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Fig. 1: The ST LCC linear correlation (c) and ST MI dependency (d) of the acceleration (a) and Q (b) of the large ocean simulation
data with a spatio-temporal kernel size 5×50. The blue-white-red color scheme is used to highlight the different characteristics of
attribute correlation and dependency. The ST LCC result (c) highlights a string of strong vortices (or eddies) around the equator,
while the MI result (d) emphasizes the strong offshore currents on the east coast of the individual continents.

Abstract—
Despite significant advances in the analysis and visualization of unsteady flow, the interpretation of it’s behavior still remains a challenge.
In this work, we focus on the linear correlation and non-linear dependency of different physical attributes of unsteady flows to aid their
study from a new perspective. Specifically, we extend the existing spatial correlation quantification, i.e. the Local Correlation Coefficient
(LCC), to the spatio-temporal domain to study the correlation of attribute-pairs from both the Eulerian and Lagrangian views. To study
the dependency among attributes, which need not be linear, we extend and compute the mutual information (MI) among attributes over
time. To help visualize and interpret the derived correlation and dependency among attributes associated with a particle, we encode
the correlation and dependency values on individual pathlines. Finally, to utilize the correlation and MI computation results to identify
regions with interesting flow behavior, we propose a segmentation strategy of the flow domain based on the ranking of the strength
of the attributes relations. We have applied our correlation and dependency metrics to a number of 2D and 3D unsteady flows with
varying spatio-temporal kernel sizes to demonstrate and assess their effectiveness.
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1 INTRODUCTION

Despite significant advances in the development of the analysis and
visualization techniques for unsteady flow, interpretation of its behavior
remains a challenging task. Existing methods either focus on the
transport behavior of the unsteady flow by characterizing the behavior
of particles and their trajectories (i.e., pathlines) [1–3], or study the
features defined under a given coordinate system [4]. Both groups of
techniques provide valuable insight into the dynamics of unsteady flow.

In parallel, various local characteristics are widely used in the fluid
mechanic community for the study of physical properties of the fluid.
In the flow visualization community, local properties either have been
utilized for the definition of critical points in a Lagrangian context [5] or
have facilitated the understanding of their transport characteristics [6].
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Fig. 2: Different correlation measurements of a region of the ocean sim-
ulation that contains eddies. (a) Spatial LCC, (b) Spatio-temporal (La-
grangian) LCC, and (c) mutual information (MI) (Lagrangian) between
the Acceleration and Determinant of Jacobian matrix, respectively.
For the first two results, the color shows the correlation characteristics,
blue indicates negatively correlated and red positively correlated. For
the MI result (c) blue indicates lower dependency and red indicates
higher dependency.

Important flow features, such as vortices, can also be identified and
characterized by certain local flow attributes [7,8]. However, there lacks
an effective way to study the co-varying behaviors and dependencies
between various flow attributes over time, which may provide additional
insight into the behavior of unsteady flows.

To fill the above gap, this work makes the following contributions.
First, we extend the Local Correlation Coefficient (LCC) introduced
by Sauber et al. [9] to the spatio-temporal domain and define a spatio-
temporal LCC (or ST LCC) to reveal the time-varying linear corre-
lation of attributes derived from unsteady flow. Figure 2 compares
our ST LCC result (b) with the existing spatial LCC result (a) of two
attributes on an ocean current simulation (detailed information is pro-
vided in Section 5). From this comparison, we see the correlation field
computed with our approach captures more complete structures of the
two main vortices in this ocean region. In addition, we introduce a
vector-based LCC and its spatio-temporal equivalence (ST VEC LCC)
for the correlation analysis of the gradient vectors of pairwise attributes
over time. This vector-based LCC yields complementary information
about the linear correlation among pairs of attributes by focusing on
their gradient behavior (see Figure 3c and Figure 3d for an example).

Second, to capture the non-linear dependency between attributes, we
extend and compute the mutual information (MI) of pairwise attributes.
MI was first applied for image registration [10] then later for uncertainty
reduction in visualization [11]. Recently, it has been used for statistical
analysis in flow visualization [12]. Compared to the previous work, we
provide a systematic discussion on how to apply MI for measuring time-
varying dependency of flow attributes, and evaluate its effectiveness in
revealing certain characteristics of unsteady flows (e.g., vortices). In
contrast to the ST LCC result shown in Figure 2(b), the MI field (c)
in this example shows that the two attributes are highly dependent on
each other in a larger region beyond the boundaries of vortices shown
by ST LCC.

Third, we apply the proposed ST LCC, ST VEC LCC, and MI for
various time-varying attributes measured in both the Eulerian (i.e., at
fixed position) and Lagrangian (i.e., along moving particles) views for
the first time. Our results show that both views provide meaningful
insight into pairwise attribute relations.

Finally, we also offer a simple yet intuitive way to visualize the
correlation and dependency information from the Lagrangian view,
which is difficult to show in a static image. In particular, we propose a
new pathline visualization to convey the varying correlation between
attributes of interest over the course of the particle advection, which
provides interesting insight into the detailed particle behavior that has
not been revealed. We provide a number of use cases with analytic
and simulated unsteady flow to demonstrate the utility of the proposed
correlation quantification and visualization. Although we primarily
focus on vortices – an important flow structure in fluid mechanics, and
effectively reveal detailed vortex structure over time that is non trivial to
show using a single attribute at a time ( Figures 9 and 12), our method
can potentially apply to the study of other flow behaviors.

2 RELATED WORK

A large amount of work has been proposed to address the visualization
and analysis of unsteady flow [13, 14]. These techniques either extract
the structural information or the local dynamics of the flow.
Structural analysis of unsteady flow aims to study the transport be-
havior of the flow and identify the boundaries of different regions,
such that the particles within each region exhibit similar temporal
transport behavior [13]. There are various methods to define and
compute the structure of unsteady flow, including topological fea-
ture tracking [15–17] based on the bifurcation theory, and pathline-
based segmentation [18]. Nonetheless, the most successful and popular
method is the computation of Finite Time Lyapunov Exponent (FTLE)
fields [1, 19–21], whose ridges (i.e., Lagrangian Coherent structures
(LCS)) are extracted as the boundaries of different regions with distinct
transport behavior. This method inspires a new direction of defining
unsteady vector field topology based on streak lines/surfaces [22–24].

