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Abstract

Motivation: It is well known that the integration among different data-sources is reliable because of its potential of
unveiling new functionalities of the genomic expressions, which might be dormant in a single-source analysis.
Moreover, different studies have justified the more powerful analyses of multi-platform data. Toward this, in this
study, we consider the circadian genes’ omics profile, such as copy number changes and RNA-sequence data along
with their survival response. We develop a Bayesian structural equation modeling coupled with linear regressions
and log normal accelerated failure-time regression to integrate the information between these two platforms to pre-
dict the survival of the subjects. We place conjugate priors on the regression parameters and derive the Gibbs sam-
pler using the conditional distributions of them.

Results: Our extensive simulation study shows that the integrative model provides a better fit to the data than its
closest competitor. The analyses of glioblastoma cancer data and the breast cancer data from TCGA, the largest gen-
omics and transcriptomics database, support our findings.

Availability and implementation: The developed method is wrapped in R package available at https://github.com/

MAITYAO02/semmcmc.
Contact: arnab.maity@pfizer.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the current era of precision medicine, each subject is targeted for
treatment modeled via individual healthcare data. To this end of
advanced treatment, it is of interest the molecular profiling besides
the clinical profiling of the patients. Accurate prognostic prediction
using molecular profiles is an essential ingredient to develop preci-
sion medicine. Under this regime, cancer studies that are focused on
1D omics data have only provided limited information regarding the
etiology of oncogenesis and tumor progression (Huang et al., 2017).
To overcome this problem, scientists have focused to integrate
multi-platform data in cancer research.

The advent of multi-platform data has been directing the bio-
logical research and statistical methodological research to collect
and analyze these multi-platform data. The Cancer Genome Atlas
(TCGA) is the largest collection of parallel transcriptomics, genom-
ics and proteomics data along with patient’s demographic informa-
tion, primary aim of which is to generate, quality control, merge,
analyze and interpret molecular profiles at the DNA, RNA, protein
and epigenetic levels for hundreds of clinical tumors representing
various tumor types and their subtypes (Weinstein et al., 2013).
Cases that meet quality assurance specifications are characterized

using technologies that assess the sequence of the exome, copy num-
ber variation (CNV, measured by SNP-arrays), DNA methylation,
mRNA expression and RNA sequence, microRNA (miRNA) expres-
sion and transcript splice variation, whole-genome sequencing and
reverse phase protein arrays. Attention is being paid to identify the
genomic alterations across these platforms to improve the therapeut-
ic response, which may be evident from the phenotypical measures,
such as survival of the cancer patients. The reasoning behind this at-
tention can be motivated by each of the hundreds of genetic altera-
tions inside of a genome providing a complementary view of the
underlying complex biological process and thus an integrative ana-
lysis of multiple platform is required to achieve the overreaching
goal of cancer studies.

Circadian oscillation is a fundamental process that regulates a
wide variety of physiological and metabolic processes. Perturbations
of circadian rhythmicity are associated with significant physiological
consequences including metabolic disorders and cancer (Sahar and
Sassone-Corsi, 2009). Increased cancer incidence and progression
have often been linked to disruption or deregulation of the molecu-
lar mechanism of the circadian clock (Fu and Kettner, 2013).
Circadian rhythms are referred to those organisms, which exhibit
time dependent behavior across a 24-h day. These outputs are driven
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by manifestations of phasic cyclic gene expression patterns. Nearly
half of all protein-coding genes show circadian-dependent transcrip-
tion in at least one tissue in mammals (Andreani et al., 2015). There
is increasing evidence that links dysfunction of the clockwork with
the pathogenesis of cancer, such as breast cancer and brain cancer
(Davis and Mirick, 2006). In this article, we propose a Bayesian
structural equation coupled with Bayesian accelerated failure time
(AFT) model to carry out an integrative analysis where the integra-
tion takes place among the multiple platform of omics data. We con-
sider some important circadian genes, which have been reported to
play an important role in breast and brain cancer progression.

We note that, the direction of biological relationship is arbitrary
and it may be a good practice to introduce some latent variables
along with the observed variables to describe the relationships. To
this end, Wong ef al. (2018) proposed structural equation modeling
(SEM) to model the TCGA data. The history of SEM dates back to
Bentler and Weeks (1980) and it has been used extensively in the lit-
erature thereafter; e.g. in psychology (Quintana and Maxwell,
1999), in economics (Heckman and Vytlacil, 2005) and in health-
care sector (Naliboff et al., 2012). SEM requires the introduction of
latent variables and there are several studies, which make use of la-
tent variable for survival regressions, e.g. in Cox proportional-
hazard model (Larsen, 2005; Stoolmiller and Snyder, 2006).

