Computers & Graphics (2017)

Contents lists available at ScienceDirect OMPUTER
&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/results-in-physics

Hexahedral Mesh Quality Improvement via Edge-Angle Optimization

Kaoji Xu?, Xifeng Gao®!, Guoning Chen®*

@ University of Houston, Houston, TX, USA
" New York University, Newyork, NY, USA

ARTICLE INFO ABSTRACT

We introduce a simple and practical technique to untangle and improve hexahedral (hex-
) meshes. We achieve that by enabling the deformation of the boundary surfaces during
the untangling process, which provides more space to reach a valid solution. To improve
the element quality, an angle optimization strategy is proposed, which has much simpler
formulation than the existing method. The deformed volume after optimization is then
pulled back to the original one using an inversion-free deformation. In contrast to the
current methods, we perform the untangling and quality improvement within a few lo-
cal regions surrounding elements with undesired quality, which can effectively improve
the minimum scaled Jacobian (MSJ) quality of the mesh over the existing method. We
demonstrate the effectiveness of our methods by applying it to the hex-meshes gener-

Article history:

Keywords: Hex-mesh, Untangling, Qual-
ity Improvement, Optimization

ated by a range of methods.

© 2017 Elsevier B. V. All rights reserved.

1. Introduction

Hexahedral (or hex-) meshes, are commonly employed by
many critical applications that require to solve volumetric par-
tial differential equations. This is mostly due to its naturally em-
bedded tensor product structure, larger tolerance for anisotropy
and less numerical stiffness, compared to unstructured meshes
(e.g., tetrahedral (or tet-) meshes). These preferred properties
enable the convenient imposition of a simulation basis with a
higher derivative smoothness between elements of the mesh,
and the handling of large deformation during simulations.

However, given any input models, generating hex-meshes
with good quality elements while conforming to the surface
configuration remains an ongoing challenge. The initially com-
puted hex-meshes, produced by the state-of-the-art methods,
such as the polycube mapping or frame-field based methods,
often contain inverted elements (i.e., elements with a negative
local volume at one or more of its corners), which cannot be

*Corresponding author: Tel.: +1-713-743-5788;
e-mail: gchenl6Quh .edu (Guoning Chen)

directly applied for finite element calculations [1]. Therefore,
there is a need for hex-mesh improvement to eliminate the in-
verted elements and regulate the element shapes [2] while pre-
serving surface features.

A number of techniques have been proposed to untangle and
improve hex-meshes with inverted elements without changing
their connectivity [2, 3, 4, 5, 6, 7]. However, none of them
is guaranteed to produce inversion-free hex-meshes. Recently,
Livesu et al. [8] introduced an untangling method that optimizes
the cone-shapes around the individual edges of the hex-mesh to
ensure a positive volume for the tetrahedra around the edges.
The formulation of their energy function contains several terms
that optimize different geometric characteristics of the mesh.
However, the optimization is performed globally with varying
weights that prefer elements that already have a good shape.
While this strategy helps retain the elements with good quality
(i.e. by fixing them), it may prevent the improvement of ele-
ments with less optimal quality.

In this work, we propose a local untangling and improve-
ment framework so that the optimization is performed only
around inverted elements or elements with quality below a user-

20

21

22

23

24

25

26

27

28

29

30

34

35

36

37

38

http://www.sciencedirect.com
http://www.elsevier.com/locate/results-in-physics

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

2 Given-name Surname efal/ Computers & Graphics (2017)

specified minimum value (i.e., minimum scaled Jacobian [9],
or MSJ). In our local framework, the focus is on improving
those elements with undesired quality (i.e., good quality ele-
ment may become slightly worse), which relieves the stiffness
in the global optimization caused by the elements with good
quality, allowing the MSJ quality to be further improved. In the
meantime, we introduce a new angle-based distortion energy
that characterizes different optimization goals (e.g., orthogo-
nality and straightness) via a unified formulation, largely sim-
plifying the setup and solving of the system. Furthermore, to
facilitate the search of a valid solution to our optimization, the
boundary surface is relaxed if needed. However, relaxing the
surface constraint may lead to a large surface distance between
the boundary of the output mesh and the original surface. To ad-
dress that, we perform an inversion-free deformation that grad-
ually pulls the surface back to its original one while still guaran-
teeing an inversion-free outcome. Note that this inversion-free
deformation is only performed after the untangling process. For
the improvement of MSJ, this pull-back process is not applied,
as it may worsen the MSJ — against the goal of MSJ improv-
ing. Instead, we directly project the surface back to the original
one after improving the MSJ of an inversion-free mesh. Af-
ter improving the MSJ to a user desired level, we perform a
Laplacian-like smoothing to improve the average scaled Jaco-
bian (ASJ) of the mesh. Our framework is simple to imple-
ment and can handle more challenging inputs than the existing
methods. In average, our method takes 2 minutes for a mesh
with 10k-20k elements. We have applied our method to over 80
meshes generated by the polycube-based methods, octree-based
method, and frame-field based method , respectively, to demon-
strate its effectiveness. All our results have been submitted as
the supplemental material, and a reference implementation will
be released upon acceptance.

2. Related Work

In this section, we review the most relevant literature for the
creation and optimization of hex-meshes.

Hex-meshing. Considering its importance to finite ele-
ment simulation [10], a large amount of effort has been ded-
icated to the generation of valid all-hex meshes. These meth-
ods range from the early sweeping and paving [11, 12], grid-
based [13, 14, 15, 16] and octree-based methods [17, 18, 19, 20]
to the polycube-based [21, 22, 23, 24] and frame-field based
approaches [25, 26, 27, 28]. A recent survey [29] provides a
detailed look at the advances in this direction. Despite these
many existing hex-meshing techniques, most initial hex-meshes
generated with these approaches need to undergo a quality opti-
mization process to substantially improve their quality for prac-
tical use. Our method can be used to optimize the initial meshes
produced by a variety of these methods.

Hex-Mesh Optimization. Since it is a necessary step
in the meshing pipeline, an equally large amount of work for
the improvement of the hex-mesh quality has been proposed.
There are two different strategies to improve the mesh quality.
The first strategy adopts various smoothing (e.g., the Winslow
smoothing [30]) and optimization methods (e.g., via the geo-

connectivity, while the second strategy requires the modifi-
cation of the mesh connectivity to achieve the desired qual-
ity improvement, such as the padding process [18, 32] typi-
cally used in the polycube-based methods. Other methods, like
the singularity alignment [33] and polycube domain simplifica-
tion [34, 35] have been proposed to optimize the structure of
the hex-meshes. Our method belongs to the first group.

