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Integral Curve Clustering and Simplification for
Flow Visualization: A Comparative Evaluation
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Abstract—Unsupervised clustering techniques have been widely applied to flow simulation data to alleviate clutter and occlusion in the
resulting visualization. However, there is an absence of systematic guidelines for users to evaluate (both quantitatively and visually) the
appropriate clustering technique and similarity measures for streamline and pathline curves. In this work, we provide an overview of a
number of prevailing curve clustering techniques. We then perform a comprehensive experimental study to qualitatively and quantitatively
compare these clustering techniques coupled with popular similarity measures used in the flow visualization literature. Based on our
experimental results, we derive empirical guidelines for selecting the appropriate clustering technique and similarity measure given the

requirements of the visualization task. We believe our work will inform the task of generating meaningful reduced representations for
large-scale flow data and inspire the continuous investigation of a more refined guidance on clustering technique selection.

Index Terms—Clustering technique, similarity measures, flow visualization, experimental study, empirical guidelines, quantitative

comparisons.

1 INTRODUCTION

ECTOR fields are commonly used in various engineering and
V scientific applications to help experts understand and assess
dynamical systems. Among many visualization techniques, integral
curve based approaches are widely employed to visually depict
the behavior of complex 3D vector fields (especially, 3D flows)
due to their intuitive representation of the flow characteristics via
their geometric shapes. One common goal for integral curve-based
visualization techniques is to choose a proper set of curves to
visually draw the attention of users to important flow regions (with
interesting flow patterns) based on their distribution and geometric
characteristics (e.g., highly rotating). However, choosing such a set
of integral curves is challenging due to the complex nature of the
flow behavior that often results in clutter, which is further worsened
by 3D occlusion. There are a number of existing techniques to
address this challenge, such as evenly-spaced curve placement [1],
topology-based integral curve placement [2], [3], information
entropy-based integral curve placement and selection [4], [5], [6],
and viewpoint-dependent integral curve filtering [7], [8], [9]. This
work focuses on the integral curve clustering techniques [10], [11],
[12], [13], [14], [15], as it is a general framework that has been
proven effective in achieving information reduction by grouping
(usually raw input) data with similar characteristics into larger and
coarser representations (i.e., clusters and/or segments).

In past years, unsupervised clustering techniques borrowed
from the data mining and analytics literature have been applied to
flow simulation data to alleviate clutter and occlusion and simplify
overall visual representation while highlighting meaningful patterns
of the flow. Among all clustering methods listed by Xu and
Tian [16], k-means, agglomerative hierarchical clustering (AHC)
with various linkages (complete, single, average and Ward’s),
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spectral clustering (SC), affinity propagation (AP) and DBSCAN
are the most popular and dominant techniques for integral curve
clustering and abstraction. Incorporated with either customized or
well-accepted similarity measures, a specific clustering framework
chosen from the aforementioned clustering techniques is able to
facilitate an abstraction of specific vector fields while capturing
important flow features of interest [10], [11], [13], [17], [18], [19].
Despite many promising clustering results, existing methods still
suffer from the following:

o There still lacks well-documented guidance among countless
clustering techniques to inform selection of the appropriate
combination of similarity measure and clustering method to
achieve the desired results. There is no comprehensive study
to evaluate different combinations of clustering techniques
and similarity measures based on criteria, such as the desired
features to capture and the computational complexity.

« How can a user quantitatively and visually evaluate different
combinations of clustering algorithms with similarity mea-
sures? Whether a good evaluation (quantitative) score for a
specific clustering combination indicates a good visualization
of the clustering results for the input streamlines/pathlines still
remains an open question.

Even though previous work attempts to quantitatively analyze
clustering techniques for blood flow data visualization [10], [11],
their analysis of clustering techniques and similarity measures
is still incomplete and insufficient to address the aforementioned
challenges. To derive guidelines for selecting an informed clustering
technique and similarity measure for flow simulation data, we start
with a comprehensive experimental study, in which we compare
the performance (both qualitatively and quantitatively) of the most
popularly used combinations of existing clustering techniques and
similarity measures in the flow visualization literature on a selected
set of streamline and pathline data sets. From this comprehensive
evaluation, we derive empirical guidelines in the form of summary
metrics for different combinations of clustering algorithms and
similarity measures with a number of flow visualization tasks
in practice. We believe this is a valuable contribution to the
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flow visualization community and will inspire similar follow-
up work to refine these guidelines. We release our complete
implementation of the clustering algorithms and similarity
measures via Github' for reproducibility by others.

The rest of the paper is organized as follows: Sect. 2 briefly
reviews different clustering techniques and the advantages and
disadvantages of each. Sect. 3 describes our experimental set-up for
the evaluation of clustering algorithms with the selected flow data
sets. Sect. 4 contains detailed quantitative and visual comparisons
of different clustering techniques with various similarity measures,
which leads to empirical guidelines for the selection of an informed
clustering technique for flow simulation data. Finally, conclusions
and future work are discussed in Sect. 5.

2 OVERVIEW OF CLUSTERING TECHNIQUES

In this section, we provide a concise description of the clustering
methods prevalant in flow visualization (see Table 1 for an
overview), and discuss their primary advantages and disadvantages
based on performance analysis and well-recognized properties [40].

2.1 k-center Clustering

According to Xu and Tian [16] and Xu and Wunsch [41], k-
center clustering methods belong to an exclusive, complete and
well-separated clustering category without considering noise or
outliers. k-center clustering has been applied with MCP [10],
[11], end-point distance and sub-bundle properties for illustrative
visualization [18].

Depending on whether the center of a cluster is the centroid
or the medoid, k-center clustering can be divided into k-means
and k-medoids [42] respectively, and the former appears frequently
as the baseline for comparison [10], [11], [18] in integral curve
clustering. From an optimization perspective, k-means minimizes
squared summation of the Euclidean distance, while k-medoids
minimizes the Manhattan norm instead. k-means has some well-
studied strengths and shortcomings [43].

Pros

+ It benefits from linear complexity in both time O(knt) (k-
medoids has O(k(n — k)?) complexity) and memory w.r.t. the
number of the input curves, hence can potentially handle
large-scale data.

+ It is easy to implement in parallel.

+ Its objective function can be easily modified or adjusted for
more controllable design.

+ It is versatile in clustering candidates not only based on
coordinates, but also arbitrary vectors, e.g., self-defined shape
property vectors [18].

Cons

- The optimization can get trapped in local minimum and hence
can lead to sub-optimal clustering.

- It works best for elliptic and convex cluster shapes (k-means
favors spherical clusters while k-medoids is less strict), and
sensitive to outliers, noise and often fails in handling non-
globular clusters and clusters with widely different sizes [10],
[11].

- A preset cluster number k is not easily chosen for optimal
clustering, and could be determined by many complicated
methods, e.g., joint probability change [44] and the elbow
method [45].

1. https://github.com/lieyushi/FlowCurveClustering

- Random initialization can affect the clustering result and hence
k-means lacks stability. It can be improved by k-means++ [46],
bisection k-means [47] or simply iterating k-means several
times and choosing the best result [10], [11].

Remark k-means stands out in computational efficiency and
performance even though it suffers from limitations of cluster
shape and size, and can still provide a first overview of a data set if
combined with a specifically designed similarity measure.

2.2 Hierarchical Clustering

Hierarchical clustering generally falls into two types, agglomerative
(bottom-up) and divisive (top-down) [48], and often agglomerative
is more practical because divisive methods have O(2") complexity.
Depending on the linkage criteria, agglomerative hierarchical
clustering (AHC) can feature single-linkage, complete-linkage,
average-linkage and Ward’s method, and can have overall time
complexity O(n*) or reduced to O(nlogn) with a heap.

AHC is widely used in flow visualization. It was firstly
applied with point-wise distance metrics, e.g., mean-of-closest-
point (MCP), for DTI fiber bundle clustering. Single-linkage AHC
with MCP previously achieved the best clustering effect [17],
[20], [21], [22], [23], while average-linkage with MCP was better
recognized in blood flow clustering [10], [11]. Average-linkage
AHC with dimensionality-reduced Euclidean distance by principal
component analysis (PCA) was also applied to the clustering
challenge for vector field ensembles [15]. Besides, AHC can be
coupled with many customized similarity measures that describe
either the spatial distance or shape similarity of integral curves.
Examples include the average-linkage AHC with a weighted end-
curve-distance [12], average-linkage AHC with weighted form of
signature-based similarity and mean distance [13], single-linkage
AHC with mean-of-thresholded-closest-distance for fiber bundle
clustering [24], Wards-variance AHC with segment matching
cost distance [27], penalized-linkage AHC with a DTW-based
histogram similarity measure [28], average-linkage with the string
matching cost measure [14], self-defined AHC with a graph-based
similarity measure [29], average-linkage AHC with a specific
spatio-temporal similarity measure for adjacent blood flow pattern
classification [25], [26].

Selection of linkage is critical for the AHC clustering result,
and analysis has been provided previously [10], [11], [21]. In flow
visualization, single-linkage [17], [20], [21], [22], [23], [24] and
average-linkage [10], [11], [12], [13], [14], [15], [25], [26] are the
most frequently employed.

Besides the conventional AHC, a fast and single-scan hier-
archical clustering algorithm BIRCH was also proposed based
on B+ tree [49], which can handle larger-scale data with higher
efficiency than conventional AHC for a given set of resources
(e.g., memory). It has complexity of O(n), but favors spherical
cluster shapes because the clustering algorithm was derived from
variance computation [16]. We have not found BIRCH applied in
flow visualization possibly because irregular cluster shapes cannot
be detected by BIRCH.

Pros

+ AHC is able to handle clusters of different sizes and arbitrary
shapes and can often show hierarchical structures using a
dendrogram.