The concept of integration is very broad. Generally, based on the
direction, they can be classified into two broad groups—horizontal
and vertical (Chu and Huang, 2017). In the horizontal integration
analysis, omics data of same types but different studies or laborato-
ries are combined. On the other hand, when the different omics data
for the same patient is analyzed then it is called the vertical integra-
tion, which is the focus of this study. The vertical integration meth-
ods are then categorized into different groups depending on the
methodologies used. For instance, Bayesian and non-Bayesian inte-
gration methods, network-based integration method, supervised
learning and non-supervised learning etc. For a full review, we refer
the readers to Huang et al. (2017). Other comprehensive references
include Tseng et al. (2015), Gomez-Cabrero et al. (2014) and
Hamid et al. (2009). A popular network-based method was reported
by Vaske et al. (2010), who developed a supervised graphical model
incorporating the pathway information. Another example of un-
supervised learning is iCluster method by Shen et al. (2009), where
by using the penalized likelihood approach they derived a clustering
solution for tumor cells. Daemen et al. (2009) proposed a kernel-
based support-vector machine to integrate microarray and omics
data for the cancer patients. However, many of these methods do
not consider the underlying biological relationship between multiple
omics data-sources.

As a remedy, Wang et al. (2013) proposed an integrated
Bayesian model, which essentially combines a two-stage regressions
in a unified manner. The first model regresses the gene expression
on the methylation expression, and the second model then regresses
the clinical variable or the phenotype on the estimated effects from
the first model. However, a major criticism of this model is that stat-
istically it encourages increment of the errors when going from the
first model to the second model.

Nevertheless, the Bayesian paradigm for structural equation is
notably scant; important references include Palomo et al. (2007) and
Song and Lee (2012). Among them, the work of Song and Lee
(2012) has described the basic ingredients of Bayesian SEM with
few examples and the codes are written in WinBUGS. However, to
the best of our knowledge, there has been no study on the applica-
tion of SEM under the Bayesian regime in survival settings. In this
article, we propose a Bayesian structural equation coupled with
Bayesian AFT model to carry out an integrative analysis where the
integration takes place among the multiple platform of omics data.
We consider the DNA CNV and RNAseq data-sources as the two
platforms to predict the survival of the patients. We show that an in-
tegrative analysis outperforms the usual regression model where the
underlying biological relationship is not captured.

In general, the TCGA collects and provides various levels DNA-
level data—methylation expression, mutation and DNA copy num-
ber changes (Wang et al., 2013). These molecular features coupled

with miRNA expressions data are known to affect the gene
expression-level data measured by microarray technology or by
next-generation RNA-sequencing technology. The genes then code
for proteins, which directly controls the tumor growth. This rela-
tionship is schematically displayed in Figure 1. Any integration
method, which wants to consider the underlying direction among
the platforms faces additional challenge and thus requires additional
processing. For example, each transcriptomics factor may or may
not be responsible for over-expression or under-expression for either
one, or multiple or neither of the genomics features. In a very similar
fashion, each gene expression may or may not code proteins and can
affect the function of multiple proteins, which are the primary fac-
tors for tumor growth or tumor suppression. To overcome this, we
assume that the expressions of each platform are controlled by a la-
tent variable and the latent variables from other platforms. The
details are described in Section 2 (Fig. 1).

In this study, we introduced the Bayesian methodologies of
TCGA data using a structural equation model and used the posterior
analysis via the Markov Chain Monte Carlo (MCMC). Our model
formulation is similar in the spirit of what is proposed by Wong
et al. (2018). However, they considered Cox proportional-hazard
model in order to model the survival time and used the EM algo-
rithm technique to maximize the likelihood function. In addition,
they assumed the latent variable can be measured via the various
types of gene expressions for a single gene and hence their model
could consider a single gene at a time. In the contrary, we assume
that for multiple genes, there exist a latent variable for circadian
gene expressions or CNVs, so this can easily accommodate multiple
genes in a single model for a better result. We considered glioblast-
oma cancer and breast cancer datasets for a set of genes, which have
been known to affect the circadian rhythms. For integration among
different platforms, we consider two types of measurements of those
genes—copy number changes and normalized RNA-sequencing
data. Our model showed that integration among these two plat-
forms provides a better fit for the survival outcome of the subjects.

The remainder of this article is organized as follows. Section 2
introduces the Bayesian methodologies of TCGA data using a struc-
tural equation model and provides a brief description how to carry
the posterior analysis via the MCMC. In Section 3, we describe
simulation examples and show that the performance of our pro-
posed model is superior to the general kind of regression. We then il-
lustrate our methodology by applying to TCGA cancer data in
Section 4. We consider two cancers, namely glioblastoma cancer
and breast cancer datasets for a set of genes, which have been
known to affect the circadian rhythms of a human biological clock.
For integration among different platforms, we consider two types of
measurements of those genes—copy number changes and normal-
ized RNA-sequencing data. Using our method, we justify that inte-
gration among these two platforms provide a better fit for the
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Fig. 1. Biological relationships among gene expressions data platforms
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survival outcome of the subjects. The discussions and conclusions in
Section 5 are then followed.

