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Abstract—Conventionally, mobile network operators charge
users for data plan subscriptions. To create new revenue streams,
some operators now also incentivize users to watch ads with data
rewards and collect payments from advertisers. In this work,
we study two such rewarding schemes: a Subscription-Aware
Rewarding (SAR) scheme and a Subscription-Unaware Rewarding
(SUR) scheme. Under the SAR scheme, only the subscribers of
the operators’ existing data plans are eligible for the rewards;
under the SUR scheme, all users are eligible for the rewards
(e.g., the users who do not subscribe to the data plans can still
get SIM cards and receive data rewards by watching ads). We
model the interactions among a capacity-constrained operator,
users, and advertisers by a two-stage Stackelberg game, and
characterize their equilibrium strategies under both the SAR
and SUR schemes. We show that the SAR scheme can lead to
more subscriptions and a higher operator revenue from the data
market, while the SUR scheme can lead to better ad viewership
and a higher operator revenue from the ad market. We provide
some counter-intuitive insights for the design of data rewards. For
example, the operator’s optimal choice between the two schemes
is sensitive to the users’ data consumption utility function. When
each user has a logarithmic utility function, the operator should
apply the SUR scheme (i.e., reward both subscribers and non-
subscribers) if and only if it has a small network capacity.

I. INTRODUCTION

Despite the rapid growth of global mobile traffic, several
leading analyst firms estimate that global mobile service
revenue has nearly reached a saturation point. For example,
Strategy Analytics forecasts that the global mobile service
revenue will only increase by 3% between 2018 and 2021
[1]. As suggested in [2], one promising approach for the
mobile network operators to create new revenue streams is
to offer mobile data rewards: the network operators reward
users with free mobile data every time the users watch mobile
ads delivered by the operators, and the operators are paid by
the corresponding advertisers.

The data rewarding paradigm leads to a “win-win-win”
outcome [2]: (i) The operators monetize their services based
on the mobile advertising, the global revenue of which was
estimated to reach $80 billion at the end of 2017 [2]; (ii) The
advertisers gain incentivized advertising, where the rewards
incentivize the users to better engage with ads and the advertis-
ers allow the users to have more control over their experiences
(e.g., whether and when to watch ads); (iii) The users earn free
mobile data to satisfy their growing data demand.

There has been an increasing number of businesses entering
this space. Unlockd and Aquto are two leading companies
that provide technical support for data rewarding (e.g., they
develop mobile apps that display ads and track the amount of
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Fig. 1: Data rewarding ecosystem (user 4 is feasible under the SUR scheme,
but is infeasible under the SAR scheme).

rewarded data). Unlockd has collaborated with operators, such
as Tesco Mobile (in the United Kingdom), Boost Mobile (in
the United States), Lebara Mobile (in Australia), and AXIS
(in Indonesia) [3]. Aquto has collaborated with Verizon, Tele-
fonica, and several other operators [4]. Furthermore, AT&T
is acquiring AppNexus (an online advertising company) and
making a significant investment in the advertising business
[5]. Offering mobile data rewards could become a natural and
effective approach to monetize its mobile service.

Based on the eligibility of receiving rewards, there are two
basic types of data rewarding schemes. In the Subscription-
Aware Rewarding (SAR) scheme, the operators only allow the
users who subscribe to the operators’ existing data plans (with
monthly fees) to watch ads for rewards. In the Subscription-
Unaware Rewarding (SUR) scheme, the operators reward
all users for watching ads, regardless of whether the users
subscribe to the data plans.1 Intuitively, the SAR scheme leads
to more subscriptions and the SUR scheme incentivizes more
users to watch ads. The optimal design and comparison of the
two schemes are crucial for realizing the full potential of the
mobile data rewards, which motivates our work.

A. Our Contributions

We illustrate the data rewarding ecosystem in Fig. 1. The
purple arrows indicate that an operator charges the users for
data plan subscriptions. The orange arrows indicate that the
operator rewards the users for watching ads and gets payments
from the advertisers.

We model the interactions among the operator, users, and
advertisers by a two-stage Stackelberg game. In Stage I, the
operator decides the unit data reward (i.e., the amount of
data rewarded for watching one ad) for the users, and the

1The operators can offer free specialized SIM cards to the users who do
not subscribe to the data plans. These users can top up the cards by watching
ads, as shown in [6].



ad price (i.e., the payment for purchasing one ad slot) for the
advertisers. In Stage II, the users with different valuations for
the mobile service make their data plan subscription and ad
watching decisions. We consider a general data consumption
utility function and a general distribution of user valuation.
Meanwhile, the advertisers decide the number of ad slots to
purchase, considering the advertising’s wear-out effect (i.e.,
an ad’s effectiveness can decrease if it reaches a user who has
watched the same ad for several times [7], [8]).

We analyze the two-stage game for both the SAR and SUR
schemes. In particular, we characterize the operator’s optimal
strategy that maximizes the total revenue from the data market
and ad market. Our key findings in this work are as follows.

I. Design of Unit Data Reward (Theorems 2 and 3):
Under both the SAR and SUR schemes, the operator should not
always use up the available network capacity for data rewards.
Under the SAR scheme, increasing the unit data reward can
lead to more data plan subscriptions and motivate more users
to watch ads. However, it also allows a user to obtain a larger
amount of data after watching a few ads. Hence, a user may
watch fewer ads under a larger unit data reward. As a result,
increasing the unit data reward may decrease the operator’s
revenue. Under the SUR scheme, (besides the above negative
impact) increasing the unit data reward may lead to a loss in
data plan subscriptions, and even generate a total revenue that
is lower than the revenue when the operator does not offer any
data reward. In our work, we derive two sufficient conditions,
under which the operator does and does not use up the capacity
for data rewards, respectively.