+ An AHC result is usually stable, and can generate any number
of clusters once the hierarchical merging tree is built.

+ If the number of clusters is not known in advance, users
can interactively browse the cluster hierarchy with only local
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References of clustering work in flow visualization (details can be seen in Sect. 2)

TABLE 1

. . Paper Reference in Complexit; Cluster Parameter
Clustering Groups Algorithms Fl(l))w Visualization Time P ySpace Shapes Input
Kcenter k-means [10], [117, [18] O(knt) O(n+k) | Spherical k,t
k-medoids - O(k(n—k)?) O(n+k) | Convex k,t
Agglomerative Single-linkage AHC [17], [20], [21], [22], [23], [24] Arbitrary
Hierarchical Average-linkage AHC | [10], [11], [12], [13], [14], [25], [26] | O(n*logn) o(n?) Convex k
Clustering others [271, 28], [29] Convex
BIRCH - - O(n) O(n) Spherical | Distance threshold
. . DBSCAN [19], [30], [31], [32] O(nlogn O(n Arbitrary &,minPts
Density-Based Clustering OPTICS - 5)(112) ) ogn; Arbitrary €, minPts, &
Spectral Clustering - [10], [11], [19], [33], [34], [35] 0(n®) o(n?) Arbitrary k, scaling factor
Affinity Propagation - [36], [37], [38], [39] 0(n%logn) 0(n?) - S(i,i)
PCA-based Clustering PCA+AHC [15] O(nm?) O(nm) Convex ex(r),k

updates to the result, which are easier to track than global
changes as in, e.g., spectral clustering.
Cons

- AHC is expensive in terms of computational and stor-
age requirements, with a time complexity of O(n®) (or
O(n?logn) [16] and space complexity of O(n?). This severely
restricts application of AHC to large-scale data sets.

- AHC lacks a global objective function hence has limited
controllability and predictability. The latest work has proposed
an objective function for AHC [50] but it is still difficult for
practical problems.

Remark The biggest advantage of AHC is its ability to detect
clusters of arbitrary shape and size, which is also restricted by
computational complexity for practical applications. However,
because the input to the clustering algorithms in the existing flow
visualization applications is usually not too large, AHC is still
regarded as the most prominent and the state-of-the-art clustering
algorithm in the flow visualization literature.

2.3 Density-based Clustering

In density-based clustering [51], clusters are defined as areas of
higher density than the remainder of the data set, and objects in
sparse areas are often considered as noise or border points. The
most popular density-based clustering method is DBSCAN [52].
It has been applied in visualization with spatial distance, e.g.,
weighted sum of local distance [53], segment endpoint distance [19]
and with Euclidean distance in low dimensional space (obtained
using the feature descriptors for streamlines and stream surfaces
through auto-encoder [30]), respectively. DBSCAN is also com-
bined with the averaged centerline distance (ACD) in aortic vortex
flow clustering [31] and with a modified coherence distance
encoding FTLE values for blood flow exploration [32].

DBSCAN requires two parameters, € (radius) and minPts
(minimum number of points). It is a query-based algorithm to detect
candidates as either core, border or noise based on their neighboring
connected points. The runtime complexity of DBSCAN can be
reduced to O(nlogn) with a naive implementation as O(n?), and
requires memory O(nz) for an implementation that needs to store
the distance matrix and O(nlogn) for an implementation without
storing the matrix.

Besides DBSCAN, another popular density-based clustering
method is OPTICS [54], which is similar to DBSCAN but addresses
one of the limitations of DBSCAN, that is, DBSCAN fails
to detect meaningful clusters of varying density. Compared to
DBSCAN, OPTICS replaces the £ with a maximum value that

affects performance, and minPts specifies the minimum neighbor
size to find, hence it lowers the difficulty of parameterization.
Pros

+ It can detect noise and is robust to outliers.

+ It can find arbitrarily shaped clusters and does not require an
a priori preset cluster number.

Cons

- Parameter setting is very difficult for a data set without a
priori knowledge, and the final result is quite sensitive to
parameter settings.

- Parallelism of density-based clustering is challenging due
to the data dependency of connectivity expansion. Recent
parallel implementations on distributed systems have been
proposed [55], [56], [57], but they are yet to be applied to the
clustering problems in visualization.

Remark The most promising aspect of density-based clustering is
that it is robust to outliers and noise, and able to detect arbitrarily
shaped clusters with lower cost than AHC, while parameter setting
might require prior knowledge of the data.

2.4 Spectral Clustering

Spectral clustering (SC) [58] is a classical clustering method
utilizing a spectrum of data similarity matrix to perform dimension
reduction before clustering in a lower dimensional space. From
the dimension-reduction point of view, SC benefits from the same
intuition as PCA-based clustering [15]. The difference is that,
PCA [15] focuses on the reduction of a coordinate matrix while SC
on reduction of a distance matrix. We refer the interested readers
to the survey by Luxburg [59] for a detailed description of SC in
both theory and practice.

SC has been applied to integral curve clustering, e.g., with an
average distance between pairs of nearest points in white matter
fiber tract clustering [33], with a user-specified spatial distance
in medical image analysis [34], with MCP [10], [11], Hausdorff
distance [35] and minimal closest point distance [19] , respectively.
It has been reported that SC with MCP has achieved better results
in blood flow clustering than k-means and AHC [10], [11]. In
terms of implementation, the technique presented in [33], [35] uses
k-way normalized cut as post eigen-decomposition as by Shi and
Malik [58], [19] uses uses k-means by Ng et al. [60], while [10],
[11], [19] uses eigen-rotation minimization [61].

Complexity analysis for SC can be non-trivial due to the fact
that we do not know yet whether the sparsity of the normalized
Graph Laplacian L impacts the result or not. For time complexity, in
addition to the distance matrix computation with O(n?) complexity,
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the complexity of the eigen-decomposition for a non-sparse matrix
is 0(n®) (2 < @ < 2.376) [62] in the optimal scenario but is O(n?)
in general. Memory complexity is around O(n?) because several
n X n matrices need to be stored.
Pros
+ SC provides more intrinsic partitioning/segmentation, and
can achieve meaningful projection into a lower-dimensional
space [35].
+ SC with eigen-rotation can automatically find the optimal

number of clusters among a user-given range [10], [11], [19].

+ SC can detect clusters with arbitrary shapes.
+ SC has objective functions, and is versatile for modification.
Cons
- Runtime and memory complexity restricts SC from being
applied to large scale data sets.
- SC tends to form clusters of even size and might fail for
clusters with varying sizes.
Remark Spectral clustering gradually gains attention via its
application to blood flow visualization, and may provide more
natural and meaningful cluster extraction at the cost of higher
runtime and memory usage.

2.5 Affinity Propagation

Affinity propagation (AP) is a clustering algorithm based on the
concept of “message passing” between data points [63]. It finds
“exemplars” for each cluster, and it does not require the number of
clusters as user input.

AP has been used in flow visualization literature mostly with
shape similarity measures of streamlines, pattern-based distance
metrics, e.g., bag-of-features from feature vector computation
of streamline signatures [36], [37] and the adapted Procrustes
distance on re-sampled points [38], [39]. The initial values of S(i,{)
which are diagonal entries of S are vital in controlling clusters the
algorithm produces. According to Frey and Dueck [63], S(i,i) is
typically initialized to the median similarity of all pairs of inputs.
Pros

+ AP is simple and easy to implement in parallel.

+ AP is insensitive to outliers and noise.

+ AP does not require user input of cluster numbers and it
automatically detects a suitable number of clusters based on
the given parameters.

Cons

- The runtime complexity is O(n*logn) and memory usage is
O(n?) [16], which may restrict its application to large data.

- The clustering result is sensitive to the parameters involved
in the AP algorithm, e.g., diagonal entry initialization and
coefficient in updating responsibility and availability matrix.

Remark AP has even more expensive computational cost (i.e., time
complexity) than AHC, and the final result is highly dependent
on initialization. Right now AP is only combined with very
specifically-designed similarity measures, and sometimes the
clustering result is very difficult to interpret.

3 EXPERIMENTAL SETUP

In this section, we describe our setup for the experimental study
and evaluation of the aforementioned clustering algorithms using a
number of well-known flow simulation data sets.

3.1 Flow Simulation Data Sets

We place streamlines densely in the benchmark flow simulation
behind a square cylinder [35], Bernard convection simulation [64],
crayfish [38], tornado [38], hurricane Isabel simulation [17], and
solar plume [38], respectively. All streamlines are generated using
a uniform sampling strategy. Short-length streamlines are preserved
in case they convey important flow information. We perform
pathline tracing for three unsteady data sets, i.e., 3D flow behind
a square cylinder [65] , a tube simulation [66] and blood flow
simulation from Berg et al. [67] and Janiga et al. [68].

3.2 Clustering Algorithm Implementation and Parame-
ter Selection

(a) Labels of PCA with k-means (b) Labels of PCA with AHC-average

Fig. 1. PCA-k-means shows better and more consistent labels in clus-
tering tested streamline data sets than PCA-AHC [15], e.g., in reduced
Bernard. Note that PCA-based clustering resembles direct clustering
based on Euclidean distance, and streamlines should be separated
into left and right bundles if preset clusters are 2 for this data. PCA-k-
means can achieve more consistent labeling than PCA-AHC, so in our
experimental study we prefer PCA-k-means over PCA-AHC.

Given the flow simulation data sets in Sect. 3.1, we implement
the following clustering algorithms mentioned in Sect. 2. All the
clustering algorithms are run on a PC and a cluster. The PC has an
Intel Xeon (R) CPU running at 2.40GHz, 32 GB main memory, and
an nVidia Quadro K4200 graphics card with 4GB graphics memory.
The cluster has 8 nodes and each node uses an Intel Xeon(R) CPU
E5-2620 v4 @ 2.10GHz and 64 GB main memory.

