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Abstract We propose a segmentation method for vector fields

that employs geometrical curve attributes to classify the be-
havior of the integral curves. In particular, we assign to a
given spatio-temporal position the attribute value associated
with the integral curve initiated at that point. With this at-
tribute information, our segmentation strategy first performs
aregion classification. Then, connected components are con-
structed from the derived classification to obtain an initial
segmentation. After merging and filtering small segments,
we extract and refine the boundaries of the segments. Be-
cause points that are correlated by the same integral curve
have the same or similar attribute values, the proposed seg-
mentation method naturally generates segments whose bound-
aries are better aligned with the flow direction. Therefore,
additional processing is not required to generate other geo-
metric descriptors within the segmented regions to illustrate
the flow behaviors. We apply our method to a number of
synthetic and CFD simulation data sets and compare their
results with existing methods to demonstrate its effective-
ness.
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1 Introduction

Vector field analysis is a ubiquitous tool employed to study a
wide range of dynamical systems involved in numerous ap-
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plications, such as automobile and aircraft engineering, cli-
mate study, combustion dynamics, earthquake engineering,
and medicine, among others. As the size and complexity of
generated vector filed data sets increase continuously, many
partition-based techniques have been developed to generate
a thorough description of the behavior of vector fields.

Existing techniques typically partition the flow domain
based on either certain local flow characteristics, such as
vector magnitude and orientation, or its topological struc-
ture [29]. Specifically, segmentation techniques that are based
on local flow information usually perform vector field clus-
tering in a hierarchical fashion, i.e., either top-down [9] or
bottom-up [21,33]. Since this clustering is based on the lo-
cal flow information, the segments and their boundaries need
not be aligned with the flow direction (see Figure 7(b) for
an example). Therefore, additional computation is needed
in order to generate other visual primitives, such as stream-
lets or glyphs [21], to convey information about the flow be-
havior within each segment. On the other hand, vector field
topology [14,23] reveals the essential flow structure and par-
titions the flow domain into regions with homogeneous be-
haviors. However, it has yet to be applied to unsteady flow
and its visual representation in high dimensional space can
be too complex to be useful to domain experts.

Integral curve attributes have been recently applied to
cluster [17] and select [39] integral curves to generate an
overview of the vector fields. However, depending on the
dissimilarity metric used for integral curve comparison, some
important features may be overlooked due to an inadequate
spatial sampling by the integral curves. To remedy this, very
dense integral curves can be computed as input, which will
significantly increase the memory and storage requirements
during computation. In the meantime, integral surfaces may
be better descriptors than integral curves for depicting im-
portant flow dynamics in higher-dimensional spaces, although
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integral surface placement is a much harder problem than in-
tegral curve placement [4].

In this paper, we introduce a segmentation framework
based on integral curve attributes applicable to both 2D and
3D vector fields. Our method combines the advantages of
vector field clustering and integral curve attribute approaches
and attempts to achieve an intuitive and expressive segmen-
tation of the flow domain whose resulting segment bound-
aries are aligned with the flow. Our framework consists of
two major components (Figure 1). First, we derive several
attribute fields from the integral curve attributes. The at-
tribute field value, i.e., a scalar data, at each spatio-temporal
position is set equal to the attribute value of the integral
curve that is seeded at this position. The attribute value of
an integral curve is computed by integrating local properties
along the curve [22,31]. If the integral curve is computed
over a long time window, the attribute field will encode the
global behaviors of the vector field [40]. Using the derived
attribute fields, the vector field segmentation problem is con-
verted into a scalar field partitioning problem. In fact, a sim-
ilar idea has been described in reference [12]. Compared
to [12], where the goal was to generate implicit clusters pro-
duced by semantic dependencies, our method generates a
segmentation based on flow information only. With the aid
of the derived attribute fields, we first classify the sampled
spatial positions according to their attribute values. Then,
the connected components of this classification are extracted
to provide an initial segmentation. This initial segmentation
may contain some smaller segments due to the numerical
error present in the attribute field computation. We then per-
form dilation operations to remove those small segments.
After filtering the initial segmentation, the boundaries of
the obtained segmented regions may still be non-smooth.
To remedy this, we further smooth these boundaries. Unlike
the boundary refinement strategy applied in [16] our method
does not require computing many contours and comparing
them to the coarse segmentation curves.