In addition to flow separation behavior in the transport of unsteady
flow, the rotational behavior also leads to an important coherent struc-
ture, i.e., vortices [25–27]. In contrast to the transport structure, the
vortical structure can be suppressed by a strong translational flow [28].
To reveal the vortex structure of interest, a certain reference frame
needs to be extracted. Cucitore et al. [29] used a reference frame that
moves with a particle. Haller [30] proposed Mz to detect vortices,
which is both Galilean invariant and rotation invariant. Bhatia et al. [4]
introduced an internal frame that is computed as the harmonic com-
ponent of a natural Helmholtz-Hodge decomposition [31]. Günther et
al. [32] showed how to construct a Galilean invariant rotation invariant
technique for vortex detection. Recently, Sauer et al. [33] introduced a
novel method to explore spatio-temporal characteristics in both particle
and volume data simultaneously. The transport and vortical behaviors
in unsteady flow can also be studied via analyzing various attributes
associated with pathlines [2, 34]. These attributes can be utilized for
pathline and streak line placement [3], and glyph design [35].
Local analysis of unsteady flow Local analysis of flow focuses on
small-scale behaviors, such as local volume dilation, compression,
infinitesimal rotation, stretching, shearing, acceleration and momentum.
Due to its locality, it is fast to compute and has been widely applied in
the fluid mechanics community, for instance, the well-known λ2 [8]
and Q criterion [7] for the detection of vortices.

However, local analysis may not reveal the global flow structures
associated with the transport behavior of the flow, and its visualization
typically relies on the selection of a user-specified threshold to highlight
the most salient regions, whose boundaries need not be aligned with the
flow. Shi et al. [6] developed an advection filter along pathlines to study
the transport behavior of various local properties. It is compared with
the LCS structures of the corresponding FTLE fields. The set of local
characteristics used in that work is adapted for our study. Fuchs et al. [5]
introduced a local unsteadiness metric based on the material derivative.
A global unsteadiness is then computed using a similar idea to the
advection filter along pathlines. Critical points under the Lagrangian
view are defined as the pathlines that have minimal unsteadiness.

Different from the above work, we concentrate on the pairwise
relations of attributes based on their temporal behavior measured at
both fixed locations and along particles.
Correlation analysis of multivariate data Correlation analysis is one
of the most important tasks in the study of multi-field data. Sauber
et al. [9] analyzed correlations in 3D multi-field scalar data using a
vector similarity metric derived from gradient similarity measures. Lee
et al. [36] proposed an algorithm to describe the correlation among
various attributes in multivariate time-varying data sets based on how
the attribute values change over time. Wang at al. [37] studied hier-
archical clustering of volumetric samples based on the similarity of
their correlation for scientific volume data. Zhang at al. [38] introduced
a correlation map, which was expressed as a 2D layout of variables
encoding their pairwise correlations. This map is then employed for
visual correlation analysis. Chen at al. [39] presented a sampling-based
approach to classify correlation patterns, based on which a static vol-
ume classification was created to summarize the correlation connection
in time-varying multivariate data sets. Recently, Zhang et al. [40] pro-



posed a dissimilarity-preserving clustering algorithm and measured
correlation connection in multi-variable and time-varying data sets.
Their method can characterize time-varying patterns and spatial posi-
tions. The above works typically focus on linear correlation among
attributes. In contrast, we study both linear and non-linear relation
and/or dependency between attributes in unsteady flow.
Mutual Information (MI) quantifies the dependence between two ran-
dom variables [41] based on information theory [42]. There are several
papers that use information theory for various visualization problems.
Xu et al. presented an information-theoretic framework to guide the
selection and rendering of integral curves [43]. Biswas et al. proposed
a new approach based on information theory through the multivariate
data exploration process [44]. Wang et al. proposed a block-wise
distribution based representation to preserve important features and
alleviate uncertainty in large-scale scientific data visualization [45].
Zhang et al. [46] also analyzed the variable association in ensemble
data. Analysis of dependent attributes values from a scalar-based view
on multi-field data [12] and a brief overview of relation between the
flow attributes [47] have been studied previously. Closely related to
our work, Chen and Jaenicke were among the first to introduce mutual
information to the visualization community in their seminal work [11].
In particular, they integrated the MI calculation to their proposed frame-
work to reduce the uncertainty in the generated visualization. Their
work has a very different goal from our work. Specifically, we apply
MI to understand the time-varying dependency of flow attributes. Dutta
et al. [12] applied MI to the study of scalar fields. Their analysis is
based on pointwise MI (PMI) comparison of time-varying scalar fields
to identify salient features. Our work is a logical progression of this in a
few ways. Firstly, we extend this idea based on comparison of pairwise
integral curves (as opposed to points only). Secondly, we consider both
Eulerian and Lagrangian settings and compare the two.

To our best knowledge, our work is the first that explores the spatio-
temporal, linear and non-linear relation of unsteady flow attributes using
various metrics from both the Eulerian and Lagrangian perspectives.
We also compare the ability of various metrics in revealing time-varying
relationships between attributes, which can offer guidance for selecting
metrics to study and compare amongst the range of flow attributes.

3 FLOW ATTRIBUTES AND THEIR RELATION ANALYSIS

In this section, we first review a number of important concepts for un-
steady flow and their characterizations (Section 3.1). We then introduce
a number of methods to analyze the relation of pairs of unsteady flow
attributes in space and time (Section 3.2).

3.1 Unsteady Vector Fields

Consider an unsteady vector field v(x, t) defined in a space-time domain
Ω⊂ Rd ×R. Its dynamics are determined by the temporal evolution
of densely placed massless particles, that is, for a particle p, it satisfies
dp(t)

dt = v(x, t) (x = p(t) is the position of the particle at time t). The
trajectory of any massless particle seeded at (x0, t0) is called a pathline,
which is a solution to the above ordinary different equation.

px0,t0(t0 + t) = x0 +
∫ t0+t

t0
v(px0,t0(η), t0 +η)dη s.t. px0,t0(t0) = x0

There are a number of local attributes for an unsteady vector field
that are of interest to domain experts. For example, the acceleration
of v is defined as a(x, t) = Dv

Dt =
∂v(x,t)

∂ t + (v(x, t) ·∇)v(x, t), where
(v(x, t) ·∇) = ∇xv represents the spatial gradient of v, i.e., Jacobian,
denoted by J for simplicity.