2 Multiple omics data-integrated model
2.1 The model

Vertical integration is referred to the analysis when the different
data are collected from multiple transcriptomics, genomics and pro-
teomics platforms for a same subject to infer about the cell out-
comes. To ease of explanation, we provide the model development
strategy for two platforms namely, CNV and gene expression
(mRNA), however can be generalized for multiple platforms in a
straightforward manner. The phenotypical model, we consider here
is the log-normal AFT model for the survival outcome with demo-
graphic variables as the covariates.

In what follows, we assume that each platform gets affected and
can be explained by a latent variable. Let # be the number of indi-
viduals, g1 be the number of mRNA expressions and ¢, be the num-
ber of CNV measurements. Also let #7; and 5, be the latent variables,
which control the mRNA expressions, Uy, k =1,...,q1, and CNV
measurements, Uy, [ =1,...,q2, respectively. Each gene measure-
ment is for # individuals and hence a 7 x 1 vector. In addition, 1,
can also be explained by #,, meaning that the significance of the
copy number changes are captured to describe the mRNA expres-
sions. Finally, we construct the AFT regression model of survival
data  (t*,0) = ((£},61),...,(£:,3,)) with some covariates
Xj = (xlf; cee 7xn/)/vj =1,....p.

Here, 6; is the censored indicator and takes 1 if a death is
observed and takes 0 if right censored. Given the actual death time t
and censoring time c are independent, ¢ = min(#;, ¢;). Hence, we
propose the following structural equation model:

log t =04 + XB, +m1¢, + e

1
Ulk:aulk +"1¢u1k+6u1kv kzlv---vqlv ( )

Uyt = 1 + 2By + €, 1=1,...,q2. (2)

Here, ¢ is the error vector for the AFT regression model.
Assuming ¢, ~ N(0, 621) gives raise to the log-normal AFT model. In
addition, we assume E(e,, ) =E(e,,) =0 and Cov(e,,,€,) = 0.
(e, 0y, 0y ) are the intercept parameters and (B, ¢, d,,,¢,,) are
the suitable regression parameters. To carry out the analysis in
Bayesian fashion, we impute the censored observations from the ap-
propriate truncated normal distribution. In addition, we assume
that €,,; ~ N(O,aﬁlkl) and ¢,,; ~ N(0, 0-52,1) such that each of (1)
and (2) is a standard linear regression model. Furthermore, while it
is assumed that 5, is dependent on #, via n; ~ N(n,, a%l)7 1
assumed to be independently follow N (0,0%2). The schematic dia-
gram of our structural equation model is shown in Figure 2.

We assume the standard multivariate normal distribution on the
regression coefficients f8, which can be made a vaguely informative
by assuming a large variance component in the variance-covariance
matrix. Nevertheless, other regression parameters
Oty Uy e Oty 1, Pug k> Doyt are all assumed to follow a normal distribu-
tion and can be made a vaguely informative. While, we assume a
non-informative prior on a2, the other variance parameters are kept
as fixed for our study. With these ingredients, the full Bayesian hier-
archical representation is

Fig. 2. Biological relationships among gene expressions data platforms
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log t ~ N(o + xB, + 11 ¢y, 071), (3)
U ~ Ny, + 116,001, k=1,....q1, (4)
Uy ~ N(ttuy + Moy 00, 1), 1=1,....q, (5)
m ~ N, ;). (6)
M~ N(O,O‘%Z)
B~ N(Bo, 07 Zp)
oy ~ N(azto,atzai)
ity NN(“%lle»o’ilko)v k=1,....q
Qayy ™~ N(“Myov Uiﬂo)x I= 1,...,92 (7)

¢t ~ N(¢t0~,0—(2;5)
d)m NN(d)ulkO:GéMlko)y k: 1,.‘.,q1
¢uz, ~ N(¢”210’ 0'3),‘2,0)7 I= 17 e q2

o2 ~n(oy) = 1/0?.

2.2 Identifiability

A common problem is identifiability of the full model when using a
structural equation models. Bollen and Davis (2009) discussed few
conditions under which a structural equation model becomes identi-
fiable using the exogenous X rule. In what follows, we provide a
brief description of the conditions and show that those hold under
our formulation of the model.

