution of a parameter θ given other parameters

and the data, the Gibbs sampler cycles through the following steps, sampling parameters from
their full conditional distributions.

Step 1. To sample B | −, use (5) to vectorize Y = XBAT + E to obtain

y = (X ⊗ A)β + e, (6)

where β = vec(BT) ∈ R
pq×1, y = vec(Y T) ∈ R

nq×1, and e = vec(ET) ∼ Nnq(0, �̃)

with �̃ = diag(�, . . . , �). Multiplying both sides of (6) by �̃−1/2 yields ỹ = X̃ β + ẽ,
where ỹ = �̃−1/2y, X̃ = �̃−1/2(X ⊗ A) and ẽ = �̃−1/2e ∼ Nnq(0, Inq). Thus, the full
conditional distribution is β | − ∼ Npq(�

−1
B X̃ Tỹ, �−1

B ), where �B = (X̃ TX̃ + �−1) with
� = diag(λ2

11τ
2
1 , . . . , λ2

1qτ
2
q , . . . , λ2

p1τ
2
1 , . . . , λ2

pqτ
2
q ).
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Naively sampling from the full conditional of β has complexity O(p3q3), which becomes
highly expensive for moderate values of p and q. Bhattacharya et al. (2016) recently developed an
algorithm to sample from a class of structured multivariate normal distributions whose complexity
scales linearly in the ambient dimension. We adapt the algorithm in Bhattacharya et al. (2016) as
follows:

(i) Sample u ∼ N (0, �) and δ ∼ N (0, Inq) independently.
(ii) Set v = X̃ u + δ.

(iii) Solve (X̃ �X̃ T + Inq)w = (ỹ − v) to obtain w.
(iv) Set β = u + �X̃ Tw.

It follows from Bhattacharya et al. (2016) that β obtained from steps (i)–(iv) above produces a
sample from the desired full conditional distribution. One only requires matrix multiplications and
linear system solvers to implement the above algorithm, and no matrix decomposition is required.
It follows from standard results (Golub & van Loan, 1996) that the above steps have a combined
complexity of O(q3 max{n2, p}), a substantial improvement over O(p3q3) when p � max{n, q}.

Step 2. To sample A | −, once again vectorize Y = XBAT + E, but this time use the equality
of the first and the third terms in (5) to obtain

y = (XB ⊗ Iq)a + e, (7)

where e and y are the same as in Step 1, and a = vec(A) ∈ R
q2×1. The full conditional posterior

distribution is a | − ∼ N (�−1
A X∗̃y, �−1

A ), where �A = (X T∗ X∗ + Iq2), X∗ = �̃−1/2(XB ⊗ Iq2)

and ỹ = �̃−1/2y. To sample from the full conditional of a, we use the algorithm from § 3.1.2
of Rue (2001). Compute the Cholesky decomposition (X T∗ X∗ + Iq2) = LLT. Solve the system of
equations Lv = X T∗ ỹ, LTm = v and LTw = z, where z ∼ N (0, Iq2). Finally, obtain a sample as
a = m + w.

Step 3. To sample σ 2
h | −, observe that σ 2

h | − ∼ ig(n/2, Sh/2) independently across h, where
Sh = {Yh −(XBAT)h}T{Yh −(XBAT)h}, with �h denoting the hth column of a matrix �. In the case
of an unknown � and an iw(q, Iq) prior on �, the posterior update of � can be easily modified
due to conjugacy; we sample � | − from iw{n + q, (Y − XC)T(Y − XC) + Iq}.

Step 4. The global and local scale parameters λjh and τh have independent conditional
posteriors across j and h, which can be sampled via the slice sampling scheme provided in
the online supplement to Polson et al. (2014). We illustrate the sampling technique for a
generic local shrinkage parameter λjh; a similar scheme works for τh. Setting ηjh = λ−2

jh ,
the slice sampler proceeds by sampling ujh | ηjh ∼ Un{0, 1/(1 + ηjh)} and then sampling
ηjh | ujh ∼ Ex(2τ 2

h /b2
jh)I{ηjh < (1 − ujh)/ujh}, a truncated exponential distribution.

The Gibbs sampler above, when modified to accommodate nondiagonal � as mentioned in
Step 3, retains the overall complexity. Steps 1–2 do not assume any structure for �. The matrix
�−1/2 can be computed in O(q3) steps using standard algorithms, which does not increase the
overall complexity of Steps 1 and 2 since q < n 	 p by assumption. Modifications to situations
where � has a graphical/factor model structure are also straightforward.