II. Design of Ad Price (Theorems 1 and 4): Given the
unit data reward, the operator’s optimal ad price is affected by
the wear-out effect if and only if the wear-out effect is small.
If the wear-out effect is small, the operator should sell all ad
slots and its optimal ad price should decrease with the wear-
out effect; otherwise, the operator should not sell all ad slots
and its optimal ad price will be independent of the wear-out
effect. Moreover, under the SUR scheme, the operator can
differentiate the ad slots generated by the subscribers and
non-subscribers when selling the ad slots to the advertisers
and displaying the ads to the users. We numerically show that
this can improve its total revenue by up to 20.3%. Under
the SUR scheme, both the subscribers and non-subscribers
watch ads. Since the subscribers also obtain data from the data
plan, the subscribers and non-subscribers may watch different
numbers of ads. Because of the advertising’s wear-out effect,
each advertiser has different willingness to purchase the ad
slots generated by the subscribers and non-subscribers, and it
is beneficial for the operator to differentiate these ad slots.

III. Choice of Rewarding Scheme (Theorem 5; Ob-
servations 1 and 2): The operator’s choice between the
SAR and SUR schemes is heavily affected by the users’ data
consumption utility function and network capacity. When each
user has a logarithmic utility function, if the network capacity
is limited, the operator should apply the SUR scheme (i.e.,
reward both subscribers and non-subscribers); if the capacity
is large, it should apply the SAR scheme (i.e., only reward

the subscribers). When each user has an exponential utility, (i)
under a large advertising’s wear-out effect, the choice between
the two schemes is similar to the logarithmic utility case; (ii)
under a small wear-out effect, the operator should always apply
the SUR scheme, regardless of the capacity.

Our comparison between the SAR and SUR schemes also
provides insights to a more general problem, where the opera-
tor offers multiple data plans and decides whether to only allow
the subscribers of the expensive data plans to earn rewards.
Our analysis of the SAR and SUR schemes captures the key
considerations of choosing these schemes (e.g., whether to
motivate more subscriptions to the expensive data plans or
incentivize more ad watching).

B. Related Work

There have been some references studying markets where
providers offer both a fee-based service and an ad-based free
service. For example, in [9], a Wi-Fi network provider allows
users to either directly pay or watch ads to access the Wi-Fi
network. In [10], an app developer offers virtual items, and
each app user will either pay or watch ads to obtain them
at the equilibrium. In these studies, the fee-based and ad-
based services are always substitutes, and each user chooses
between these two options. In our work, their relation is more
complicated, since a user may subscribe to the data plan
and meanwhile watch ads for more data. Under the SAR
scheme, increasing the reward for watching ads can increase
the number of subscribers, which shows the complementary
relation between the subscription and data rewards. Therefore,
our work studies a novel structure, and derives new insights
for the joint provision of fee-based and ad-based services.
Furthermore, our work considers the operator’s capacity for
providing the service and the advertising’s wear-out effect,
which were not considered in [9] and [10].

As studied in [11]–[14], operators can create new revenue
streams by offering sponsored data: content providers sponsor
the data usage of their content, and users can access the content
free of charge. There are several key differences between the
sponsored data and data rewards as studied here: (i) The users
can consume sponsored data only for the content specified by
the content providers, while they can use reward data to access
any online content; (ii) The content providers benefit from the
users’ data consumption on the corresponding content. With
data rewards, the advertisers aim to deliver ads effectively, and
do not benefit from the users’ data consumption.

Other related work includes [15]–[18]. Bangera et al. in [15]
conducted a survey, which shows that 76% of the respondents
are interested in watching ads in exchange for mobile data. Sen
et al. in [16] conducted an experiment to study the effective-
ness of monetary rewards in increasing ads’ viewership. Both
[15] and [16] did not analyze the equilibrium strategies of the
entities, such as operators, advertisers, and users. Harishankar
et al. in [17] studied monetizing the operator’s idle network
capacity by providing users with supplemental discount offers,
which are not related to advertising. In our prior work [18],
we discussed the operators’ design of the data rewards, but



focused on a restricted problem setting. For example, the
operators mainly reward the subscribers, and each user has a
logarithmic utility function and a uniformly distributed type.
In this work, we comprehensively compare the SAR and SUR
schemes, and consider a general user utility function and a
general user type distribution.

II. MODEL

In this section, we model the strategies of the operator,
users, and advertisers, and introduce the two-stage game. We
use capital letters to denote parameters, and lower-case letters
to denote decision variables or random variables.

A. Network Operator

We consider a monopolistic operator, who offers a predeter-
mined (monthly) flat-rate data plan (F,Q) to users. Parameter
F > 0 denotes the subscription fee, and Q > 0 denotes the
data amount associated with a subscription.2 To derive insights
into the data reward design, we focus on a single-operator,
single-data plan scenario, which has been widely considered
in literature (e.g., [13], [14]).

The operator decides two variables: (i) a unit data reward
ω ∈ [0,∞), which is the amount of data that a user receives
for watching one ad; (ii) an ad price p ∈ (0,∞), which is the
price that the operator charges the advertisers for buying one
ad slot. Here, we consider a pricing-based mechanism, where
the operator sells the ad slots in advance at a fixed price.3

B. Users

We consider a continuum of users, and denote the mass of
users by N . Let θ denote a user’s type, which parameterizes its
valuation for mobile service. We assume that θ is a continuous
random variable drawn from [0, θmax], and its probability
density function g (θ) satisfies g (θ) > 0 for all θ ∈ [0, θmax].

Let r ∈ {0, 1} denote a user’s data plan subscription
decision, and x ∈ [0,∞) denote the number of ads that a user
chooses to watch (we allow x and the advertisers’ purchasing
decisions to be fractional [9], [20]). The amount of data that a
user obtains from its subscription and ad watching is Qr+ωx.
We use θu (Qr + ωx) to capture a type-θ user’s utility of
using the mobile service. Here, u (z) , z ≥ 0, is the same for
all users, and can be any strictly increasing, strictly concave,
and twice differentiable function that satisfies u (0) = 0 and
limz→∞ u′ (z) = 0. The concavity of u (z) captures the
diminishing marginal return with respect to the data amount.
Unless otherwise specified, our results are derived under a

2Compared with designing data rewards, the operator has less flexibility to
adjust its data plan (e.g., subscribers may sign long-term contracts with the
operator). Hence, we study the operator’s reward design, given its existing data
plan. In our future work, we plan to extend our analysis by jointly optimizing
the data plan and reward.