1) k-means: The maximal iteration is set to 50, and k-
means++ [46] is provided as an option to the user for better
centroid initialization.

2) k-medoids: We use Eq. 1 of Weiszfeld’s algorithm [69] for
an iterative medoid computing

D= (Y 5y

l Sd(m!™)" Fd(gm))

because it matches the representative extraction of closest and
furthest to centroid (i.e., medoids in k-medoids) in Sect. 3.6.

3) PCA clustering: Our implementation features two differences
from Ferstl et al. [15]. First, we use k-means instead of AHC
in dimension-reduction space because we find PCA-k-means
works better than PCA-AHC in most tested data sets as shown
in Fig. 1. Second, we extract the centroid instead of median
to make the representative consistent with other clustering
results in Sect. 3.6.

4) AHC: We build a bottom-up dendrogram, i.e., the hierarchical
merging tree, until the preset number of clusters is obtained.
Since only average and single linkage of AHC are utilized
in related work, we only evaluate the results of these two
linkages and leave the other two as user options. We adopt
the idea from Walter et al. [70] to achieve a faster version of
AHC by merging necessary tree nodes beforehand.

5) BIRCH: BIRCH in Sect. 2.2 is also implemented because
of its faster computation of hierarchical clustering. However,

) 6]
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BIRCH requires a distance value as user input which hier-
archically merges any two objects within this range. The
value selection is intrinsically challenging and it is difficult to
achieve similar cluster numbers to other hierarchical clustering
methods. To address this challenge, we use a binary-search
algorithm to adaptively adjust a distance threshold to obtain
roughly similar numbers of clusters until a given maximal
number of iterations is reached.

6) DBSCAN: Parameter setting is challenging and requires prior
knowledge of the data sets for DBSCAN. To alleviate this, we
provide two methods of setting € (radius). One is to set € to the
average of minPts-th smallest distance on all candidates, and
the other relies on user input, of which the former is adopted
for assessing the DBSCAN clustering due to its simplicity.

7) OPTICS: Besides setting parameters € and minPts, OPTICS
is also parameter-sensitive to find clusters because final
clusters are determined by valleys of the 2D reachability-
plot. We used the naive idea that detects valleys by steepness
as in Ankerst et al. [54] to determine the resulting number of
clusters.

8) SC: Similar to Oeltze et al. [10], [11], [19] and Rossl and
Theisel [35], we implement both k-means and eigen-rotation
minimization for SC, and set the dimension of reduced
eigenvector (k) to the preset cluster number. We use 5% as the
scaling factor as suggested by Oeltze et al. [10], [11].

9) AP: The maximal iteration is set to 40, and we use implicit
iteration to update availability and responsibility matrix to
ensure numerical stability. Similar to Tao et al. [38], [39],
we use the minimum similarity values as the preference
initialization and two-level clustering to obtain a reduced
number of clusters.

3.3 Similarity Measures

It is not possible or technically practical to consider every similarity
measure proposed for integral curve comparison, especially those
specifically designed for pattern search, which requires complicated
pre-processing or segmentation. Therefore, we choose well-known
and widely-accepted measures for our clustering study. Addition-
ally, since our clustering analysis for both streamline and pathline
data sets is based on geometric properties, we also consider one
similarity measure specified only for pathlines (dr in Meuschke et
al. [25], [26]) .

1) Euclidean distance dg(-,-) that computes the pairwise Eu-
clidean distance of two curves.

2) Fraction norm dp(-,-), taken from Aggarwal et al. [71] which
addresses the curse of dimensionality challenge for high-
dimensional space. We set p = 0.5.

3) Geometric similarity measure dg(-,-), introduced by Shi and
Chen [72] based on the intuition that two curves are considered
similar if their pairs of piece-wise line segments are parallel.

4) Accumulated rotation difference dg(-,-), which measures the
difference of summation of discrete curvature along two
curves [73].

5) Mean-of-closest-point (MCP) dj(+,-), is considered a state-
of-the-art distance metric in [10], [11], [17], [20], [21], [22],
[23].

6) Hausdorff distance dy (-, -) from Rossl and Theisel [35] which
is topologically meaningful and forms a metric space.

7) Signature-based measure ds(-,-), proposed by McLoughlin
et al. [13], which uses a combination of both closest-point-

distance and 2 test of streamline signatures (discrete curva-
ture). We chose a fixed number of signature bins for each
streamline/pathline since our sampling strategy can make
streamlines/pathlines all equal size, and set o0 = 0.5.

8) Adapted Procrustes distance dp(-,-), used in Tao et al. [38],
[39], is defined as the Euclidean distance after Procrustes
superimposition [74]. We set the local shape size r to be 7
as Tao et al. [38], [39] and compute the average Procrustes
distance for all pairs of local shapes among integral curve
pairs.

9) Time-series MCP dr(-,-), introduced in Meuschke et al. [25],
[26] which is MCP considering time interval overlapping and
mismatching. This similarity measure is specifically suited for
temporal pathline similarity computation. Note that since dr
is introduced specifically for pathlines, we will only apply it
to our pathline data sets.

In all, dg, dF, dy, dy and dr are spatial similarity measures
that characterize spatial proximity of integral lines, while dg, dr
and dp are shape-based measures that characterize shape similarity,
and dys belongs to both groups. Note that, we provide a simplified
implementation of ds and dp using our consistent sampling strategy,
and we opt for not discussing the parameters for the distance
calculation since our focus is the clustering analysis and evaluation.
More details on the formula and discussion of these similarity
measures can be found in the supplementary materials.

Note that although most of the above similarity measures
are for streamlines (except dr), they can be applied to pathline
comparison as well despite that pathlines may intersect. This is
because both streamlines and pathlines are 3D curves with similar
geometric characteristics except that for comparing pathlines, points
on different pathlines are aligned based on their respective time
stamps.

3.4 Sampling Strategy

Since the centroid computation of each cluster in Sect. 3.6 requires
all curves to have the same number of samples, we need to re-
sample the input curves as a pre-processing step. Three common
equal-size sampling strategies are considered.

o Directly repeating the whole array with the last vertex
coordinates [15]. This strategy is easy to implement but can
be problematic for curves with too few vertices.

« Evenly-spaced re-sampling given the total number of sam-
ples [28]. This strategy requires a scan of each streamline
at least twice and often distorts the original streamlines
morphologically (e.g., tortuous streamlines might become
flat) even with very dense sampling.

« Sampling based on signatures (e.g., curvature, torsion or
tortuosity) [13], [38], [39]. This strategy is computationally
expensive and the segmentation is often sensitive to parameters
and user-input thresholds.

Our PCA clustering utilizes direct repeating as in Ferstl et
al. [15]. For pathlines, we repeat their starting and/or end points
such that all pathlines have the same number of points, including the
same starting and terminating times and well-aligned intermediate
points in time, which guarantees the cluster centroid of pathlines
is temporally meaningful. For streamlines, to achieve both the
efficiency and the preservation of the geometric shape of curves as
much as possible, we use a sampling method which preserves the
original vertices while adding samples to the existing line segments.
The total number of samples for each curve is set to be the maximal
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vertex number of all input curves to preserve the initial geometry
as much as possible, with the cost of additional storage. Given the
maximal vertex count as M, for an integral line with n vertices,
we uniformly embed [1";’:1”] new samples on each line segment
between vertex i and i+ 1 (1 <i < n) starting from the beginning

of the integral line, until the maximal vertex count (M) is reached.

3.5 A Priori Cluster Numbers

As discussed in Sect. 2, some clustering algorithms (i.e., k-means,
k-medoids, AHC, PCA, SC+k-means) rely on specific number of
clusters as input, and users may have no prior knowledge of the
simulation. Most work in flow visualization that requires cluster
number as input regards cluster number as part of the interactive
exploration, e.g., [15], [18], [20], [22]. Optimal cluster numbers
could be detected under given k (maximal cluster number) by SC
with eigen-rotation minimization as discussed in [10], [11], [19]
and SC with k-way cut in [35], which provides a practical way
to determine number of clusters if cluster number is needed. The
L-method is applied to detect optimal cluster number (less than 20)
for blood flow pattern classification [25], [26].

In our paper, we implement two methods to detect an optimal
number of clusters for a given streamline/pathline data set. The
first one is SC with eigen-rotation minimization [10], [11], [19].
We set k (maximal cluster number) to be a fixed number (i.e.,
100 as a compromise between efficiency and accuracy because
20 used in [10], [11], [19] may not be enough), such that eigen-
rotation minimization can find the optimal cluster number within
this range. The second is the L-method [75] that can find optimal
k for hierarchical clustering by iteratively refining the knee of
the “cluster-number vs. merged-distance” graph. SC eigen-rotation
minimization is claimed to be better than the L-method for blood
flow data in [10], [11].

We consider the optimal k obtained using both the SC with
eigen-rotation and the L-method for our quantitative study. Our
experiments show that neither method is better than the other (see
discussion in Sect. 2.1 in the supplementary document). For the
flow abstraction obtained using the clustering results, we choose an
appropriate cluster number for each data set that is not dependent on
either method. This is because too few clusters may fail to capture
important features in streamlines/pathlines, and both L-method and
SC can sometimes generate very small cluster numbers.