In summary, our contributions are as follows:

— We introduce an integral curve attribute based flow seg-
mentation framework, which generates segments that are
better aligned with the flow direction than those pro-
duced by existing local methods. In addition, our frame-
work is flexible and efficient in that various attribute
fields can be used to guide the segmentation and help
users investigate different flow behaviors.

— We present a complete pipeline for generating the ini-
tial segmentation and filtering for both 2D and 3D vec-
tor fields. This includes a dilation operation for remov-
ing small segments and an effective boundary refine-
ment algorithm for removing noise at segment bound-
aries. Our framework is simple to implement and com-
putationally efficient. We demonstrate the effectiveness
of the method by applying it to a number of synthetic

and CFD simulation data. In particular, we wish to point
out that our segmentation approach can aid the visualiza-
tion of high dimensional vector fields without explicitly
placing stream surfaces (see Figure 11 and Figure 12).

The rest of the paper is structured as follows. Section 2
reviews the previous work related to the proposed method.
Section 3 briefly reviews the important concepts of vector
fields and the attribute fields as well as their computation.
Section 4 describes the segmentation algorithm based on the
integral curve attributes and the refinement of the segment
boundaries. The applications of the segmentation algorithm
to a number of steady and unsteady flows are reported in
Section 5, followed by a discussion of the limitations of our
work in Section 6.

2 Related Work

There is a large body of literature on the analysis and visu-
alization of flow data. Interested readers are encouraged to
refer to recent surveys [4, 11, 14,23] that provide systematic
classifications of various analysis and visualization techniques
for vector field data. In this section, we focus on the most rel-
evant work on integral curve attributes and partition-based
flow visualization.

Vector field topological analysis Vector field topology pro-
vides a streamline classification strategy based on the origin
and destination of individual streamlines. Since its introduc-
tion to the visualization community [10], vector field topol-
ogy has received extensive attention. A large body of work
has been introduced to identify different topological fea-
tures, including fixed points [24,35] and periodic orbits [1,
34,38]. Recently, Chen et al.[2] studied the instability of
trajectory-based vector field topology and, for the first time,
proposed Morse decomposition for vector field topology com-
putation, which leads to a more reliable interpretation of the
resulting topological representation of the vector field.

The success of vector field topology for the analysis of
steady vector fields has inspired efforts to extend it to the
analysis of unsteady vector fields. The most successful strate-
gies are based on the Lyapunov exponent. Specifically, La-
grangian Coherent Structures (LCS) were introduced to iden-
tify separation structure in time-dependent flows, by com-
puting the Finite Time Lyapunov Exponent (FTLE) of the
flows [8, 15, 30]. Since its introduction, FTLE has been com-
pared with the separatrices for steady cases [26], and its
computational efficiency has been improved substantially [5].

Streamline and pathline attributes Sadarjoen and Post in-
troduced the winding angle concept for streamlines and uti-
lized it to classify streamlines within vortical regions [25].
Salzbrunn and Scheuermann [27] introduced streamline pred-
icates, which classifies streamlines by interrogating them as
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Fig. 1 The pipeline of our method.

they pass through certain features, e.g., vortices [28]. Later,
this approach was extended to the classification of pathlines.
At the same time, Shi et al. [31] presented a data explo-
ration system to study the different characteristics of path-
lines based on their various attributes, including winding
angle. Recently, a statistics-based method was proposed to
help select the proper set of pathline attributes to improve

the interactive flow analysis [22]. Different from the approaches

of the pathline predicate and clustering based on pathline at-
tributes, our approach segments the flow domain in regions
where pathlines are located. There are other techniques for
classifying streamlines that are constrained to flow separa-
tion and vortex structures, such as the streamline bundling
technique [39]. More recently, McLoughlin et al. [20] intro-
duced the idea of a streamline signature based on a set of
curve-based attributes including curvature and torsion. This
streamline signature is used to compute the similarity be-
tween streamlines and help domain experts place and filter
streamlines to create an informative and uncluttered visual-
izations of 3D flow.

