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ABSTRACT

Artificial intelligence algorithms have been used to enhance a
wide variety of products and services, including assisting hu-
man decision making in high-stake contexts. However, these
algorithms are complex and have trade-offs, notably between
prediction accuracy and fairness to population subgroups. This
makes it hard for designers to understand algorithms and de-
sign products or services in a way that respects users’ goals,
values, and needs. We proposed a method to help designers
and users explore algorithms, visualize their trade-offs, and
select algorithms with trade-offs consistent with their goals
and needs. We evaluated our method on the problem of pre-
dicting criminal defendants’ likelihood to re-offend through
(i) a large-scale Amazon Mechanical Turk experiment, and
(i) in-depth interviews with domain experts. Our evaluations
show that our method can help designers and users of these
systems better understand and navigate algorithmic trade-offs.
This paper contributes a new way of providing designers the
ability to understand and control the outcomes of algorithmic
systems they are creating.
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INTRODUCTION

Artificial Intelligence algorithms are being used to support and
enhance a wide variety of products and services, often with
critical impacts on people’s lives. Examples include (i) helping
judges decide whether criminal defendants should be detained
or released while awaiting trial [22, 16], (ii) assisting child
protection agencies in screening referral calls [14], (iii) helping
employers filter job resumes [53], and (iv) facial recognition,
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which can be used for surveillance and crime prevention [8].
On social media sites such as Facebook, algorithms are used
to identify and censor trolls, fake news, terrorism, racist and
sexist ads.

One outstanding design challenge in integrating Al capabil-
ities into real-world applications is the communication gap
between designers, users, and algorithm developers. Design-
ers (who design products or service that use Al algorithms)
and users (who directly interact with or are affected by these
products and services) know their goals and needs, but strug-
gle to understand Al capabilities and envision how to design
an algorithm to achieve their goals [57]. On the other hand,
algorithm developers know a lot about how to create algo-
rithms and tune the algorithms to optimize for certain system
criteria, but know little about how these algorithmic choices
can influence the user experience. There is a need for tools
to facilitate the communication of usability considerations
in algorithm implementation between designers, users, and
algorithm developers.

In practice, some experienced designers have started to work
closely with algorithm developers to identify design goals
that are both technically viable and improve the user’s expe-
rience[56]. However, merely identifying design goals and
mapping them to algorithmic criteria is not sufficient. There
are often inherent trade-offs in implementing multiple de-
sign goals in the algorithm. Optimizing for multiple criteria
is challenging: optimizing one criterion often leads to poor
performance on others. For example, when developing a risk
assessment tool in order to aid judges’ decisions on detaining
or releasing defendants while awaiting trial, designers and
users (judges) may have dual goals: (1) not detaining someone
who will not re-offend, and (2) not releasing someone who will
re-offend. The two goals correspond to two system criteria:
reducing false positives and reducing false negatives in the
predictive model. However, there is a well-documented trade-
off between false positive and false negative: reducing false
positives can increase false negatives and vice versa [36, 21].
Furthermore, judges may want the tools to make predictions
that are both accurate in general and fair to defendants across
different demographic groups. However, machine learning re-
search has shown a trade-off between prediction accuracy and
fairness [34, 4, 43, 31, 23]. Specifically, improving fairness —
such as minimizing differences in false-positive rates between
different racial or gender groups — can lead to a decrease in
overall prediction accuracy.
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Algorithmic trade-offs are critical: they impact the intended
user experience, and sometimes even raise serious ethical
concerns or result in societal-level consequences. The HCI
community has recognized that designers and users struggle to
work with Al, and has proposed design processes and methods
to help address the challenges (e.g., [57, 5, 51, 12]). However,
to the best of our knowledge, few studies have investigated
techniques for explicitly communicating and explaining the
trade-offs in implementing multiple design objectives in the
algorithm. Our research takes on this challenge.

We propose the following method to communicate the trade-
offs between multiple design objectives in Al prediction algo-
rithms. First, given a set of design objectives (and correspond-
ing system criteria), generate a family of prediction models
with a wide spectrum of trade-offs. Second, create interactive
interfaces to visualize the trade-offs. The interfaces should
allow designers and users to explore the trade-offs between
the family of models. The goal is to help them select specific
models that are consistent with their needs and values.

We conducted a case study in the context of recidivism predic-
tion (predicting whether or not a defendant will re-offend) to
illustrate the method. We chose this context because: (i) as
noted above, this is a high-stakes decision, and (ii) the machine
learning community has intensely studied trade-offs between
different accuracy and fairness notions in this context [6, 48,
49]. To evaluate the effectiveness in communicating the algo-
rithmic trade-offs, we conducted two studies: (i) a large-scale
Amazon Mechanical Turk experiment, and (ii) in-depth inter-
view sessions with domain experts. We found that (i) we ef-
fectively communicated algorithm trade-offs and significantly
improve non-algorithm-expert participants’ understanding of
algorithmic trade-offs; (ii) participants were able to navigate
between a wide range of machine learning models and select
a model with their most acceptable trade-offs.