First, each latent variable should have at least one observed vari-
able that loads solely on it and the associated errors of measurement
are uncorrelated. According to the formulation of our model, the
observed matrices u; and u, are solely related to the latent variables
11 and n,, respectively. In addition, we have assumed that the corre-
sponding error vectors are uncorrelated. So this suffices this condi-
tion. Second, each latent variable must have at least two observed
indicators in total and the errors of these other indicators are uncor-
related with those of the unique indicators. This is satisfied trivially
with the formulation of our model. Finally, the latent variable model
(6) must have an identical structure, which is also true here.

2.3 Posterior computation

The posterior computation for the right censored data is not
straightforward since the censored data are not originally observed.
Nonetheless, we impute the right censored observations following
the data augmentation approach (Bonato et al., 2011; Tanner and
Wong, 1987). We denote the augmented data vector by
y=(1,---,Yn), where

{yi =logt# ifd=1
yi >logtf if6;=0.

Hence, to carry out the posterior analysis, at the s-th iteration of
the MCMC chain, the censored data are sampled from the truncated
normal distribution

P
¥ ~ NG+ xiy) 07 )y > log 1) if 6 = 0.
j=1

In a similar fashion, with the latent variables in the joint likeli-
hood, the posterior distribution becomes intractable. However,
using the data augmentation scheme, the latent variables can be

L . 5
updated from the condlztlonal dlstr¥but10ns M1l ~ Nty posts Oy post)
and 1. ~ N(t,, post» T, Post) respectively, where,
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q1
2 2 2 2
Ot post — 1/6771 + (Z¢M|k/gulk)
k=1

q1
2
ﬂy“post = 1/0_111 rzmst (’72/6%1 + (Z¢u1kulk/au1k)+
k=1
q1

AT logt/a? =3 (b /2, ) -

k=1

(Ptat/at% - BTXTd’tln/azz)

92
2 _ 2 2 2 2
O—’Tlposr - 1/6’11 + 1/Uﬂz + Z( uzk/a—"’zk>
=1

92
2
luﬂg post = 1/0—’72 ﬁost <’71/6%1 + Z (¢u2,7”21/o_u21)+
=1

92

Z(Oﬁuzl%zl/aﬁﬂ)

=1

Once the latent variables are updated they can be treated as
observed as the other observed variables. Hence, the conditional dis-
tributions are available explicitly, and Gibbs sampling can be
employed to cycle the iterations. The remaining details are as follows.

When, g = a0 = ¢y =0,

Bl ~N(B'x"(y — o —n1¢,),62B™"), B=(x"x+Z;")

ol ~ N(AT Uy = x B = mdy), 07A™), A=(1"1+0)

ol ~ N(AT Uy = x B, —mdy), 07A"), A=(1"1+0)

¢, ~ N(P~'my 15 (y —a—xB,), P7"), P=(m1"1+a})
62|. ~ Inverse Gamma([shape = (n+p +1)/2,

scale = {(y — o — xf8, — ’71¢t)T(Y — o —xB—me,) + /;zTﬁz + “:2}/2}

Other parameters can be updated from similar conditional distri-
butions by assuming #; and 7, as observed once they are imputed in
the MCMC chain.

2.4 Goodness of fit

There exist several model validation criteria, such as log pseudo
marginal likelihood (LPML) (Gelfand et al., 1992), L-measure
(Ibrahim and Laud, 1994) or DIC (Spiegelhalter et al., 2002). The
literature is also advocated with the application of these criteria in
survival settings, e.g. see Brown et al. (20035), Ibrahim et al. (2005)
and Rizopoulos and Ghosh (2011). In this article, to measure the
goodness of fit, we consider the deviance information criterion,
which combines goodness of fit of a model with a penalty for model
complexity and is defined as the model deviance + 2x (effective
number of parameters), evaluated at a posterior point estimate of
the parameter. In particular, DIC = D(0) + 2pp, where D(0) =
—2logf(.|0), f(.|0) is the likelihood function of the model and 6 is an
estimate of the model parameter 0. In the above expression, pp is
termed as the effective number of parameters and is defined as
pp = D(0) — D(0), where D(0) is a posterior point estimate of the
deviance. In our proposed model, it is possible to partition the likeli-
hoods over survival and coordinates and thus to obtain the DIC for
survival model. A model with smaller value of DIC is preferred.

The conditional predictive ordinate (CPO) is a Bayesian model diag-
nostic criterion introduced in Geisser and Eddy (1979) and its imple-
mentation in sampling-based approaches is discussed in Gelfand et al.
(1992). For a model, the CPO of the ith observation y; is defined as

CPO, = f(yly ;) = jf<y,-\e>n(0\y,,->de,

where y_; =y \ {yi}. Gelfand ez al. (1992) provided an estimate of
CPO; based on Markov chain samples from the full posterior 7(0y).
The LPML of model ¢(2) is constructed similar to the log-likglihood,
but based on the CPO,, and is defined as LPML = log ] CPO,.
Model with higher LPML is preferred. The LPML is well-defined,
provided the predictive density is proper and thus may be defined
under improper priors as well.