Flow segmentation A top-down method and a bottom-up
approach were proposed by Heckel et al. [9] and Telea et
al. [33], respectively. An image-space, mesh-driven vector
field clustering algorithm was introduced by Peng et al. [21].
They provided a bottom-up approach to generate a hierarchi-
cal clustering of vector fields defined on 2-manifolds. How-
ever, these hierarchical methods only consider local flow
behavior; therefore, global flow behavior may not be re-
vealed. McKenzie et al. [19] implemented an error-driven
approach for variational clustering. Li et al. [16] proposed a
2D vector field segmentation based on the Hodge decompo-
sition and the normalized cut algorithm. The Green Function
Method (GFM) was used to approximate the curl-free and
the divergence-free components to segment the vector field.
Guan et al. [7] introduced a feature-emphasized clustering
method for 2D vector fields. A 3D vector field clustering
approach based on integral curvature was proposed by Kuhn
et al. [12]. The authors detected regions of similar geometric
properties, such as integral curvature and visualized them by
means of compact cluster boundaries. More partition-based

techniques for flow segmentation are described in the survey
by Salzbrunn et al. [29].

3 Vector Field Background and Trajectory Attributes

Consider a d-manifold Ml ¢ R4(d = 2,3), a vector field can
be expressed as an ordinary differential equation (ODE) x =
V(x,t) or a map @ : R x M — R?. There are a number of
curve descriptors that reveal different aspects of the trans-
lational property of vector fields. In this work, we focus on
only streamlines and pathlines derived from vector fields.

— A streamline is a solution to the initial value problem
of the ODE system confined to a given time fy: X, (f) =
Po+ Ji, V (x(1):10)dn.

— Pathlines are the trajectories of massless particles re-
leased in the flow domain at a given time #p: X(¢) = po +

Je v (x(n)ito+m)dn.

3.1 Attribute Fields

Various attributes can be extracted for the analysis and clas-
sification of integral curves [22,31]. Among these attributes,
many can be obtained by accumulating local flow properties
measured at the integration points, such as the arc-length
and the winding angle of an integral curve. We adopt the Eu-
lerian representation from texture-based methods and store
the accumulated values at the sampled spatial positions. The
value at each sample position is determined by the integral
curve initiated at it. This Eulerian representation gives rise
to a derived attribute field.

Considering an integral curve % that starts from a given
spatio-temporal point (x,#y), the attribute field value at this
point is computed as [40]:

F(x,10) = F(€ X)) (1)

where €' (x) |§g+T denotes an integral curve, i.e., either a stream-
line or a pathline initiated at x and computed within an inte-
gral time window [fg, 7 + T|. % (-) represents an attribute of
interest of €.
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Fig. 2 The visualization of some attribute fields. (a) The rotation field @ of a steady flow. (b) curl, determinant and nsv fields (from top to bottom)
of a 2D unsteady flow behind a square cylinder. (c) The arc-length field of a Tornado data. A blue-white-red color coding is used for 2D attribute
fields with blue for negative values and red for positive ones (a, b). Rainbow color coding is used to render a 3D volumetric attribute fields with

non-negative values (c).

The attribute fields that we use to segment the vector
fields include: (1) rotation field & — the winding angles of €’;
(2) non-straight velocity field nsV — an attribute field encod-
ing the characteristics of straightness of %; (3) arc-length
field arc — the length of €’; (4) curl and determinant field
— the integration of the curl magnitude and the determinant
of Jacobian along %. Figure 2 shows a number of attribute
fields in 2D and 3D. We refer the interested readers to [40]
for more details about attribute fields and their visualization.