Our case study also suggested some unintended consequences
of making algorithmic trade-off transparent. First, we ob-
served great diversity in model selection among our partici-
pants, which suggests future research opportunities for creat-
ing mechanisms to enable trade-off discussion and negotiation.
Second, we found that communicating algorithmic trade-offs
also affected participants’ trust in Al supported decision mak-
ing in general. Almost 50% of participants changed self-report
trust in prediction algorithms after using our interfaces, with
some increasing their trust and others decreasing.

Our findings show that our method can help designers and
users of these systems better understand algorithmic trade-offs.
They can explore different possibilities in the vast design space
of all algorithmic possibilities. As such, this paper contributes
a new way for communicating how algorithms work, and for
giving designers and users ability to understand and control
the outcomes of algorithmic systems they are creating.

RELATED WORK

Challenges of Working with Al

The HCI community has recognized that designers and devel-
opers struggle to innovate with Al and Machine Learning tech-
niques. Dove et al. [21] conducted surveys with UX design
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professionals about the challenges they face when working
with AL Their findings showed that many UX designers strug-
gle to understand the capabilities and limitations of Al, and
they typically joined projects towards the end, after the func-
tional and algorithmic decisions had been made [21]. Yang
et al. [57] further synthesized prior work and their own ex-
perience, and identified two unique challenges of envisioning
and prototyping with Al: (1) the uncertainty surrounding AI’s
capabilities and (2) AI’s output complexity.

Several different approaches to helping designers and develop-
ers innovate with Al have emerged. We next review research
aimed at improving the general "explainability" of Al, and
then discuss work that develops tools, techniques, and features
to help designers work with Al.

Explaining Al and Machine Learning Algorithms
Several communities are paying attention to the issue of ex-
plaining how Al (and particularly machine learning) works.

The explainable artificial intelligence (XAI) community (see
[7] for a review) aims to provide users with explanations of
algorithms’ decisions in some level of detail to ensure that the
algorithms perform as expected [25]. Researchers have made
progress on transforming complex models, such as neural net-
works into simple ones (such as linear models or decision
trees), through approximation of the entire model [18] or lo-
cal approximation [45]. Visualization techniques have been
developed to explain different types of machine learning mod-
els. Examples include traditional machine learning models
such as linear models [46], decision trees [38], and ensemble
classifiers [55], and deep neural networks [25].

The HCI community aims to improve the usability of expla-
nation interfaces through user centered design and evaluation
approaches. For example, Carter and Nielsen[10] created user
interfaces which explains the representations inside machine
learning models, and give people new tools for reasoning.
Krause et al[37] developed Prospector to provide interactive
partial dependence diagnostics, which can help people un-
derstand how features affect the prediction overall. Cheng
et al. further conducted human-centered design and empiri-
cal evaluation of parallel interface prototypes to explore the
effectiveness of different strategies (e.g., “black-box” versus
“white-box”, and “interactive” versus “static’) to help non-
expert stakeholders understand algorithmic decision making
[12]. The survey paper[3] summarizes the field and outlines a
blueprint for CHI research on explainable Al

Most of this work focuses on improving the explainability of
Al systems’ individual decisions. However, a recent interview
study with pathologists about a diagnostic Al assistant found
that users also wanted to know the design objectives of the Al
systems and the "inherent trade-offs that the designers of the
intelligent systems must navigate in implementing the system"
([9]), which opens new challenges and motivates our work.

Tools, Techniques and Features to Help Work with Al

Researchers have developed tools, methods, abstractions, ex-
emplars, and guidelines to support designers in working with
algorithm developers during all phases of the design process.
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Researchers have developed tools for designers to prototype
Al and develop one’s own classifiers. For examples, van
Allen[51] developed the Delft Al Toolkit, with the goal of
allowing designers to experiment and gain a stronger under-
standing of Al as a material of design. Fiebrink and Cook [24]
developed Wekinator, a system for using machine learning to
build real-time interactive systems in music.

Sets of design guidelines have been published to provide
knowledge about how to display the outputs of Al systems to
users [1, 2, 5]. For example, Amershi et al [5] proposed 18
generally applicable design guidelines for human-Al interac-
tion. The guidelines provide useful resources for designers
and design teams working with Al

Design features (e.g., abstractions and examplars, and design
patterns) have been used to help designers innovating with Al
For example, Yang et al [56] found that UX designers com-
prehend ML largely through abstractions and exemplars:"the
abstractions served as a general insight about an ML capa-
bility and provided an understanding of how it worked. The
design exemplars provided specific interaction possibilities
and a glimpse of a possible felt experience". However, they
also found that designers were confused by the published ex-
emplars, and wanted to directly create their own exemplars
instead of using pre-existing ones. Design patterns have been
shown to be useful to help practicing designers understand how
to work effectively in a new domain of design. For example,
designers found design patterns useful to help understand the
design space of privacy and security features in software[15].
Researchers [58] also provided design patterns for designers
to sketch through a mobile app and create predictive interfaces.
They are useful for understanding how algorithms work in
analogous design examples, such as recommendations.

Research Gap

In sum, prior research has been conducted to help designers
understand how Al works, provide insights about Al capacities
and possibilities, and suggest best practices and guidelines.
However, little work has been conducted to help designers
engage in the algorithm implementation and participate in the
decision-making of algorithmic choices. In practice, once
design goals are set, even experienced designers often do not
participate in the algorithm implementation process, but only
focus on crafting its interaction design [56].