3.6 Select Cluster Representatives

Selecting the representative curves for a reduced representation
of the original data is also critical after clustering. A naive
method is to choose the centroid (or average) streamline [13],
[14] as the representative for each cluster, which is often not
adopted because the centroid streamline is artificially generated by
averaging the streamlines within the same cluster, thus cannot reveal
the authentic flow characteristics. In general, streamlines closest
to centroids [18] or streamlines furthest away from centroids [76]
are selected because they can often depict certain flow patterns.
Besides, when streamlines are projected into lower dimensional
space and further clustered, representative streamlines could be
chosen as the actual median of clusters in the lower dimensional
space [15] or closest to centroid in the streamline-embedding
space [35]. Density-based representation is also applied [10],
[11], [19] based on the information contained in voxels that
streamlines pass through. An attribute-based representative strategy
is recommended if the clustering is guided by an attribute of

integral curves [10], [11]. Representative streamlines can also be
chosen by iteratively removing the most similar streamlines until
characteristic candidates remain [13], or derived from skeleton of
line predicate-based streamline bundles [77]. For trajectory clusters,
average coordinates w.r.t. average direction vector are collected
as representatives [53]. Recently a new representative selection
approach based on functional decomposition is proposed and is
able to reduce clutter and to find important patterns [78].

Since the focus of this work is on the quality of different
combinations of clustering techniques and similarity measures, we
intentionally choose a naive strategy to avoid the discussion on
how different similarity measures affect the definition of “most-
representative”. In particular, we extract the closest or furthest (or
called boundary lines by Yu et al. [17]) curve to the centroid as the
representative of each cluster. Additionally, we choose stream tubes
as a representative visualization suggested by Oeltze et al. [10],
[11] because streamtapes introduced by Chen et al. [18] cannot
handle densely-distributed vortex rings.

3.7 Clustering Evaluation

Incorrect Clustering

C

Silhouette T Statistics DB Index Validity F
0.0340802 0125248

Correct Clustering

Before, FN=4.83987¢-6 After, FN=4.83987¢-6

Amplify coordinates
by 10 times

Correct 3.46et7 131e-9

Incorrect | 0.329689 0.466194 0.92186 1.15e-2

Before, F=0.00233258 After, F=0.233258

(a) Validity is more effective  (b) Validity should be normalized

Fig. 2. Validity measurement [79] is a better clustering evaluation metric
for arbitrary cluster shapes, and normalized as in Eq. 3 for comparing
different similarity measures. The three-ring data set in (a) indicates that
validity measurement is a better evaluation metric than silhouette, db
index and T statistics for non-convex shapes of clusters in point cloud
data sets using Euclidean distance (better values marked bold). In (b)
we amplify the coordinates of the points by 10 times while maintaining
the same clustering, and validity measurement F in Eq. 2 [79] indicates
that the clustering result before amplification is better than after, while
the normalized validity measurement Fy in Eqg. 3 indicates that both
clustering results are quantitatively the same.

So far, most integral curve clustering techniques for flow data
rely on visual inspection and comparison to assess the clustering
quality, which is rather subjective. Despite many quantitative
metrics having been introduced to evaluate the clustering qual-
ity [41], [80], clustering analysis (especially quantitative analysis)
for flow visualization is not very popular to the best of our
knowledge. A new weighted normalized adjusted random (WNAR)
was introduced in flow visualization for evaluating and validating
clustering results by Moberts et al. [21], which is an external quality
measure w.r.t. ground truth. Normalized information distance (NID)
borrowed from Vinh et al. [81] is also used to compare bottom-up
clustering techniques before and after top-down balancing by Yu
et al. [17] and it demonstrates an improvement over the adjusted
Rand index. Silhouette width, connectivity, Hubert’s I" statistic and
stability have been used for comparing k-means, AHC and spectral
clustering (SC) in [10], [11].

Due to the lack of ground-truth or pre-identified labels for
comparison, external evaluation measures are not applicable in our
clustering evaluation. We apply the following clustering evaluation
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measurements in our experiments partially borrowed from blood
flow visualization analysis work [10], [11].

o Silhouette width: According to Oeltze et al. [10], [11],
silhouette width is a non-linear combination measure of cluster
cohesion and separation with higher value indicating higher
cohesion within clusters and good separation among clusters.

o Hubert’s I statistic: Taken from [10], [11] and implementation
by Marghescu [82]. Higher correlation values indicate better
equality of clustering results.

« Davies-Bouldin index [83]: The smallest DB value is consid-
ered the best, since algorithms that produce clusters with low
intra-cluster distances and high inter-cluster distances will
have a low DB index.

¢ Normalized validity measurement: Validity measurement is
first proposed by Yousri et al. [79] and described as:

F= mLm {fc = h(DDc) 'g(Sc)} (@)

where DD, measures the distance homogeneity and S, mea-
sures the density separateness for a cluster ¢, and smaller F
indicates better clustering as claimed by Yousri et al. [79]. This
novel density-based validity measurement was able to evaluate
clustering analysis of arbitrary cluster shapes and densities
as in Fig. 2(a) via a minimal spanning tree (MST) algorithm.
However, in our experiment we find validity measurement
simply cannot evaluate clustering results across different
similarity measures because the h(-,-) and g(-,-) in Eq. 2
relate to standard deviation of distance values. Hence we
normalize the validity measurement to obtain:

__F
(dmax - dmin)2

and show its correctness and effectiveness in Fig. 2(b). Note
that only after normalization can the validity measure be
applied to quantitatively evaluate and compare the clustering
results across various similarity measures.
Even though Yousri et al. [79] indicate validity measurement
is a more robust and effective evaluation than conventions (e.g.,
silhouette, I" statistics, DB index, all of which only work for
convex cluster shapes) for clusters of arbitrary shapes (including
clusters with convex shape) and density, we still follow the
evaluation work of [10], [11] and consider all these evaluation
metrics in our experimental study. The essential reason is that
streamlines/pathlines often involve customized similarity measures
(some are even not rigorously norm or metric) and point-based
knowledge under Euclidean distance could not be simply and
directly extended to flow visualization. This might explain why
silhouette, e.t.c., are still used as a Golden Rule to quantitatively
evaluate among different flow clustering techniques as in [10], [11].

Fy = 3)

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we report our experimental results and analysis. The
average computation time of clustering algorithms with similarity
measures for streamlines/pathlines is listed in Table 3 of the
supplementary material, and the time includes distance matrix
computation because all the evaluation metrics in Sect. 3.7 depend
on pair-wise similarity values between integral curves. From the
table we see that two density-based clustering algorithms, i.e.,
DBSCAN and OPTICS, have the smallest computational overhead,
while SC with eigen-rotation and AP take the most computational

time. Meanwhile for similarity measures, dr and dg cost the least
while dj; and dy cost the most.

We also compare the clustering results both quantitatively (Sect.
4.1) and qualitatively (Sect. 4.2). From these results, we summarize
a set of general guidelines for the selection of optimal clustering
technique and similarity measures for specific tasks (Sect. 4.3).

4.1 Comprehensive Quantitative Analysis

We run the clustering algorithms of Sect. 3.2 with similarity
measures listed in Sect. 3.3 on 8 streamline/pathline data sets
(see Sect. 3.1). As discussed in Sect. 3.5, we adopt both optimal
cluster numbers by SC with eigen-rotation and the L-method
if clustering algorithms require the cluster number as input and
average the quality values of the two optimal cluster numbers for
each evaluation metric. The detailed tables of evaluation metrics
for each data set can be found in the supplementary document.
Afterwards, we calculate the average evaluation separately over
all streamline and pathline data sets, respectively, and create two
evaluation metric tables (Table 13 for average of streamlines and
Table 14 for pathlines). Due to space limits we place all evaluation
tables in the supplementary material.

We use a ranking-based visualization technique similar to
what has been applied in hex-mesh quality visualization in [84]
for two evaluation matrices. Firstly, we map all four evaluation
matrices to the range [0.1,1.0] so that 0.1 always denotes the worst
value and 1.0 for the best, e.g., largest silhouette value and smallest
validity marked as 1.0. The reason for starting from 0.1 rather than
0 is because evaluation metrics for some clustering combinations
do not have values. To avoid mapping both those non-existing
values and the worst value to zero, we map only the non-existing
values to zero, while the worst value to 0.1. In particular, we use
dynamic mapping for DB index and normalize validity measures
since their values vary significantly.

Fig. 3 shows the averaged evaluation/quality values for the
individual combinations of clustering techniques and similarity
measures organized w.r.t. the four evaluation metrics in the form of
four matrices for streamlines. These four matrices summarize the
evaluation measures obtained from the six streamline data sets. To
help us better compare across different combinations, we re-order
the rows and columns of the four matrices. Specifically, for each
row, we compute the average value that characterizes the overall
quality of a clustering technique w.r.t. all similarity measures. We
then sort the rows based on their respective values in descending
order from top to bottom so that the top row corresponds to the
clustering technique that has the best average value. Similarly, we
compute the average value for each column to characterize the
corresponding similarity measure, based on which we sort the
columns from left to right so that the similarity that works the best
with all clustering techniques is in the left-most column. Note that
PCA clustering is only performed based on dg (Euclidean distance)
on lower-dimension space, so all the other similarity measures can
not be combined with PCA.

4.1.1 Results of Streamline and Pathline Clustering

Since clustering techniques and similarity measures are ranked
across four evaluation metrics, we calculate the average ranking
score of each clustering technique and similarity measure for
streamlines and pathlines, and sort clustering techniques and
similarity measures by the average ranking score, respectively.