In order to optimize the quality of a hex-mesh, a quality met-
ric has to be identified for the optimizer to improve upon the
mesh. According to a Sandia Report by Stimpson et al. [9],
there are more than a dozen quality metrics for hex-meshes.
Most of these quality metrics measure the difference between a
given hexahedron and a canonical cube via either angle distor-
tion, length ratio or tensor distortion. Although there is not a
comprehensive study on the effectiveness of these metrics [36],
the scaled Jacobian metrics are the most commonly used met-
rics in the meshing and simulation communities. Intuitively,
the Jacobian metric measures the solid angle distortion at the
corners of a hexahedron. If the solid angles at the corners are
all 90°, the scaled Jacobian achieves the optimal value of 1. It
is well-known that a hexahedron can be decomposed into eight
overlapping tetrahedra. It may be natural to use various tet-
mesh optimization techniques [37, 38] to optimize these indi-
vidual tetrahedra. It is also worth noting that many simplicial
and polygonal map optimization techniques [39, 40, 41] can
also be applied to optimize tet-meshes. However, as already
shown in the work by Livesu et al. [8], simply optimizing the
tetrahedra associated with the corners of a hexahedron may not
improve its quality. Fu et al. [42] introduced an advanced MIPS
method for computing locally injective mappings, which can
be used to substantially improve the quality of a couple hex-
meshes. However, only a few simple hex-meshes with no in-
verted elements were used in their testing. It is unclear how
general this can be when applied to other hex-meshes with a
substantially lower quality.

Besides that, many other hex-mesh optimization techniques
exist. As reviewed by Wilson [43] and Livesu et al. [8], these
techniques generally focus on untangling inverted elements
(i.e., with negative scaled Jacobian) and improving the aver-
age element quality. Knupp introduced techniques to untan-
gle the inverted elements [2] and improve the overall quality of
the hex-mesh [3], which later have been integrated into the fa-
mous Mesquite library [4]. Specifically, the Mesquite library
attempts to simultaneously untangle and improve the hex-mesh
by minimizing an ¢; function. However, since it optimizes one
vertex at a time, the performance of Mesquite is slow when ap-
plied to hex-meshes with a large number of inverted elements.
Later methods resort to local Gauss-Seidel approaches to itera-
tively untangle and smooth meshes [5, 6, 7]. Besides the Gauss-
Seidel optimization strategies, non-linear optimization has also
been applied to improve the hex-mesh quality [43]. Other opti-
mization techniques for specific types of hex-meshes also exist,
such as the quality improvement method for octree-based hex-
meshes by Sun et al. [44]. Like many existing approaches, our
method can handle hex-meshes generated by different methods
(Section 4).

metric flow [31]) to optimize the mesh without changing its + s Recently, Livesu et al. [8] introduced the edge cone descrip-

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Al

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Given-name Surname etal / Computers & Graphics (2017) 3

tor that indirectly measures the distortion of the hexahedra via a
set of tetrahedra around each mesh edge. Based on this descrip-
tor, a non-linear energy function is defined globally. To solve it,
a local-global strategy is applied. As shown by the authors, this
approach can untangle meshes that previous methods may fail
to untangle. Therefore, we consider this method state-of-the-art
and compare our method with it in this paper.

3. Methodology

Similar to many mesh optimizers, given an input mesh with
a valid all-hex connectivity, our method first corrects the in-
verted elements, then improves the overall mesh quality. We
also allow the boundary vertices to move out of the original
volume if a valid solution cannot be found during untangling.
This relaxation alleviates the difficulty of untangling elements
at the concave areas of the surface. However, different from
most methods, we directly measure the distance of the angles
between pairs of connected edges from their respective ideal
angles, leading to an intuitive and unified distortion energy for-
mulation. In summary, our method consists of the following
key steps (Fig. 1).

Compute target surface. In this step we improve the qual-
ity of the surface and associate surface vertices with the features
detected from the input mesh (Section 3.1).

Untangling. We detect all inverted elements based on their
scaled Jacobians. A local optimizer coupled with a surface
relaxation strategy is then used to untangle those inverted el-
ements iteratively until an inversion-free outcome is obtained
(Section 3.2).

Inversion-free volume deformation. Due to the relaxation
of surface constraint, after the above untangling process, the
boundary surface of the output inversion-free hex-mesh may
be far away from the original surface. We then perform an
inversion-free deformation to pull the current surface back to
its original one procedurally (Section 3.3). This step is optional,
most models do not need this step.

Improve MSJ. Even though the mesh is currently inversion-
free (i.e., all elements have positive scaled Jacobian), its MSJ
may still be too low for practical use. To further improve the
MSJ, we adopt the above untangling process but with a larger
target MSJ (> 0) set by the user and perform the same local op-
timization (Section 3.4). In other words, the above untangling
process can be considered as an optimization with the target
MSJ= 0.

After achieving the target MSJ, the obtained hex-mesh may
undergo a global optimization to improve its average element
quality. However, this step is optional. In the following sub-
sections, we provide more details on the individual steps.

3.1. Compute Target Surface €

Two different scenarios are considered: 1) the input has
a reference triangle mesh of the boundary, and 2) the in-
put does not have a reference triangle mesh of the bound-
ary. For the former, we first smooth and project the sur-
face vertices to the surface of reference mesh, and then

Q,. For the latter, we consider the boundary of the input
mesh as the reference mesh to compute the target surface.
We first use a simple Lapla-

cian smoothing to improve N

the surface (e.g., regulate the /@ _>/V L& A %
boundary quad mesh) of the

input hex-mesh. Generally, we perform 20 iterations of smooth-
ing. Smoothing the interior vertices in the volume is optional.
We then project the smoothed surface to the reference mesh. To
do so, we use a perpendicular ray to project a vertex v to all
planes of triangle facets on the reference mesh. Specifically, a
quad facet has 4 overlapping triangle facets. If the intersect-
ing point p is inside the triangle (i.e., the u, v parameters of its
barycentric coordinates satisfy u > 0,v > 0,u + v < 1), we add
it to a set S. Finally, we select the intersecting point p that is
the closest to v as the projected point. Via this projection, we
obtain the target surface ;.

For classifying the boundary vertices, we rely on a user-
specified angle threshold 6. If the dihedral angle between two
facets sharing a common edge e is smaller than 6, we classify
the vertices of e as on the sharp feature L. If a vertex is adjacent
to more than 2 sharp edges, then we consider it as a corner C.
We mark other surface vertices as regular. During the optimiza-
tion, a corner could only move within a very small ball, a vertex
of sharp edge could move along the feature line, and a regular
vertex could move along the tangent plane. See the Eq.(7) for
more detailed discussion on how to use this classification.