Important deformation modes of the flow can be obtained through
the decomposition of J. Specifically, the Jacobian matrix can be decom-
posed as J= S+R, where S= 1

2 [J+(J)>] and R= 1
2 [J−(J)>] are the

symmetric and antisymmetric components of J, respectively. From this
decomposition, local shear rate is measured as the Frobenius norm of S,
Q value at each point can be computed as Q = 1

2 (‖R‖
2−‖S‖2) [48],

and λ2 is the second largest eigenvalue of the tensor S2+R2 [8], respec-
tively. They are typically used to characterize the vortical or rotational

behavior of the flow. The attributes we consider in this paper are
denoted as follows:

• A1: vorticity, 〈∇×v,z〉 for 2D, and ||∇×v|| for 3D.
• A2: acceleration magnitude, ||a(x, t)||.
• A3: λ2 (see above definition).
• A4: Q (see above definition).
• A5: local shear rate (i.e., the Frobenius norm of S).
• A6: determinant of J.

• A7: norm of J, defined as
√

∑i j J2
i j.

Note that all the above attributes can be measured (or calculated) at
a given position and time in the flow domain in parallel.

3.2 Correlation Between Time-varying Attributes
The aforementioned attributes of unsteady flow are time-dependent. To
study their pairwise behavior over time, we first briefly describe how
we obtain sequences of attribute values in the Eulerian or Lagrangian
sense. Given a specific local attribute A, its value at a spatial position
x ∈M at time t ∈ T can be denoted as A(x, t). Computing A(x, t) at a
location x over time or along a pathline gives rise to a series of attribute
values, which we denote as the attribute value sequence (AVS). The
former sequence is obtained in the Eulerian fashion (i.e., measured at
fixed location) and the latter is in the Lagrangian fashion (i.e., moving
with a particle). With these attribute value sequences, we now describe
our metrics to quantify the linear correlation and dependency among
attributes over time.

3.2.1 Spatio-temporal Local Correlation Coefficient (LCC)
We extend the LCC [9] for steady scalar field to our unsteady set-
ting, which is the Pearson Product-Moment Correlation Coefficient
(PPMCC) [49] extended to the spatio-temporal domain. Specifically,
for a local position p = (x, t) ∈Ω and a window function G(x,t) posi-
tioned at p, the correlation value at p is defined by:

ST LCCAi,A j (p) = ρAi,A j (p) =
covAi,A j (p)

σAi(p)σA j (p)
(1)

covAi,A j (p) =
∫

Ω

G(x,t)(q)(Ai(q)− Āi)(A j(q)− Ā j)dq (2)

σAi(p) =
√

covAi,Ai(p)

Āi =
∫

Ω

G(x,t)(q)Ai(q)dq

ST LCCAi,A j (p) returns a real number between -1 and 1. The closer to
0, the weaker the correlation between Ai and A j. Ai and A j are posi-
tively correlated if ST LCCAi,A j (p)> 0; otherwise, they are negatively
correlated. We use a cylinder filter for 2D unsteady flows (i.e., a disk in
space and a deformed cylinder or tube in space-time along the pathline)
and a hyper-cylinder for 3D data as the window function G(x,t). We set
G(x,t)(q) = 1

n if q falls in the local region (or kernel) defined around
p and n is the number of points within the region, and G(x,t)(q) = 0
otherwise. Other proper window functions can also be used here. The
radius (r) and height (h) of the cylinder determine the kernel size in the
spatio-temporal domain Ω. Both r and h can be interactively adjusted
by the user. Note that h is defined as the total number of time steps
in the kernel, which corresponds to a time range T = hτ with τ being
the time interval between two neighboring frames for a dataset. When
h = 0, ST LCC is reduced to the conventional LCC.

One characteristic of the above ST LCC metric for scalar attributes is
that it is scale invariant. That is, ST LCCAi,A j = ST LCCkAi,lA j where
k, l ∈ R+. This may return very large ST LCC values for cases where
both attributes have small values, which can be altered by multiplying
the above result with the absolute value of the normalized attribute
values. We provide it as an option for the user to control. By default,
this multiplication is disabled.

The above ST LCC can be applied to both a fixed location (Eulerian)
and a particle over time (Lagrangian). Figure 3 compares the ST LCC
fields computed in the Eulerian (b) and the Lagrangian (a) views, re-
spectively, for the 2D flow past a cylinder. The comparison shows



(a) Lagrangian ST LCC

(b) Eulerian ST LCC

(c) Lagragian ST VEC LCC

(d) Eulerian ST VEC LCC

(e) Lagrangian ST MI

(f) Eulerian ST MI

Fig. 3: Different correlation measurements between norm (A7) and
shear rate (A5) of a flow past a square cylinder. Kernel size r = 3 and
h= 250 with τ = 0.008s. For ST LCC results, blue indicates negatively
correlated and red indicates positively correlated. For MI results blue
indicates low dependency and red indicates high dependency.

that the time-varying attribute behaviors in the Eulerian view highlight
the overall (or average) movement of the vortices in the vortex street
region behind the cylinder, while its behaviors in the Lagrangian view
emphasize the individual vortices. This observation is similar to what
is reported in [50] which compares the behavior of the accumulated
attributes in the Eulerian and Lagrangian views, respectively.

3.3 Vector-Based Correlation
In this section, we propose a correlation measurement based on the
gradient vector field of the attribute field. Given an attribute field Ai, we
define its gradient field as gi = ∇Ai = ( ∂Ai

∂x ,
∂Ai
∂y ,

∂Ai
∂ z ,

∂Ai
∂ t ). gi points to

the direction that the value of Ai increases the fastest, and its magnitude
||gi|| represents how quickly the value changes. Therefore, studying
the correlation of the gradient vector field of two attributes may further
reveal their similarity in behavior or variation in space and time. First,
we define the gradient similarity measure (GC) of two attributes Ai and
A j at position p = (x, t) as:

GC(gi,g j) = GCd(gi,g j)GCm(gi,g j)

GCd(gi,g j) =
〈gi,g j〉
||gi|| ||g j||

GCm(gi,g j) = 4
||gi|| ||g j||

(||gi||+ ||g j||)2 (3)

GCd(gi,g j) represents the direction similarity between the two gradient
vectors, and GCm(gi,g j) measures their magnitude similarity. We use
multiplication to combine the two terms, as they may have different
value ranges (i.e., gi is not normalized). GC(gi,g j) is zero when the
two gradients are orthogonal. When the two gradient vectors point in
the same direction and have the same magnitude, GC(gi,g j) returns
1 (i.e., positively correlated). If the two gradient vectors have the
same magnitude but point in opposite directions, GC(gi,g j) returns
-1 (i.e., negatively correlated). As opposed to the previous vector
similarity metrics that always return positive values [9], our metric can

now measure both the positive and negative similarity of two vectors.
Compared with the vector similarity metric introduced by Crouzil et
al. [51], which relies on the magnitude of the gradient vectors, our
metric is able to capture the correlation even when the magnitude of
the gradient vectors is small.