3 Operating characteristics in simulation studies

3.1 Integrated model as the data-generating model

In this section, we study some simulated examples to observe the
prediction performance using our Bayesian structural equation inte-
grated model. To this direction, we generate the covariate matrix
from a multivariate normal distribution with mean 0, variance-
covariance matrix as unit matrix and dimension two, i.e. p=5. All
the regression parameters f and the intercept parameters o, o, , %,
are generated from a uniform distribution U(—1,1). We set the la-
tent variable coefficients ¢, = ¢, = ¢,, =1 and the variance
parameters o7 = 1, 62 = o2 = 1. Additionally, we consider gener-
ating the data by setting 6* = 2 and 07, = o3, = 1. The case of vary-
ing aﬁl and aﬁz is discussed in Section 3.3, and the impact of placing
an informative proper prior is discussed in the Supplementary
Material.

Then the latent variables 1, and 5, are generated according to
(6) and (7), respectively. The mRNA expressions u; and copy num-
ber changes u, are simulated according to (4) and (5), respectively.
Finally, we simulate the time components t in log scale according to
(3). We consider both situations with censoring and with no censor-
ing. When censored subjects are created the censoring distribution
of the censoring time c is assumed to follow a Gamma distribution
and hence the amount of censored data can be controlled by varying
the shape and scale parameters of the Gamma distribution. So, we
obtain the observed paired response data
{t;,0i} = {min(t;,¢;),I(t; < ¢;)},i=1,...,n, where, n = 100. We
simulate 100 similar datasets in order to assess the goodness of fit of
the integrated model in repeated experiments.

When fitting the integrated model to the simulated data, we set
all the mean parameters of the prior distributions as 0. In addition,
the variance parameters of the normal priors are kept as 1, while the
variance-covariance matrix for f, is diag(100 000). We simulate the
datasets with the censoring rates 0% (no censoring), 28%, 37% and
50%. It is observed that, in the Bayesian analysis after discarding
2000 burn-in samples, 100 000 iterations with 100 thinning provide
a good stationary Markov chain. For comparison, we also fit a
Bayesian log-normal AFT model on the data with covariates x, u;
and u,, i.e. the demographic variables, mRNA and CNV data, re-
spectively, and referred to it as nonlntegrated model. In particular,
we fit the model

log t=0+xf+u71 +uypa+6 (8)

where € ~ N(0, 6%I), and f, 7,7, are corresponding regression coef-
ficients. We impose vaguely informative prior on the parameters as
discussed previously and to carry out the Bayesian analysis we aug-
ment the censored data and impute them.

To the best of our knowledge, the existing software do not han-
dle censored survival outcomes. Nevertheless, to compare with the
available software packages, we selected the R package lavaan
(Rosseel, 2012) as a representative. This method is used to estimate
the MSE when there is no censoring in the data. A related compari-
son with the iBAG method (Wang ef al., 2013) is provided in the
Supplementary Material.

The MCMC routine takes about 1.6 min per 100 000 iterations
in a computing system equipped with Intel(R) Core(TM) i5-8350U
CPU @ 1.76 GHz 1.90 GHz processor, 8.00 GB RAM and 64-bit
operating system. Table 1 summarizes the result and the superior
performance of the proposed integrated model is evident form the
table. For instance, in the case of 62 = 1, when about 28% data are
right censored the DIC of integrated model is 290.04 while the same
for the nonlntegrated model is 314.25; this suggests that the inte-
grated method, where the underlying relationship is captured, pro-
vides a better fit to the data. Similarly, the LPML due to integrated
method is —313.82 that is greater than —787.30, LPML due to the
nonlntegrated method, which supports in favor of the structural
equation model-based integration method.