In our implementation, we employ a regular sampling
strategy to compute the attribute fields and the subsequent
segmentation. That is, for the 2D steady flow, we partition
the flow domain into N, x N}, cells, and for 2D unsteady and
3D steady flows, we partition the domain into N, X Ny X N,
cubes. Here, Ny, Ny, N, are the sampling resolutions along
the X, Y, Z (or t for the unsteady flows) axes, respectively.
From each seed x (at the center of each cell or cube), an
integral curve is computed using a 4" —order Runge-Kutta
integrator. A linear interpolation scheme is applied in both
space and time during integration. In our experiments, N,
N, and N; match the resolution of the data set unless stated
otherwise. Using the integral curves, the attribute fields are
computed and stored at each sampled spatial position. We
illustrate the storage of the 2D attribute fields in Figure 3(a),
where each cell, whose center is a sample position, stores the
derived attribute field. The cells are labeled with the classi-
fication information discussed in Section 4.1.

4 Segmentation Algorithm

Based on the attribute fields described in Section 3.1, we
convert the flow segmentation problem into a scalar field
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Fig. 3 The illustration of the representation of attribute values and seg-
ments. (a) An input attribute field with labels of bin IDs. (b) The seg-
ments based on the attribute field. (c) The boundaries of the segments.
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Fig. 4 The pipeline of our segmentation algorithm.

regions of the vector fields and their boundaries. Our algo-
rithm can be divided into two steps. As illustrated in Fig-
ure 4, the first step is to extract the segments from the re-
gion classification (top row of Figure 4) based on the at-
tribute field values. The second step is to extract and clean
the boundaries of the segments (bottom row of Figure 4).
The details are described in Sections 4.1 and 4.2, respec-
tively.

4.1 Segment Extraction and Cleaning

Given a specific attribute field (e.g., the rotation field @),

partitioning problem. Figure 3 illustrates the output segmented our method consists of the following steps.
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(b)

Fig. 5 Region classification based on different methods. (a) uniform
distribute on data range. (b) equal-sizes bins. The histograms show the
data distribute under each method. The bin number m = 5.

Region classification We first classify different flow regions
based on their attribute field values. A simple strategy is to
evenly partition the data range of the attribute field, i.e., the
i bin (i € [0,m — 1]) corresponds to the range [y + (i —
1) W, min + i@]. The data points are labeled
as in the i'* cluster based on the attribute field value de-
fined on it (e.g., Figure 3(a)). However, this simple strategy
may result in initial region classification with largely dif-
ferent sizes, as shown in Figure 5(a). An alternative way to
generate m clusters is to equalize the size of bins. That is,
the number of data points falling into each bin is the same.
This generally yields better initial partitioning (Figure 5(b)).
Without further specification, most 2D segmentation results
shown in this paper adopts the second initial partitioning
strategy. For the 3D flow data sets, we perform the region
classification manually based on the data distribution his-
togram to avoid generating too large bins (i.e., clusters with
too many points). However, we do not enforce equal size re-
quirement in 3D. We provide the actual partitioning strategy
via the legends aside the results of 3D data sets.

Segment extraction After the preceding step each sample
point is labeled with the ID of the corresponding bin (i.e.,
cluster ID). Next, we extract the segments from these clus-
ters. This can be achieved by computing the connected com-
ponents of those sample points based on their labeled IDs
obtained in the previous step. A standard breadth first search
algorithm can be used to accomplish this task. The con-
nected components are identified using 4-connectivity in 2D
and 6-connectivity in 3D, respectively. After identifying the
connected components, the sampled points are re-labeled
based on the index of the connected components to which
they belong. This provides us the initial segmentation of the
domain. Figure 4(b) illustrates the result of this step.

Segment cleaning via dilation Due to the numerical error in
the attribute fields, the above initial segmentation may con-
tain small segments with only a small number of sampled
points. These small segments will increase the complexity
of the segmentation and lead to visual distraction. There-
fore, we need to remove these small or noise segments.