3As shown in [3], the operator and advertisers have large-scale collabo-
rations (e.g., an advertiser’s ads were displayed around 300,000 times per
promotion activity). In this case, the pricing-based mechanism facilitates the
customization and communication process [19]. The operator can also sell
the slots via the real-time auction, especially when it has some user profiles
and the advertisers want to target different user categories [19]. We leave the
study of heterogeneous advertisers and real-time auction to future work.

general u (z) that satisfies these properties. To study the impact
of u (z)’s shape, we will also consider two concrete choices
of u (z) used in the literature:
• Logarithmic function [21], [22]: u (z) = ln (1 + z);
• Exponential function [23]: u (z) = 1− e−γz, γ > 0.

One reason for considering these is that the logarithmic
function is not upper bounded for z ≥ 0, while the exponential
function is upper bounded. This difference will affect the
optimal choice between the SAR and SUR schemes. Note that
some other functions, such as the α-fair function u (z) = z1−α

1−α
(0 < α < 1) [13], also satisfy the required properties. For ease
of exposition, we call u (·) a user’s utility function (although
the actual utility is θu (·)).

A type-θ user’s payoff is

Πuser (θ, r, x, ω) = θu (Qr + ωx)− Fr − Φx, (1)

where F is the subscription fee, and Φ > 0 denotes a user’s
average disutility (e.g., inconvenience) of watching one ad.
We assume that the total disutility of watching ads linearly
increases with the number of watched ads [10].

In Sections III-A and IV-A, we will analyze the users’
optimal decisions r∗ (θ, ω) and x∗ (θ, ω). Next, we introduce
two notations to capture the total number of ad slots created
by users. Let Nad (ω) denote the mass of users who watch
ads (i.e., have x∗ (θ, ω) > 0), and let y be a random variable
denoting the value of x∗ (θ, ω) when x∗ (θ, ω) > 0.4 The
distribution of y gives the distribution of the number of ads
watched by one of the Nad (ω) users. Therefore, the expected
total number of created ad slots is E [y]Nad (ω).

C. Advertisers

We consider K homogeneous advertisers. When Nad (ω) >
0, we assume that to display the ads to a user, the operator
randomly draws ads from all the E [y]Nad (ω) ad slots without
replacement.

Suppose an advertiser purchases m ∈ [0,∞) ad slots from
the operator (in Sections III-C and IV-C, the operator will
choose its ad price p to ensure that the total number of sold
ad slots does not exceed E [y]Nad (ω)). If a user watches
y ads, on average, my

E[y]Nad(ω)
ads among the y watched ads

belong to this advertiser. We let ψ (m, y, ω) denote the overall
effectiveness of the advertiser’s advertising on the user (e.g., a
large ψ (m, y, ω) implies that the user has a good impression
of the advertiser’s product). We model ψ (m, y, ω) by

ψ (m, y, ω) = B
my

E [y]Nad (ω)
−A

(
my

E [y]Nad (ω)

)2

, (2)

where B > 0 and A ≥ 0 are parameters. The above equation
captures the advertising’s wear-out effect: the advertising’s
effectiveness may first increase and then decrease with the
number of ads delivered by this advertiser to the user. This is
because too much repetition may lead the user to have a bad

4The randomness of y is from the uncertainty of θ. Moreover, the
distribution of y depends on the operator’s decision ω. For the simplicity
of presentation, we omit this dependence in the notation.



impression of the product. The wear-out effect has been widely
observed in the literature [7], [8]. Some studies, such as [24]
and [25], explicitly considered a quadratic relation between
the ad repetition and the advertising’s effectiveness, which is
similar to Eq. (2). Note that a larger A in (2) reflects a stronger
degree of wear-out effect.

We define an advertiser’s utility as the expected total value
of its advertising’s effectiveness on all users. If a user does
not see the advertiser’s ads, the advertising’s effectiveness
on the user is zero. Therefore, an advertiser’s utility is
simply Ey [ψ (m, y, ω)]Nad (ω). Considering the advertiser’s
payment for purchasing m ad slots, the advertiser’s payoff is

Πad (m,ω, p) = Ey [ψ (m, y, ω)]Nad (ω)−mp. (3)

When Nad (ω) = 0, we simply define Πad (m,ω, p) ,
−mp, and it is easy to see that the advertiser will not purchase
any ad slot in this case.

D. Two-Stage Stackelberg Game

We model the interactions among the operator, users, and
advertisers by a two-stage Stackelberg game. In Stage I, the
operator decides the unit data reward ω and ad price p. In
Stage II, each type-θ user chooses the subscription decision r
and the number of watched ads x, and each advertiser decides
the number of purchased ad slots m.

We assume that the users’ maximum valuation θmax satisfies
θmax > u′(0)F

u′(Q)u(Q) . Similar assumptions about the range of
users’ attributes have been made in [26], [27]. As shown in
Sections III and IV, this assumption implies that the high-
valuation users may both subscribe to the data plan and watch
ads under a small reward ω. In fact, we can easily see that
the user equilibrium under θmax ≤ u′(0)F

u′(Q)u(Q) will be a special

case of that under θmax >
u′(0)F

u′(Q)u(Q) .

III. SUBSCRIPTION-AWARE REWARDING

In this section, we analyze the two-stage game under the
SAR scheme, i.e., the operator only allows the subscribers of
the data plan to watch ads for rewards.

A. Users’ Decisions in Stage II

Given ω, a type-θ user solves the following problem:

max
r∈{0,1},x∈[0,∞)

Πuser (θ, r, x, ω) , s.t. x = xr, (4)

where Πuser (θ, r, x, ω) is given in (1), and x = xr implies that
a user can watch ads (x > 0) only if it subscribes (r = 1).

In Lemma 1, we introduce several thresholds of θ, which
will be used to characterize the users’ decisions. Note that
(u′)

−1
(·) denotes the inverse function of u′ (·).