Point estimates of C, such as the posterior mean or elementwise posterior median, are readily
obtained from the Gibbs sampler along with a natural uncertainty quantification, which can be
used for point and interval predictions. However, the continuous nature of our prior implies that
such point estimates will be nonsparse and full rank with probability one, and hence not directly
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amenable for variable selection and rank estimation. Motivated by our concentration result in
Theorem 2 that the posterior mean X C̄ increasingly concentrates around XC0, we propose two
simple post-processing schemes for variable selection and rank estimation below. The procedures
are completely automated and do not involve any input of tuning parameters from the user’s end.

3.2. Post-processing for variable selection

We define a row-sparse estimate ĈR for C as the solution to the optimization problem

ĈR = arg min
�∈Rp×q

{
‖X C̄ − X �‖2

F +
p∑

j=1

μj‖�(j)‖2

}
, (8)

where �(j) represents the jth row of a matrix �, and the μj are predictor-specific regularization
parameters. The objective function aims to find a row-sparse solution close to the posterior mean
in terms of the prediction loss, with the sparsity driven by the group lasso penalty (Yuan & Lin,
2006). For a derivation of the objective function in (8) from a utility function perspective as in
Hahn & Carvalho (2015), refer to the Supplementary Material.

To solve (8), we set the subgradient of (8) with respect to �(j) to zero and replace ‖�(j)‖ by a
data-dependent quantity to obtain the soft thresholding estimate

Ĉ(j)
R = 1

X T
j Xj

(
1 − μj

2‖X T
j Rj‖

)
+

X T
j Rj, (9)

where, for x ∈ R, x+ = max(x, 0), and Rj is the residual matrix obtained after regressing X C̄ on

X leaving out the jth predictor, Rj = X C̄ − ∑
k=| j Xk Ĉ(k)

R . See the Supplementary Material for

the derivation of (9). For practical implementation, we use C̄ as our initial estimate and make a
single pass through each variable to update the initial estimate according to (9). With this initial
choice, Rj = XjC̄(j) and ‖X T

j Rj‖ = ‖Xj‖2‖C̄j‖.
While the p tuning parameters μj can be chosen by cross-validation, the computational cost

of searching a grid in p dimensions explodes with p. Exploiting the presence of an optimal
initial estimate in the form of C̄, we recommend default choices for the hyperparameters as
μ̂j = 1/‖C̄j‖−2, which in spirit is similar to the adaptive lasso (Zou, 2006). When predictor j is

not important, the minimax �2-risk for estimating C(j)
0 is (log q)/n, so that ‖C̄(j)‖ � (log q)/n.

Since ‖Xj‖2 � n by assumption, see § 6, μ̂j/‖X T
j Rj‖ � n1/2/(log q)3/2 � 1, implying a strong

penalty for all irrelevant predictors.
Following Hahn & Carvalho (2015), posterior uncertainty in variable selection can be gauged

if necessary by replacing C̄ with the individual posterior samples for C in (8).

3.3. Post-processing for rank estimation

To estimate the rank, we threshold the singular values of X ĈR, with ĈR obtained from (9).
In situations where row sparsity is not warranted, C̄ can be used instead of ĈR. For s1, . . . , sq

the singular values of X ĈR, and a threshold ω > 0, define the thresholded singular values as
νh = sh I(sh > ω) for h = 1, . . . , q. We estimate the rank as the number of nonzero thresholded
singular values; that is, r̂ = ∑q

h=1 I(νh > 0) = ∑q
h=1 I(sh > ω). We use the largest singular

value of Y − X ĈR as the default choice of the threshold parameter ω, a natural candidate for the
maximum noise level in the model.
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4. Simulation results

We performed a thorough simulation study to assess the performance of the proposed method
across different settings. For all our simulation settings the sample size n was fixed at 100. We
considered three different (p, q) combinations, (p, q) = (500, 10), (200, 30), (1000, 12). The data
were generated from the model Y = XC0 + E. Each row of the matrix E was generated from
a multivariate normal distribution with the diagonal covariance matrix having diagonal entries
uniformly chosen between 0.5 and 1.75. The columns of the design matrix X were independently
generated from N (0, �X ). We considered two cases, �X = Ip, and �X = (σX

ij ), σX
jj = 1,

σX
ij = 0.5 for i =| j. The true coefficient matrix C0 = B∗AT∗, with B∗ ∈ R

p×r0 and A∗ ∈ R
r×r0 ,

with the true rank r0 ∈ {3, 5, 7}. The entries of A∗ were independently generated from a standard
normal distribution. We generated the entries in the first s = 10 rows of B∗ independently from
N (0, 1), and the remaining (p − s) rows were set equal to zero.