Furthermore, the existing lavaan package employs a non-
Bayesian method to fit the SEM and hence the model fitting criteria,
such as DIC and LPML, cannot be computed. When the MSE is cal-
culated for the non-censoring case, we notice that the estimated
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Table 1. Goodness of fit for the integrated and nonintegrated models in simulation examples
Censor rate Method DIC LPML MSE
2 =1
0% Integrated 276.32 —575.22 0.000
Nonlntegrated 284.42 —802.14 0.000
lavaan — — 2.362
28% Integrated 290.04 —313.82 0.048
Nonlntegrated 314.25 —787.30 0.052
37% Integrated 288.07 —283.90 0.113
Nonlntegrated 308.30 —815.26 0.221
50% Integrated 300.14 —235.73 0.296
Nonlntegrated 303.02 —1267.44 0.345
0'[2 =2
0% Integrated 417.46 —344.67 0.000
Nonlntegrated 441.50 —972.82 0.000
lavaan — — 4.154
28% Integrated 395.24 —255.26 0.623
Nonlntegrated 409.13 —556.66 0.734
37% Integrated 386.99 —197.14 0.946
Nonlntegrated 397.52 —467.39 1.095
50% Integrated 356.88 -159.57 1.345
Nonlntegrated 376.53 —491.02 1.480
Data-generating model is the nonIntegrated model
0% Integrated 553.18 —497.72 0.000
Nonlntegrated 545.42 —441.32 0.000
lavaan — — 5.284
28% Integrated 508.00 —285.73 1.834
Nonlntegrated 503.68 —257.19 1.787
37% Integrated 499.62 —246.98 2.567
Nonlntegrated 495.85 —236.26 2.551
50% Integrated 486.30 —240.78 4.088
Nonlntegrated 483.29 —209.78 4.031

average MSE 2.36 is far larger than that of integrated model.
Moreover, for all the censoring cases and non-censoring cases, the
MSE due to the integrated model remains smaller than the
nonlIntegrated model.

3.2 NonlIntegrated model as the data-generating model
This section is devoted to the simulation study when the data are
generated from the nonlntegrated model (8). We use this model to
generate 100 simulated datasets in which the data generation
scheme was very similar to what have been discussed in Section 3.1.
After generating the dataset according to a nonlntegrated model, we
fit both integrated model and nonlIntegrated model. We provide the
summary of the results in Table 1. We note that, for instance, when
there are about 28% of the data are right censored and a
nonlntegrated model is fitted in the generated datasets, the average
DIC is 503.68 and when the integrated model is fitted then the aver-
age DIC is 508.00. Hence, it can be concluded that even though the
integrated model does not provide a better fit the difference is, how-
ever, very small to distinguish unlike the case when the data-
generating model is the integrated model. This phenomenon is evi-
dent in the other results of DIC, LPML and MSE in Table 1.

3.3 Sensitivity analysis

The purpose of this example to examine the effect in the perform-
ance of our proposed integrated model under different fixed values
of the variance parameters o,, and g,,. We generate the data in the
same way as in Section 3.1. The censoring distribution parameters
are set in such a way that the average censoring for 100 simulated
data is about 25%. The other priors were similar to what we had in
the previous section. Table 2 presents the results under different set
of values of o,, and 0,,. One can notice that even though we vary

Table 2. DIC, LPML and MSE of the integrated model for simulated
data under different values of 62 and o2 , censoring rate =24%

(0%, 02,) DIC LPML MSE

(0.25,0.25) 305.64 —290.84 0.0419
(0.50, 0.50) 305.73 -290.33 0.0417
(0.75,0.75) 306.20 —289.04 0.0422
(1.00, 1.00) 306.33 —-291.35 0.0417
(1.50, 1.50) 307.32 -289.34 0.0428
(2.00, 2.00) 307.34 —289.43 0.0423

the fix values of o,, and o,,, we see a little deviation of the results in
terms of the DIC, LPML and MSE values of the fitted integrated
model. This follows that when the values of ¢,, and o, are within
the range of (0, 2), then the integrated model is not affected by the
fixed values of these parameters.

4 Circadian genes from TCGA

In TCGA data, among available omics expressions, the DNA copy
number changes are collected via SNP-arrays and array comparative
genomic hybridization and for breast cancer data, only the first kind
is available via the R package TCGA2STAT (Wan et al., 2015).
TCGA provides the gene expression data in several different forms
and among them we have considered the one, which is measured via
RNA-sequencing technology preprocessed using the first pipeline
and normalized to get continuous measurements, which is known as
Reads Per Kilobase Million. The original data are the version-
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Table 3. Circadian genes used for TCGA data analysis

Genes Description

CRY1 Belongs to the flavoproteins superfamily that exists in all
kingdoms of life and act as light-independent inhibitors of
CLOCK-BMAL1 components of the circadian clock

CRY2 Belong to the flavoproteins superfamily that exists in all
kingdoms of life and act as light-independent inhibitors of
CLOCK-BMAL1 components of the circadian clock

CSNK1E The protein encoded by this gene is a serine/threonine

protein kinase and a member of the casein kinase I

protein family, whose members have been implicated

in the control of cytoplasmic and nuclear processes,

including DNA replication and repair

DEC1 Transcriptional repressor involved in the regulation of the
circadian rhythm by negatively regulating the
activity of the clock genes and clock-controlled genes

MT2 Is a member of the metallothionein family of genes.
Proteins encoded by this gene family are low
in molecular weight, are cysteine-rich,
lack aromatic residues and bind divalent
heavy metal ions, altering the intracellular
concentration of heavy metals in the cell

NPAS2 A protein-coding gene and a transcriptional activator,
which forms a core component of the circadian clock

PER1 Encodes the period circadian protein homolog 1
protein in humans
PER2 A member of the Period family of genes

and is expressed in a circadian pattern

in the suprachiasmatic nucleus (SCN)
PER3 Expressed in a circadian pattern in the

SCN,

the primary circadian pacemaker in the mammalian brain
TIMELESS  Is notable for its role in Drosophila for encoding TIM,

an essential protein that regulates circadian rhythm

stamped standardized datasets hosted and maintained by the Broad
Institute GDAC Firehose.