Since GC(gi,g j) is a scalar field in the range of [−1,1], we can
now define a vector-based LCC based on this vector similarity metric.
First, the mean gradient field with a given window function G(x,t) is
computed as ḡi =

∫
q∈Ω

G(x,t)(q)gi(q)dq. Then the co-variance of the
two vector-valued attributes (i.e., the gradient vector fields here) can be
defined as:

covgi,g j (p) = GC(ḡi, ḡ j)
∫

Ω

G(x,t)(q)GC(gi(q), ḡi)GC(g j(q), ḡ j)dq
(4)

Note that multiplying GC(ḡi, ḡ j) is necessary in order to preserve
the sign of the correlation. Thus, the vector LCC is defined as:

vecLCCgi,g j (p) =
covgi,g j (p)

σgi(p)σg j (p)
, where σgi(p) =

√
covgi,gi(p) (5)

Compared to the above scalar LCC, our proposed vector based
VEC LCC is scale-sensitive. Figures 3c and 3d show the results for
vector-based ST LCC in Lagrangian and Eulerian domains. The results
show that in the core regions of the vortices, a minimal variation of
shear rate is exhibited while the norm need not, resulting in negative
correlation. In the meantime, the boundary layers of the vortices exhibit
stronger variation of shear rate, which is aligned with the behavior of
the norm. Therefore, we observe positive correlation values there. This
matches previous results [52].

3.4 Measuring Attribute Dependency Using MI
The above correlation computation is limited to the linear co-varying
behavior between two attributes. Another metric is needed to cap-
ture non-linear relations between attributes. Among many non-linear
relations, the dependency between attributes is of interest to fluid ex-
perts, which will facilitate understanding the causal relations between
attributes. To study the dependency between attributes, we adapt the
mutual information metric. In this section, first we review the defini-
tion of mutual information, then introduce the spatio-temporal mutual
information metrics.

3.4.1 Spatio-temporal Mutual Information
In this section, we start with a brief introduction of mutual information
based on a book by Chen et al. [41]. Consider X to be a discrete
random variable with alphabet X and probability distribution p(x),
where p(x) = Pr[X = x] and x ∈ X. The entropy H(x) of a discrete
random variable X is defined by:

H(X) =− ∑
x∈X

p(x) log2 p(x)

for a pair of discrete random variables X and Y with a joint probability
distribution p(X ,Y ) = {p(x,y)}, the joint entropy H(X,Y) is defined by:

H(X ,Y ) =− ∑
y∈Y

∑
x∈X

p(x,y) log2 p(x,y)

where p(x,y) = Pr[X = x,Y = y] is the joint probability of x and y. The
conditional entropy H(Y |X) of a random variable Y given a random
variable X is defined by:
H(Y |X) = ∑

x∈X
p(x)H(Y |X = x) = ∑

x∈X
p(x)(− ∑

y∈Y
p(y|x)) log2 p(y|x)

=− ∑
x∈X

∑
y∈Y

p(x,y) log2 p(y|x)

where p(y|x) = Pr[Y = y|X = x] is the
conditional probability of y given x. The
entropy measures the average amount of
information or uncertainty in a random
variable X . We want to quantify how
much uncertainty the realization of a ran-
dom variable X has if the outcome of

another random variable Y is known. The inset illustrates the additive
and subtracting relationships for different measurements associated



with two correlated variables X and Y . The area contained by both
circles is the joint entropy (X ,Y ) and the circle on the left (blue and
cyan) is the individual entropy (X), with the blue being the conditional
entropy (X |Y ). The circle on the right (green and cyan) is (Y ), with the
green being (Y |X). The cyan overlap represents the mutual information
I(X ;Y ) which measures the common uncertainty between two random
variables X and Y and is defined as:

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) = H(X)+H(Y )

−H(X ,Y ) = H(X ,Y )−H(X |Y )−H(Y |X)
(6)

where H(X) and H(Y ) are the marginal entropies, H(X |Y ) and H(Y |X)
are the conditional entropies, and H(X ,Y ) is the joint entropy of X and
Y . In our case, X and Y are two attributes and Ip(X ;Y ) (i.e., ST MI) is
computed within a spatio-temporal kernel located at p.
Using the MI metric to study attribute dependency Figures 3e and
3f show the ST MI fields computed based on the Lagrangian and the
Eulerian attribute sequences of the Frobenius norm of the Jacobian and
local shearing, respectively. The Lagrangian ST MI field (Figures 3e)
exhibits a similar vortex street pattern to its ST LCC counterpart (Fig-
ure 3a), while the ST MI in the Eulerian view reveals the average
movement of the vortices. However, compared to the result of ST LCC,
ST MI has large values at the vortex regions behind the cylinder. This
is because the MI values are always non-negative, therefore, MI essen-
tially reveals the strength of the dependency of the attributes, ignoring
whether the attributes are positively or negatively correlated. Also,
there are relations, e.g., the non-linear relations, between attributes that
cannot be captured by ST LCC, but can be captured by ST MI. See
Figure 7 for an example, in which the non-linear dependency of the
two attributes within the vortex regions is revealed by ST MI (Figure
7d, h), but ST LCC only highlights regions where the two attributes
have strong co-varying behavior (Figure 7a, e). Note that the MI and
entropy computation is dependent on the number of bins for distribution
estimation. As most other papers, we used equal-width bins for all our
results to automatically choose the optimal bin size [53].