As a competitor, we considered the sparse partial least squares approach due to Chun & Keleş
(2010). Partial least squares minimizes the least square criterion between the response Y and
design matrix X in a projected lower-dimensional space, where the projection direction is chosen
to preserve the correlation between Y and X as well as the variation in X . Chun & Keleş (2010)
suggested adding lasso-type penalties while optimizing for the projection vectors for sparse high-
dimensional problems. We call their estimate C̃. Since the estimator from C̃ returns a coefficient
matrix which is both row sparse and rank reduced, we create a rank reduced matrix ĈRR from ĈR
for a fair comparison. Recalling that ĈR has zero rows, let ŜR denote the submatrix corresponding
to the nonzero rows of ĈR. Truncate the singular value decomposition of ŜR to the first r̂ terms,
where r̂ is as obtained in § 3.3. Insert back the zero rows corresponding to ĈR in the resulting
matrix to obtain ĈRR. Clearly, ĈRR ∈ R

p×q so created is row sparse and has rank at most r̂.
For an estimator Ĉ of C, we consider the mean square error, mse = ‖Ĉ − C0‖2

F/(pq), and
the mean square prediction error, mspe = ‖X Ĉ − XC0‖2

F/(nq), to measure its performance. The
squared estimation and prediction errors of C̃ and ĈRR for different settings are reported in Table 1
along with the estimates of rank. In our simulations we used the default ten-fold cross-validation
in the cv.spls function from the R package spls (R Development Core Team 2020). The
sparse partial least squares estimator of the rank is the one for which the minimum cross-validation
error is achieved. We observed highly accurate estimates of the rank for the proposed method,
whereas the rank of C̃ overestimated the true rank in all the settings considered. The proposed
method also achieved superior performance in terms of the two squared errors, improving upon
C̃ by as much as five times in some cases. Additionally, we observed that the performance of C̃
deteriorated relative to ĈRR with an increasing number of covariates.

In terms of variable selection, both methods had specificity and sensitivity close to one in
all the simulation settings listed in Table 1. Since C̃ consistently overestimated the rank, we
further investigated the effect of the rank on variable selection. We focused on the simulation
case (p, q, r0) = (1000, 12, 3), and fitted both methods with different choices of the postulated
rank between 3 and 9. For the proposed method, we set q∗ in § 2 to be the postulated rank; that
is, we considered B ∈ R

p×q∗
and A ∈ R

q×q∗
for q∗ ∈ {3, . . . , 9}. For the sparse partial least

squares estimator, we simply input q∗ as the number of hidden components inside the function
spls. Figure 1 plots the sensitivity and specificity of ĈRR and C̃ as a function of the postulated
rank. While the specificity is robust for either method, the sensitivity of C̃ turned out to be highly
dependent on the rank. Figure 1(a) reveals that at the true rank, C̃ only identifies 40% of the
significant variables, and only achieves a similar sensitivity to ĈRR when the postulated rank is
substantially overfitted. The proposed estimate ĈRR, on the other hand, exhibits a decoupling
effect wherein the overfitting of the rank does not impact the variable selection performance.
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Table 1. Estimation and predictive performance of the proposed estimator ĈRR versus C̃ across
different simulation settings. We report the average estimated rank, r̂, mean square error, mse

(×10−4) and mean square predictive error, mspe, across 50 replications. For each setting the
true number of signals was 10 and sample size was 100. For each combination of (p, q, r0) the
columns of the design matrix were generated from N (0, �X ). Two different choices of �X were

considered: �X = Ip (independent) and �X = (σX
ij ), σX

jj = 1, σX
ij = 0.5 for i =| j (correlated)

(p, q)

(200, 30) (500, 10) (1000, 12)

Independent Correlated Independent Correlated Independent Correlated
Rank Measures ĈRR C̃ ĈRR C̃ ĈRR C̃ ĈRR C̃ ĈRR C̃ ĈRR C̃

r̂ 3.0 7.9 3.0 9.4 3.0 9.7 3.0 8.8 3.2 9.4 3.4 8.9
3 mse 3.0 14.0 5.0 15.0 3.0 7.0 5.0 30.0 3.0 50.0 3.0 38.0

mspe 0.07 0.25 0.06 0.17 0.22 0.15 0.34 0.21 0.35 4.19 0.30 1.51

r̂ 5.0 9.7 4.9 12.2 4.9 9.9 4.8 9.8 5.1 9.9 5.1 9.9
5 mse 5.0 69.0 9.0 61.0 3.0 10.0 6.0 24.0 2.0 108.0 4.0 129.0

mspe 0.11 3.8 0.09 4.6 0.17 0.41 0.20 0.38 0.32 9.54 0.32 4.63

r̂ 6.9 10.3 6.9 15.8 6.8 10.0 6.7 9.7 6.8 10.2 6.6 11.5
7 mse 6.0 116.0 10.0 112.0 3.0 20.0 5.0 49.0 2.0 195.0 4.0 261.0

mspe 0.12 10.81 0.11 9.01 0.16 0.72 0.16 0.92 0.32 16.70 0.31 7.44

3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

Postulated rank

Se
ns

iti
vi

ty

3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

Postulated rank

Sp
ec

if
ic

ity

Fig. 1. Average sensitivity and specificity across 50 replicates plotted for different choices of the postulated rank, with
(p, q, r0) = (1000, 12, 3): ĈRR (solid), C̃ (dashed).