Our study focuses on the circadian genes and their effects on the
patients’ survival. We collected 10 such gene expressions (Table 3)
with the corresponding observed survival components, the age and
the gender of 68 glioblastoma tumor samples and 364 breast tumor
samples.

4.1 Glioblastoma cancer data analysis

Glioblastoma, also known as glioblastoma multiforme or grade IV
astrocytoma, is a fast-growing, aggressive type of central nervous
system tumor that forms on the supportive tissue of the brain and it
is the most common grade IV brain cancer. In 2018, more than
23 000 Americans were estimated to have been diagnosed and
among them 16 000 were estimated to have died from brain and
other nervous system cancers (Siegel et al., 2018). Glioblastoma
accounts for about 15% of all brain tumors and occurs in adults be-
tween the ages of 45-70 years. Among the available data about 27%
are right censored.

In addition, in this analysis, we consider the gender and the age
of the patients as the external predictors on the survival time. As an
exploratory analysis, we fit a log-normal AFT regression of the sur-
vival times of the individuals on their age. Figure 3 displays the
residuals and the Q-Q plot of those residuals. The residual plot
shows that there is no clear pattern in the residuals. Furthermore,
the Q-Q plot establishes that the log-normal assumption on the re-
sidual distribution is adequate.

We specify the following values for the prior distribution param-
eters for various parameters. For example, we set f,y = 0, Zj is the
unit variance-covariance matrix, i.e. the diagonals are set to 1 and
the off-diagonals are 0. We set, o9 =0, O’i = 1. Similarly, the

Fig. 3. Top panel: residual plot of the log-normal regression of the survival time on
the age of the individuals. Bottom panel: Q-Q plot of those residual against the nor-
mal distribution

standard normal distribution is placed as the prior distributions of
Lrtyy s Osys Ppy Py » and @y, k=1,...,q1, I =1,...,¢5. For our ex-
periment g1 = g, = 10.

We provide the goodness of fit results in Table 4 and we note
that the results of DIC and LPML suggest the superior performance
of the proposed integrated approach compared to the traditional
one. For example, when the SEM is fitted to the data the DIC is
—244.93, which is lower than the DIC, 213.20, when the
nonlntegrated model is fitted. Furthermore, in Figure 4, for two ran-
domly selected individuals, we depict the survival probabilities com-
puted using the two methods on the Kaplan—-Meier plot.

4.1.1 Comparison with the existing method

In this section, we provide a brief study to find the performance of
our proposed integrated structural equation model in comparison to
the existing iBAG method (Wang ef al., 2013). The experiment is
carried out on the Glioblastoma dataset. We note that, iBAG
method is primarily developed to assess the individual gene effect on
the clinical outcome while considering the underlying relationship
between the different high-dimensional omics data platforms, such
as methylation and mRNA expressions. To this end, this method
employs a high-dimensional Bayesian variable selection in the fitting
of the model. In contrast, in this article, the proposed structural
equation method is examined only for circadian genes, which are re-
sponsible for exhibiting time dependent behavior across 24 h of
each day, i.e. we are interested in explaining the relationship be-
tween a particular trait and the survival of the cancer patients. Since
feature selection is not the primary interest of our study, a direct
comparison is beyond the scope of this article.

Nevertheless, in this example, we present a comparative study of
both the methods. The computation for the iBAG method is carried
out using the code given in Wang et al. (2013). When fitting iBAG
to the Glioblastoma dataset considered here, we replace the methy-
lation expressions and the mRNA expressions with the CNV and
the RNQSeq data, respectively. The available program does not
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Table 4. Goodness of fit for the integrated and nonintegrated mod-
els in glioblastoma data

Table 5. Goodness of fit for the integrated and nonintegrated mod-
els in breast cancer data

Method DIC LPML MSE Method DIC LPML
Integrated —244.93 —175.58 0.230 Integrated 1077.38 —277.24
Nonlntegrated 213.20 —-303.44 0.459 Nonlntegrated 1104.87 —384.10
iBAG — — 0.392

—a —2 —1 ° 1

Fig. 4. Survival functions for randomly selected two individuals for glioblastoma
cancer dataset. Solid (black): the Kaplan—-Meier plot, dashed (blue): integrated struc-
tural equation model and dotted (red): nonIntegrated model

provide DIC and LPML for the fitted model. Hence, the MSE is
computed on the uncensored time points and is given in Table 4.
One can note that, the MSE due to our proposed integrated method
is 0.230 and the same for iBAG method is 0.392. This concludes
that the propose SEM method remains superior in terms of the pre-
diction performance.