3.2. Untangling

Our untangling process is performed locally. We first de-
tect all the inverted elements based on their scaled Jacobians.
We then define a local region surrounding each inverted ele-
ment. For those inverted elements that form a cluster (i.e., con-
nected with each other), a larger region will be identified. In
our implementation, the local region is defined as the union of
the two-ring neighborhood surrounding each inverted element.
The reason of considering a two-ring neighborhood is that one-
ring neighborhood might not provide sufficient information for
the subsequent target edge length computation (i.e., Eq. (8)). If
the mesh contains a large portion of inverted elements (e.g., the
fandisk model in Figure 6), a larger neighborhood will be con-
structed to enclose these elements. During the optimization,
the boundary vertices of this local region are fixed. To untan-
gle the elements within this local region, an energy function is
used to compute the distortion of the individual elements from
a canonical cube. In general, any proper distortion energy func-
tion can be used here, including the edge cone descriptor [8].

However, we opt for an variant of the edge cone descriptor
inspired by the recently introduced local frame description [45]
due to the following reasons. First, it is intuitive and easy to
implement. Second, it will be shown that all different energy
terms can be unified under the same representation. In the next,
we describe our distortion energy.

3.2.1. Distortion Energy
Given an all-hex mesh 9 that contains the sets of vertices

take the smoothed and projected mesh as the target surface = s» € V, edges e € E, facets f € F and hexahedral cells & € H.

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

4 Given-name Surname efal/ Computers & Graphics (2017)

(a) input H (b) target surface €

inverted elements

(c) local region around (d) untangled mesh H’ (e) inve{sion—free defor-

(f) result
mation H

Fig. 1. We optimize a hex-mesh (a) with multiple inverted (red) elements. We first obtain a target surface (b) by aligning boundary vertices to features. We
then produce an inversion-free mesh (d) with large surface distance error via optimizing the local regions (c) using a soft constraint on the surface. Next,
we use inversion-free deformation to pull the surface of (d) back to the one obtained in (b) and obtain an inversion-free mesh (e). Using a hard constraint
on the surface, we further optimize the mesh to improve its MSJ with low surface distance error (f).

Let v denote the coordinates of vertex v. Our goal is to minimize 1s
the following energy.

min E(v) = Eo(V) + Es(V) + Er(V) ey

(@) eg Lej—eq,e1 |l ez, ezl ey (b) eo Lep —es,eiffeji#j

Fig. 2. The relationship of neighboring edges. e in (a) is a regular edge,
while e in (b) is irregular. Different colors indicate different parameteri-
zation directions.

Orthogonality term. Consider a set of edges e; adjacent to ver-
tex v, the ideal configuration of two edges that are following
two different parameterization directions should be as orthogo-
nal as possible (e.g., edge e versus the other edges as shown in
Figure 2(a)). This leads to the orthogonality energy.

Eo(v)=) Z ' 132)

e;€eE eiNej=
e,J_e g
where e; L e; indicates that the two edges are on two different
parameterization directions that are orthogonal to each other.
¢; and € are the edge vectors associated with edges ¢; and ¢},
respectively, pointing outwardly from the center vertex v. That
is, € = v; — V.

Straightness term. Similarly, we can define the straightness en-
ergy among the connected edges that are following the same
parameterization direction as follows.

2
Esm =), Z(muw>”) @

e;,cE eiNe;
e; IIe ;
This energy attempts to make the connected edges that are fol-
lowing the same parameterization direction as straight as possi-
ble (e.g., the gray edge pair e; and e3 and the green pair e, and
e4 in Figure 2(a)).

Irregular edge term. The above straightness term cannot han-
dle the irregular edges whose values are not 4. Consider e with
valence 5 in Figure 2(b). In this case, the orthogonality between
eo and the rest of the edges around v still holds. However, it is
impossible to define the straightness among edges e; —es due to
the irregularity. To address that, we define an energy as the dif-
ference between their pairwise angles and their respective ideal
angles.

el ﬁj A2
Er(v) = (< —— > —q) 4)
2, 25
e ,Le,
eifte;

where & = cosb;; s 0;; ; is the ideal target angle between edge
vectors ¢; and €;. For instance, the ideal angle between edges
e and e is Z, while the ideal angle is % between e; and e in

Figure 2(b).

Unified energy. In fact, all the above energy terms can be de-
fined as the difference of the angles between pairs of edges from
their respective ideal angles. This leads to the following unified
expression of all above energy terms

Em=)) (<

e;€E eiNe;=

2 5
Www>“) ©)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

Given-name Surname etal / Computers & Graphics (2017) 5

where & = cos6;;,
vectors &; and &;. If e¢; and ¢; are following two orthogonal
parameterization directions, their ideal angle is /2, thus & = 0;
if e; and e; follow the same parameterization direction, their
ideal angle is &, thus & = —1; if ¢; and e; are edges around an
irregular edge (e.g., Figure 2(b)), their ideal angle is (k + 1)27’r
where n is the valence of the irregular edge and k is the number
of edges between ¢; and e; when traversing from ¢; to e;.

In fact, optimizing this angle based distortion energy function
is equivalent to optimizing the cone descriptor with the advan-
tage of no need to estimate the valid normal direction for each
cone. That is, if all angles around a mesh edge achieve their re-
spective ideal angles, the associated tetrahedra around this edge
also have optimal configuration as indicated in Figure 2.

Boundary Handling. To achieve surface conformity, we use the
same strategy introduced in [8] that allows the boundary ver-
tices move along the surface. Specifically, the boundary ver-
tices are constrained to stay on their respective tangent planes,
feature lines, or corners, based on their classification:

Ex(v) = > Blli-(v=9) (©6)
ves
+ D@V -v—ailP +d)
veL
+ D alv-vIP
veC

Here v is the reference (or closest) surface position for each
vertex v, v is the current position of v, 77 is the surface normal
at position ¥, #’is the feature tangent at ¥, and a is an auxiliary
variable added to the system to enable feature constraints. «
and S are two coefficients that are used to control how strong
the boundary constraint is. The larger these two coefficients,
the more penalty will be applied to vertices that leave the target
surface. In default, we set @ = 8 = 1000 for all our experiments.
During the untangling process, these two coefficients will be
updated according to the outcome of the preceding iteration.

Combined energy. By combining the above energy defined in
the interior and on boundary of the volume, respectively, we
solve for the following optimization problem:

min EW) = Eg(v) + E(V) (7)

3.2.2. Numerical Solution

Equation (7) is not a quadratic function, which means that it
is impractical to solve it directly. If we use the nonlinear solver,
it will converge at a very slow speed. To address this, we use
a local-global like scheme, in which we use the local (or cur-
rent) values for some variables. Specifically, in the local step,
we fix ||€], ||¢j]land €; in Equation (5) (i.e., they are treated as
constant with their current values). Also, to determine whether
a uniform-size element is enforced or not, we use & ||&|| as the
target length for edge e if ||| < & = ||e|| (otherwise, ||€]| is used).
¢ is a user-input parameter and ||é|| is the average surface edge

6;; is the ideal target angle between edge s slength. In our experiments, we use & € [0.2,0.6]. A detailed

discussion on the effect of £ is provided in Section 3.5.