We conclude this section with a simulation experiment carried out in a correlated response
setting. Keeping the true rank r0 fixed at 3, the data were generated as before, except that the
individual rows ei of the matrix E were generated from N (0, �), with �ii = 1, �ij = 0.5,
1 � i =| j � q. To accommodate the nondiagonal error covariance, we placed an iw(q, Iq) prior
on �. An associate editor pointed out a recent article (Ruffieux et al., 2017) which used spike-slab
priors on the coefficients in a multiple response regression setting. They implemented a variational
algorithm for posterior inclusion probabilities of each covariate, which is available from the R
package locus. To select a model using the posterior inclusion probabilities we used the median
probability model (Barbieri & Berger, 2004); predictors with a posterior inclusion probability less
than 0.5 were deemed irrelevant. We implemented their procedure with the prior average number
of predictors to be included in the model conservatively set to 25, a fairly well-chosen value in
this context. We observed a fair degree of sensitivity to this parameter in estimating the sparsity
of the model; when set to the true value of 10 it resulted in comparatively poor performance,
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Table 2.Variable selection performance of the proposed method in a nondiagonal error
structure setting with independent and correlated predictors ei ∼ �, σii = 1, σij = 0.5.
The sensitivity and specificity of our approach is compared with Ruffieux et al. (2017)

Our approach Ruffieux et al. (2017)
(p, q) Measure Independent Correlated Independent Correlated

(200, 30)
Sensitivity 1.0 1.0 0.96 0.87
Specificity 0.90 0.84 0.77 0.67

r0 = 3 (500, 10)
Sensitivity 1.0 0.99 0.9 0.8
Specificity 0.99 0.99 0.80 0.64

(1000, 12)
Sensitivity 0.99 0.99 0.92 0.63
Specificity 0.99 0.99 0.80 0.64

whereas a value of 100 resulted in much better performance. Table 2 reports the sensitivity
and specificity of this procedure and ours, averaged over 50 replicates. While the two methods
performed almost identically in the relatively low-dimensional setting (p, q) = (200, 30), ĈRR
consistently outperformed Ruffieux et al. (2017) when the dimension was higher.

5. Yeast cell cycle data

Identifying transcription factors which are responsible for cell cycle regulation is an important
scientific problem (Chun & Keleş, 2010). The yeast cell cycle data from Spellman et al. (1998)
contains information from three different experiments on mRNA levels of 800 genes on an α-
factor-based experiment. The response variable is the amount of transcription, mRNA, which was
measured every 7 minutes in a period of 119 minutes, a total of 18 measurements, Y , covering two
cell cycle periods. The ChIP-chip data from Lee et al. (2002) on chromatin immunoprecipitation
contains the binding information of the 800 genes for 106 transcription factors, X . We analyse
this data, which is publicly available from the R package spls. The yeast cell cycle data was also
analysed in Chen & Huang (2012) via sparse reduced rank regression. We call their estimator
Ĉ∗. Scientifically, 21 transcription factors of the 106 were verified by Wang et al. (2007) to be
responsible for cell cycle regulation.

The proposed estimator ĈRR identified 33 transcription factors; the corresponding numbers
for C̃ and Ĉ∗ were 48 and 69, respectively. Of the 21 verified transcription factors, the proposed
method selected 14, whereas Chun & Keleş (2010) and Chen & Huang (2012) selected 14 and
16, respectively. Ten additional transcription factors that regulate cell cycle were identified by
Lee et al. (2002), out of which three transcription factors were selected by our proposed method.
Figure 2 plots the posterior mean, ĈRR, and 95% symmetric pointwise credible intervals for two
common effects, ACE2 and SW14, which are identified by all the methods. Similar periodic
patterns of the estimated effects are observed for the other two methods, perhaps unsurpris-
ingly due to the two cell cycles during which the mRNA measurements were taken. Similar
plots for the remaining 19 effects identified by our method are provided in the Supplementary
Material.