4 CORRELATION VISUALIZATION

To visualize the scalar fields computed using either the ST LCC (Sec-
tion 3.2.1) or the ST MI (Section 3.4.1), we utilize a blue-white-red
(BWR) color coding scheme. For the ST LCC correlation fields, since
the range of the correlation value is [-1, 1], the BWR color scheme is
particularly useful to highlight the different characteristics of correla-
tion, i.e., blue for negative values, white for zero and red for positive
values. For ST MI fields, while the values are always non-negative,
we still opt for the BWR scheme to highlight places with large cor-
relation values (i.e., in red). Both the 2D color plots and 3D volume
renderings shown in this paper are the results of the S LCC, ST LCC,
ST VEC LCC or ST MI in spatio-temporal domain starting from a
given time.
Pathline rendering with attribute relation information To reveal
more detailed attribute relation during particle advection, we visualize
the seeded pathlines using color coding based on the quantified relation
of the pairwise attributes associated with the particles over time.
Figures 4a and 4b provide a few examples of pathlines that are color-
mapped based on the ST LCC and ST VEC LCC computed along
them, respectively. The two attributes used for these experiments are
acceleration and Q.

Specifically, we seed these pathlines at the outer layers of two vor-
tices and near a vortex core, as indicated by the LIC patterns, respec-
tively. Interestingly, the colors along the pathline seeded near the vortex
core exhibit little variation, while those pathlines seeded at the bound-
aries of vortices or near the saddle-like regions exhibit large fluctuation,
especially when gradient similarity (i.e, vector-based ST LCC) (Eq.(3))
is employed for the color coding. In contrast, at the boundaries of
vortices and near the saddle-like regions where the flow exhibits large
shearing and stretching behavior, the co-varying behavior of the pair-
wise attributes may not be similar over time. These correlations can be
better understood by inspecting the accompanying plots of attributes.
The same scenario occurs with the mutual information based result
(Figure 4c). As shown in the accompanying histograms in Figure 4c,

(a)

(b)

(c)
Fig. 4: Sampled pathlines colored based on the ST LCC (a),
ST VEC LCC (b) and ST MI (c) of acceleration and Q, respectively.
Each top plot in (a) and (b) shows the ST LCC/ST VEC LCC values
along the respective pathlines indicated by the arrows. The two sub-
plots beneath each large plot show the trends of the two given attributes
within a kernel. For the MI result (c), the left two histograms show the
distributions of the attribute values of Q within kernels on two pathlines
(indicated by the arrows), while the right two show the distributions
of the values of acceleration within the same kernels. Each histogram
shows two distributions of the values of the respective attribute within
two different kernels sampled at t=0 (blue) and t=50 (orange) on the
corresponding pathline, respectively. Since we used equal-width bins,
the number of bins are different for different attributes.

we see a wide range and non-uniform (or fluctuating) distribution of the
values for attributes associated with pathlines seeded at the outer layers
of the vortices, indicating the high entropy (i.e., high uncertainty) and
joint probability of the two attributes, which result in high MI values. In
contrast, the distributions of values for attributes associated with path-
lines seeded at the vortex center are very concentrated, leading to low
entropy (i.e., low uncertainty) and low MI value. Such an interpretation
is not easy to obtain without the proposed visualization.
Ranking strategy One interesting question that experts may ask in
practice is which pairs of attributes are more related in certain areas
(e.g., having large absolute correlation value or having high depen-
dency), and how this information is related to certain flow character-
istics (e.g., vortex cores and outer layers of vortices). Knowing this
will in turn help develop an effective way to characterize regions with
distinct flow behavior.

To achieve so, for each spatial position, we compute the ST LCC (or
MI) of various attribute-pairs, and sort their ST LCC values in descend-
ing order. We then color this position based on the top-ranked pair of
attributes. This gives rise to a domain segmentation, which we hope
enables us to identify the most dominant behaviors (characterized by
the most correlated attributes) in the individual flow regions. Here, let



(a) S LCC of acc and Q (b) S LCC of acc and shearing

(c) segmentation
Fig. 5: Spatial LCC of acceleration and Q (a) vs acceleration and shear-
ing (b) and the segmentation result for three pairs of these attributes
(c). In (c), red regions correspond to places where the correlation be-
tween acceleration and Q is the strongest. White regions visualize the
places where acceleration and shearing has the highest value of correla-
tion, and purple segments correspond to the regions where correlation
between shearing and Q is the strongest.

(a) (b)

(c) (d)
Fig. 6: ST LCC results of curl and Q (a) and curl and shearing (c);
ST MI results of curl and Q (b) and curl and shearing (d). All results
are computed based on the Lagrangian attributes using a spatial kernel
r = 3 and temporal kernel h = 100 with τ = 0.01.

us take the 3D flow past a cylinder as an example. As we already know
the dominant characteristic of this flow is the von Kármán vortex street,
we concentrate on the three relevant attributes, i.e., acceleration, Q and
local shear rate for the ranking and perform the segmentation based
on the ranking. Figure 5a and 5b show the ST LCC results between
acceleration and Q vs. acceleration and shearing, respectively, while
the ranking based segmentation is visualized in Figure 5c. Different
colors correspond to different top-ranked pairs of attributes. From
this result, we see that at the boundary layers of the vortex street, the
attribute pair of acceleration and shearing is ranked top (colored by
white), while in the vortex core areas the attribute pair of Q and accel-
erating dominates (colored in red). The rest of the domain (in purple)
is dominated by the the pair of shearing and Q. This result matches the
knowledge in fluid mechanics [54]. This example demonstrates that
our simple ranking-based segmentation can provide an overview of the
dominant flow dynamics (e.g., rotational versus stretching or shearing)
in different flow regions for an effective unsteady flow exploration.