Lemma 1. Define θ0 , F
u(Q) and θ1 , Φ

ωu′(Q) . When ω ∈(
Φu(Q)
Fu′(Q) ,∞

)
, there is a unique θ ∈ (θ1, θ0) that satisfies

θu
(

(u′)
−1 ( Φ

ωθ

))
− F − Φ

ω

(
(u′)

−1 ( Φ
ωθ

)
−Q

)
= 0, and we

denote it by θ2.

Although θ1, θ2 in Lemma 1 (and θ3, θ4 in Lemma 2)
are functions of ω, we omit this dependence in the notation
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Fig. 2: Illustration of data obtained under the SAR scheme (based on
Proposition 1). For u (z) = ln (1 + z), the amount of data obtained via
watching ads (i.e., ωx∗ (θ, ω)) linearly increases with θ when x∗ (θ, ω) > 0.

to simplify the presentation. Based on these thresholds, we
characterize the users’ decisions in the following proposition.

Proposition 1. Under the SAR scheme, the optimal decisions
of a type-θ user (θ ∈ [0, θmax]) are as follows:5

Case A: When ω ∈
[
0, Φ

u′(Q)θmax

]
,

r∗ (θ, ω) = 1{θ≥θ0}, x∗ (θ, ω) = 0;

Case B: When ω ∈
(

Φ
u′(Q)θmax

, Φu(Q)
Fu′(Q)

]
,

r∗(θ, ω)=1{θ≥θ0}, x
∗(θ, ω)=

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q

)
1{θ≥θ1};

Case C: When ω ∈
(

Φu(Q)
Fu′(Q) ,∞

)
,

r∗(θ, ω)=1{θ≥θ2}, x
∗(θ, ω)=

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q

)
1{θ≥θ2}.

In Fig. 2, we illustrate the data that users with different val-
uations θ obtain from data plan subscriptions (i.e., Qr∗ (θ, ω))
and watching ads (i.e., ωx∗ (θ, ω)).

In Case A, only the users with θ ≥ θ0 subscribe, and no
user watches ads because of the small unit data reward ω.

In Case B, the users who subscribe are the same as those
in Case A. Users with θ ≥ θ1 watch ads, and the threshold θ1

decreases (i.e., more users watch ads) as ω increases. Next,
we focus on the users with θ ≥ θ1. We can show that the
number of watched ads x∗ (θ, ω) increases with θ ((u′)−1

(·)
is decreasing because of the strict concavity of u (·)). In
particular, the marginal increase of x∗ (θ, ω) with respect to θ
is affected by the utility function u (z):
• If u (z) = ln (1 + z), we can show that x∗ (θ, ω) linearly

increases with θ (as illustrated in Fig. 2);
• If u (z) = 1 − e−γz, γ > 0, then x∗ (θ, ω) concavely

increases with θ.
In Case C, more users subscribe compared with Cases A and

B, i.e., the subscription threshold θ2 is smaller than θ0. This is
because the unit reward ω is large and users with θ ∈ [θ2, θ0)
subscribe to be eligible for the data rewards. We can prove
that θ2 decreases (i.e., more users subscribe) as ω increases.

5Here, 1{·} denotes the indicator function. It equals 1 if the event in braces
is true, and equals 0 otherwise.



Moreover, each subscriber watches a positive number of ads,
i.e., x∗ (θ, ω) > 0 for θ ≥ θ2.

Based on these results, we can see one key advantage of
the SAR scheme: it leads to more data plan subscriptions.

B. Advertisers’ Decisions in Stage II

Given p and ω, each advertiser solves the following problem:

max
m∈[0,∞)

Πad (m,ω, p) , (5)

where the payoff Πad (m,ω, p) is given in (3). We characterize
the optimal number of purchased ad slots in Proposition 2.

Proposition 2. If Nad (ω) = 0 or p ≥ B, then m∗ (ω, p) = 0;
otherwise,

m∗ (ω, p) =
B − p

2A

(E [y])
2

E [y2]
Nad (ω) . (6)

Recall that the random variable y denotes the value of
x∗ (θ, ω) when x∗ (θ, ω) > 0, and Nad (ω) is the mass of users
watching ads. Given the concrete utility function u (·) and the
distribution of θ, we can derive the expression of x∗ (θ, ω)
based on Proposition 1, and further compute E [y], E

[
y2
]
,

and Nad (ω).
In (6), m∗ (ω, p) decreases with the degree of wear-out

effect A. Moreover, since E
[
y2
]

= (E [y])
2

+ Var [y], we can
see that m∗ (ω, p) decreases with Var [y] (i.e., the variance of
y). This implies that the advertisers prefer a low variation in
the number of ads watched by each of the Nad (ω) users.

C. Operator’s Decisions in Stage I

The operator obtains revenue from both the mobile data
market and ad market. In the mobile data market, each user
who subscribes to the data plan should pay F to the operator.
The operator’s corresponding revenue is

Rdata (ω) = NF

∫ θmax

0

r∗ (θ, ω) g (θ) dθ. (7)

In the ad market, each advertiser pays p for each purchased
ad slot. The operator’s corresponding revenue is

Rad (ω, p) = Km∗ (ω, p) p. (8)

Let D (ω) denote the total data demand, i.e., the total
amount of mobile data that users request (by subscription and
watching ads) under reward ω. We can compute D (ω) as

D (ω) = N

∫ θmax

0

(Qr∗ (θ, ω) + ωx∗ (θ, ω)) g (θ) dθ, (9)

where Qr∗ (θ, ω) and ωx∗ (θ, ω) are illustrated in Fig. 2.
Based on Rdata (ω), Rad (ω, p), and D (ω), we formulate

the operator’s problem in Stage I as follows:

max
ω≥0,p>0

Rtotal (ω, p) , Rdata (ω) +Rad (ω, p) (10)

s.t. D (ω) ≤ C, (11)

Km∗ (ω, p) ≤ E [y]Nad (ω) . (12)

Here, Rtotal (ω, p) is the operator’s total revenue. Constraint
(11) implies that the total data demand D (ω) cannot exceed a
capacity C [13], [14]. To ensure that choosing ω = 0 (i.e., no
data reward) is feasible to the problem, we assume that C ≥
D (0). Here, D (0) is the data demand when the operator only
offers the data plan without any data reward. Constraint (12)
implies that the total number of sold ad slots (i.e., Km∗ (ω, p))
should not exceed the number of available ad slots. When the
operator does not sell all ad slots, it can fill the unsold slots
with content like public news to guarantee the fairness among
the users choosing to watch ads [9].