The proposed automatic rank detection technique estimated a rank of 1, which is significantly
different from Chen & Huang (2012), who estimated it to be 4, and Chun & Keleş (2010), who
estimated it to be 8. The singular values of Y − X ĈR showed a significant drop in magnitude
after the first four values, which agrees with the findings in Chen & Huang (2012). The ten-fold
cross-validation error with a postulated rank of 4 for ĈRR was 0.009, and that of C̃ was 0.19.
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Fig. 2. Estimated effects of ACE2 and SWI4, two of 33 transcription factors with nonzero effects on cell cycle
regulation. Both have been scientifically verified by Wang et al. (2007). The dotted lines correspond to 95% posterior
symmetric credible intervals, the bold lines represent the posterior mean and the dashed lines plot values of the

estimate ĈRR.

We repeated the entire analysis with a nondiagonal �, which was assigned an inverse-
Wishart prior. No changes in the identification of transcription factors or rank estimation were
detected.

6. Concentration results

In this section we establish a minimax posterior concentration result under the prediction
loss when the number of covariates is allowed to grow subexponentially in n. To the best of our
knowledge, this is the first such result in Bayesian reduced rank regression models. We are also not
aware of a similar result involving the horseshoe or another polynomial-tailed shrinkage prior in
ultra-high-dimensional settings beyond the generalized linear model framework. Armagan et al.
(2013) applied the general theory of posterior consistency (Ghosal et al., 2000) to linear models
with a growing number of covariates and established consistency for the horseshoe prior with a
sample-size-dependent hyperparameter choice when p = o(n). Results (van der Pas et al., 2014;
Ghosh & Chakrabarti, 2017) that quantify rates of convergence focus exclusively on the normal
means problem, with their proofs crucially exploiting an exact conjugate representation of the
posterior mean.

A key ingredient of our theory is a novel non-asymptotic prior concentration bound for the
horseshoe prior around sparse vectors. The prior concentration or local Bayes complexity (Ghosal
et al., 2000; Bhattacharya et al., 2019) is a key component in the general theory of posterior
concentration. Let �0[s; p] = {θ0 ∈ R

p : #(1 � j < p : θ0j =| 0) � s} denote the space of
p-dimensional vectors with at most s nonzero entries.

Lemma 1. Let �HS denote the horseshoe prior on R
p given by the hierarchy θj | λj, τ ∼

N (0, λ2
j τ

2), λj ∼ Ca+(0, 1), τ ∼ Ca+(0, 1). Fix θ0 ∈ �0[s; p] and let S = {j : θ0j =| 0}. Assume
s = o(p) and log p � nγ for some γ ∈ (0, 1), and max |θ0j| � M for some M > 0 for j ∈ S.
Define δ = {(s log p)/n}1/2. Then

�HS
(
θ : ‖θ − θ0‖2 < δ

)
� e−Ks log p

for some positive constant K.
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A proof of the result is provided in the Supplementary Material. We believe Lemma 1 will be
of independent interest in various other models involving the horseshoe prior, for example high-
dimensional regression and factor models. The only other instance of a similar prior concentration
result for a continuous shrinkage prior in p � n settings that we are aware of is for the Dirichlet–
Laplace prior (Pati et al., 2014).

We now study concentration properties of the posterior distribution in model (3) in p � n set-
tings. To aid the theoretical analysis we adopt the fractional posterior framework of Bhattacharya
et al. (2019), where a fractional power of the likelihood function is combined with a prior using
the usual Bayes formula to arrive at a fractional posterior distribution. Specifically, fix α ∈ (0, 1),
recall the prior �C on C defined after equation (4) and set �� as the inverse-Wishart prior for
�. The α-fractional posterior for (C, �) under model (3) is then given by

�n,α(C, � | Y ) ∝ {p(n)(Y | C, �; X )}α �C(C) ��(�). (10)

Assuming the data is generated with a true coefficient matrix C0 and a true covariance matrix
�0, we now study the frequentist concentration properties of �n,α(· | Y ) around (C0, �0).
The adoption of the fractional framework is primarily for technical convenience; refer to the
Supplementary Material for a detailed discussion. We additionally discuss the closeness of the
fractional posterior to the usual posterior in the next subsection.

We first list our assumptions on the truth.

Assumption 1 (Growth of number of covariates). The sample size n and the number of
covariates p satisfy log p/nγ � 1 for some γ ∈ (0, 1).

Assumption 2. The number of response variables q is fixed.

Assumption 3 (True coefficient matrix). The true coefficient matrix C0 admits the decompo-
sition C0 = B0AT

0, where B0 ∈ R
p×r0 and A0 ∈ R

q×r0 for some r0 = κq, κ ∈ {1/q, 2/q, . . . , 1}.
We additionally assume that A0 is semi-orthogonal, i.e., AT

0A0 = Ir0 , and all but s rows of B0 are
identically zero for some s = o(p). Finally, max

j,h
|C0jh| < T for some T > 0.