In this paper, we take on the challenge to facilitate commu-
nication of inherent algorithmic trade-offs. The goal is to in-
volve designers and users in the algorithmic trade-off decision-
making, which often have critical impacts on the intended user
experience, and even societal-level consequences.

APPROACH OVERVIEW: COMMUNICATE INHERENT AL-

GORITHMIC TRADE-OFFS

In this paper, we propose a novel method to communicate the
trade-offs in implementing multiple design objectives in the
algorithm. The method contains two steps: generating a family
of models on a wide spectrum of trade-offs, and visualizing
the trade-offs between the models.
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Note that we assume that at this stage, designers and machine
learning developers have already identified a set of design
goals and have mapped them into system criteria. For ex-
ample, major social networking sites increasingly rely on
algorithmic tools to automatically identify and censor hate
speech, adult content, misinformation, racist and sexist ads,
and so forth. Designers who work with users and algorithm
developers might identify the following design goals for the
content moderation tools: (1) catching all the undesirable con-
tent (minimizing false negatives), (2) not falsely accusing any
well-intentioned users (minimizing false positives), and (3) be-
ing fair to users from different demographic groups (equalize
false positives/negatives). With the set of design objectives
(and associated system criteria), we step through the following
process to communicate the algorithmic trade-offs.

Step 1: Generate a family of models to capture the trade-
offs. Given a collection of system criteria that correspond to
design goals, the first step is to generate a family of predictive
models that exhibit a wide range of trade-offs between the
different system criteria. One technique we can use to capture
the trade-offs is to identify Pareto-optimal models (e.g., [32,
33] ). More formally, given a set of system criteria, we say
that a model is Pareto-optimal if there is no alternative model
that is strictly better than the given model on all the system
criteria.

Step 2: Make the trade-offs between models interpretable.
Given a family of models, the next step is to develop methods
to communicate models’ trade-offs. For example, interactive
visualizations can be used to enable users and designers to
"play" with the models, understand and explore the trade-offs,
and select a suitable model.

Below we describe a “proof-of-concept” case study in the
context of recidivism prediction to illustrate our process in
detail and to show its value and promise.

CASE STUDY: RECIDIVISM PREDICTION

We used recidivism prediction (predicting whether a defendant
will or will not re-offend) as the context for exploring the gen-
eral research problem of helping people understand intelligent
algorithms and communicate their trade-offs.

Context

In 2016, ProPublica, an independent, non-profit newsroom
that produces investigative journalism in the public interest,
published reports about COMPAS - a case management and
decision support tool used by U.S. courts to assess the likeli-
hood of a defendant re-offending[29]. The analysis shows that
African American defendants were much more likely to be
misclassified as high risk to re-offend compared to their white
counterparts [30, 29].

Their findings led to a growing body of research aiming at
integrating fairness into machine learning, often referred to
as fairness-aware machine learning. A lot of the work aims
to formulate fairness notions as algorithmic constraints and
build predictive models that satisfy fairness notions, including
statistical parity [23], equalized opportunity [27], and calibra-
tion [44]. However, for many of these fairness measures, prior
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research has identified a range of trade-offs between fairness
and accuracy [4, 31, 43, 23]. Recent studies indicate that dif-
ferent desirable notions of fairness are not only incompatible
with each other [44], but often mutually exclusive [35, 13].

Despite the mathematical rigor of these approaches, a recent
interview study with 27 public sector ML practitioners sug-
gested a disconnect between the current fairness-aware ma-
chine learning research and users’ and stakeholders’ realities,
context, and constraints; this disconnect is likely to undermine
practical initiatives [52]. To address the challenge, prior work
suggests the importance of engaging users and stakeholders
throughout the algorithm design process [40, 59].

Data

We recreated a recidivism prediction tool using a data set
provided by ProPublica[29]. The dataset originally contains
information of 11,757 defendants including their prior criminal
history, jail and prison time, and demographics (such as race,
gender, and age) [20]. We followed the literature to formulate
the problem as binary classification, and the labels are whether
a defendant commits “a new misdemeanor or felony offense
within two years of the COMPAS administration date” [29].
We removed defendants whose records were not complete
and who were just charged for traffic offenses and municipal
ordinance violations. For the purpose of the case study, we
only focused on two protected attributes, race and gender, and
constrained them to be binary, e.g., African American and
White , female and male. To better illustrate trade-offs, we
created two balanced data sets for race and gender separately.
This resulted a data set of 3,000 defendants (1,500 White
defendants and 1,500 African American defendants) and a
data set of 1,600 defendants (800 male defendants and 800
female defendants). We ran logistic regression on the two data
sets. The prediction accuracy for the two data sets is 0.715 and
0.721, respectively, with a random 70%-30% split on train and
test data, which is consistent with results of previous studies.

Design Objectives and System Criteria
Based on the prior literature, we defined the following major
design goals for the recidivism prediction tool:

e Not falsely detain defendants who will not re-offend. This
is unfair to the defendants and costly to society. This goal
corresponds to reducing "false positives".

o Not release defendants who will re-offend. This is danger-
ous for society. This goal corresponds to reducing "false
negatives".

e Be fair to defendants across different demographic groups.
We define (un)fairness as disparity in false positive and
false negative rates between different groups. However,
prior research shows that equalizing false positives and
false negatives between different groups might increase the
overall error rate, which is undesirable [4, 31].