To solve (10)-(12), we first analyze p∗ (ω), which is the
optimal ad price under a given ω. Then, we substitute p =
p∗ (ω) into Rtotal (ω, p), and analyze the optimal unit data
reward ω∗. We characterize p∗ (ω) in the following theorem.

Theorem 1. If ω ∈
[
0, Φ

u′(Q)θmax

]
, any positive price is

optimal; if ω ∈
(

Φ
u′(Q)θmax

,∞
)

,

p∗ (ω) = max

{
B

2
, B −

2AE
[
y2
]

KE [y]

}
. (13)

Note that the random variable y is the value of x∗ (θ, ω)
whenx∗ (θ, ω)>0. Hence, both E

[
y2
]

and E [y] depend on ω.

If ω ∈
[
0, Φ

u′(Q)θmax

]
, no user watches ads (based on Propo-

sition 1). In this case, the advertisers do not purchase ad slots,
regardless of the ad price p. If ω ∈

(
Φ

u′(Q)θmax
,∞
)

, Eq. (13)
implies that p∗ (ω) decreases with A (the degree of wear-out
effect) when A is small, but does not change with A when A is
large. When A < BKE[y]

4E[y2] , the wear-out effect is small, and the
advertisers have high willingness to purchase ad slots. Hence,

the operator chooses p∗ (ω) = B − 2AE[y2]
KE[y] to sell all the

ad slots (which leads to Km∗ (ω, p∗ (ω)) = E [y]Nad (ω)).
When A ≥ BKE[y]

4E[y2] , the large wear-out effect decreases the
advertisers’ willingness to purchase slots. The operator will
not sell all slots, and will choose p∗ (ω) = B

2 , which is
independent of A.

Next, we analyze ω∗, which maximizes Rtotal (ω, p∗ (ω)),
subject to D (ω) ≤ C. We first introduce Proposition 3.

Proposition 3. Given C ≥ D (0), there is a unique ω ∈[
Φ

u′(Q)θmax
,∞
)

such that D (ω) = C. We denote this ω by
D−1 (C). Moreover, D−1 (C) strictly increases with C.

Based on Proposition 3, we can rewrite D (ω) ≤ C as ω ≤
D−1 (C). From numerical experiments, Rtotal (ω, p∗ (ω)) is
either always increasing or unimodal in ω ∈ [0,∞). Hence,
we can easily search for ω∗ in the interval

[
0, D−1 (C)

]
(e.g.,

when Rtotal (ω, p∗ (ω)) is unimodal, we can apply the Golden
Section method [28]). Next, we study when the operator will
choose ω to be D−1 (C), i.e., use up the network capacity for
data rewards. In Theorem 2, we show a sufficient condition
under which ω∗ = D−1 (C).



Theorem 2. Under the SAR scheme, if both (E[y])2

E[y2] N
ad (ω)

and E [y]Nad (ω) increase with ω, the operator’s optimal unit
data reward is given by ω∗ = D−1 (C).

We explain this sufficient condition by discussing the unit
data reward ω’s influence on Rdata (ω) and Rad (ω, p∗ (ω)).
First, increasing ω can increase Rdata (ω), because more users
subscribe. Second, increasing ω has the following impacts
on Rad (ω, p∗ (ω)): (i) (positive impact) It increases Nad (ω),
i.e., more users watch ads; (ii) (negative impact) It may
decrease E [y]. Under a larger ω, a user can obtain a larger
amount of data after watching a few ads. Then, the user’s
willingness to watch more ads may decrease because of the
concavity of the utility function; (iii) (negative impact) It may
increase Var [y]. Under a larger ω, more users with different
valuations θ watch ads, which can increase the variance of y.
As discussed in Section III-B, increasing Var [y] decreases
the advertisers’ willingness to purchase ad slots. Under a
general utility function u (·) and a general distribution of
θ, it is challenging to analyze the net effect of the above
impacts. Theorem 2 implies that when both (E[y])2

E[y2] N
ad (ω) and

E [y]Nad (ω) increase with ω, the positive impact dominates
the negative impacts. In this case, the operator should set ω
as large as possible without violating the capacity constraint
(11) under the SAR scheme.

A widely considered setting is that each user has a log-
arithmic utility function (e.g., [21], [22]) and a uniformly
distributed type (e.g., [9], [27]). We can verify that this setting
satisfies the sufficient condition in Theorem 2, and hence we
have the following proposition.

Proposition 4. When u (z) = ln (1 + z) and θ ∼ U [0, θmax],
the operator’s optimal unit data reward is given by ω∗ =
D−1 (C).

When each user has an exponential utility function (i.e.,
u (z) = 1 − e−γz), we can find a numerical example where
E [y]Nad (ω) may decrease with ω and ω∗ < D−1 (C) (i.e.,
the operator does not use up the capacity for rewards).

IV. SUBSCRIPTION-UNAWARE REWARDING

In this section, we consider the SUR scheme, i.e., both the
subscribers and non-subscribers can watch ads for rewards.

A. Users’ Decisions in Stage II
Since the users can watch ads without subscription, each

type-θ user simply chooses r and x to maximize its payoff
without the constraint x = xr, as in (4) in Section III-A.

In Lemma 2, we introduce two new thresholds of θ (we will
use symbol ˆ to indicate that the results are obtained under the
SUR scheme).

Lemma 2. Define θ3 , Φ
ωu′(0) . When ω ∈

(
Φu(Q)
Fu′(0) ,

ΦQ
F

)
,

there is a unique θ ∈ (θ3, θ1) that satisfies θu
(

(u′)
−1 ( Φ

ωθ

))
−

Φ
ω (u′)

−1 ( Φ
ωθ

)
= θu (Q)− F , and we denote it by θ4.