Assumption 4 (Response covariance). The covariance matrix �0 satisfies, for some a1 and a2,
0 < a1 < smin(�0) < smax(�0) < a2 < ∞, where smin(P) and smax(P) are respectively the
minimum and maximum singular values of a matrix P.

Assumption 5 (Design matrix). For Xj the jth column of X , max1�j�p
∥∥Xj

∥∥ � n.

Assumption 1 allows the number of covariates p to grow at a subexponential rate of enγ
for

some γ ∈ (0, 1). Assumption 2 can be relaxed to let q grow slowly with n. Assumption 3 posits
that the true coefficient matrix C0 admits a reduced-rank decomposition with the matrix B0 row-
sparse. The orthogonality assumption on true A0 is made to ensure that B0 and C0 have the same
row-sparsity (Chen & Huang, 2012). The positive definiteness of �0 is ensured by Assumption 4.
Finally, Assumption 5 is a standard minimal assumption on the design matrix and is satisfied
with large probability if the elements of the design matrix are independently drawn from a fixed
probability distribution, such as N (0, 1) or any sub-Gaussian distribution. It also encompasses
situations when the columns of X are standardized.

Let p(n)
0 (Y | X ) ≡ p(n)(Y | C0, �0; X ) denote the true density. For two densities q1, q2

with respect to a dominating measure μ, recall the squared Hellinger distance h2(q1, q2) =
{(1/2)

∫
(q1/2

1 −q1/2
2 )2 dμ}.As a loss function to measure closeness between (C, �) and (C0, �0),
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we consider the squared Hellinger distance h2 between the corresponding densities p(· | C, �; X )

and p0(· | X ). It is common to use h2 to measure the closeness of the fitted density to the truth
in high-dimensional settings; see, e.g., Jiang (2007). In the following theorem we provide a
non-asymptotic bound to the squared Hellinger loss under the fractional posterior �n,α .

Theorem 1. Suppose α ∈ (0, 1) and let �n,α be defined as in (10). Suppose Assump-
tions 1–5 are satisfied. Let the joint prior on (C, �) be defined by the product prior �C
and �� , where �� is the inverse-Wishart prior with parameters (q, Iq). Define ε̃n =
max{K1 log ρ/s2

min(�0), 4/s2
min(�0)}εn, where ρ = smax(�0)/smin(�0), K1 is an absolute

positive constant and εn = {(qr0 + r0s log p)/n}1/2. Then, for for any D � 1 and t > 0,

�n,α

[
(C, �) : h2{p(n)(Y | C, �; X ), p(n)

0 (Y | X )
}

� (D + 3t)

2(1 − α)
ñε 2

n | Y

]
� e−tñε 2

n ,

with P(n)
(C0,�0)

-probability at least 1 − K2/{(D − 1 + t)ñε 2
n } for sufficiently large n and some

positive constant K2.

The proof of Theorem 1, provided in the Appendix, hinges upon establishing sufficient prior
concentration around C0 and �0 for our choices of �C and �� , which in turn drives the con-
centration of the fractional posterior. Specifically, building upon Lemma 1 we prove in the
Supplementary Material that for our choice of �C we have sufficient prior concentration around
row and rank sparse matrices.

Bunea et al. (2012) obtained nε2
n = (qr0 + r0s log p) as the minimax risk under the loss

‖XC − XC0‖2
F for model (1) with � = Iq and when C0 satisfies Assumption 3. Theorem 1

can then be viewed as a more general result with unknown covariance. Indeed, if � = Iq, we
recover the minimax rate εn as the rate of contraction of the fractional posterior as stated in the
following theorem. Furthermore, we show that the fractional posterior mean as a point estimator
is rate optimal in the minimax sense. For a given α ∈ (0, 1) and � = Iq, the fractional posterior
simplifies to �n,α(C | Y ) ∝ {p(Y | C, Iq; X )}α�C .

Theorem 2. Fix α ∈ (0, 1). Suppose Assumptions 1–5 are satisfied and assume that � is
known and, without loss of generality, equals Iq. Let εn be defined as in Theorem 1. Then, for any
D � 2 and t > 0,

�n,α

{
C ∈ R

p×q :
1

nq
‖XC − XC0‖2

F � 2(D + 3t)

α(1 − α)
ε2

n | Y

}
� e−tnε2

n

holds with P(n)
C0

-probability at least 1 − 2/{(D − 1 + t)nε2
n} for sufficiently large n. Moreover, if

C̄ = ∫
C�n,α(dC), then, with P(n)

C0
-probability at least 1 − K1/{nε2

n},

‖X C̄ − XC0‖2
F � K2 (qr0 + r0s log p)

for some positive constants K1 and K2 independent of α.