Using this method we can construct an over-determined lin-
ear system Ax = b. To minimize the energy (7), we iteratively
solve the linear equation ATAx = A”b. The solver is termi-
nated once it achieves the target MSJ (e.g. > 0 for the untan-
gling).

To accelerate the above computation, we use the target length
|lé]] for each edge e in the first iteration. The target length can
be computed by minimizing the following quadratic energy.

Eregutarizaion =, Y (ledl =121+ > " ledli—lle;Ih* (8)

¢,€E ejlle; ¢;€E eille;
eiNe;=v eiNe;=0
ejUejeh

The solution of ATAx = A”b is an approximate solution. To
avoid overshooting, we decrease the step size 0 < 7 < 1 linearly
for each iteration to update the locations of the interior vertices
gradually.

v = (1 = T)Veurrent + TVsolution 9

3.2.3. Untangling Pipeline

We now describe our untangling process. Given an input hex-
mesh H, we first scale its size w.r.zt. its center % ;‘:‘01 v; so that
its average edge length equals to / (we set [= 0.025 for all our
experiments). This rescaling step is crucial, which enables us
to use the same default @ and 8 values for all different mod-
els. Otherwise, different values need to be selected based on
the element size of the input mesh. During the scaling, not
only H needs to be scaled, its target surface €, has to be scaled
to ensure the consistent boundary constraint for the boundary
handling. After this normalization, we then identify all inverted
elements and construct a local region for each of them. For all
these local regions, we perform the following iterative process
until H is untangled: we first compute target edge lengths in
these regions by solving Eq. (8), then set initial step size for up-
dating the vertex positions 7 = 1. Next, we iteratively optimize
vertex positions by solving Eq. (7) using the aforementioned
local-global strategy until the maximal allowed iterations (20
by default) are reached. For each iteration, we check whether
the number of inverted elements is reduced within a region. If
not (likely due to the overshooting), the solution of this iteration
is discarded and 7 is reduced. This process guarantees that the
number of inverted elements is monotonically reduced. After
locally optimizing the vertices within the region, if the outcome
mesh H’ still contains inverted elements, we then decrease &
so that the uniform-size is not enforced. If £ is too small (e.g.,
< 0.2 in our implementation), we decrease « and 8 by half and
repeat the above process. Algorithm 1 provides the pseudo-
code of this untangling process. After optimizing the mesh, we
scale it back to its original space.

3.3. Inversion-free Volume Deformation

After the above untangling process with surface relax-
ation, the surface of the output untangled mesh 4’ may be
far away from the target surface €, (see the inset). Previ-
ous methods simply project this deformed surface onto €.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

17

18

19

6 Given-name Surname efal/ Computers & Graphics (2017)

guarantee that the obtained mesh
is still inversion-free. To address
that, we formulate the above
problem as a volumetric map-
ping problem g, : H' — H,
where €, is the boundary of
H. A number of inversion-free
local injective mapping tech-
niques [41, 42] can be used
to achieve the above deforma-
tion. In this work, we select
the recently introduced SLIM
solver [46]. To utilize the SLIM solver, we decompose each
hexahedron of H’ into eight tetrahedra (i.e., one tet for each
corner). The AMIPS exponential energy [42] is used in our ex-
periments, and 20 iterations are performed.

Algorithm 1: Local untangle

Input: H, Q,

Output: H’

Scale H and €, ;

Set @ = 1000, 8 = 1000,& = 0.6 ;

while current MSJ < 0 do
while not reach maximum global iteration (default 20)
do

Identify inverted elements 7;

Extract local regions R (a copy from H);
Classify surface vertices for R;

Compute target edge length by solving Eq. (8) for
R;

T=1;

while not reach maximum local iteration (default
20) do

7=0091;

Solve Eq. (7) for R;

Save R;

R « Update vertices. using Eq (9);

Project surface vertices of R to its original
surface;

if #invertedElements increased then
| Recover the saved R;

end

Update the vertices of R;

if current MSJ > O then
| output H’ ;

end

§=¢6-01;

if £ < 0.2 then

| @=05%xa,B=05%XB,£=06;

end

3.4. Improving MSJ

Similar to the above untangling process. The improvement
of the MSJ can be performed locally. In fact, the same process

This simple projection does not = sto the above untangling can be employed with only the modifi-

cation of the target MSJ MS J;, which is specified by the user.
Given this target MSJ, the optimizer will first identify the ele-
ments whose scaled Jacobian is smaller than MS J,. A local re-
gion is then constructed for each identified element, which will
be used to perform the local improvement. In all our experi-
ments of improving MSJ, we avoid using «, 8 < 500 to control
distance error. In fact, most of the time we can achieve the tar-
get MSJ using @, = 1000. The bigger a,f are, the stronger
the surface constraint is. In practice, if a larger MSJ, is set
(e.g., > 0.5), the optimizer will take longer time to converge.
Sometime, it may not even find a solution. Therefore, we sug-
gest to achieve this MS J; procedurally. That is, we optimize
the mesh so that its MSJ is positive, then 0.1, 0.2, ..., until it
reaches a value above or close to MS J,. This procedural strat-
egy is shown very effective in practice (Figure 10).

3.5. Discussion on User Parameters

Our approach allows four user-input parameters: (1) target
minimum scaled Jacobian MS J;, (2) surface constraint a, 3, (3)
angle threshold 6 for sharp feature and corner identification, and
(4) edge length constraint ¢ that controls whether a uniform-size
hex-mesh is preferred.

Effects of different @ and 8 Figure 3 shows the untangling
results with different values of @ and 8. Figure 3(a) shows the
results with @« = 8 = 1000. The output mesh has small sur-
face distance from the original surface. However, the untangler
fails to correct all inverted elements (see the red elements). Fig-
ure 3(b) is the result of the same input mesh with @ = g = 100.
Note that the untangler successfully corrects all inverted ele-
ments. However, the surface distance from the original surface
is larger than the one shown in Figure 3(a). Generally, larger
a, B result in smaller distance error but lower MSJ; in the oppo-
site, smaller «, 8 lead to larger distance error but higher MSJ. In
our untangling process and MSJ improvement, the values of @
and S are automatically adjusted to find a desired solution. For
a large user-specified target MSJ MS J,, due to the configura-
tions of the individual surfaces, smaller @ and 8 may be used to
achieve MS J;, which may lead to large surface error. Although
an inversion-free deformation can be applied to reduce the sur-
face error, it may worsen the MSJ at the same time. Therefore,
in our experiments, we do not allow the values of @ and 3 to be
smaller than 500 during the improvement of MSJ, which also
ensures a small surface distance error. However, the user may
choose to lower the values of @ and S to achieve even better
MSJ with the possible larger surface error.