Based on the thresholds introduced in Lemmas 1 and 2, we
characterize the users’ decisions in the following proposition.
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Fig. 3: Illustration of data obtained under the SUR scheme (based on
Proposition 5). For u (z) = ln (1 + z), the amount of data obtained via
watching ads (i.e., ωx̂∗ (θ, ω)) linearly increases with θ when x̂∗ (θ, ω) > 0.

Proposition 5. Under the SUR scheme, the optimal decisions
of a type-θ user (θ ∈ [0, θmax]) are as follows:

Case Â: When ω ∈
[
0, Φ

u′(Q)θmax

]
,

r̂∗ (θ, ω) = 1{θ≥θ0}, x̂∗ (θ, ω) = 0;

Case B̂: When ω ∈
(

Φ
u′(Q)θmax

, Φu(Q)
Fu′(0)

]
,

r̂∗(θ, ω)=1{θ≥θ0},x̂
∗(θ, ω)=

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q
)
1{θ≥θ1};

Case Ĉ: When ω ∈
(

Φu(Q)
Fu′(0) ,

ΦQ
F

)
,

r̂∗(θ,ω)=1{θ≥θ4},

x̂∗(θ,ω)=
1

ω
(u′)

−1
(

Φ

ωθ

)
1{θ3≤θ<θ4}+

1

ω

(
(u′)

−1
(

Φ

ωθ

)
−Q
)
1{θ≥θ1};

Case D̂: When ω ∈
[

ΦQ
F ,∞

)
,

r̂∗ (θ, ω) = 0, x̂∗ (θ, ω) =
1

ω
(u′)

−1
(

Φ

ωθ

)
1{θ≥θ3}.

Note that the users’ optimal decisions in Cases Â and B̂ are
the same as those in Cases A and B (under the SAR scheme),
respectively. Hence, in Fig. 3, we only illustrate the data
obtained by different users via subscription (i.e., Qr̂∗ (θ, ω))
and watching ads (i.e., ωx̂∗ (θ, ω)) in Cases Ĉ and D̂.

In Case Ĉ, two segments of users watch ads: users with
valuations θ ≥ θ1 watch ads and subscribe; users with
valuations θ3 ≤ θ < θ4 watch ads without subscription. We
characterize the properties of θ4 in the following lemma.

Lemma 3. When ω ∈
(

Φu(Q)
Fu′(0) ,

ΦQ
F

)
(i.e., Case Ĉ), (i) θ4 is

greater than θ0, and (ii) θ4 increases with ω.

In Case B̂, the subscription threshold is θ0. Hence, result
(i) of Lemma 3 implies that some low-valuation users who
subscribe in Case B̂ become non-subscribers in Case Ĉ.
This is because these low-valuation users’ marginal benefit of
consuming data decreases after earning the data rewards, and
it is no longer beneficial for them to subscribe to the data plan
in Case Ĉ. Result (ii) of Lemma 3 shows that more subscribers
become non-subscribers as the unit reward increases.

In Case D̂, since ω is large, all users simply watch ads to
earn the rewards, without paying for the subscription.



B. Advertisers’ Decisions in Stage II

Compared with the SAR scheme, the SUR scheme changes
each advertiser’s optimal decision through changing the mass
of users watching ads and the distribution of the number of
ads watched by each of these users.

Given r̂∗ (θ, ω) and x̂∗ (θ, ω) in Proposition 5, we can
compute N̂ad (ω) (i.e., the mass of users watching ads) and the
distribution of ŷ (i.e., x̂∗ (θ, ω)’s value when x̂∗ (θ, ω) > 0).
To compute m̂∗ (ω, p), we can simply replace Nad (ω), E [y],
and E

[
y2
]

in Proposition 2 by N̂ad (ω), E [ŷ], and E
[
ŷ2
]
.

C. Operator’s Decisions in Stage I

Based on r̂∗ (θ, ω), x̂∗ (θ, ω), and m̂∗ (ω, p), we can com-
pute R̂data (ω), R̂ad (ω, p), and D̂ (ω) in a similar manner as
in (7)-(9). The operator’s problem in stage I is then given by:

max
ω≥0,p>0

R̂total (ω, p) , R̂data (ω) + R̂ad (ω, p) (14)

s.t. D̂ (ω) ≤ C, Km̂∗ (ω, p) ≤ N̂ad (ω)E [ŷ] , (15)

which is similar to problem (10)-(12).
To solve (14)-(15), we first compute p̂∗ (ω) by replacing

E [y] and E
[
y2
]

in Theorem 1 under the SAR scheme by
E [ŷ] and E

[
ŷ2
]
. Then, we compute ω̂∗ by maximizing

R̂total (ω, p̂∗ (ω)), subject to D̂ (ω) ≤ C. The computation
of ω̂∗ is different from that of ω∗ under the SAR scheme,
because (i) R̂total (ω, p̂∗ (ω)) is discontinuous at ω = ΦQ

F ,
and (ii) D̂ (ω) can be decreasing in ω ∈

(
Φu(Q)
Fu′(0) ,

ΦQ
F

)
. Based

on D̂ (ω), we first search for ω’s feasible region, which can be
numerically shown to consist of at most three intervals. We
can further show that R̂total (ω, p̂∗ (ω)) is either monotone
or unimodal in each interval. Hence, we can determine ω̂∗

by comparing the local optimal unit data rewards searched in
these intervals.

Under the SAR scheme, the operator always uses up the
capacity for rewards if u (z) = ln (1 + z) and θ ∼ U [0, θmax].
Under the SUR scheme, this does not hold, and a large ω may
even generate a total revenue that is lower than the revenue
when the operator does not offer any reward. This is because
a large ω may reduce the number of subscribers (as shown in
Case Ĉ) and hence decrease R̂data (ω). Next, we characterize
a sufficient condition under which the network capacity is not
used up for rewards (given general u (z) and g (θ)).