Step 1: Generate a Family of Models
We now discuss how we generated a set of models with differ-
ent trade-offs across a variety of system criteria.
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Trade-offs between False Positives and False Negatives
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Figure 1. Relationship between false positives and false negatives.
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Figure 2. Relationship between overall prediction errors and disparity
between different racial groups, with threshold 0.45.

Trade-Offs between False Positives and False Negatives

To capture the trade-off between false positives and false neg-
atives, we varied a classification threshold. We first had to
define this threshold, which required mapping a probability to
a binary category, where a value above the threshold indicates
“re-offend”, and a value below indicates “not re-offend”. Fig-
ure 1 shows the relationship between false positives and false
negatives when we varied the threshold in our data.

Trade-Offs between Overall Errors and Disparity (Unfairness).
We followed the prevalent statistical fairness approach in the
machine learning fairness literature. We selected a small num-
ber of groups specified by sensitive attributes, and then sought
approximate equality of these groups on certain statistics of
the predictor, such as false-positive rates and false-negative
rates. In our study, we considered two groups, denoted by ag
and aj, and specified by either race or gender. We then for-
mulated our (un)fairness measure as the disparity between the
number of false positives F'P and false negatives FN between
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the two groups:

max(|FP(ay) — FP(ap)|,|[FN(a1) — FN(ap)|). (1)

Note that we chose to use counts instead of ratios, since counts
are easier to explain to non-expert stakeholders. To capture
trade-offs between overall accuracy and disparity, we adapted
the algorithms from [4, 32] to generate the set of Pareto-
optimal predictive models, for which it is impossible to im-
prove either criterion without worsening the other. Figure 2
shows a Pareto curve of prediction errors and disparity on
African American and White defendants. Models on the right
side of Figure 2 prioritize “minimizing overall errors”, while
models on the left side prioritize “minimizing disparity”. We
can observe that by reducing the disparity between the two
groups from 158 to 21, overall prediction errors increase from
1253 to 1651. The technical details on how we generated the
Pareto curves are included in the supplementary materials.

Step 2: Make the Trade-Offs Interpretable

We want to develop interactive interfaces to let users explore
and compare a set of prediction models with a spectrum of
trade-offs between false negatives, false positives, overall pre-
diction errors and fairness measures. Since our tool is de-
signed for designers and users without technical background,
our design must be able to effectively communicate relevant
technical features of the model to a non-technical audience.

In this case study, we experimented with two interface strate-
gies to visualize and explore the models: confusion matrix
and text. A confusion matrix is a common approach to visual-
ize model performance in machine learning [50]; it displays
four quadrants representing four types of prediction outcomes
(false positives, false negatives, true positives, and true nega-
tives). We also can communicate model performance simply
through textual explanations.

Interface Designs

We followed a human-centered design process [28] involving
a number of iterations. We started with a brainstorming ses-
sion to ideate different design directions and features based on
our design requirements. Next we synthesized and clustered
the ideas. We then incorporated the ideas into the creation
of low-fidelity prototypes, and conducted informal qualitative
analysis and pilot studies to evaluate and improve the proto-
types. Each step in this process provided rich insights from
users’ perceptions and helped to shape our final design and
implementation.

Our final interface design consists of a two-part layout: (i)
a control panel that lets users select models, and (ii) a result
panel that shows relevant results of the selected model. The
results panel is based on one of our two model visualization
strategies, the confusion matrix view (Figure 3) or the text
view (Figure 4).

We now describe our interface in our detail.

Control Panel
Since we had two types of trade-offs to communicate to users,
we designed two separate controls.
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For trade-offs between false positives and false negatives (See
the upper section of the control panel in Figure 3), we designed
a control bar that lets users adjust the threshold.

For trade-offs between errors and disparity (see the lower sec-
tion of the control panel in Figure 3), once a protected attribute
(gender or race) is selected, we present the Pareto curve with
the given threshold. We let users select any particular model
shown on the Pareto curves.

Result Panel

Prior work has compared the use of visualizations and texts for
communicating various statistical aspects of algorithms [26].
Research shows that visualizations are more effective at grab-
bing user attention, but studies also reported that some users
may prefer text over visual content. Therefore, we decided to
design two different views in the result panel.

Confusion Matrix View. We created four separated quadrants
with each dot representing one classified defendant in one
of the four prediction categories (true positive, false positive,
false negative, and true negative) (see the result panel in Figure
3). We also displayed the total number of defendants in each
category. To distinguish correct and incorrect predictions, we
applied two colors, blue and red, to highlight the difference.
When a protected attribute (race or gender) is selected, the
dots in each quadrant will be split into two different colors
representing two groups under the selected protected attribute,
such as African American and White defendants. As users
move the control bars, the interface will display the changes
in prediction outcomes accordingly.

In addition, the interface provides the summary of the key
metrics (e.g., prediction errors and disparity) on the top of
the result panel. Explanations about the metrics will show up
when users hover over the question marks next to the metrics.