In order to determine whether a small segment is noise
or not, we introduce a noise segment threshold 7y, which is
a percentage of the size of the bins. A noise segment is a
segment that satisfies both of the following conditions: (1)
Its size, i.e., the number of sample points in this segment,
is smaller than the product of ¥ and the size of the bins in
the initial clustering; (2) The attribute value in this segment
is close to that in its neighboring segments. In implemen-
tation, this can be identified by the differences in the cor-
responding bin IDs. Figure 6(a) shows a number of noise
segments highlighted by arrows. We apply the dilation op-
eration, which is one of the basic morphological operations
in image processing [6], to remove these segments. Specifi-
cally, we first convert the flow domain into a gray scale im-
age. The intensity of each sample point is determined by the
size of the segment to which it belongs. That is, the larger
the size of the region, the larger the intensity of the sam-
ple. Then, the standard dilation operation is applied to this
gray scale image. After the dilation operation, the segment
ID of each point in the noise segment is changed to the ID of
its neighboring segments with the largest size, i.e., with the
largest number of sampled points. We also extend the dila-
tion to 3D to remove the noise segments in 3D vector fields.
Here, we assume a 3D uniform sampling strategy. Given a
3D noise segment, the spatio-temporal point on the bound-
ary is relabeled with the ID of one of its six neighboring
segments whose segment size is the largest. Figure 6(b) il-
lustrates the segmentation result after applying dilation to
Figure 6(a), where the noise segments are removed.

4
{
(a) (b) ()

Fig. 6 The illustration of the effect of dilation operation and bound-
ary refinement. (a) The segmentation before dilation operation. (b) The
segmentation after dilation operation. (c) The extracted boundaries of
(b) without refinement. (d) The extracted boundaries of (b) with refine-
ment.

Note that, when equal-size bin partitioning strategy is
applied to generate the region classifications, the above noise
segmentation threshold is equivalent to using the data size
(e.g., the diameter of the bounding box of the data domain)
multiplied by y. Nonetheless, we opt for the local strategy
described above, as the initial partitioning need not be equal
size (e.g., in 3D cases). Using a global threshold to remove
noise segments may lose detailed information in those smaller
segments (i.e., initial clusters that have less sample points).
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4.2 Boundary Extraction

After filtering noise segments, the boundaries of the remain-
ing segments may not be smooth and aligned with the flow
direction. A similar issue has been reported by Li et al. [16].
They proposed a boundary refinement method via contours
computed from various derived scalar fields or streamlines
from the original discrete vector field. However, their method
requires to compute a large number of contours or stream-
lines and select an optimal one with additional computation.
Based on the output of our segmentation algorithm, we pro-
pose a boundary extraction algorithm that consists of two
steps. In the following we first describe our method to han-
dle 2D segmentation, followed by a discussion of the pro-
cessing of 3D cases.

Extracting initial segment boundaries In 2D cases, given
the unique label for each sample point based on the above
segmentation, the well-known normal cut technique [3] can
be applied to identify the boundaries between segments. In
practice, we estimate the boundary curves between segments
using the boundary points of one of the two neighboring seg-
ments. In order to smooth the boundary curve, we need to
connect these boundary pixels in the correct order.

To extract boundary curves, we first store the bound-
ary points into an array. Starting from any point in the ar-
ray, we trace in two directions along which the boundary is
constructed. The tracing is stopped when the next point is
on the boundary of the flow domain or when the point has
two or more neighboring segments. If the boundary point
that already belongs to a segment is also next to other two
segments, it indicates that one boundary curve of the seg-
ment is generated. The four points highlighted in the circle
in Figure 3(a) are the ends of several boundary curves (Fig-
ure 3(c)). All the boundary curves of a segment have been
identified when all the points in the array are traced. How-
ever, since the boundary curves of each segment are gen-
erated independently, two neighboring segments may share
two boundary curves rather than one. So we need to refine
the initial segment boundaries.