4.2 Breast cancer data analysis

Breast cancer is one of the most common cancers with a massive
number of cases reported. For instance, in 2018, more than 268 000
Americans were estimated to have been diagnosed and 41 000 were
estimated to have died from breast cancer related tumors (Siegel
et al., 2018). This heterogeneous disease is categorized into three
groups, such as the oestrogen receptor group, the HER2 amplified
group and the triple-negative breast cancers or the basal-like breast
cancers (Network, 2012). Among them, we consider the informa-
tion of 364 breast tumor samples with their survival data from
TCGA. We observe that at least 82% data are right censored. In the
analysis, we consider the age variable as a covariate effect on the
survival time.

We present the goodness of fit results in Table 5 and we notice
that the DIC due to our proposed method is 1077.38, which is less
than the DIC 1104.87 due to the nonlntegrated model. This indi-
cates that the proposed integrated model provides a better fit to the

—e —a —= °

Fig. 5. Survival functions for randomly selected two individuals for breast cancer
dataset. Solid (black): the Kaplan-Meier plot, dashed (blue): integrated structural
equation model and dotted (red): nonIntegrated model

breast cancer data. This is also confirmed by the LPML numbers
obtained by fitting the different models to data. In Figure 5, for two
randomly selected individuals, we depict the survival probabilities
computed using the two methods on the Kaplan—Meier plot.

5 Conclusion

In this article, we have proposed a simple Bayesian SEM technique
to integrate the information from different omics platform. We have
shown that the proposed SEM technique provides improved survival
prediction and better fits to the data compared to the traditional ap-
proach. Our focus in this article is concentrated on circadian genes
only. Toward this end, the sole intention of the proposed method is
to capture the biological system in order to predict the patient sur-
vival when the circadian genes are of the interest.

Nonetheless, when a large number of gene expressions is under
consideration and we have only limited number of patient samples
then a sophisticated variable selection method needs to be imple-
mented which will also have the ability to detect the effect of a single
gene on the clinical outcome.

In a very general setup, we can allow a latent variable for each
gene and use appropriate priors to borrow strength. This will be an
over parameterized model with huge number of random effects and
due to their correlations the computation will be extremely slow and
expensive. The remedy is to categorize (cluster or group) the genes
according to their functions and use a latent variable corresponding
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to each of these categories. In our applications, we are working only
with circadian genes, which can be treated as a single category and
hence we have specified a single latent variable corresponding to it.
Extension to multi-category models will be done in future research
using clustered models.

We have specified a non-informative prior on ¢2. It is worth to
mention that an Inverse Gamma prior would also maintain the con-
jugacy. However, our study shows that, imposing a suitable prior on
all other variance parameters results in similar superior performance
of the proposed structural equation based integrated modeling,
which is evident from the analysis given in the Supplementary
Material. Hence, choice of appropriate priors for those parameters
is kept for future studies.

The two platforms, we have considered here are RNAseq and
CNV. In these regressions, we separately regress the corresponding
expressions on two separate latent variables for each gene. Hence,
we have assumed that those regressions are conditionally independ-
ent from each other’s. If a particular application violates this as-
sumption caution should be exercised.

We assume our model specification to be fully parametric. As a
starting approach, the log-normal model is assumed here. A Weibull
model or a Gamma model is also possible to fit. However, all of
these distributions have similar tail property. Moreover, we examine
the residual plots of the log-normal models (included in Section 4.1
for the age variable and in the Supplementary Material for few
genes), which are satisfactory for a log-normal assumption.
Nevertheless, one possible extension, as indicated by Wong et al.
(2018), is to consider non-parametric models, which is due for the
future research. The theoretical properties are also of future
interests.

The latent variables, which are key components of the proposed
model are platform specific, i.e. each platform expression is regu-
lated by a single latent variable, which is sufficient for circadian os-
cillation characteristics. Using this and using the log-normal AFT
model, we have developed the structural equation model to predict
the clinical outcome survival. The log-normal AFT model has been
shown adequately fitted to the TCGA data considered here. In our
examples, we showed that the proposed model outperformed inde-
pendent models. However, one must be aware that if any or some of
the assumptions are not satisfied then the model should be tuned
accordingly.
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