Streamlines: From Fig. 3 we see that for streamlines the top
three clustering algorithms with a highest average ranking
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Fig. 3. Ranking visualization of evaluation metrics based on average evaluations of streamline data sets (best cell highlighted in blue). We can
observe that PCA, AHC-average and k-means always result in a better silhouette, I statistics and DB index, while validity favors DBSCAN. Overall,
PCA (1.75 on average) and dr (average 2.75) respectively have the best evaluation result across all four quality metrics.
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Fig. 4. Ranking visualization of evaluation metrics based on average evaluations of pathline data sets (best cell highlighted in blue). We can see
that AHC-average and PCA always result in a better silhouette and I statistics, while validity favors AHC-single. Overall, PCA (2.0) and dg (2.5)

respectively have the best evaluation result across all four quality metrics.

on all four evaluations are PCA (1.75), AHC-average (3.25)
and k-means (3.75), respectively, and the top three similarity
measures are dg (2.75), dg (3.75) and dj; (4.0), respectively.
Pathlines: We conclude from Fig. 4 that for pathlines the top
three clustering techniques are PCA (2.0), AHC-average (2.75)
and k-means (4.75), respectively, while the top three similarity
measures are dg (2.5), dg (3.5) and dr (3.75) respectively.

Next, we will discuss the ranking results for clustering tech-
niques and similarity measures, respectively, in detail.

4.1.2 Discussion of Clustering Techniques

We note that for both streamlines and pathlines, the top three
clustering techniques by ranking-based visualization are PCA,
AHC-average and k-means in descending order. As indicated in
Sect. 2, these three often generate spherical and convex shapes
of clusters, and convex shapes of clusters usually have better
evaluation values in silhouette, I" statistics and DB index. Therefore,
the average ranking score of evaluation metrics highlight strong
preference towards those clustering techniques that can generate
convex shapes of clusters.

The reason for PCA ranking best is that due to PCs (principal
components) number determination algorithm designed in [15], i.e.,
a variance threshold (e.g., 0.99) preset for first » PC components,
often results in dimensions lower than 4. Thus either via k-
means or AHC-average as post-processing the lower-dimension
points can possibly form convex or spherical shapes that lead to
favorable scores for silhouette, I" statistics and DB index. Besides,

compared to many complicated high-dimension similarity measures,
Euclidean distance in lower-dimensional space is easier to achieve
rather superior performance similar to point cloud data sets.

If we omit PCA for being unable to work with other similarity
measures and consider other clustering algorithms, we find that
AHC-average (ranking order is 3.25) ranks the best while being
compatible with all similarity measures introduced in Sect. 3.3.
From this perspective we can provide a quantitative reasoning why
AHC-average is the most dominant clustering algorithm with vari-
ous customized similarity measures/metrics in flow visualization
as indicated in Sect. 2.2.

In addition, k-means also exhibits relatively good clustering
evaluation scores. Compared to PCA and AHC-average, it has lower
computational overhead (see performance Table 3 (streamlines)
and Table 4 (pathlines) in supplementary document) and memory
requirement due to its linearity in both time and memory. This
shows great potential of k-means in handling large flow data sets
generated from simulation and experiments, as k-means can provide
a generally reasonable overview of the flow behavior (suggested by
the clustering evaluation metrics) at a much lower cost. However,
we should be also aware that the iterative procedure for refining the
centers in k-means is strictly deduced from the Euclidean-based
similarity measures (i.e., the minimization of distance variation),
hence k-means coupled with customized, non-Euclidean similarity
measures (e.g., with dy; in [10], [11] and dg in [72]) has no
theoretical foundation despite achieving good clustering results in
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flow visualization.

4.1.3 Discussion of Similarity Measures

For streamlines and pathlines, both dg and dg are surprisingly good
especially for the I statistics and silhouette, likely because these
metrics favor Euclidean distance based metrics.

dpg is a naive attribute-based similarity measure as described by
Oeltze et al. [10], [11], which maps integral curves from original
space into one-dimensional space by & : R” — R*. After this
mapping, line clustering is performed on points in R*. Due to
unconditional convexity of R™, evaluation metrics like silhouette,
I and validity measurement tend to exhibit good values. However,

0;+0; in
d(cicj) )’

which centers of each clusters (c;,c;) are still computed in original
space, R™, instead of R™. After computation, centroid lines are
often flattened such that d(c;,c;) is often smaller, which generates
a quite large DB index value as shown in Fig 3(c) and 4(c).

dgp also ranks high which naturally results from the fact
that all the existing clustering techniques and evaluation metrics
are established based on the Euclidean distance. We notice a
significant difference of the dr ranking score between streamlines
and pathlines, i.e., the ranking score of dg for streamlines (3.75)
is lower than that of pathlines (2.5). This means dg usually
exhibits best evaluation values for the pathline clustering with
all clustering techniques, while with streamlines this is not the
case. The difference is caused by the fact that the dimension of
pathlines is usually low (e.g., 303 for cylinder pathlines) compared
to those of streamlines (e.g., usually larger than 1,800), as lower-
dimensional Euclidean space, i.e., dg, often tends to have better
DB index of displaying lower intra-cluster distances and high inter-
cluster distances. PCA also tends to generate good I' statistics
and DB index which has similarly low dimensions as discussed
in Sect. 4.1.2, hence together it can imply dg is preferable in
low-dimensional space rather than high-dimensional space.

However, dg and dg are unfortunately not popularly used in
the flow visualization community due to the fact that they fail to
capture either the spatial proximity or feature related information
in the flow. We can consider the similarity measures specifically
serving the flow visualization community.

Streamlines: dj; (4.0) is ranked third (better than dy, ds,
dp and dg). Compared to dg which loses the spatial proximity
information of streamlines and dg which is rarely applied in stream-
line clustering, dy encodes more spatial proximity information,
therefore, it is quantitatively regarded as the state-of-the-art measure
for computing streamline similarity [11] and even for seeding curve
searching [85].

Pathlines: dr (4.0) is ranked fourth (better than dy, dy, dg
and ds and dp), and it is a revised MCP similarity measure for
pathlines considering time overlapping and mismatching. Note that
dr has better evaluation values in clustering evaluation than the
conventional dy;, and we quantitatively demonstrate the advantage
of dr over dy; for pathline clustering, which further validates the
work by Meuschke et al. [25], [26].

the exception is for DB index, DB = éZ;’: | Max (

4.2 Visual Inspection

We now discuss the visual comparison of various results obtained
using different clustering combinations, which will help determine
whether the aforementioned quality metrics are effective or not in
indicating the visual quality of the clustering results.

As discussed in Sect. 3.5, different optimal numbers of clusters
obtained using either the eigen rotation or the L-methods may fail
to provide a fair visual comparison, especially for flow abstraction.
This is because different initial numbers of clusters may lead to
varying numbers of representative curves for flow abstraction. It is
apparent that more representative curves lead to a more informative
representation. Hence in Sect. 4.2.2 we use a constant number
of clusters as input for all clustering algorithms that require the
number of clusters as input. Specifically, we choose the largest
number (not larger than 50) from all tested numbers of different
similarity measures (see Table 2 in the supplementary document)
for each data set, e.g., 30 for Hurricane streamlines. The exception
is for blood flow in which we choose four because four cluster
representatives are already clear enough to provide a completely
visual comparison (see Fig. 12). Meanwhile for those clustering
algorithms that do not require a prescribed cluster number, e.g.,
DBSCAN and OPTICS, our default parameter setting fortunately
generates appropriate numbers of clusters for all our testing data
sets, which facilitates the subsequent visual comparisons.

From the visual inspection for different visualization tasks,
we found that in general, clustering combinations indicated
by quantitative quality metrics do not necessarily provide
informative visualization, especially for visual abstraction of
streamlines and pathlines. In the following, we provide a detailed
discussion of our findings.

Before providing the detailed discussion, we wish to point out
several general observations from the visual inspection of clustering
results.

The BIRCH clustering technique always generates thousands of
clusters when coupled with dg and dg which belong to shape-based
similarity measures. This implies that BIRCH is better compatible
with spatial proximity based similarity measures.

AP (Affinity Propagation) clustering (two-level suggested by
Tao et al. [38], [39]) sometimes results in either hundreds of single
curve clusters or only one cluster for some similarity measures,
despite it is better than single-level AP which often generates more
than 1000 clusters. This is severely problematic and impractical for
visual inspection of the clustering results, since too many or too few
clusters either cause occlusion or provide no useful information.
Besides, the computational and memory cost for AP is often higher
than other methods (note that SC-eigen can reduce computational
time by using smaller k). Although AP can combine well with the
adapted Procrustes distance [38], [39] and bag-of-features [36],
[37], we argue that a deeper investigation should be undertaken to
make AP a well-accepted clustering strategy for flow visualization,
especially with various customized similarity measures that are
specific to a given pattern.

4.2.1 Segmentation

Clustering techniques combined with similarity measures are often
used to segment all the streamlines/pathlines into various groups in
which candidates inside each group share similar characteristics or
properties. Segmentation of integral curves can provide users with
more precise and insightful understanding of the flow domain with
less redundancy, hence is firstly used for visual inspection of our
clustering results.

From the results to be discussed below, we found that for
streamline/pathline segmentation, clustering combinations by
best individual quality metrics cannot provide well-separated
segmentation compared to those obtained using spatial similar-
ity measures (dys, dy). In contrast, those clustering techniques
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(f) AHC-average with dy (37)

(e) PCA (20)

(g) AHC-average with dy (29)

(h) AHC-average with ds (28)

Fig. 5. Crayfish segmentation results of clustering (numbers of clusters are shown in parentheses) according to the best individual evaluation metrics
(highlighted as blue dots in Fig. 3) (top row) and AHC-average with spatial similarity measures (bottom row). Opacity in (a-d) is adjusted such that
individual clusters inside (highlighted in black-dashed rectangle) can be perceived, since inside there exists a cluster containing 99% streamlines due
to the chaining effect of the AHC-single. (e)(f) are from average ranking score of streamline quality metrics in Sect. 4.1.2 and (g)(h) are selected
spatial segmentations. The top row indicates that the segmentation results cannot capture the spatial proximity and shape similarity of the streamlines
despite their respective evaluation values being the best. In contrast, the results shown in the bottom row present a better and clearer segmentation

of the streamlines.