Text View. The text view (Figure 4) displays the same set of
information as the confusion matrix view, but in plain text. It
describes the four prediction categories and states the number
of defendants in each category. We followed a natural logic
by grouping the prediction outcomes by incorrect or correct
predictions (see the result panel in Figure 4). When a protected
attribute (race or gender) is selected, we show the number for
each group. Information about prediction errors and disparity
is also described in text.

EVALUATION OVERVIEW
We evaluated whether our method helps people comprehend,
navigate, and manage trade-offs through (i) a large-scale Ama-
zon Mechanical Turk experiment, and (ii) six in-depth inter-
views with domain experts.

Note that in this proof-of-concept study, we did not evaluate
with UX designers, which we will discuss later in the paper
as a limitation and opportunity for future work. However, UX
designers focus on users. UX Designers conduct user research
and evaluation to incorporate users’ needs and preferences in
the design of the products and services. The goal of our evalua-
tion is to show our approach can help both novice users (AMT
participants) and domain experts to understand and navigate
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Figure 3. The confusion matrix view of the interface. The left-hand side is the control panel that provides control options for users to adjust trade-offs
between the two types of errors and trade-offs between prediction errors and disparity. The right-hand side is the result panel that presents the overall
prediction errors and disparity, and the four types of prediction outcomes in four quadrants with a short text explanation of the terminology.
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Overall, among 3000 defendants, 1303 (43%) are incorrectly predicted.

Among these 1303 incorrect predictions:

o FALSE NEGATIVE: 101 White American and 54 African American
defendants who are predicted NOT to reoffend will actually reoffend
(Difference 47).

o FALSE POSITIVE: 525 White American and 623 African American
defendants who are predicted to reoffend will actually NOT reoffend
(Difference 98).

Among these 1697 correct predictions:

o TRUE NEGATIVE: 524 White American and 265 African American
defendants who are predicted NOT to reoffend will actually NOT reoffend
(Difference 259).

o TRUE POSITIVE: 350 White American and 558 African American
defendants who are predicted to reoffend will actually reoffend (Difference
208).

Figure 4. The text view of the interface. The left-hand side is the same control panel as the confusion matrix view that provides control options for two
types of algorithmic trade-offs. The right-hand side is the result panel that presents the overall prediction errors and disparity and the four types of
prediction outcomes in text description, separated by correct and incorrect predictions.
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algorithmic trade-offs, and express their preferences regard-
ing the algorithmic trade-offs, which allows UX designers to
design Al-based applications for the users.

The goal of the Amazon Mechanical Turk experiment is to
answer the following questions:

e Q1: Can we help non-expert participants comprehend trade-
offs in recidivism prediction?

e Q2: Are there differences between the confusion matrix-
based interface and the text-based interface?

e Q3: Can our interfaces help participants navigate trade-offs
and select models?

e Q4: Are there unintended consequences of making trade-
offs transparent?

The interviews aim to explore how real users of recidivism pre-
diction tools (e.g., judges, lawyers and policymakers) would
use our interfaces.

EVALUATION 1: AMAZON MTURK EXPERIMENT

Experimental Design

We conducted a randomized between-subjects experiment with
three conditions: (i) confusion matrix view condition: partici-
pants used our confusion matrix view interface (Figure 3); (ii)
text view: participants used our text view interface (Figure 4);
and (iii) baseline condition: participants did not use any inter-
face, but instead proceeded directly to the questionnaire. We
included the final condition to assess people’s baseline under-
standings of trade-offs in machine learning. Participants were
randomly assigned to one of the three conditions, and were al-
lowed to spend as much time as needed to finish the evaluation
questionnaires with or without the help of any interface.

Participant Recruitment

We recruited 301 participants from Amazon Mechanical Turk
(AMT) in August 2019 for our study. To ensure the quality of
survey responses, we recruited participants who had finished
more than 100 tasks (HITs) with a task (HIT) approval rate
of 95% or above. We also ensured that participants were at
least 18 years old and resided in the U.S., so that they had
a higher chance of having contextual knowledge about the
U.S. judicial system. The average time for completing the
survey was 28.6 minutes. Each participant received a base
payment of $4 and an additional bonus (up to $1.20) based
on the number of correct answers they had in the objective
comprehension questions (each correct answer would result in
a bonus payment of $0.20). To ensure participants would an-
swer questions honestly without random guessing, we provide
an “I don’t know” option for each question with a $0.05 bonus
payment. On average, each participant received a payment
of $8.70, which is higher than the minimum wage in the U.S.
($7.25 per hour at the time of writing).

301 participants finished the tasks on AMT, but 15 of them
failed the attention check (not included in the analysis). Our
analysis included 107 participants in the baseline condition,
93 participants in the confusion matrix view condition, and
86 participants in the text view condition. The demographic
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information including age, gender, race, education level, was
comparable across the three conditions (x> not significant).