5 RESULTS

We have applied our correlation analysis and visualization to a number
of 2D and 3D analytic and real-world simulated flow. In the following,
we provide some detailed discussion on some of the results.
Double gyre Figure 6 shows the ST LCC correlation (6a and 6c) and
ST MI (6b and 6d) of the vorticity (A1) vs. Q ((A4)) (top row) and the
vorticity vs. shearing (A5) (bottom row), respectively, of the double gyre
flow [55] starting from t = 0 and with time window T = 100× 0.01.
Lagrangian attribute value sequences are used. The spatial sample
resolution is 256×128. Figures 6a and 6c convey similar structure, but
the colors are reversed. This is because in regions where flow exhibits
strong vortical (or rotational) behavior (i.e., with large Q values), its

shear characteristic is low (i.e., with low shear values). Similarly,
when the shearing motion dominates the flow behavior, its rotational
behavior is weak. This can also be derived from the definition of
Q = 1

2 (‖R‖
2−‖S‖2) [48], where ‖S‖2 denotes the square of the local

shear rate. In this definition, Q and shearing have relatively negative
(but non-linear) correlation. From the ST MI results shown in Figures
6b and 6d, we find that both of them exhibit a similar pattern; however,
the result between vorticity and Q highlights the LCS structure (not
shown here) that is stronger due to the high vorticity in that region.
Also, the interleaving layout of the negative (blue) and positive (red)
regions are aligned with the LCS structure, indicating the partitioning
of regions with different dominant rotational behaviors.

2D flow past a cylinder This simulation covers a subset of the spatio-
temporal domain, i.e., [−0.5,7.5]× [−0.5,0.5]× [15,23]. The time
range is chosen such that the von Kármán vortex street is fully
developed behind the cylinder. The resolution of the data set is
400×50×1001. Total time is 8 seconds for all 1001 frames. We mea-
sured the time from when a vortex is created close to the cylinder until
it leaves the boundary. The lifespan of a vortex is 925 frames. We use
the same spatial resolution, i.e., 400×50 to compute the attribute fields
and the subsequent correlation fields. Figure 3 provides the correlation
results for the local shear rate (A5) and norm of Jacobian (A7) . Based

on their definitions, in 2D vector fields, A7 =
√

J2
11 + J2

12 + J2
21 + J2

22,

and A5 =

√
J2

11 + J2
22 +

(J12+J21)2

2 . The difference of the squares of

these two norms is σ2 =
(J12−J21)

2

2 . That said, in regions that possess
strong rotational characteristics (i.e., |(J12− J21)| is large), the two
norms have larger difference, while in regions that are close to curl-free
(i.e., |(J12 − J21)| ≈ 0), the two norms are almost identical. Using
this observation, we find that the correlation results shown in Figure 3
match our expectation. That is, the correlation of these two attributes
in the vortex regions should be small, while in other places it should be
relatively large. One interesting point is that due to the dissipation of
energy, attributes are going to be depreciated at the end (far right) of
the flow. This results in lower correlation values close to the outlet on
the right of the cylinder flow.

Figures 3a, 3c and 3e show the ST LCC, ST VEC LCC, and ST MI
results in the Lagrangian view, which highlight the structure of vortex
street. In contrast, the results shown in Figures 3b, 3d and 3f, using a
spatio-temporal kernel in the Eulerian view, reveals that the individual
vortex structure is merged into a corridor, which corresponds to the area
that the vortex street sweeps through. Comparing the results of ST MI
and ST LCC, we see that ST MI reveals the boundaries of the vortex
structure clearer than ST LCC. This is due to the fluctuating pattern
of the attribute values in the boundary of the vortex structure which
indicates a higher dependency between these attributes in the boundary.
Looking closer at the ST LCC field computed in the Lagrangian view,
we see that the two attributes involved, i.e., acceleration and Q, exhibit
a positive correlation along the boundaries of the individual vortices,
while having negative correlation near the center of the vortices. This
also matches the observation in previous literature [56]. That is, the
acceleration magnitude at the centers of vortices are minimal, while the
Q values there are large.

Ocean data The next data set is taken from the top layer of a 3D
simulation of global oceanic eddies for 350 days of the year 2002 [57].
Each time step corresponds to one day. The 2D vector field has a spatial
resolution of 3600×2400. We extract tiles from the central Atlantic
Ocean (600×600). Figure 2 shows the results of the acceleration and
the determinant of Jacobian matrix (i.e., Q in 2D [48]). As we see,
these two attributes are positively correlated in the boundary of the
vortices, while negatively correlated at the vortex center. Figure 2c
shows the Lagrangian MI computed for these two attributes. Compared
to ST LCC the entire vortex regions are pronounced except at the
vortex cores due to the high dependency of these two attributes at
vortex regions whether they are positively or negatively correlated.

HCCI data This data simulates a homogeneous charge compression
ignition (HCCI) engine combustion [58], which has a spatial resolution
of 640×640 and 299 time steps. Figure 7 shows a number of correla-



(a) Lagrangian ST LCC (b) Lagrangian ST VEC LCC (c) Lagrangian joint entropy (d) Lagrangian ST MI

(e) Eulerian ST LCC (f) Eulerian ST VEC LCC (g) Eulerian joint entropy (h) Eulerian ST MI
Fig. 7: Different correlation measurements between λ2 and acceleration of HCCI data set. Kernel size r = 3 and h = 50 (with τ = 0.05)).

(a) H(A7|A3) (b) H(A3|A7) (c) Comparison.

Fig. 8: The comparison of conditional entropy for norm of the Jacobian
(A7) vs. λ2 (A3). Blue-white-red color coding is applied to (a) and (b),
while for (c), light green indicates H(A7|A3) < H(A3|A7) while blue
means H(A3|A7)< H(A7|A3).

tion fields for acceleration (A2) and λ2 (A3). Similar to the results of
the cylinder data, the ST LCC computed using the Lagrangian attribute
sequences highlights a more complete structure of vortices, while the
Eulerian ST LCC emphasizes the areas the vortex cores sweep through
over time. Also, we find that acceleration and λ2 are positively corre-
lated at vortex regions which is expected.

Figures 7b and 7f show the ST VEC LCC results using the La-
grangian and Eulerian attribute sequences for acceleration and λ2, re-
spectively. The Lagrangian ST VEC LCC highlights the vortex centers
and places with strong stretching flow (i.e., places with saddle-like
patterns), indicating the gradients of the two attributes have similar
time-varying behavior. Similarly to its ST LCC counter part, the Eule-
rian ST VEC LCC does not show much meaningful structure. Figures
7c and 7g show the Lagrangian and Eulerian joint entropy of these two
attributes, respectively. The joint entropy highlights regions where both
attributes have strong relation, either dependency or independency. In
this comparison, Lagrangian joint entropy is more focused on vortex
regions than the Eulerian result, as the Eulerian result tends to highlight
regions where those vortices sweep through, similar to the Eulerian
ST LCC we have seen earlier (Figure 3b).