The proof of Theorem 2 is provided in the Appendix. The optimal constant multiple of ε2
n is

attained at α = 1/2. This is consistent with the optimality of the half-power in Leung & Barron
(2006) in the context of a pseudolikelihood approach for model aggregation of least squares
estimates, which shares a Bayesian interpretation as a fractional posterior.
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7. Fractional and standard posteriors

From a computational point of view, for model (1), raising the likelihood to a fractional power
only results in a change in the (co)variance term, and hence our Gibbs sampler discussed subse-
quently can be easily adapted to sample from the fractional posterior. We conducted numerous
simulations with values of α close to 1 and obtained virtually indistinguishable point estimates
compared to the full posterior; details are provided in the Supplementary Material. In this sub-
section we study the closeness between the fractional posterior �n,α(· | Y ) and the standard
posterior �n(· | Y ) for model (1) with prior �C ⊗ �� in terms of the total variation metric.
Proofs of the results in this section are collected in the Supplementary Material.

Recall that for two densities g1 and g2 with respect to some measure μ, the total variation
distance between them is given by ‖g1 − g2‖TV = ∫ |g1 − g2| dμ = supB∈B |G1(B) − G2(B)|,
where G1 and G2 denote the corresponding probability measures.

Theorem 3. Consider model (1) with C ∼ �C and � ∼ �� . Then

lim
α→1−

∥∥�n,α(C, � | Y ) − �n(C, � | Y )
∥∥

TV = 0

for every Y ∼ PC0 .

Bhattacharya et al. (2019) proved a weak convergence result under a more general set-up,
whereas Theorem 3 provides a substantial improvement to show strong convergence for the
Gaussian likelihood function considered here. The total variation distance is commonly used in
Bayesian asymptotics to justify posterior merging of opinion, i.e., the total variation distance
between two posterior distributions arising from two different priors vanish as the sample size
increases. Theorem 3 has a similar flavour, with the exception that the merging of opinion takes
place under small perturbations of the likelihood function.

We conclude this section by showing that the regular posterior �n(C, � | Y ) is consistent,
leveraging on the contraction of the fractional posteriors �n,α(C, � | Y ) for any α < 1 in
combination with Theorem 3 above. For ease of exposition we assume � = diag(σ 2

1 , . . . , σ 2
q )

and ��(·) is a product prior with components ig(a, b) for some a, b > 0. Similar arguments can
be made for the inverse-Wishart prior when � is nondiagonal.

Theorem 4. Assume � = diag(σ 2
1 , . . . , σ 2

q ) in model (1) with priors �C and a product ig(a, b)

prior on � with a, b > 0. For any ε > 0 and sufficiently large M,

lim
n→∞ �n

[
(C, �) :

1

n
h2{p(n)(· | C, �; X ), p(n)

0 (· | X )
}

� Mε | Y

]
→ 0

almost surely under P(C0,�0).

Theorem 4 establishes consistency of the regular posterior under the average Hellinger metric
n−1h2

{
p(n)(· | C, �; X ), p(n)

0 (· | X )
}
. This is proved using a novel representation of the regular

posterior as a fractional posterior under a different prior, a trick which we believe will be useful
to arrive at similar consistency results in various other high-dimensional Gaussian models. For
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any α ∈ (0, 1),

�n(C, � | Y ) ∝ |�|−n/2 e−tr{(Y−XC)�−1(Y−XC)T}/2 �C(dC)��(d�)

∝ |�|−nα/2 e−αtr{(Y−XC)(α�)−1(Y−XC)T}/2 �C(dC) |�|−n(1−α)/2 ��(d�)

∝ |�∗|−nα/2 e−αtr{(Y−XC)�−1∗ (Y−XC)T}/2 �C(dC)��∗(d�∗)
∝ �n,α(C, �∗ | Y ),

where �∗ = α� and, from a simple change of variable, ��∗(·) is again a product of inverse-
Gamma densities with each component a, ig{n(1 − α)/2 + a, αb}. Since the first and last
expressions in the above display are both probability densities, we conclude that �n(C, � | Y ) =
�n,α(C, �∗ | Y ). This means that the regular posterior distribution of (C, �) can be viewed as
the α-fractional posterior distribution of (C, �∗), with the prior distribution of �∗ dependent
on both n and α. Following an argument similar to Theorem 1, we only need to show the prior
concentration of (C, �∗) around the truth to obtain posterior consistency of �n,α(C, �∗ | Y ),
and hence equivalently of �n(C, � | Y ). Some care is needed to show the prior concentration
of �∗ with an n-dependent prior, which can be managed by setting α = 1 − 1/(log n)t for some
appropriate t > 1.
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Supplementary material available at Biometrika online includes further simulation results,
discussion of the fractional framework and proof of Lemma 1. Code for implementation of our
method is available at https://github.com/antik015.