Theorem 3. Under the SUR scheme, when the network
capacity C > N (u′)

−1
(

F
θmaxQ

)
and the degree of wear-out

effect A > B2K

8F
∫ θmax
θ0

g(θ)dθ
, we have D̂ (ω̂∗) < C.

When the operator has a large capacity and the wear-
out effect is large, using up the capacity for rewards will
largely decrease R̂data (ω) and will not significantly increase
R̂ad (ω, p̂∗ (ω)). Hence, we have D̂ (ω̂∗) < C in this situation.

D. Extension: Differentiation of Ad Slots

In the above analysis, we assume that the operator does not
differentiate the ad slots generated by the users. It sells all
ad slots to the advertisers at the same price, and randomly

draws ads from all ad slots when a user watches ads. Under
the SUR scheme, the ad slots can be generated by both the
subscribers and non-subscribers. In this section, we consider
the differentiation of these two types of ad slots,6 which affects
both the pricing and ad display rule. The operator can sell these
two types of ad slots at different prices. When a subscriber or
non-subscriber watches ads, the operator draws ads only from
the corresponding type of ad slots (e.g., if an advertiser only
purchases the ad slots generated by the subscribers, its ads
will only be seen by the subscribers).

Given ω, we use N̂ad
I (ω) and N̂ad

II (ω) to denote the number
of the subscribers that watch ads and the number of the non-
subscribers that watch ads, respectively. Let random variables
ŷI and ŷII denote the numbers of ads watched by one of these
subscribers and one of these non-subscribers, respectively.
Similar to Proposition 2, we have the following results:
• For the ad slots generated by the subscribers, the operator

can set a price pI > 0. If N̂ad
I (ω) > 0, the number of

these slots purchased by each advertiser is m̂∗I (ω, pI) =
max{B−pI,0}

2A
(E[ŷI])

2

E[ŷ2I ]
N̂ad

I (ω); otherwise, m̂∗I (ω, pI) = 0;
• For the slots generated by the non-subscribers, the op-

erator can set pII > 0. If N̂ad
II (ω) > 0, the number of

these slots purchased by each advertiser is m̂∗II (ω, pII) =
max{B−pII,0}

2A
(E[ŷII])

2

E[ŷ2II]
N̂ad

II (ω); otherwise, m̂∗II (ω, pII)= 0.
The operator’s problem under the differentiation is given by:

max
ω≥0,pI,pII>0

R̂data(ω)+Km̂∗I (ω, pI) pI+Km̂
∗
II(ω, pII) pII (16)

s.t. D̂ (ω) ≤ C, (17)

Km̂∗I (ω, pI) ≤ E [ŷI] N̂
ad
I (ω) , (18)

Km̂∗II (ω, pII) ≤ E [ŷII] N̂
ad
II (ω) . (19)

Constraint (18) means that the total number of sold ad slots
that correspond to the subscribers should not exceed the num-
ber of ad slots generated by the subscribers. Constraint (19)
can be explained similarly for the non-subscribers. In fact, only
when ω satisfies Case Ĉ in Proposition 5, both the subscribers
and non-subscribers watch ads (i.e., N̂ad

I (ω) , N̂ad
II (ω) > 0),

and problem (16)-(19) is different from problem (14)-(15) (i.e.,
the problem without differentiation). In the remaining cases,
problem (16)-(19) reduces to problem (14)-(15).

We define ΠSUR , R̂total (ω̂∗, p̂∗ (ω̂∗)), which is the opti-
mal objective value of problem (14)-(15). Let ΠSURD denote
the optimal objective value of problem (16)-(19). ΠSURD is
the operator’s optimal total revenue under the SUR scheme,
considering the differentiation. We compare ΠSUR and ΠSURD

in the following theorem.

Theorem 4. We always have ΠSURD ≥ ΠSUR.

Hence, the differentiation does not decrease the operator’s
optimal total revenue (given general u (z) and g (θ)). In

6Besides the subscription decision r, a user decides x, e.g., the number of
ads to watch within a month. Different from r, the operator does not precisely
know the user’s decision of x until the end of the month. If the operator can
estimate x’s range based on the user’s historical behavior, it can classify users
into different categories and differentiate the corresponding ad slots similarly.
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Fig. 4: ΠSAR, ΠSUR, and ΠSURD Under Different Network Capacity.

general, it is easy to show that allowing a seller to sell items
at different prices does not decrease its revenue. However,
the differentiation here affects the ad display rule as well
as the pricing, so it is non-trivial to prove Theorem 4. For
example, one conjecture is that given any (ω, p) which is
feasible to (14)-(15), the operator can choose the same ω
and set pI = pII = p in (16)-(19) to ensure that the value
of objective (16) is no smaller than that of (14). In fact,
the conjecture does not hold, because this (ω, pI, pII) may be
infeasible to (16)-(19).

Intuitively, if the optimal unit data reward satisfies Case Ĉ
and the distributions of ŷI and ŷII are significantly different,
the gap between ΠSURD and ΠSUR will be large. In the next
section, we will show this gap numerically.

V. COMPARISON BETWEEN REWARDING SCHEMES

We define ΠSAR , Rtotal (ω∗, p∗ (ω∗)), which is the
operator’s optimal total revenue under the SAR scheme. In
this section, we compare ΠSAR, ΠSUR, and ΠSURD. Since
the comparison is challenging under a general utility function
u (·), we focus on the logarithmic utility function and expo-
nential utility function in Sections V-A and V-B, respectively.

A. Logarithmic Utility Function

We assume that u (z) = ln (1 + z) and each user’s θ follows
a uniform distribution. Theorem 5 characterizes the analytical
comparison between different schemes under C →∞.

Theorem 5. When u (z) = ln (1 + z) and θ ∼ U [0, θmax], if
network capacity C →∞, then ΠSAR > ΠSURD ≥ ΠSUR.

Theorem 5 implies that if the operator has an infinitely large
network capacity, it should only reward the subscribers for
watching ads. Intuitively, this allows the operator to motivate
all users to subscribe and watch ads via high data rewards. It
maximizes the operator’s revenue from both the data market
and the ad market.