Boundary refinement A Laplacian smoothing algorithm is
applied to refine the boundaries. Each point x on the two
boundary curves is replaced with the average position of x
and its adjacent boundary neighbors. Thus two neighboring
boundary curves can be merged into one. In addition, dila-
tion only removes the noise inside a segment, while there
may be noise at or near the boundary of the segment, which
is caused by the initial clustering based on the simple range
classification of the attribute fields. This can be adjusted ac-
cording to the flow direction. Figure 6 (c) and (d) illustrate
the extracted boundaries of Figure 6 (b) before (c) and after
(b) refinement, respectively. With this adjustment, the ex-

tracted boundaries are smoother as highlighted with the red
arrows.

For a 3D vector field, we utilize an iso-surface to esti-
mate the boundaries of the 3D segments. Specifically, we
first re-assign the ID of a selected 3D segment as 1, and the
rest as 0. Therefore, an iso-surface of the value 0.99 would
be a close estimation of the boundary of the segment. Some
estimated boundaries of the 3D segments are shown in Fig-
ures 11 and 12. The Laplacian smoothing strategy for the
refinement of boundaries can be extended to 3D to smooth
the extracted iso-surfaces that correspond to the boundaries
of different segments.

5 Results

We have applied our method to a number of synthetic and
real-world vector field datasets, including steady and un-
steady flows for both 2D and 3D. With the pre-computed
attribute fields, the speed of our segmentation algorithm de-
pends on the resolution of the spatio-temporal domain. It
typically takes 2.5 seconds for a 2D steady vector field with
600 x 600 resolution. For the 3D steady data sets consid-
ered, 4.25 seconds are required to compute a segmentation.
For the 3D unsteady ABC flow, it takes 14 minutes. All nu-
merical experiments are carried out on a PC with an Intel
Core 17-3537U CPU and 8GB RAM.
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Fig. 7 Comparison between the bottom-up algorithm and our method
with a synthetic flow . (a) The LIC of the flow; (b) The segmentation
result for the bottom-up algorithm based on the direction of the flow.
(c) The segmentation result for our algorithm based on the rotation
field. (d) The boundaries of the segments in (c).
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5.1 2D steady vector fields

Figure 1(right), Figure 7(c) and Figure 8(column (a)) show
our segmentation results for a number of synthetic and real-
world 2D steady flows, respectively.

As a comparison, we compute the segmentation using
the image-space vector field clustering technique introduced
by Peng et al. [21]. It adopts a bottom-up strategy and ag-
gregates the two most similar clusters each time until only
one cluster is left. Figure 7(b) shows the result of the image-
space clustering of a 2D synthetic steady vector field with
an error threshold of 0.081. However, only showing these
segments cannot provide insights into the flow behavior. In
comparison, our result as shown in Figure 7(c) generates
segments whose boundaries are better aligned with the flow.
By looking at the segments or the boundaries of the seg-
ments (Figure 7(d)), one can easily understand the flow be-
havior. In order to quantify how well the boundaries of the
obtained segments are aligned with the input flow, one can
adapt the work by Matvienko and Kruger [18], which is be-
yond the scope of this work. Additional comparisons can be
found in the supplemental document.

Effects of the number of bins m Figure 8(a) shows the ef-
fects of using different numbers of bins for the initial region
classification for the Atlantic Ocean dataset, which is taken
from the top layer of a 350-day 3D simulation of global
oceanic eddies for the year 2002 [32]. Each time step corre-
sponds to one day. We select the first time step of the dataset,
i.e., slice #20106, to generate the 2D steady vector field. As
we can see, with a larger m, more details of the flow are re-
vealed. For example, as highlighted in the dashed area, there
are more segments when m is larger and the flow direction,
including the sharp turn in the flow, is gradually revealed.