Figures 8a and 8b show the conditional entropy of two attributes
λ2 (A3) and the norm of the Jacobian (A7), for the HCCI data. The
conditional entropy H(A3|A7) measures the amount of dependency of
A3 on A7, and usually, H(A7|A3) 6= H(A3|A7). We compare the two
conditional entropy for the two attributes and visualize it in Figure 8c.
We see that in most regions, Norm is dependent on λ2, while λ2 is less
dependent on Norm, since H(A7|A3)< H(A3|A7). This is expected, as
regions with strong vortical flow result in larger norm of the Jacobian,

while the inverse is not always true. More discussion on the conditional
entropy can be found in the supplemental document.
Ocean circulation This dataset is a model of oceanic circulation, pro-
vided by the Estimating the Circulation and Climate of the Ocean,
Phase II (ECCO2): High-Resolution Global-Ocean and Sea-Ice Data
Synthesis project [59]. This data provides us the opportunity to examine
the evolution of ocean eddies and circulation through time. The data has
a spatial resolution of 1440×720 with 50 time steps (equals 150 days).
Figure 1 shows the Lagrangian ST LCC and ST MI for acceleration
and Q. The spatial kernel window size is 5 and the temporal kernel
size is 50 (τ = 0.004). The outline of the African Continent is visible
at the far left of that slice, with South America visible at the far right.
The result shows that around the equator, there exists a series of strong
vortices (i.e., eddies). More results of this data are in the supplemental
document.
Axisymmetric vortex ring impact This flow is an axisymmetric sim-
ulation of a vortex ring hitting a no-slip wall. During the interaction
process, the vortex ring approaches the wall and causes a boundary
layer to appear. As the vortex slides against the wall, the boundary layer
is lifted up as a secondary vortex, which in turns lifts up the primary
vortex. This dataset helps us analyze the role of coherent structures and
their interaction with walls, as well as the generation of turbulence in
wall-bounded flows [60]. Figure 9 shows the segmentation results for
pairs of attributes involving pressure (i.e., the pressure versus the other
attributes) over time. From the result, we see that at the vortex center
region, the correlation between pressure and vorticity is the highest (i.e.,
the dark green areas), while there is a layer around the vortex center
(i.e., the pink region) in which the correlation between pressure and
kinetic energy is the strongest. Outside the vortex area (i.e., the blue
regions), the correlation between pressure and shearing dominates.
3D flow behind a square cylinder This flow was simulated by
placing a square cylinder in a fluid flow. By subtracting the aver-
age velocity from the flow, we see interesting swirling structures
[61]. The dimensions are 192× 64× 48× 101 in the volume of
[−12,20]× [−4,4]× [0,6]. Figures 10a and 10b show the vorticity
and acceleration of the flow, respectively, and Figure 10c shows the
S LCC of these two attributes. From this result, we see that accelera-
tion and vorticity are positively correlated in the outer layer of vortices,
which matches our previous observation in the 2D flow past a cylinder.
Figure 11 compares the results of Eulerian and Lagrangian ST MI
between acceleration and Q with different kernel sizes.

In Section 3.2 we show that for 2D datasets, larger temporal kernel



Fig. 9: The top row shows the ranking based segmentation for the spatial
correlation between pressure and other attributes over time (from left
to right). The green color indicates the regions where the correlation of
pressure and vorticity is the highest, the pink color corresponds to the
pair of pressure and kinetic energy, and blue for the pair of pressure and
shearing. The second row shows the result of ST LCC for acceleration
and kinetic energy. The results highlight regions similar to the FTLE
ridges. The spatial kernel size is r = 3 and the temporal kernel size is
h = 40.

(a) vorticity (b) acceleration

(c) spatial LCC
Fig. 10: Spatial LCC of acceleration and vorticity for the 3D flow
behind cylinder at time step 40. Note that the LCC result highlights the
outer layer of the 3D vortices of the flow as expected.

(a) L ST MI, h = 5 (b) E ST MI , h = 5

(c) L ST MI, h = 20 (d) E ST MI , h = 20
Fig. 11: Comparison of Lagrangian (L ) ST MI and Eulerian (E )
ST MI for the 3D cylinder data with different time windows h. Left
column shows L ST MI for acceleration and Q, and the right shows
E ST MI. We see that larger h makes both L ST MI and E ST MI
smoother, but it does not change the structure of E ST MI much.

sizes reveal the flow structure clearer. However, this need not be the
case for some 3D data. This is because for most 2D data we have
experimented with (e.g., Double Gyre, 2D cylinder flow, HCCI etc.),
the vortex structures are relatively stable over time, while in some 3D
flows the vortices undergo large changes. For instance, the 3D cylinder
flow contains the state before the vortex street is formed, thus, the
pathlines started in early time may exhibit large change in shape during
the transition from the laminar flow to turbulence flow. In that case, our
proposed metrics work well for a small temporal kernel size in order to
be able to capture the behavior of pathlines in a specific region. Larger
temporal kernels will average (or smooth) the values of correlation or
MI in different regions. Hence, we see Figure 11c does not reveal the
vortices better than Figure 11a using ST MI. In contrast, the ST MI
result in the Eulerian view is not affected much by the kernel size, since
particle movement is not considered there.

3D vortex tube data This dataset simulates two separate cases of par-
allel, counter-rotating vortex tubes at a circulation-based flow with

(a) t=0 (b) t=20 (c) t=40

(d) t=60 (e) t=80 (f) t=100

(g) t=0 (h) t=20 (i) t=40

(j) t=60 (k) t=80 (l) t=100
Fig. 12: The spatial correlation of dye and vorticity for the elliptical
instability simulation (a-f) and the Crow / reconnection simulation (g-
l). In the top, we can see how the dye first tracks vorticity, until the
non-linear elliptical instability kicks in and destroys the vortex, and the
correlation is lost. In the bottom, we can see how the dye follows the
vorticity much better even after the change in topology, and there is
less mixture between red and blue regions. The spatial kernel size is 3.