Effects of different 6. Parameter 6 is used to control the extrac-
tion of surface features. Figure 3(e) and 3(f) show the effect of
different 8. In general, the larger 6 is, the more surface features
will be detected, thus more constraints will be applied to the
surface vertices. In practice, we set 8 = 165°. Nonetheless, the
accurate detection of surface sharp features is non-trivial and
tends to be very sensitive to noise. Addressing this is beyond
the scope of this work.

Effects of different £. As briefly mentioned earlier, parameter
¢ is used to control whether a mesh with uniform-size elements
(i.e., with constant edge length) is desired or not. In particular,

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

sl

72

73

74

75

Given-name Surname etal / Computers & Graphics (2017) 7

the larger £ is the stronger the constraint on uniform-size ele-
ments. For instance, in Figure 3(b) and 3(c), both « and 8 are
set as 100, while £ is 0.4 in 3(c) and 0.2 in 3(b). For the £ = 0.4,
the untangler fails to correct all inverted elements. This shows
that enabling some variation in the element size will in fact help
enhance the success rate of untangling. Similarly, in the MSJ
improvement, a larger & will constraint the optimizer from find-
ing a good solution (Figure 4(b) and 4(c)).

76

(a) MSJ = 8e™> (b) ¢ =0.8, failed

(c) &€ =0.6, failed

(f) Vertices classification, 8 = 150°

(e) Vertices classification, 8§ = 165°

Fig. 3. (a) The output mesh has small surface distance from the original
surface with @« = 8 = 1000. However, the untangler fails to correct all
inverted elements (red). (b) Untangler successfully corrects all inverted
elements. However, the surface distance from the original surface is larger
than the one in (a). (c) Larger ¢ greatly impacts the untangler for this
model (cap) even using very small o and 3. However, using a more relaxed
0 helps untangling (d). (e) and (f) show the detected surface features (in
black) with different 6 values. Small 6 results in less sharp feature lines
and corners

Note that among the above four parameters, the default val-
ues for @, and & (i.e. 1000, 1000, and 0.6) usually work well
for the majority of the models, thus need not be adjusted. How-
ever, in some cases, «,f and ¢ still need careful selection in
order to produce an ideal result, which we will show next.

4. Results

We have applied our untangling and MSJ improvement tech-
nique to a number of hex-meshes produced by a variety of

(d) £ =0.4,MSJ =0.301 (e) ¢ =0.2,MSJ =0.310

Fig. 4. This experiment fixes the parameters « = g = 1000, = 160°,
targetMS J = 0.3 and make ¢ varying. Large step of target MS]J or larger &
will make improvement fail. (b) fails with 315 inverted elements while (c)
fails with 275 elements. The volume of each element is mapped to red-to-
green to show the effect of using different £. The more constant the color,
the more uniform sized the elements are.

methods. Figure 9 provides the gallery view of our results.
Note that the color coding is based on the volumes of the in-
dividual elements in the output mesh. The more constant the
color, the more uniform sized the elements are. The statistics
of our results is reported in Tables 1, 2, 3 and 4, respectively.
Specifically, we use the exact values of the parameters (e.g.,
a, 3, &, 0 and iterations) as described in Algorithm 1 to generate
all the results shown in Tables 2, 3 and 4, as well as for all the
octree-based meshes. However, these values may not be the op-
timal ones for other meshes (e.g., the meshes in Tables 1). For
the meshes in Tables 1, we produce the results by customizing
the values of those parameters (see the scripts provided as the
supplemental material).

Comparison with the edge-cone technique. We apply our
method to optimize the dataset provided by the authors of the
edge cone technique [8]. Table 1 shows the comparison of the
two methods, where the results of our method are highlighted
with *. From the comparison, we see that our method produces
meshes with better MSJ in all cases. We also achieve better sur-
face errors for the majority of the meshes. However, the average
scaled Jacobians of our meshes are generally not as good as the
edge cone technique. This is mostly because we allow the vari-
ation of the element sizes to focus on the MSJ improvement.

Comparison with the AMIPS. Fu et al. [42] applied their local
injective mapping technique to further optimize a couple hex-
meshes that already have high quality. We apply our method
and the edge cone technique to optimize these meshes, respec-
tively. Table 2 compares the results of the three methods. From
this comparison, we see that our method is superior in improv-

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

8 Given-name Surname efal/ Computers & Graphics (2017)

ing the MSJ of these meshes. We also achieve the best ASJ for
the RockerArm mesh.

Table 1. Comparison with the edge cone technique. | denotes results of
edge-cones [8], * denotes ours. We use metro tools to compute Hausdorff

45

Table 3. Stress Test. Fandisk is created by the frame field method, Kitty
is generated by the ¢; — PolyCube [23], and airplane is obtained using
MeshGems [48]. #flip shows the number of inverted elements after the
artificial perturbation. * denotes our results. We use metro tools to com-