Extracted boundaries v.s. seeded streamlines Figure 8 (b)
shows the extracted boundaries of the corresponding seg-
mentations shown in Figure 8 (a). These boundaries are sim-
ilar to the streamlines seeded on the boundaries, as shown
in Figure 8 (c). The points on a streamline have the same
or similar attribute field value, while those on a boundary
of one segment have the same range rather than a specific
attribute field value. Therefore, the streamlines seeded on
the boundaries need not exactly match the boundaries of the
segments, as indicated by the arrows in Figure 8 (b) and (c),
but they are sufficiently close to each other.

5.2 2D unsteady vector fields

The second example of a real-world dataset is a simula-
tion of a 2D unsteady flow behind a square cylinder with a
Reynolds number of 160 [36]. This simulation covers a sub-
set of the spatio-temporal domain, [—0.5,7.5] x [—0.5,0.5]

® ] ] ©

Fig. 8 The effect of the number of bins m for the initial region clas-
sification. Column (a) shows the segmentation results based on the ro-
tation field with m as 5, 8 and 15 from top to bottom, respectively.
Column (b) are the extracted boundaries of the corresponding segmen-
tation in (a). Column (c) shows the streamlines seeded on the extracted
boundaries.

Fig. 9 Segmentation of a 2D unsteady flow behind a square cylinder
based on different attribute fields: determinant field (a), nsV field (b)
and curl field (c), respectively. The bin number m = 6.

x[15,23]. The resolution of the dataset is 400 x 50 x 1001
(number of grid points in X,y,t-direction ). We choose the
first 200 time steps and use a resolution of 400 x 50 x 200
to compute the attribute fields based on pathlines. The time
window for the pathline computation is 3. Figure 9 shows
the segmentation results of this dataset based on different
attribute fields, i.e., determinant field, non-straight velocity
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Fig. 10 The segmentation result of an unsteady Double Gyre flow with
different noise segment threshold 7. (a) Y = 0.01; (b)y = 0.05; (c) The
four y-sensitive segments; (d) The estimated boundaries of the four y-
sensitive segments with sampled pathlines (red). The bin number m =
6.

field nsV, and curl field, respectively. The bin number m is
6, and the noise segment threshold 7y is 0.01. The segments
from the curl field (Figure 9(c)) encode the LCS information
of the flow and those from the non straight velocity field nsV
(Figure 9(b)) reveal the Von Karman vortex street.

Noise segment threshold y Figure 10 shows the segmen-
tation of the Double Gyre flow [30] based on the rotation
field. When 7y increases from 0.01 to 0.05, the four segments,
highlighted in black in Figure 10(a), merge with their neigh-
boring segments after dilation (Figure 10(b)). Interestingly,
these four long thin segments have rather different attribute
values compared to their neighboring segments. They re-
veal a symmetric, helical configuration of the pathlines in
the Double Gyre flow that are not easy to see with other
methods. As shown in Figure 10(d), the pathlines seeded in
those regions display similar behaviors in each region.

5.3 3D steady vector fields

To test out method in a steady 3D flow framework we take
an instant from a 3D time-dependent flow behind a square
cylinder with a Reynolds number of 160 [36]. It covers the
spatial domain [—12,20] x [—4,4] x [0, 6]. The spatial reso-
lution of this dataset is 192 x 64 x 48. We compute the at-
tribute fields based on 3D streamlines. Figure 11(a) shows
the segmentation of this dataset based on the curl field. Eight
segments are generated with the bin number m = 3. Fig-
ure 11(b) shows the estimated boundaries of two segments
by iso-surfaces. The left image shows a segment inside the
flow domain, where the curl field has large values. The right

Fig. 11 Segmentation and estimated boundaries of a 3D steady flow
behind cylinder. (a) The segmentation result based on the curl field. (b)
Several segmentation boundaries generated using the iso-surfaces. The
bin number m = 3. The legend aside shows the partitioning strategy for
initial region classification.