Re=3500 and a distance of 2.5 radii apart, which undergo either an el-
liptical instability [62] that ends with a vortex disintegration, or a Crow
instability which ends with a vortex reconnection [63] depending on the
initial conditions. The two vortices interact mainly through strain. The
datasets have dimensions of 360×360×360×120. A comparison be-
tween the two instabilities is made by adding a tracer, or dye, simulated
as a passive scalar with a Schmidt number of unity. This scalar will
track the fluid where it was originally injected. For the reconnection
simulation, there are two counter-rotating vortex tubes, which after the
reconnection changes topology, half of each tube reconnects with the
half of the other tube, to form two tubes. For this case, the dye follows
the vorticity from each tube, while for the elliptical case, the instability
generates perpendicular filaments of vorticity that have a lower dye
intensity, so the correlation between dye and vorticity will be weaker.
Figure 12 compares the spatial LCC of vorticity and dye over time for
the two simulations. From this comparison, we see that in both flows,
the two attributes have high correlation at vortex regions, indicating
similar co-variance behavior of the two attributes over time despite the
flow in the elliptical instability decorrelating dye and vorticity more
than the other one. This discrepancy from the expectation is interesting
and asks for an in-depth investigation. We provide additional results on
these two simulations in the supplemental document.

Conclusive remarks: Based on the above experiments, we can summa-
rize that for finding the center region of vortices, computing ST LCC
and/or ST VEC LCC of acceleration with another relevant attribute
(e.g., Q or λ2) in a Lagrangian view, works well (e.g., Figures 7a-b and
5c). Computing ST LCC of the norm of the Jacobian and local shearing
or the ST MI of various attribute pairs better highlights the outer layer



Table 1: Performance result for different datasets.

Dataset/Time(s)
cylinder HCCI Isabel2D VortexRing Large Ocean Cylinder3D Tube Reconnection

GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
ST LCC 0.285 117 1.784 363 0.341 176 0.679 91 8.327 2670 2.239 671 7.13 1902

ST VEC LCC 1.219 687 4.019 1093 0.732 451 2.76 310 20.341 3100 2.981 1589 12.496 3045
ST MI 0.341 132 2.01 540 0.428 204 1.102 129 12.41 2540 3.812 1890 8.925 2013

Fig. 13: Performance result for different metrics and different datasets.

of vortices (Figures 3e and 7d). For the general understanding of
attribute relation and the overview of the flow structure, ST LCC (and
S LCC for 3D data) should be used. For highlighting the full vortex re-
gions as well as more complicated types of dependency, ST MI should
be applied. Also, our ranking based segmentation can help identify
different layers of vortex structure (Figures 5 and 9). Furthermore,
joint / conditional entropy of attributes may provide explanation on the
dependency of two attributes (Figure 8).

5.1 Performance Analysis
We conducted a performance analysis on a number of datasets for the
three metrics (i.e., ST LCC, ST VEC LCC, and ST MI) to demonstrate
the performance of our method. We used a workstation with an Intel
Xeon(R) CPU E5-2640 v3 @ 2.60GHz, 128GB RAM and an Nvidia
Quadro M4000 graphics card. Using the GPU accelerated implementa-
tion of our measurements, we are able to generate the flow movement
animation from large sets of particles even for Isabel and large scale
ocean in real time. Figure 13 and Table 1 provide the timing results
for the correlation computation with respect to the given resolutions,
kernel sizes and datasets. The performance gain obtained using a GPU
accelerated version of our method is between 20-50 times, compared to
a CPU implementation. This does not include data loading time. The
kernel sizes for different datasets were selected empirically to ensure a
clear representation of flow features (e.g., vortex structures).

5.2 Parameter Study
The spatial size, r, of the kernel and the temporal length, h, are two
parameters that the user may need to explore in order to obtain optimal
results. In particular, a small spatial kernel size may lose some large
features such as large vortices or LCS structures. Figure 1c shows that
we only capture many small size vortices although some of them may
be artifacts due to a relatively small r. Increasing r may not address
this limitation, as some small but important vortices could be smoothed
out. Figure 14 shows the results of different spatial kernel sizes on the
hurricane simulation. As we can see, using a larger kernel size removes
some shearing effect in the upper right of the images. The temporal
length may affect the completeness of the captured features. The larger
the h is the more pronounced the structure will be. Figure 15 shows the
result of double gyre using various temporal kernel lengths. Comparing
these results we can see that after increasing the temporal window size
over a certain threshold, the results are somewhat converged.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the pairwise relations among attributes in un-
steady flow. Our approach provides a general and powerful way to
explore linear relation, i.e., correlations and non-linear relation, i.e.,
dependency among attribute-pairs derived from unsteady flow. We also
compared the relations of attribute value sequences in a fixed location
over time (Eulerian) or along pathlines (Lagrangian). We find that in

(a) (b) (c)
Fig. 14: The effect of spatial kernel size, r, on Lagrangian ST LCC.
From the left image to right, the r values for the results are 3, 5, and 10,
respectively.

(a) (b)

(c) (d)
Fig. 15: The effect of different temporal kernel lengths, h, for ST LCC
(a-b) and ST MI (c-d). The h values are 50 (left column) and 100 (right
column), respectively, considering τ = 0.05.

general, the correlation and dependency fields reveal more coherent and
meaningful flow structures in the Lagrangian view than in the Eulerian
view. Finally, we applied various metrics to extract the statistical linear
and non-linear relation and dependency for a set of attributes in a num-
ber of unsteady flow. Our results indicate that our ST LCC is good at
providing overview of the linear correlation among attributes, while mu-
tual information (MI) can reveal more complex and non-linear relations.
In addition, MI is scale-invariant and can measure relation between
three or more attributes by expanding the conditional and joint entropy,
which we plan to explore in the future. Furthermore, we may include
tensor-valued attributes, such as the Jacobian into our framework as
long as a proper tensor similarity metric can be developed.

Although our proposed method works across many datasets, there
are some limitations. First, we use a fixed kernel size throughout
the computation for one dataset, which may cause the loss of some
important features that often have varying scales in space and time.
Second, our method is sensitive to the temporal sampling rate provided
by the simulation. If the temporal sampling rate is coarse, we see a lot
of fluctuation in the pathline computation which interpolation cannot
alleviate. We plan to address these limitations in the future and extend
our framework to study the attribute relations in ensemble flow data.
Finally, we plan to migrate our current implementation onto clusters so
that extremely large-scale data can be processed more effectively.
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