distance w.r.t. bounding box diagonal [47]. pute Hausdorff distance w.r.t. bounding box diagonal [47]. -’ means the
Model #hexes #flip Error MSJ] ASJ mesh has no reference surface to compute the Hausdorff distance error.
Armadillot | 29935 323 [0.011262 0.14 0.9 Model #hexes #flip | Error ~ MSJ ASJ
Armadillo* 29935 323 | 0.019349 0.163 0.834 Fandisk 357 0 - 0.609 0.936
Blockf 2520 31 | 0.004555 0250 0.870 Fandisk* 357 286 | 0.004769 0.752 0.950
Block* 2520 31 | 0.002737 0.252 0.857 Kitty 7083 0 - 0.424 0910
Bunny 37734 1] 0.007955 0.606 0.972 Kitty* 7083 3232 | 0.012656 0.652 0.937
Bunny* 37734 1 | 0.006477 0.651 0.953 airplanel 4972 0 - 0.030 0.838
Bustt 5258 30 | 0.007404 0.114 0.922 airplanel* 4972 3510 | 0.004369 0.503 0.875
Bust(Figl)* 5258 30 | 0.008843 0.201 0.869
Bust* 5258 30 | 0.006795 0.183 0.865
Capt 4420 50 | 0.009933 0.106 0.870
Cap* 4420 50 | 0.005320 0.114 0.775
Dancingt 35293 5 | 0.008480 0.354 0.942 Table 4. The results on a set of meshes produced from the polycube map
Children* 35293 5 | 0.006905 0.582 0.931 database [49]. { denotes results of edge-cone [8], * denotes ours. We
Hangert | 4539 3930 | O02709 071 0087t mem iooklo compute Hausdot iance vt bounding b i
Hanger* 4539 3930 | 0.001486 0.723 0.974 input for computing the Hausdorff distance error.
Impellert 11174 8857 | 0.000935 0.184 0.942 Model #hexes #flip Error MSJ] ASJ
Impeller* 11174 8857 | 0.000493 0.192 0.934 airplanel® | 17913 467 | 0.006257 0.731 0.959
KingKongf | 159488 11 | 0.010483 0.268 0.967 bird* 16934 288 | 0.005774 0.732 0.961
KingKong* | 159488 11 | 0.016948 0.500 0.954 cupl* 16862 40 | 0.006944 0.723 0.960
chairl* 20344 709 | 0.004720 0.690 0.941
horse* 44145 304 | 0.017018 0.600 0.944
blade* 14792 141 | 0.008885 0.650 0.946
Table 2. Comparison with AMIPS and edge cone. The first row of each kiss* 19976 247 | 0.014755 0.500 0.913
Ln((i);l:::)ts:lso::lsrgle result by AMIPS [42]. 1 denotes results of edge-cone [8], bottlel T 15478 127 1 0.008066 0.132 0.925
Model #hexes input MSJ [MSJ ASJ bottle1* 15478 127 | 0.009675 0.604 0.948
Fertility 10600 0.209 0.46 0.937 elephantt | 46525 421 - 0.012 0.881
Fertilityt 10600 0.209 0.478 0.951 elephant* 46525 421 | 0.009899 0.500 0.915
Fertility* 10600 0.209 0.602 0.933
RockerArm 19870 0.196 0.550 0.923
RockerArmf{ | 19870 0.196 0.556 0.937
RockerArm* | 19870 0.196 0.700 0.939

Improve hex-meshes from polycube map. Next, we apply
our technique to improve tens of hex-meshes generated from the
polycube map database by Fu et al. [49]. The initial hex-meshes
consist of varying numbers of inverted elements. Our technique
successfully untangled all of these meshes and managed to im-
prove their MSJ substantially. As a comparison, we also show
the results of the improved elephant and bottlel meshes pro-
duced by the authors of the edge-cone technique. The com-
parison shows that our method produces much higher-quality
meshes for these two cases in all quality metrics. Note that the
surface error of the elephant mesh produced by the edge-cone
method is not measurable as the resulting mesh does not have
the same scale as the input mesh. We also note that a padding
process is applied during the generation of the initial polycube
hex-meshes to push the surface singularities into volume. This
ensures that degenerate cases (i.e., corner is located on the flat
region of the surface) do not occur; otherwise, the meshes may
not be able to untangle as already shown by Livesu et al. [8].

HETH

"
e H S.]?c
f 06
,i 04
é 02
MSJ MS]J i w00
0.03 0.31 I_m

(a) input mesh

(b) output mesh

Fig. 5. Blade example(created by the Octree-based method)

Given-name Surname etal / Computers & Graphics (2017) 9

Improve hex-meshes generated by the octree-based method.
We also apply our technique to improve hex-meshes generated
using the MeshGems [48]-an octree-based method [19, 50].
The initial hex-meshes consist of elements with very low scaled
Jacobian (< 0.1). For most models, our method can improve
their MSJ to be greater than 0.2. Figure 5 and Table 5 provide
examples of the improvement of octree-based meshes. More
details are in the supplementary document.

MSJ=0.609
ASJ=0.936

#Hexs=357
#Vertices=614

MSJ=0.752
AS]=0.950

(a) origin mesh (b) stress test input (c) stress test output

Fig. 6. Fandisk example(created by the framed field method)

(a) origin mesh (b) stress test input (c) stress test output

Fig. 7. Kitty example(created by the {; —PolyCube method)

MSJ=0.503 g °°
AsJ=0875 | |

exs=4972
#Flip=3510

(a) origin mesh (b) stress test input (c) stress test output

Fig. 8. airplanel example(created by the octree-based method)

Stress test. In the stress test experiments, we untangle hexahe-
dral meshes perturbed from the initial hex-meshes generated by
the frame-field based, polycube based and octree-based meth-
ods, respectively. Our method successfully untangles the per-
turbed meshes and produces meshes with much better quality
than the original ones (Figures 6, 7 and 8). Despite the meshes

Table 5. The results on a set of meshes produced from MeshGems [48].
We use metro tools to compute Hausdorff distance w.r.t. bounding box
diagonal [47]’-" means the there is no reference surface to compute the
Hausdorff distance error. ‘ and ° show the input and output, respectively

Model #hexes Error MSJ ASJ
bird’ 4247 - 0.0313 0.820
bird? 4247 | 0.011580 0.553 0.868
blade’ 10996 - 0.025 0.845
blade? 10996 | 0.007911 0.312 0.868
block’ 1624 - 0.179 0.661
block?’ 1624 | 0.016877 0.550 0.815
bone’ 2751 - 0.154 0.781
bone”’ 2751 | 0.006475 0.207 0.794
dragonstand2’ | 23917 - 0.013 0.837
dragonstand2’ | 23917 | 0.004598 0.304 0.857
fish1’ 9537 - 0.015 0.815
fish1° 9537 | 0.008377 0.308 0.845
gargoyle’ 41610 - 0.024 0.834
gargoyle’ 41610 | 0.005247 0.200 0.849
kiss' 18418 - 0.027 0.844
kiss? 18418 | 0.005075 0.224 0.857
rocker’ 16608 - 0.108 0.865
rocker?® 16608 | 0.007742 0.241 0.874

in our stress test contain large portions of inverted elements,
they are generated with artificial perturbation. In the future, we
plan to further assess our optimization technique with meshes
containing large numbers of inverted elements in practice.
Performance study. As mentioned in Section 3.4, our im-
provement of MSJ is performed in several stages. The benefit of
this divide-and-conquer strategy is that the number of elements
that have quality lower than the current target MSJ remains
small each step, which facilitates our optimizer to quickly find
a solution. Figure 10 shows a timing plot of this gradual im-
provement process. The times spent on the individual stages
are shown as the histogram, and the orange curve shows the
accumulated time. As expected, more time will be needed to
achieve a higher MSJ as more elements will have quality lower
than the target MSJ. In general, our method takes about 2 min-
utes on average to process a mesh with 10 — 20K elements. The
smaller the MSJ, the faster the computation will be as already
shown in Figure 10.

Timing of MSJ Improvement

®ndividual time (s) ~@®Totol time (s)

150

120

Fig. 10. Performance plot of our technique.