(B) | it it - S,

Fig. 12 Segmentation and estimated boundaries of the Bernard flow.
(a) Eight segmentation boundaries generated from the iso-surfaces. (b)
one of the generated segments. The bin number m = 5. The legend
aside shows the partitioning strategy for initial region classification.

image shows a segment near the flow domain boundaries,
where the curl field has small values.

Figure 12 shows the segmentation and estimated bound-
aries of the Bernard flow [37], whose domain is [—16, 16] x
[—4,4] x [—8,8]. From the eighteen segments generated with
bin number m = 5, we select eight whose average rotation
field value is above 525.6. The estimated boundaries of the
eight segments shown in Figure 12 (a) highlight the eight
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Fig. 13 Results of the unsteady ABC flow projected into t = 0. (a) Vi-
sualization of the rotation field. (b) Four segments of the rotation field
with bin number m = 2. (c) Three segmentation boundaries generated
from the iso-surfaces. The bin number m = 2. The legend aside shows
the partitioning strategy for initial region classification.

vortex regions of the Bernard flow. There are also some seg-
mented regions covering the whole flow domain rather than
a specific vortex region. Figure 12 (b) shows such a segment.

As discussed earlier, the boundaries of the segments gen-
erated by our method are closely aligned with the flow. This
is also true for the 3D segmentation results. Even though
a comprehensive comparison is beyond the scope of this
work, we believe that our 3D segmentation results can po-
tentially be utilized to describe the complex 3D flow be-
havior in a similar way to stream-surfaces without explic-
itly placing stream surfaces. We plan to assess this in an ex-
tended work.

5.4 3D unsteady vector fields

We also applied our framework to a 3D unsteady flow, i.e.,
the unsteady ABC vector field [13]. We defined the param-
eters to be A = \/§+O.5tsin(m), B=+/2and C = 1. The
spatial domain we consider is [0,27]3. The attribute fields of
the 3D unsteady flow are defined in a 4D space and are based
on pathlines. The time window for pathlines computation is
10. Figure 13(a) is the visualization of the rotation field pro-
jected into the time slice t = 0. With the bin number m = 2,
four segments are generated (Figure 13(b)). Three of them
highlight the vortex regions of the flow, whose boundaries
are estimated with the iso-surfaces shown in Figure 13(c).

6 Conclusion

In this work, we propose a vector field segmentation al-
gorithm based on derived attribute fields. A number of at-
tribute fields are computed based on the accumulation of lo-
cal properties along the integral curves. We then extract the
connected components based on the classification of the at-
tribute values and apply dilation to filter the noise segments
in the segmentation results. Finally we extract and smooth
the boundaries of the segments in order to obtain a cleaner
segmentation for visualization. The segments generated by
our algorithm are better aligned with the flow than those ob-
tained from existing local methods. Domain experts can em-

ploy various attribute fields to explore different flow behav-
iors. Our segmentation can be applied to 3D steady flows,
where we use iso-surfaces to estimate the boundaries of the
segments. We show that these iso-surfaces could potentially
be used to visualize high dimensional flows in a similar fash-
ion to integral surfaces.

Limitations The initial region classification used in our pipeline

is rather simple and may require user adjustment. A more
heuristic strategy needs to be developed. Also, the bound-
aries of 3D vector field segments are currently some esti-
mated iso-surfaces rather than the real boundaries of the seg-
ments. In addition, the criteria employed to identify noise
components should also consider the shape of a component
in addition to its size. Take a small segment around the cen-
ter point of a vortex as an example, if we only consider the
size of this segment and ignore its shape, it may be classified
as a noise segment and be filtered out, which is not desired.
In fact, the shape information of the segments can be de-
scribed by their 1D skeletons. Furthermore, the current seg-
mentation framework does not consider the well-known flow
features, such as topology. However, we believe that the gra-
dient of the attribute fields, which has been shown relevant to
a number of flow features [40], can be employed to guide the
segmentation process. Finally, the current framework does
not apply to large scale 3D unsteady vector fields because of
memory limitations (due to the attribute field computation).
We plan to address these limitations in the future.
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