Study Procedure

Participants were informed that the purpose of the study was
to help users understand intelligent algorithms that support
people in making important decisions. We also designed quiz
questions to make sure participants understood the study con-
text, such as the definition of recidivism and prediction algo-
rithms. Participants had to answer the quiz questions correctly
before they could proceed. We included the description of
study context and quiz questions in the supplementary materi-
als. Participants were given as much time as they wanted to
explore the interface and complete a set of questions (details
will be described below in the “Evaluation Metrics” section).
We also inserted an instructed-response question for an atten-
tion check, which directed respondents to choose a specific
answer [42, 12].

Evaluation Metrics
We designed a set of questions to measure the following met-
rics. We include the questions in the supplementary materials.

Objective Comprehension. Participants answered six multiple-
choice questions with objectively correct answers to evaluate
their understandings of the algorithms: four of them focused
on understanding the basic concepts, while two of them as-
sessed understanding of algorithmic trade-offs.

Subjective Evaluation. Participants self-reported how well
they understood the algorithmic trade-offs on a Likert scale.

Model Selection. In the two interface conditions, participants
were instructed to adjust the interface controls to select a
model, and were asked questions about whether and why the
selected model was most consistent with their values.

Trust. We also measured participants’ perceived trust of the
algorithm’s recidivism predictions. We adapted questions
from the prior literature that measured trust in human-machine
systems on a 7-point Likert scale [39, 17, 12]. We asked
the same set of questions about trust twice, both before and
after participants explored our interfaces and/or answered the
objective comprehension questions.

In addition, we also asked questions about participants’ tech-
nical literacy and their demographic information (age, gender,
and education levels). Technical literacy is measured using a
7-point Likert scale question to assess participants’ familiarity
with Al-powered systems [54, 12].

Results
Our main findings include the following:

e Both the confusion matrix view and text view interfaces
significantly improved participants’ comprehension of al-
gorithmic trade-offs compared to the baseline. There is no
statistically significant difference between the confusion
matrix view and the text view.

e Our interfaces let participants select models that represented
their values. We also observed great diversity in the selected
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models: some participants tended to balance trade-offs,
while others concentrated on optimizing one criterion.

o Nearly half of the participants changed their trust in the algo-
rithmic prediction after using our interfaces: 22.3% trusted
the algorithm more, while 25.1% trusted the algorithm less.

We next describe our analyses in more detail.

Improved Objective Comprehension of Trade-Offs

We created a set of linear regression models (see Table 1) with
Objective Comprehension and Subjective Evaluation as depen-
dent variables and experimental condition as the independent
variable. Models 1, 2, and 3 in Table 1 show the differences be-
tween three experimental conditions (IsCMView v.s. baseline,
and IsTextView v.s. baseline).

We found that participants, including those in the baseline
conditions, had some basic understanding of AI/ML concepts
like false positives and false negatives. According to Model 1
in Table 1, participants in the baseline condition on average
answered 63.2% objective comprehension questions correctly.
Using one of our interfaces increased participants’ compre-
hension. Participants in the confusion matrix condition got
70.9% questions correct; the difference between the confusion
matrix and baseline conditions was not significant. Partici-
pants in the text view condition got 74.7% questions correct;
the difference between the text view and baseline conditions
was significant (coef. = 0.115, p < 0.05). A T-test showed no
statistical difference between participants’ performance in the
two interface conditions.

When it comes to algorithmic trade-offs, our interfaces sig-
nificantly improved participants’ comprehension. According
to Model 2, participants in the baseline condition correctly
answered 36.7% of the objective comprehension questions
on trade-offs. Participants in the confusion matrix condition
correctly answered 55.8% of the questions; the difference
between the confusion matrix and baseline conditions was
significant (coef. = 0.191, p < 0.01). Participants in the text
view condition correctly answered 65.6% of the questions; the
difference between the text view and baseline conditions was
significant (coef. = 0.289, p < 0.01). A T-test between the two
interface conditions did not show significant difference.

We also examined the impact of using our interfaces on partic-
ipants’ subjective evaluation of their understanding of algorith-
mic trade-offs (Model 3). There was no significant difference
among participants in the two conditions.

Obj. Comp. Obj. Comp. Sub. Evaluation
of Algorithmic on Algorithmic on Understanding
Concepts Trade-Offs Trade-Offs
Model 1 Model 2 Model 3
Coef. S.E. Coef. S.E. Coef. S.E.
Intercept 0.632 *#* 0.031 | 0.367 ** 0.036 | 5.264 ** 0.129
IsCMView 0.077 0.045 | 0.191 **  0.052 0.209 0.189
IsTextView | 0.115*  0.046 | 0.289 **  0.053 0.236 0.193
R-Squared 0.023 0.099 0.007

Table 1. Results of participants’ objective comprehension and subjective
evaluation of the algorithm. *p < 0.05, **p < 0.01.
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Enabled Participants to Select the Models They Want

Both interfaces (confusion matrix view and text view) enabled
participants to view and select models ranging over a spectrum
of trade-offs. We explicitly asked participants whether they
think the interfaces helped them identify models that repre-
sented their values. Participants in both interface conditions
reported high ratings. The average ratings for the confusion
matrix condition and text view condition were 5.54 and 5.64
respectively on a 7-Likert scale (the difference was not statisti-
cally significant).