(f) AHC-average with dg (15)

(g) AHC-average with dr (9) (h) AHC-average with dr (12) (i) AHC-average with dys (15) (j) AHC-average with dy (5)

Fig. 6. Tube pathline segmentation results of clustering (numbers of clusters are shown in parentheses) according to the best evaluation metrics
highlighted as blue in Fig. 4 (see (a-d)), best average ranking-score clustering with highest ranking-score similarity measures (see (e-g)), and visually

well-segmented combinations (see (h-j)), respectively.

by average ranking scores (PCA and AHC-average) can. This
is because in laminar flow spatially close streamlines/pathlines tend
to exhibit similar geometric characteristics.

Streamline Segmentation

For streamlines, we can see from Fig. 3 that AHC-single with dp
has the best silhouette, DB index values and validity measurement
on average, while AHC-single with dgr has the best I statistics.
Therefore, we will visualize the corresponding segmentation results
w.r.t. these four clustering combinations for comparison. In addition,
PCA and AHC-average are claimed to be on average the top two
clustering algorithms based on their ranking scores in Sect. 4.1.3
for streamline data sets. It is also known that clustering with spatial
similarity measures, e.g., dg, dr, dy, dg and dg, can be used to
achieve streamline segmentation. Therefore, we will also choose

the segmentation results obtained using PCA and AHC-average
with dyy, dy and ds for comparison.

Fig. 5 shows the set of the segmentation results of the crayfish
data set selected using the above observation. From this comparison,
we see that the results in the bottom row of Fig. 5 provide more
reasonable and coherent spatial segmentation for streamlines, even
though the top row results have relatively high evaluation metrics.
If we correlate the clustering combinations in bottom row with
Table 16 of the supplementary document, we observe that the
evaluation values of AHC-average with dy;, dg and dg are not very
different (i.e., the values are in the same order of magnitude) from
AHC-single with dp in silhouette, I statistics and DB index, but
with more than two-orders of magnitude difference (e.g., 1.2¢ — 4
compared to 1.2e — 6) in validity.
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(a) Cylinder: DBSCAN with dy,

(i) Tube pathlines: DBSCAN with d¢ (j) Blood flow: DBSCAN with
dg

Fig. 7. DBSCAN and OPTICS clustering tends to consider important
streamlines/pathlines (e.g., vortex rings or swirling streamlines) as noise
with some similarity measures (e.g., dg, ds, and dp). The red streamlines
are considered noise, while yellow curves are not. Dashed rectangles
in (a) and (b) highlight vortex rings and swirling streamlines that are
classified as noise. Only DBSCAN with d,, for the crayfish data suffers
less from this (c).

In addition, we observe that AHC-single causes a chaining
effect by generating clusters each of which contains only a single
curve, as pointed out previously in [10], [11], [15] (see Fig. 5(a-
d)), and more than 95% of streamlines are assigned to fewer
than two clusters (we call them dominant clusters). Therefore,
the evaluation metrics in Sect. 3.7 can only be computed on few
clusters containing more than two curves and the evaluation values
on these dominant clusters tend to be quantitatively good despite
biased.

Pathline Segmentation

For pathline data sets, we also compare their segmentation
results generated with different clustering combinations, according
to best individual evaluation metrics (Fig. 6(a-d)), best average
ranking-scores in Sect. 4.1.2 (Fig. 6(e-h)), and by manual selection

of best visual segmentation (i.e., AHC-average with dy, (i) and dy
(3)), respectively. In this case, the silhouette favors AHC-average
with dg (a), T statistics for AHC-average with dy (b), DB index
for DBSCAN with dg (c) and validity for DBSCAN with dg
(d). We find that segmentation results selected based on average
ranking scores (PCA (e), AHC-average with dr (f), dr (g) and
dr (h)) achieve similar quality compared to those obtained using
spatial segmentation (e.g., the state-of-the-art AHC-average with
dy (1) and dy (j)), while segmentation by best individual evaluation
metrics cannot.

Limitations of Density-based Clustering

We also discover an intrinsic drawback of density-based
clustering segmentation, especially for streamline data sets. That is,
the density-based clustering algorithms inappropriately treat those
important or geometrically interesting integral curves as outliers
especially with geometry-based similarity measures, as illustrated
in Fig. 7. In particular, combining DBSCAN with geometry-
based similarity measures (i.e., dg, dg, ds, dp) is even worse than
with spatial measures (e.g., dy, di). Nonetheless, in either case,
some important streamlines (e.g., with strong swirling/rotation
configuration) are completely omitted or lost in the output. This
can be explained by the fact that DBSCAN considers them as
outliers using the respective similarity measures. The reason they
are outliers is because those important or geometrical interesting
streamlines typically have rather different shapes from the majority
of the other streamlines in geometry-based similarity measures,
thus, their distance to the majority of the streamlines is very large
(possibly much larger than the threshold for the determination of
outliers). This in turn causes them to be considered as outliers
due to an insufficient number of neighbors. We have observed the
similar behavior in the OPTICS results.

Unfortunately, this drawback of the density-based clustering
cannot be easily overcome by tuning the parameters, minPts
and €. One reason is because trial-and-error parameter tuning
is prohibited by the clustering technique itself if the process
(especially for streamlines) has a high overhead (see performance
of DBSCAN and OPTICS in Table 3 of supplementary document).
This important observation indicates that density-based clustering
may not be able to generate the desired segmentation results, which
is in contrast to the judgment based on the evaluation metrics,
in which the validity metric specifically favors DBSCAN (see
Sect.. 4.1.1). We wish to point out that this observation is consistent
with recent work [30] where DBSCAN is applied with dimension-
reduced Euclidean distance for feature descriptor of streamlines and
stream-surfaces. In contrast to their work focusing on clustering
of a low-dimensional space and spatial measures (dy and dp)
with interactive parameter tuning, we emphasize the drawback of
DBSCAN with geometry-based similarity measures (dg, dg, ds
and dp) in original (high-dimensional) space.

However, from Fig. 3(d) and 4(d) we observe that (normalized)
validity measurement is biased towards DBSCAN, which contra-
dicts the aforementioned visual observation for DBSCAN. The
reason why DBSCAN clustering tends to have the best validity is
due to the essential similarity of DBSCAN clustering with validity
computation, in which they both use density-based concepts. Given
a distance threshold € defined in Sect. 3.2, only pairs whose
distances are less than the threshold are considered members of
the same cluster by DBSCAN. Therefore, it leads the resulting
clusters to exhibit distance homogeneity (h(-,-) in Eq. 2) and
density separateness (g(-,-) in Eq. 2) as small as possible computed
from the MST (minimal spanning tree) algorithm. Thus, validity
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Fig. 8. Visual comparison for the abstraction of crayfish streamlines generated with different clustering algorithms (
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indicates good abstraction). (a)

is obtained with the clustering having the best silhouette and DB index values, (b) has the best I statistics value, (c)(d) the abstractions obtained with
the clustering having the top average ranking scores, respectively. We also select one abstraction from k-means with dg in (e). As a comparison, the
visually most ideal result is shown in (e) Original streamlines are shown in yellow with lower opacity, while green streamlines are representatives with
higher opacity. We find that abstractions indicated by evaluation metrics (except PCA (c)) can effectively select representative streamlines with strong

swirling behavior for crayfish streamlines.

(a) AHC-average with dy;, ® = 10.68 (b) AHC-average with ds, ® = 21.64

4
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(c) AHC-average with dg, ® = 30.61 (d) AHC-average with dp, ® = 37.74

Fig. 9. AHC-average with d; and dp can provide better abstraction
preserving swirling streamlines than dy, and dy for crayfish streamlines,
even though the latter two exhibit good segmentation results in Fig. 5.

computed for DBSCAN clustering is on average smaller than other
clustering algorithms. In this case, quantitative analysis contradicts
visual inspection.

4.2.2 Flow Abstraction

After obtaining the segmentation of streamlines/pathlines, reduced
representation of the original data can be achieved. The typical
strategy is to choose one or more representative curves from each
cluster/segment for visualization, as discussed in Sect. 3.6. In
this section, we will compare the reduced representations of the
tested data sets obtained using different clustering combinations
to qualitatively evaluate the clustering quality. The selected
representative curves are either the closest or the furthest curve to
the centroid of a cluster (Sect. 3.6).

Similarly, we organize our discussion for streamlines and
pathline results, separately. For the streamline results, we use
the 3D flow behind a cylinder, crayfish, and plume simulation
as examples, as they all contain vortical (or rotational/swirling)
flows that are interesting to experts. For these simulations, we wish
the selected representatives based on the clustering results exhibit
as much rotation as possible. To quantify that, we use a metric
that measures the total amount of rotation (or directional change)
along the individual representative curves [73]. Specifically, we
use the average of the total rotation of the individual representative
curve, denoted by ®. Intuitively, the larger the value of @, the
more rotation the selected curves exhibit. Note that ® is not the
only determinant for judging the quality of the visual abstraction of

streamlines. In addition to @, we need to consider which abstraction
covers the domain as much as possible if ® values of several
abstractions are similarly high.

For pathlines, we find that from geometric perspective, phys-
ically interesting pathlines should also exhibit high rotations
which means they are spiralling or circulating in this spatio-
temporal domain. Hence, we also recommend observing judge
which pathline abstraction captures more such important features
based on the aforementioned ®, and spatial coverage as well, e.g.,
vortex regions and two subregions highlighted in blue-dashed area
in Fig. 12(j).