20

21

22

23

24

25

26

27

28

29

30

31

10 Given-name Surname efal/ Computers & Graphics (2017)

Fig. 9. Result gallery. Elements with scaled Jacobian SJ > 0.6 are transparent in the input (first figure for each model). Output meshes are colored using
element volume info (last figure for each model). Elements with SJ < 0.6 are also showed in the output (e.g., the middle image for each model). We hope
to further improve these elements in the future work. If all elements of a mesh have SJ > 0.6, we do not show its middle image (e.g., the airplane and cup
models).

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Given-name Surname etal / Computers & Graphics (2017) 11

(b) untangled mesh

(a) input mesh (c) SLIM deformation

Fig. 11. SLIM fails to map back the surface of dragon.

Failure case. Figure 11 shows a failure case where the SLIM
solver fails to map the deformed surface after MSJ improve-
ment back to the target surface. This may be an issue of the
SLIM solver that typically requires an accurate correspondence
between the boundary vertices of the current mesh with those
on the target surface, while our current projection based method
may not be sufficiently accurate. In the future, we plan to exper-
iment with other more robust inversion-free mapping technique
and improve our surface correspondence calculation.

5. Conclusion

In this paper, we introduce a simple yet effective hex-mesh
improvement technique. This technique is based on a new and
intuitive angle based optimization strategy. To enable our op-
timizer to find a valid solution, we allow the boundary surface
to move out from the original volume, which will be mapped
to the original surface with the inversion-free guarantee. To ac-
celerate the computation, we perform the optimization within a
local region surrounding the inverted elements or elements with
quality lower than the user-specified threshold. Our method is
easy to implement. We also discuss the effects of the different
values of a number of parameters used in our framework to help
users choose proper values for their needs. We have applied our
method to a large number of hex-meshes generated with a vari-
ety of methods to demonstrate its effectiveness.

Limitations.. First, although our method produces meshes with
higher MSJ for all the test meshes and better Hausdorff distance
for the majority of meshes when compared to the state-of-the-
art techniques, our method may not improve the average scaled
Jacobian substantially. Again, this is due to the relaxation of the
constraint on uniform element sizes. Also, our sub-optimal ASJ
may also attribute to the selection of the parameter £. For most
models, we find that £ = 0.2—-0.6 can produce ideal results. But
for some models (e.g. Hanger), the result using & = 1.2 is bet-
ter than the one obtained with other values of £&. Nonetheless,
the fixed value of ¢ throughout the entire mesh may constrain
the improvement of ASJ. Should the ¢ of an edge be a func-
tion with respect to its neighboring configuration, ASJ might
be improved further. Second, to ensure an inversion-free out-
come, the meshes generated with our method may have a sur-
face distance larger than the user-specified error. Third, our cur-
rent surface feature detection is sensitive to the user-specified
angle threshold 6. A robust feature detection technique may
be required to resolve this issue. Fourth, in the extreme case
(i.e., a complete inverted mesh), our angle based energy will
vanish. However, since we enforce the boundary constraint of

45

non-inverted elements, such an extreme case will not occur. Fi-
nally, our method for solving the non-linear energy minimiza-
tion problem is not a typical local-global scheme, which may
not converge to meet the required mesh quality. However, it
enables us to effectively minimize our angle distortion energy.
We plan to address these limitations in the future.

Acknowledgement

We would like to thank Marco Livesu for generating the
sedge-cone results for the comparison and all the anonymous
reviewers for their valuable comments. This work is partially
supported by NSF IIS-1553329.

References

[1] Pébay, PP, Thompson, D, Shepherd, J, Knupp, P, Lisle, C, Magnotta,
VA, et al. New Applications of the Verdict Library for Standardized Mesh
Verification Pre, Post, and End-to-End Processing. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-540-75103-8; 2008, p. 535-552.
Knupp, PM. Hexahedral mesh untangling and algebraic mesh quality
metrics. In: Proceedings, 9th International Meshing Roundtable. 2000, p.
173-183.

Knupp, PM. A method for hexahedral mesh shape optimization. Interna-
tional journal for numerical methods in engineering 2003;58(2):319-332.
Brewer, M, Diachin, LF, Knupp, P, Leurent, T, Melander, D. The
mesquite mesh quality improvement toolkit. In: Proceedings of Interna-
tional Meshing Roundtable. 2003,.

Wilson, TJ, Sarrate Ramos, J, Roca Ramén, X, Montenegro Armas, R,
Escobar Sanchez, JM. Untangling and smoothing of quadrilateral and
hexahedral meshes 2012;.

Ruiz-Gironés, E, Roca, X, Sarrate, J. Optimizing mesh distortion by
hierarchical iteration relocation of the nodes on the cad entities. Procedia
Engineering 2014;82:101-113.

Ruiz-Gironés, E, Roca, X, Sarrate, J, Montenegro, R, Escobar, JM.
Simultaneous untangling and smoothing of quadrilateral and hexahedral
meshes using an object-oriented framework. Advances in Engineering
Software 2015;80:12-24.

Livesu, M, Sheffer, A, Vining, N, Tarini, M. Practical hex-mesh op-
timization via edge-cone rectification. Transactions on Graphics (Proc
SIGGRAPH 2015) 2015;34(4).

Stimpson, CJ, Ernst, CD, Knupp, P, A'ebayand, PPP, Thompson, D.
The verdict geometric quality library. SANDIA REPORT 2007;.

Owen, SJ. A survey of unstructured mesh generation technology. In:
Proceedings of the 7th International Meshing Roundtable. -; 1998, p. 239—
267.

Staten, ML, Owen, SJ, Blacker, TD. Unconstrained paving and plaster-
ing: A new idea for all hexahedral mesh generation. In: Proc. 14 th Int.
Meshing Roundtable. 2005, p. 399—416.

Staten, ML, Kerr, RA, Owen, SJ, Blacker, TD, Stupazzini, M, Shi-
mada, K. Unconstrained plastering hexahedral mesh generation via
advancing-front geometry decomposition. International journal for nu-
merical methods in engineering 2010;81(2):135-171.

Schneiders, R. A grid-based algorithm for the generation of hexahedral
element meshes. Engineering with computers 1996;12(3-4):168-177.
Zhang, H, Zhao, G. Adaptive hexahedral mesh generation based on
local domain curvature and thickness using a modified grid-based method.
Finite Elements in Analysis and Design 2007;43(9):691-704.

Edgel, JD. An adaptive grid-based all hexahedral meshing algorithm
based on 2-refinement 2010;.

Sun, L, Zhao, G. Adaptive hexahedral mesh generation and quality op-
timization for solid models with thin features using a grid-based method.
Engineering with Computers 2016;32(1):61-84.

Zhang, YJ, Bajaj, C. Adaptive and quality quadrilateral/hexahedral
meshing from volumetric data. Computer Methods in Applied Mechanics
and Engineering 2006;195(9-12):942-960.