Appendix

Lemmas numbered S1, S2, etc. refer to technical lemmas included in the Supplementary Material.
For two densities pθ and pθ0 with respect to a common dominating measure μ and indexed by parameters

θ and θ0, respectively, the Rényi divergence of order α ∈ (0, 1) is Dα(θ , θ0) = (α − 1)−1 log
∫

pα
θ p1−α

θ0
dμ.

The α-affinity between pθ and pθ0 is denoted by Aα(pθ , pθ0) = ∫
pα

θ p1−α
θ0

dμ = e−(1−α)Dα(pθ ,pθ0 ). See
Bhattacharya et al. (2019) for a review of Rényi divergences.

Proof of Theorem 1

Fix α ∈ (0, 1). Define Un =
[
(C, �) :

1

n
Dα{(C, �), (C0, �0)} >

D + 3t

1 − α
ε̃n

2

]
. Let η = (C, �) and

η0 = (C0, �0). For convenience we abbreviate p(n)(Y | C, �; X ) by p(n)
η and write p(n)

η0
for p(n)

0 (Y | X ).
Finally, let �η denote the joint prior �C ×�� . Then, the α-fractional posterior probability assigned to the
set Un can be written as

�n,α(Un | Y ) =
∫

Un
e−αrn(η,η0) d�η∫

e−αrn(η,η0) d�η

:= Nn

Dn
,
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where rn(η, η0) = log p(n)
η0

/p(n)
η . We prove in Lemma S6 of the Supplementary Material that, with P(n)

(C0,�0)-

probability at least 1 − K2/{(D − 1 + t)2ñε2
n}, Dn � e−α(D+t)ñε2

n for some positive constant K2. For the
numerator, proceeding similarly to the proof of Theorem 3.2 in Bhattacharya et al. (2019), we arrive at
P(n)

(C0,�0)

{
Nn � e−(D+2t)ñε 2

n
}

� 1−1/{(D−1+ t)2ñε 2
n }. Combining the upper bound for Nn and lower bound

for Dn, we then have

�n,α

[
(C, �) :

1

n
Dα{(C, �), (C0, �0)} � (D + 3t)

1 − α
ε̃n

2 | Y

]
� e−tnε̃n2

,

with P(n)
η0

-probability at least 1 − K2/{(D − 1 + t)2ñε 2
n }. The result then follows from the equivalence of

Rényi divergences given in equations (R2) and (R3) in Bhattacharya et al. (2019). �

Proof of Theorem 2

For C ∈ R
p×q, we write p(n)

C to denote the density of Y | X , which is proportional to e− tr{(Y−XC)(Y−XC)T}/2.
For any C∗ ∈ R

p×q we define a ε-neighbourhood as

Bn(C
∗, ε) =

{
C ∈ R

p×q :
∫

p(n)

C∗ log(p(n)

C∗/p(n)

C ) dY � nε2,
∫

p(n)

C∗ log2(p(n)

C∗/p(n)

C ) dY � nε2

}
.

Observe that Bn(C0, ε) ⊃ An(C0, ε) = {
C ∈ R

p×q : n−1‖XC − XC0‖2
F � ε2

}
for all ε > 0, and the Rényi

divergence Dα(p
(n)

C , p(n)

C0
) = (α/2)‖XC − XC0‖2

F. By a similar argument to step 1 of the proof of Lemma S6

of the Supplementary Material, we have that �C{An(C0, εn)} � e−Knε2
n for positive K . Hence, the first part

follows from Bhattacharya et al. (2019, Theorem 3.2).
For the second part, first observe that from Bhattacharya et al. (2019, Corollary 3.3) we get

∫
(nq)−1‖XC−

XC0‖2
F�n,α(dC | Y ) � K2{α(1 − α)}−1εn with P(n)

C0
-probability at least 1 − K1/{nε2

n}, where K1 and K2 are
positive constants independent of α; see the Supplementary Material for a precise statement of the corollary.
Using the convexity of the Frobenius norm and applying Jensen’s inequality, we get (α/2)‖X C̄ −XC0‖2

F =
(α/2)‖X

∫
C �n,α(dC) − X

∫
C0 �n,α‖2

F � α/2
∫ ‖XC − XC0‖2

F�n,α(dC) � K2n(1 − α)−1ε2
n . �
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