In general, considering visual abstraction with aforemen-
tioned objectives, clustering combinations identified by the
best individual quality metrics fail to present desired abstrac-
tion, while those by average ranking scores may sometimes,
but not always, lead to desired abstractions.

Streamline abstraction

Fig. 8 (a-d) shows the reduced representations of the crayfish
data that are generated with the clustering combinations identified
by individual ((a) and (b)) and average quality metrics ((c) and (d))
with the best quality, respectively. As a comparison, a representation
that visually reveals more vortical behaviors (or vortices) in this
data is shown in (e). In these visualizations, the green curves
are the representative streamlines, while the yellow transparent
curves are the original input streamlines. We see that clustering
combinations with the top individual quality metric values and top
average ranking scores (except PCA) can select streamlines with
the desired swirling behavior as well as in Fig. 8(e)). Among the
four representations suggested by the quality metrics, AHC-single
with dp seems to perform the best both visually and quantitatively
(i.e., having large @ value). This is in fact due to the chaining effect
that tends to separate the streamlines with swirling configurations
into individual clusters.

We also compare dy and dy to dp and dg when used with
AHC-average clustering since the latter two both perform well in
the average ranking score of evaluation and the visual inspection in
streamline segmentation for the crayfish data (see Fig. 5). We find
that in general dp and d demonstrate a better ability to preserve
the swirling streamlines in a reduced representation of the crayfish
streamlines.

Fig. 10 shows the reduced representations for the plume (top
row) and the 3D flow behind cylinder (bottom row) data sets. For
each row, we again show the representation suggested by the quality
metrics and visual inspection, respectively. From this comparison,
we observe that AHC-average with dy; (see Fig. 10(b), 10(g))
and dy (see Fig. 10(d)) and PCA (see Fig. 10(c)) are often
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(a) Solar plume: AHC-single (b) AHC-average with dy, o=
with dp, ® = 4989 140.89

(f) Cylinder: AHC-single with (g) AHC-average with dy, D=
dp, ® =94.41 7.71

Fig. 10. Visual abstraction of streamlines from solar plume (top row) and cylinder flow (bottom row) by clustering algorithms (

(c) PCA, ® =39.41

(h) PCA, ® =9.46
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(d) AHC-average with dy, ®
145.52

= (e) k-means with dg, ® =
359.46

(i) AHC-average with ds, ® = (j) k-means with dg, ® =
73.85 52.21

marks better

abstraction). The yellow are original streamlines with lower opacity while green streamlines are representatives with higher opacity. We find that PCA
and clustering algorithms with dy, and dy characterize the overview of the flow, while clustering with dp, ds and dg tends to highlight and preserve
swirling streamlines. Additionally, d; and ds are more stable than dp because dp is sometimes trapped in erratic boundaries instead of vortex rings
due to a chaining effect, see outlying boundary streamlines in dashed rectangle of (a)(f).

m— AHC-average+dp
mm AHC-average-+dss

@/ 3
f% e
Fig. 11. Abstraction combination of AHC-average with dp (green) and dg
(red) for cylinder streamlines. Each of them may capture partial features
inside the domain. For example, dp extracts lower left vortices (highlighted
in the dashed red rectangle) that cannot be captured with ds. Combining

them together can create a much better and more thorough abstract
visualization.

T__ 1 Vortex rings that are never canght by other dissimilarity measures

effective in conveying the overview and overall structures of the
flow, while AHC-average/single with dg, dg, ds, and dp, and
k-means with dg tend to highlight and characterize the vortex
details. Meanwhile, dp is not stable in feature highlighting. dp
suffers from a chaining effect not only in AHC-single but also
other clustering algorithms (e.g., AHC-average), which results
in preferences of large bundles of boundary streamlines (see red
dashed part in Fig. 10(a) and 10(f)), instead of internal swirling
streamlines. Sometimes it is able to extract vortex rings that no
other measures can (see red dashed area in Fig. 11).

From the three reduced streamline representations, we conclude
that clustering algorithms with dg, dg and ds are more robust and
stable for feature highlighting in flow abstraction than dp. k-means
with dg [72] and dg are able to capture streamlines with large
curvature variation with similar quality to AHC-average with
ds [13], while having the lowest computation cost (see Table 3
in the supplementary document). Individual quality metrics (e.g.,
AHC-single with dp) cannot provide a visually desired abstraction,
while an average ranking score of quality metrics can partially (e.g.,
AHC-average with dg) achieve this objective.

Combining multiple abstractions In most cases, abstraction
with one single similarity measure can only capture a subset of
features reflected by the streamlines, and it can be helpful to
combine multiple abstractions to make a more complete visual
representation of the important features. For example, in Fig. 11
AHC-average with dp can capture a sequence of near closed
streamlines (highlighted in the dashed red rectangle) while failing to
highlight a number of other swirling streamlines. In contrast, AHC-

average with dg can detect more vortical features than dp but still
misses the bottom-left vortex rings. Combining the representations
obtained from the two clustering results leads to a more complete
visualization of the flow.

This conclusion is also observable for pathline abstraction, e.g.,
in blood flow abstraction results (see Fig. 12), AHC-average with
dy (h) combined with PCA (i) can generate the required abstraction
that preserves each highlighted feature similar to AHC-average with
dy (k). However, we think it is unnecessary to mention the benefit
of combinations in pathline abstraction since a single abstraction
(like (k)) already generates good abstraction results. This is in
contrast to streamline abstraction where no single abstraction can
capture the complete and complex features.

Pathline abstraction

Similarly, we compare the reduced representation suggested
by the quality metrics. Guided by our experience that density-
based clustering tends to classify streamlines/pathlines with distinct
swirling behavior as outliers (see Fig. 7 and Sect. 4.2.1), hence
we only consider results obtained using AHC-average with dg (by
best silhouette in Fig. 4(a)) and AHC-average with dy (by best I
statistics in Fig. 4(b)). In addition, the abstractions suggested by the
average ranking-score (i.e., AHC-average with dr and PCA) are
also selected. Further, we select one or two reduced representations,
that can preserve pathlines of important features, e.g., pathlines
around the vortices behind cylinder in the cylinder pathlines
(see blue-dashed area in Fig. 12(e)), and vortex regions and two
subregions in the blood flow (see blue-dashed areas in Fig. 12(j)), as
an additional visual comparison for the aforementioned abstraction
from quantitative analysis.

From Fig. 12 we can see that abstractions suggested by
individual evaluation metrics (i.e., AHC-average with dy in
Fig. 12(b)(h)) and average ranking scores (i.e., PCA in Fig. 12(c)(i))
lose more or less the aforementioned pathline features. However,
in general AHC-average with shape-based similarity measures, i.e.,
ds (see Fig. 15 in the supplementary document), dg and dp, and k-
means with dg and d are able to capture these important pathlines
in the abstraction in the given pathline data sets. Specifically, for
cylinder pathlines, AHC-average with dp (Fig. 12(e)) and k-means
with dg (Fig. 12(f)) provide better focus on the vortical features
than AHC-average with dg (Fig. 12(a)). While for blood flow,
AHC-average with dg (Fig. 12(g)) and dj (Fig. 12(k)) generate the
best abstraction results by preserving not only the outlier vortices
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(a) AHC-average
dr

with (b) AHC-average with dy (c) PCA

(g) AHC-average with (h) AHC-average with dy
dg

(i) PCA

Fig. 12. Cylinder pathline (top row) and blood flow (bottom row) abstraction (

(d) AHC-average with dr (e) AHC-average
dp

with (f) k-means with dg

\

(j) AHC-average with

dr

with (k) AHC-average
dy

(1) k-means with dg

indicates good abstraction). The highlighted areas in those blue-dash

rectangles of cylinder pathlines (e) and blood flow (j) are pathline features that abstraction should capture. Abstraction by individual evaluation metrics
((b)(h)) and top average ranking scores (e.g., PCA in (c)(i) and AHC-average with dr in (d)) only provide partial information for the pathlines inside the
domain. Generally, AHC-average with shape-based similarity measures (dg, ds, dp) and k-means with dg can roughly capture the full features of

given pathline data sets.

but also the vortex cores (see blue-dashed area in Fig. 12(h)) in the
center region of the blood flow.

We conclude that AHC-average with shape-based simialrity
measures (dg, ds and dp) and k-means with dg (k-means with
dg is not good for cylinder pathline abstraction in Fig. 15 of
supplementary document) can generate better representation of
pathlines than those indicated by best individuals or averaged
ranking scores of evaluation metrics.

4.3 Empirical Guidelines

By comparing the quantitative analysis and visual inspection of
the clustering quality for streamlines/pathlines, we see that they
need not agree with each other. This in part explains that most of
the clustering approaches for geometric-based flow visualization
do not rely on the well-established quantitative metrics to identify
the most effective clustering technique and distance measures for
their specific flow data. On the other hand, purely relying on
visual inspection to determine the clustering result quality can be
subjective and affected by many visualization factors (e.g., the
rendering of the lines, view points, lighting, etc., as described
in [86], [87], [88]). Nonetheless, based on the above assessment
of the clustering results, we can offer the following guidance for
streamline/pathline clustering in flow visualization.

1) For streamlines, PCA and AHC-average are the top two
clustering algorithms, and dg, dg and d) are the best similarity
measures, based on the quantitative evaluation ranking-score
(see Sect. 4.1.1). For pathlines, PCA and AHC-average are
the top three clustering algorithms, and dg and d are the best
similarity measures (see Sect. 4.1.1). PCA clustering works
well in the above quantitative evaluation analysis due to its
applicability in Euclidean distance of low-dimensional space.
In contrast, AHC-average suffers less from a chaining effect
and is widely applied due to its robustness and versatile with
various, customized similarity metrics.