Interestingly, we found great diversity in people’s model se-
lection: different people had different preferences for the type
of outcomes and trade-offs they considered acceptable. Figure
5 and 6 show the distribution of participants’ model selection.
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Figure 5. The distribution of participants’ model selections with respect
to trade-offs between false negatives and false positives.
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Figure 6. The distribution of participants’ model selections with respect
to trade-offs between disparity and prediction errors.

Figure 5 concerns the trade-off between false positives and
false negatives. It shows that many participants tended to bal-
ance the two types of errors in their model selections. 29.4%
of participants selected the model in the middle, which min-
imized the overall errors. Among those who did not select a
“balanced” model, more participants selected models on the
“reducing false negatives” side than models on the “reducing
false positives” side. That is, they prioritized releasing de-
fendants who might re-offend over retaining defendants who
would not re-offend.
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Figure 6 concerns the trade-off between overall errors and
disparity. It shows a different pattern, a more bimodal distri-
bution of preferences. 21.8% of participants selected a model
that minimized disparity, and 16.8% selected a model that
minimized overall errors . Among those who selected a model
with some balance between the two goals, more participants
preferred reducing disparity over reducing overall errors.

This suggests intriguing opportunities and future work on how
to aggregate different individuals’ opinions on “what the best
model is”, which we discuss below.

Making Trade-offs Transparent Swayed Participants’ Trust
We also measured the change in participants’ perceived trust
of algorithmic prediction before and after they explored the al-
gorithm and trade-offs. 47.4% participants in the two interface
conditions changed their perceived trust, with a nearly even
split between those who increased and those who decreased
their trust. In the baseline condition, participant directly pro-
ceeded into questionnaires. Simply answering the questions
about algorithmic trade-offs changed 30% of participants’ per-
spectives (the difference between the interface conditions and
the baseline condition is significant, p < 0.01).

Participants explained their reasons for changing their per-
ceived trust toward algorithmic prediction in an open-ended
follow-up question. Analysis of their responses revealed some
insights into their reasons.

Many participants gained trust because our interfaces educated
them about the algorithm itself and the inherent trade-offs in al-
gorithms like this. One participant made this explicit: “Using
the tool helped me understand the algorithm and the results of
changing the aggressiveness and disparity parameters...” Our
interfaces also made it easier to see the prediction results. One
participant said that it “makes it much easier to see how many
false predictions the model can make” .

On the other hand, the ability to tune the algorithm and see
different prediction outcomes led some participants to doubt
the algorithm’s reliability and thus reduce their trust. As one
participant said: “After learning more about the algorithm, it
seems that the parameters can be adjusted to create almost
any type of results desired by researchers.”.

Another interesting observation is that participants had very
different expectations about algorithmic accuracy, and this
affected their trust. For example, one participant increased
trust saying that “an accuracy of around 70% is fairly good”.
On the other hand, another participant commented that the
algorithm is “less trustful as this is a large error rate”.

Overall, our first evaluation showed that our interfaces were
effective at helping novice users comprehend and navigate
trade-offs. In addition, our results suggested that people have
heterogeneous preferences for fairness-accuracy trade-offs,
and diverse perspectives on the trustworthiness of Al systems.
This opens up new challenges and opportunities in building so-
lutions with AI algorithms that take into account the diversity
of human preferences.

To understand how our method might help expert users of a
recidivism prediction tool (e.g., judges, lawyers, and policy-
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makers), we recruited and conducted in-depth interviews with
domain experts in this area.

EVALUATION 2: EXPERT STUDY

Recruitment, Procedure, and Analysis

We recruited 6 experts who have extensive experiences in
criminal justice system. They had backgrounds ranging from
criminal law, justice, and public policies and statistics. Partici-
pation was voluntary and uncompensated. Participants were
2 females and 4 males based in the U.S. We began our re-
cruitment at a conference on fairness in machine learning, and
utilized a snowball sampling technique to identify more par-
ticipants. We conducted semi-structured interviews, and each
lasted on average 30 minutes. Because our participants were
remotely located, we used zoom.us and asked our participants
to share screen. By doing so, we were able to observe how
participants were interacting with our interface in real time
and ask follow-up questions.

We explained the context and goals of the study, asked for con-
sent to record, and then gave participants time to explore the
interface. After some exploration and clarification questions,
participants were asked to think out loud their thought process
and complete tasks such as describing trade-offs indicated by
the interface, and identifying a model given a specific desired
property. Participants were provided both interfaces (confu-
sion matrix view and text view). In the interview, we asked
our expert participants to envision how real users might use
our interfaces in the real-world environment.

All the participants quickly learned how to use interface, ac-
curately identified the trade-offs, and answered the objective
comprehension questions correctly without difficulty.

To analyze the interview transcripts, we adopted Charmaz’ ap-
proach[11] to grounded theory, so that prior ideas and theory
could be considered during analysis. The specific coding pro-
cess is as follows: members of the research team transcribed
all 6 interviews from 3.5 hours of recorded audio, and open
coded all transcripts. A total of 7 themes emerged from a se-
ries of immersive meetings where we discussed and clustered
codes. We only reported selected themes that are relevant to
the research questions of this paper.