Under a finite network capacity C, none of ΠSAR, ΠSUR,
or ΠSURD has a closed-form expression, and their analytical
comparison is challenging. Next, we show the comparison
numerically. We choose N = 107, F = 30, Q = 0.8,
θ ∼ U [0, 155], Φ = 0.3, K = 23, A = 0.6, and B = 5.

In Fig. 4(a), we plot ΠSAR, ΠSUR, and ΠSURD against C.
We can see that only ΠSAR strictly increases with C. As shown

in Proposition 4, when each user has a logarithmic utility
and a uniformly distributed type, the operator always uses up
the capacity for rewards under the SAR scheme. Hence, the
operator can always benefit from C’s increase in this situation.

First, we compare ΠSAR and ΠSUR. When C is close to
D (0), ΠSAR = ΠSUR. In this situation, the operator can only
choose a very small unit reward ω. As shown in Case B in
Proposition 1 and Case B̂ in Proposition 5, the users’ optimal
decisions under the two schemes are the same, which leads to
the same operator’s revenue. When C is from 0.84 × 107 to
1.54× 107, ΠSAR < ΠSUR. This is because the SUR scheme
can motivate two segments of users to watch ads (by setting
ω ∈

(
Φu(Q)
Fu′(0) ,

ΦQ
F

)
, as shown in Case Ĉ in Proposition 5),

which generates a higher ad revenue than the SAR scheme.
When C is greater than 1.54 × 107, ΠSAR > ΠSUR. The
operator will fully utilize the large network capacity under the
SAR scheme, and set a large ω to motivate more users to both
subscribe and watch ads. This is consistent with Theorem 5
(i.e., if C → ∞, then ΠSAR > ΠSUR). We summarize the
results in Observation 1, which has been numerically verified
under a truncated normal distribution of θ and other different
parameter settings (the comparison between ΠSAR and ΠSURD

is similar to the comparison between ΠSAR and ΠSUR).

Observation 1. When u (z) = ln (1 + z), if C is small, the
SUR scheme achieves a higher operator’s revenue; otherwise,
the SAR scheme achieves a higher operator’s revenue.

Second, we compare ΠSUR and ΠSURD. We can see that
the ad slots’ differentiation can improve the operator’s revenue
under the SUR scheme by at most 9.4%.

B. Exponential Utility Function

We assume that u (z) = 1 − e−γz and θ follows a
truncated normal distribution. We obtain the distribution of
θ by truncating the normal distribution N (125, 30) to interval
[0, 250]. We choose γ = 0.7, N = 107, F = 40, Q = 2,
Φ = 0.5, K = 16, and B = 5. In Fig. 4(b) and Fig. 4(c),
we show the comparison between ΠSAR, ΠSUR, and ΠSURD

under different degrees of the wear-out effect.
In Fig. 4(b), we consider a large wear-out effect (A = 0.9).

The comparison between ΠSAR and ΠSUR (or ΠSURD) is
similar to that in Fig. 4(a). The SAR scheme achieves a



higher revenue than the SUR scheme when C is large.
Comparing ΠSUR and ΠSURD in Fig. 4(b), we observe that the
differentiation improves the operator’s revenue under the SUR
scheme by at most 20.3%. This improvement is larger than
that in Fig. 4(a). Intuitively, the benefit of the differentiation
is obvious when the subscribers’ and non-subscribers’ ad
watching behaviors (i.e., the distributions of ŷI and ŷII) are
significantly different. Their difference is larger when each
user has an exponential utility rather than a logarithmic utility.
The truncated normal distribution also increases the difference
between the distributions of ŷI and ŷII, compared with the
uniform distribution.

In Fig. 4(c), we consider a small wear-out effect (A = 0.2),
and have three observations. First, ΠSAR may not change with
C, which is different from the logarithmic utility situation
shown in Fig. 4(a). When each user has an exponential utility,
the operator may not benefit from the increase of C, since
it may not use up the capacity for the rewards (as discussed
in Section III-C). Second, ΠSAR is always no greater than
ΠSUR (even under a large C), which is different from the
logarithmic utility situation. Under the SAR scheme, each
user has to pay the subscription fee F > 0 before receiving
the data rewards. The exponential utility function is upper
bounded (i.e., u (z) = 1 − e−γz ≤ 1), and hence the users
with θ < F will never subscribe and watch ads under the
SAR scheme, regardless of the unit data reward ω. When A is
small, the advertisers are willing to buy more slots, and having
more users watching ads significantly increases the operator’s
revenue. Therefore, the SUR scheme, which can motivate the
users with θ < F to watch ads, achieves a higher revenue than
the SAR scheme. Third, ΠSURD’s curve overlaps with ΠSUR’s
curve, because the operator chooses a large ω to incentivize
the users to watch ads under a small A. In this situation, all the
ad slots are generated by the non-subscribers under the SUR
scheme (see Case D̂ of Proposition 5), and the differentiation
cannot improve the operator’s revenue.

We summarize the key observation below (we have numer-
ically verified it under other parameter settings).

Observation 2. When u (z) = 1− e−γz , (i) under a large A,
the SUR scheme achieves a higher operator’s revenue than the
SAR scheme if and only if C is below a finite threshold; (ii)
under a small A, the SUR scheme always achieves a higher
operator’s revenue than the SAR scheme.

VI. CONCLUSION

Mobile data rewarding is an emerging approach to monetize
mobile services. We modeled the data rewarding ecosystem
and analyzed an operator’s optimal rewarding scheme. Our
results reveal that: (i) increasing the unit data reward may
decrease the number of ads watched by the users, and the
operator may not use up its network capacity to reward the
users; (ii) under the SUR scheme, the operator can improve
its revenue by differentiating the ad slots generated by the
subscribers and non-subscribers; (iii) the operator’s optimal
choice between the SAR and SUR schemes is sensitive to the
user utility function, network capacity, and advertising’s wear-

out effect. In future work, we plan to study the operator’s joint
optimization of the data plan and the data rewards.
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