2) We quantitatively validate the reason why dy, for stream-
lines and dr for pathlines are the-state-of-the-art similarity
measures in integral curve based clustering (see Sect. 4.1.3).
Density-based clustering algorithms, despite being strongly
favored by validity measurement, tend to treat important (or
geometrically interesting) streamlines/pathlines as outliers,
thus, are not recommended for flow visualization, especially
with shape-based similarity measures (see Sect. 4.2.1).

AP clustering (including two-level) often generates too many
or few clusters at a higher computational cost. BIRCH is not
compatible with shape-based similarity measures.

For the task of segmenting streamlines/pathlines, clustering
algorithms with top average ranking scores (e.g., PCA and
AHC-average with dy for streamlines, PCA and AHC-average
with dr and dg for pathlines) can provide a better spatial
segmentation than those obtained using the clustering combi-
nations with the highest individual evaluation metrics. Besides,
visual inspection also suggests that AHC-average with dy,
dy, ds and dry can generate the most ideal segmentation
of the streamline/pathline data sets. PCA produces good
spatial segmentation for both streamlines/pathlines, which
also exhibits on average good evaluation scores. Generally, a
segmentation is best achieved by clustering algorithms with
spatial similarity measures.

To generate a reduced representation for sets of densely placed
streamlines, clustering algorithms (especially AHC-average)
with the similarity measures dg, dg and ds are more robust
than with dp in highlighting vortex structure and swirling
streamlines, and k-means with dg and dgr can also produce
a desired reduced representation but at a much lower cost.
For pathline abstraction, AHC-average with shape-based
similarity measures (dg, ds and dp) and k-means with dg are
more preferred in preserving important features of pathlines.
Unfortunately, these visual inspection results of abstraction

3)

4)

5)

6)
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often do not match with the results obtained via quantitative
evaluation.

7) ds [13] in general works well in both segmentation and re-
duced representation for streamlines because ds considers both
spatial and shape similarity of streamlines. This indicates that
similarity measures that linearly combine spatial and signature
measures can be potentially helpful to flow visualization.

8) Compared to setting the input number of clusters for some
clustering algorithms (i.e., k-means, k-medoids, AHC, SC
k-means, and PCA), setting the values of &€ (for DBSCAN and
OPTICS) or distance threshold (for BIRCH) or preference
initialization (AP) is usually more difficult and requires prior
knowledge of the data sets. Hence in general, the clustering
algorithms that only need to set the number of clusters are
more popular (especially AHC-average) for processing data
sets without prior knowledge. This observation is similar to
the discussion between AHC and DBSCAN by Meuschke et
al. [25], [26].

9) Low-dimensional Euclidean distance (dr) demonstrates

good overall evaluation results in clustering analysis (see

Sect. 4.1.1). Besides, dg in lower-dimensional space features

advantages of numerical efficiency, theoretical stability and

predictable shapes of clusters. These important advantages
lead to burgeoning work in flow visualization to perform
clustering after dimension-reduction techniques for stream-

lines/pathlines, e.g., PCA in streamline variability plot [15]

and t-SNE for feature descriptors after auto-encoder learn-

ing [30]. We believe after proper dimension reduction, dg
combined with a carefully chosen clustering algorithm will
form a trend in clustering frameworks for flow visualization.

Attribute-based streamline distances (e.g., dg in our exper-

iment, linear and angular entropy in [18], and streamline

attributes in [10], [11]) usually exhibit good evaluation
scores for clustering analysis due to their ability in mapping
high-dimensional streamlines to lower-dimensional Euclidean
spaces. That said, the design of similarity measures that aim
to emphasize given flow characteristics can focus on the
relevant attribute of integral curves, which can be beneficial in
performing clustering in a low-dimensional Euclidean space.

Sometimes combining the reduced representations generated

with two or more appropriate clustering techniques may

capture more complete sets of features in streamlines as

illustrated in Fig. 11.

10)

1)

Finally, choosing appropriate clustering algorithms and sim-
ilarity measures is a complex problem, which needs to consider
not only the aforementioned visual/quantitative guidance, but also
other aspects of the data, e.g., the size of data sets and the required
computation time, whether focusing on spatial or shape difference,
or customized similarity measures for specific purposes. In most
cases, similarity measures designed in flow visualization literature
are not rigorous mathematical metrics, therefore, it is not possible
to theoretically derive the property of metric space, like its topology
discussed in [35] or convex analysis in [60], nor can shapes of
clusters be predicted so that a proper clustering can be determined
and applied. There exists inextricable disparity between theory and
application for clustering in flow visualization, and the qualitative
(visual) and quantitative (analytic) are often not compatible for
clustering results, which still requires in-depth investigation.

4.4 Comparison with Blood Flow Analysis Work

To our best knowledge, the only existing work on clustering
analysis (visually and quantitatively) for flow visualization is the
visualization of blood flow [10], [11]. Despite this work shares
some similarity to that work, e.g., both use silhouette and I"
statistics for evaluation, and both apply tube-based rendering for
visualization, there are important differences between these two.

« We evaluate a much larger set of clustering algorithms and
similarity measures, while blood flow analysis work only
considers dy with k-means, SC with eigen-rotation and four
types of AHC. We experiment on both streamline and pathline
data sets with different flow characteristics, compared to blood
flow data sets. That said, our conclusions are more general.

« We adopt a novel normalized validity measurement which
proves to be more effective and general in evaluating clustering
quality for point-based data sets than silhouette and I statistics
(both of which only work for convex clusters of shape), and
further investigate the drawback of only using validity as
quantitative reference in flow visualization.

« We employ detailed quantitative analysis and visual compar-
isons based on either individuals or average ranking score of
the evaluation metrics, and thoroughly discuss the disparity
between quantitative and visual preferences for different
clustering combinations.

« Our quantitative conclusion for AHC-average in streamlines
(see Sect. 4.1) is consistent with blood flow where both by
silhouette and I statistics AHC-average works well. However,
in the blood flow visualization, SC with eigen-rotation was
claimed to exhibit good evaluation based on silhouette and I"
statistics (see Fig. 11 in the supplementary document where
SC-eigen with djs exhibits the best three evaluation scores),
while in our evaluation it is actually one of the worst of all
clustering algorithms. We argue that the disparity for ranking
of SC-eigen w.r.t. silhouette and I statistics is that we adopt
an average evaluation over different similarity measures other
than just djy, and quantitative conclusions from blood flow
simulation cannot be simply extended into other streamline
data sets.

« The conclusion made by [10], [11] that SC (SC-eigen in our
paper) is the best clustering technique only applies to the
blood flow data set based on our experimental results. We
believe it is due to the simpler and clearer flow features of the
blood flow (see blood flow abstraction in Sect. 4.2.2) when
compared to other physically sophisticated flows, e.g., crayfish
and plume, with more hiden vortices. Besides, we found no
further applications of SC to other flow data sets except blood
flow after the streamline embedding work [35] (TVCG 2012).
This is likely because SC (especially SC-eigen) has a high
overhead in determining the optimal number of clusters for
simulated flow data with a large value of k. Compared to
blood flow whose k is not larger than 20 [10], [11], we usually
do not have a-priori knowledge of k for general simulated
flow data, hence, we have to set k to a large number which
results in a longer computation time. Therefore, SC is often
impractical for interactive exploration of large-scale flow data
sets, while AHC is preferred instead (see details in Sect. 9 of
the supplementary document).

Note that, Han et al. [30] recently compared different clustering
algorithms for feature descriptors of streamlines and stream sur-
faces through different dimensional reduction techniques. However,
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their work is purely qualitative and focusing on feature descriptors
after autoencoder learning, while our work is both quantitatively
and qualitatively in original integral line space.

5 CONCLUSION AND FUTURE WORK

In this paper we perform a comprehensive evaluation of popular
clustering techniques coupled with a number of popular similarity
measures. We use both quantitative analysis and visual inspection
to assess the clustering results, and derive empirical guidance (see
Sect. 4.3) for selecting an appropriate clustering and similarity
measure combination. This is the first work, to the best of our
knowledge, that attempts a comprehensive experimental study on
a large number of clustering techniques and similarity measures
for integral curve clustering. We believe the outcome of this study
will benefit the practice of flow data visualization in achieving a
reduced representation for streamline/pathline data sets.
Limitations and future work There are a number of limitations
of our current study that we wish to improve in future work.

First, we use a distance-based representative approach for visual
inspection of clustering results, and it may be prone to specific
patterns, e.g., vortical structures in the streamlines. In the future
we want to investigate several existing representative approaches
to find the optimal method that can characterize the clusters of
integral curves. In addition, there are more features or patterns
conveyed in the streamlines (e.g., separation lines), and we wish to
further explore them via clustering techniques.

Second, the similarity measures (except for dr) are generally
suitable for streamlines, and we would in the future investigate
those specific similarity measures for pathlines to derive a more
accurate guidance on pathline clustering. Also visual reference for
judging pathline abstraction might be not accurate and precise, and
we would like to extend our experimental work to more complex
and meaningful pathline data sets.

Third, clustering methods based on statistical analysis and
information are not frequently applied in flow visualization, and
they are mostly viewed as inferior for comparison. For example,
PCA+GMM (Gaussian mixture model) is compared to PCA+AHC,
and the latter is shown to be better for streamline variability
clustering [15]. We would like to extend these statistical-based
methods to integral curve clustering in the future, either in repre-
sentative selection under functional decomposition [78], or using
model-based clustering for turbulent combustion particle data [89].
Due to solid theory and well-constructed objectives of statistical-
based methods, we believe they can exhibit enormous potential
and versatile applications in conveying effective abstraction of
complicated flow data sets.
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