Results

Envision the Use in Practice

Our expert participants believed that our interface is a great
tool to reveal trade-offs, and encourage real users to think
about trade-offs and consequences. “I think you’re onto some-
thing in that, it’s useful to have.. They (different models) have
these different trade-offs and consequences.” ” (P1)

Furthermore, our interfaces made the ethical trade-off deci-
sions transparent. “The interface can make that trade-off clear,
but it cannot help with the normative questions. Making it
clear can clarify people to think about it, where they want the
line to be drawn at these normative questions.”

Our methods also creates the opportunity for users to express
their perception of different misclassfied cases, and even pro-
vide different weights to different misclassified cases. “It’s up
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to the stakeholders to decide.. they’ll say to me false positive
is three times worse than a false negative...”(P2)

Some expert participants suggested that our interface can be
useful at the final stage of model selection in the development
of the algorithmic system: “...it would be like, people had
already decided that one... the final thing of this would be
to pick a threshold, or to access its predictive accuracy is
suitable for deployment at all...” (P3)

In addition, some experts believed this is also a tool for edu-
cating the public. As P3 commented that “I guess I could less
imagine. like policy makers sitting in a room and using this,
like more imagine the general public being interested in how
this sort of thing gets done, like an instructive tool.” (P3)

Interface Preference

There was no general preference for one interface over the
other. Some participants liked the text view more because they
thought it was simpler and cleaner. As P3 said: “I like the text
view, easy to observe info. confusion matrix draws too much
attention ... I think it [text view] looks really clean and I think
it’s nice to see those numbers like, written out, I mean that’s
me though, like I like numbers, I like the ‘incorrect, correct’
sort of labeled this way it’s like obvious.”

On the other hand, some participants liked the interactive vi-
sual feature of the confusion matrix view. As PS5 said: “I think
the first one [confusion matrix view] was a lot niftier (laughs.)
... 'm more intuitive. See the things changing visually... it’s
hard to see what how the trade-offs are happening as I move
these without the little dots.”

DISCUSSION

In this research, we proposed a method that lets designers and
users directly see the trade-offs in a range of Al prediction
models. The "proof-of-concept” case study demonstrates that
the method is promising to help both novice users and domain
experts comprehend, interpret, navigate, and reflect on the
algorithmic trade-offs. Specifically, the interfaces developed
in the case study let people explore multiple points in the
design space of recidivism prediction models and identify a
model consistent with their values.

Our findings also hold promise for designers who need to
make judgments about these algorithms that can strongly im-
pact user experiences. Our approach has the potential to allow
for more fluid cross disciplinary development of algorithmic
systems. However, we did not test our method and interfaces
with designers and developers in a real design and develop-
ment scenarios. In future work, we will organize workshops
with designers and developers to understand how the tool can
facilitate better communications in multi-disciplinary team.

We found that people have heterogeneous preferences about
fairness-accuracy trade-offs in their model selections. This
opens up a new challenge: how can we help users with dif-
ferent preferences negotiate and select a final model? One
promising technical approach is to draw techniques from so-
cial choice theory and to develop mechanisms that elicit prefer-
ences from individual stakeholders and select models based on
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scoring rules (e.g. the Borda count [19, 41]). An alternative ap-
proach is to develop social mechanisms and user interfaces to
facilitate discussions among groups of stakeholders, enabling
them to reason about different fairness and accuracy measures,
express priorities and acceptable trade-offs, and negotiate with
each other and find appropriate models.

One surprising finding was that making trade-offs transpar-
ent changed people’s trust of the algorithms in both positive
and negative dimensions. This suggests that in future work
we could actually seek to understand if a particular interface
design increases or decreases trust in the technology. Another
way to interpret our finding is that the knowledge that our
tool offers helped people make informed decisions on whether
they should trust the algorithms or not, which is critical for
high-stake contexts. According to Simmel [47], there is no
need to trust if people have total knowledge of the other party
(algorithms in our context). Trust is also not a rational choice
if people do not have any knowledge of the other party. Trust
exists when people have some knowledge about the other party
[47]. We believe this opens up new opportunities to further un-
derstand how to design more trustworthy algorithmic systems.

We evaluated our method in the context of predicting recidi-
vism because recidivism prediction tools are assisting humans
to make consequential decisions and have received much atten-
tion from the public and research communities [29, 30]. Prior
work in fair machine learning has shown an inherent trade-
off between fairness and accuracy for almost all prediction
tasks. For example, Kearns et al have shown similar trade-
offs (Pareto curves) between fairness measures and accuracy
in many datasets, including the “lawschool” and “communi-
ties and crime” datasets [33]. Thus, we believe our overall
approach can be generalized to explain trade-offs between
accuracy- and fairness-related measures in other contexts.
However, different interfaces may be suitable for different
contexts, as is the case with any interface design.

Finally, one line of future work we are pursuing is to create
an “authoring tool” to let designers (who may not have pro-
gramming and algorithm development experience) create their
own visualizations of trade-offs between different accuracy
and fairness measures for the algorithmic systems they are
designing.

CONCLUSION

In this study, we developed a method to explain trade-offs
between design goals in the machine learning algorithm. We
evaluated the method in the context of predicting criminal de-
fendants’ likelihood to re-offend through a large-scale online
experiment and in-depth interviews with domain experts. Our
results suggest our method is promising in helping designers
and users comprehend, navigate, and manage trade-offs.
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