Maréchal, L. Advances in octree-based all-hexahedral mesh generation:
handling sharp features. In: proceedings of the 18th International Mesh-
ing Roundtable. Springer; 2009, p. 65-84.

[2]

(3]
(4]

[3]

(6]

[7]

[8]

(9

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

46

47

48

49

50

51

52

53

54

55

56

57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
2

92
93
94
95
9
97
98

100
101
102
103
104
105
106
107
108
109

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

Given-name Surname efal/ Computers & Graphics (2017)

Ito, Y, Shih, AM, Soni, BK. Octree-based reasonable-quality hexahedral 72 11¢45]

mesh generation using a new set of refinement templates. Int J Numer
Meth Engng 2009;77(13):1809-1833.

Zhang, Y], Liang, X, Xu, G. A robust 2-refinement algorithm in oc-
tree or rhombic dodecahedral tree based all-hexahedral mesh generation.
Computer Methods in Applied Mechanics and Engineering 2013;256:88—
100.

Gregson, J, Sheffer, A, Zhang, EG. All-hex mesh genera-
tion via volumetric polycube deformation. Computer Graphics Forum
2011;30(5):1407-1416.

Livesu, M, Vining, N, Sheffer, A, Gregson, J, Scateni, R. Poly-
cut: Monotone graph-cuts for polycube base-complex construction. Acm
Transactions on Graphics 2013;32(6).

Huang, J, Jiang, TF, Shi, ZY, Tong, YY, Bao, HJ, Desbrun, M. 11-based
construction of polycube maps from complex shapes. Acm Transactions
on Graphics 2014;33(3).

Fang, X, Xu, W, Bao, H, Huang, J. All-hex meshing using closed-
form induced polycube. Acm Transactions on Graphics (Proceedings of
SIGGRAPH 2016) 2016;35(4).

Huang, J, Tong, Y, Zhou, K, Bao, H, Desbrun, M. Boundary
aligned smooth 3d cross-frame field. Acm Transactions on Graphics
2011;30(6):143:1-143:8.

Nieser, M, Reitebuch, U, Polthier, K. Cubecover - parameterization of
3d volumes. Computer Graphics Forum 2011;30(5):1397-1406.

Li, YF, Liu, Y, Xu, WW, Wang, WP, Guo, BN. All-hex meshing using
singularity-restricted field. Acm Transactions on Graphics (Proceedings
of SIGGRAPH 2012) 2012;31(6).

Jiang, T, Huang, J, Wang, Y, Tong, Y, Bao, H. Frame field singular-
ity correction for automatic hexahedralization. IEEE Trans Vis Comput
Graphics 2014;20(8):1189-1199.

Shepherd, JF, Johnson, CR. Hexahedral mesh generation constraints.
Eng with Comput 2008;24(3):195-213.

Knupp, PM. Winslow smoothing on two-dimensional unstructured
meshes. Engineering with Computers 1999;15(3):263-268.

Leng, J, Xu, G, Zhang, Y, Qian, J. Quality improvement of segmented
hexahedral meshes using geometric flows. In: Image-Based Geometric
Modeling and Mesh Generation. Springer; 2013, p. 195-221.

Shepherd, JF. Topologic and geometric constraint-based hexahedral mesh
generation. Ph.D. thesis; The University of Utah; 2007.

Gao, X, Deng, Z, Chen, G. Hexahedral mesh re-parameterization from
aligned base-complex. Acm Transactions on Graphics (Proceedings of
SIGGRAPH 2015) 2015;35(4).

Yu, WY, Zhang, K, Wan, SH, Li, X. Optimizing polycube do-
main construction for hexahedral remeshing. Computer-Aided Design
2014;46:58-68.

Cherchi, G, Livesu, M, Scateni,
coarse layouts of surfaces and volumes.
2016;35(5):11-20.

Gao, X, Huang, J, Li, S, Deng, Z, Chen, G. An evaluation of the
quality of hexahedral meshes via modal analysis. In: 1st Workshop on
Structured Meshing: Theory, Applications, and Evaluation. 2014,.
Diachin, LF, Knupp, P, Munson, T, Shontz, S. A comparison of two
optimization methods for mesh quality improvement. Engineering with
Computers 2006;22(2):61-74.

Sastry, SP, Shontz, SM. A parallel log-barrier method for mesh
quality improvement and untangling. Engineering with Computers
2014;30(4):503-515.

Aigerman, N, Lipman, Y. Injective and bounded distortion mappings in
3d. ACM Transactions on Graphics (TOG) 2013;32(4):106.

Schiiller, C, Kavan, L, Panozzo, D, Sorkine-Hornung, O. Locally injec-
tive mappings. In: Computer Graphics Forum. 5; Wiley Online Library;
2013, p. 125-135.

Fu, XM, Liu, Y. Computing inversion-free mappings by simplex assem-
bly. ACM Trans Graph 2016;35(6):216:1-216:12.

Fu, XM, Liu, Y, Guo, B. Computing locally injective mappings by
advanced mips. ACM Trans Graph 2015;34(4):71:1-71:12.

Wilson, TJ. Simultaneous untangling and smoothing of hexahedral
meshes. Ph.D. thesis; Universitat Politécnica de Catalunya; 2011.

Sun, L, Zhao, G, Ma, X. Quality improvement methods for hexahedral
element meshes adaptively generated using grid-based algorithm. Inter-
national Journal for Numerical Methods in Engineering 2012;89(6):726—
761.

R. Polycube simplification for
Computer Graphics Forum

[46]
(471

(48]
[49]

[50]

Gao, X, Chen, G. A local frame based hexahedral mesh optimization. In:
In 25th International Meshing Roundtable(IMR2016), Research Notes.
Elsevier; 2016,.

Rabinovich, M, Poranne, R, Panozzo, D, Sorkine-Hornung, O. Scalable
locally injective maps. ETH Technical Report 2016;.

Guthe, M, Borodin, P, Klein, R. Fast and accurate hausdorff distance
calculation between meshes. In: In WSCG. 2; 2005, p. 41-48.
MeshGems, . Volume meshing: Meshgems-hexa. 2015.

Fu, X, Bai, C, Liu, Y. Efficient volumetric polycube-map construction.
Computer Graphics Forum (Pacific Graphics) 2016;35(7):97 — 106.
Marechal, L. Advances in octree-based allhexahedral mesh genera-
tion: handling sharp features. In: Proceedings of International Meshing
Roundtable. 2009, p. 65-84.

73
74
75
76
77
78
79
80
81
82
83
84

	Introduction
	Related Work
	Methodology
	Compute Target Surface t
	Untangling
	Distortion Energy
	Numerical Solution
	Untangling Pipeline

	Inversion-free Volume Deformation
	Improving MSJ
	Discussion on User Parameters

	Results
	Conclusion

