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ABSTRACT
Morse decompositions have been proposed to compute and represent the topological structure of steady vector fields.
Compared to the conventional differential topology, Morse decomposition and the resulting Morse Connection Graph
(MCG) is numerically stable. However, the granularity of the original Morse decomposition is constrained by the resolution
of the underlying spatial discretization, which typically results in non-smooth representation. In this work, an Image-Space
Morse decomposition (ISMD) framework is proposed to address this issue. Compared to the original method, ISMD first
projects the original vector field onto an image plane, then computes the Morse decomposition based on the projected field
with pixels as the smallest elements. Thus, pixel-level accuracy can be achieved. This ISMD framework has been applied
to a number of synthetic and real-world steady vector fields to demonstrate its utility. The performance of the ISMD
is carefully studied and reported. Finally, with ISMD an ensemble Morse decomposition can be studied and visualized,
which is shown useful for visualizing the stability of the Morse sets with respect to the error introduced in the numerical
computation and the perturbation to the input vector fields.
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1. INTRODUCTION
Vector field topological analysis1 has been successfully applied for the efficient interpretation of many steady vector field
data stemming from applications ranging from aircraft and automobile engineering, mechanical engineering, oceanog-
raphy, climate study and weather modeling, and medical practices. Conventional vector field topology is defined and
computed based on the solution to the ordinary differential equation that describes the vector field, which can be com-
promised by numerical errors introduced in the integration and the noise contained in the data. To address this, Morse
decomposition has been introduced by Chen et al.2 as a stable representation of the vector field topology. The idea of
Morse decomposition is to compute a discrete topology that consists of Morse sets and their connectivity, i.e., the Morse
Connection Graph (MCG). A Morse set is a polygonal element strip (e.g., a triangle strip for a triangulation of the domain)
that encloses the flow recurrent dynamics as defined in the conventional topology (Figure 1(a)). This coarse representation
offers an additional room for each feature to tolerate certain amount of error or perturbation, resulting in a more stable
representation compared to the conventional differential topology.

However, there are a number of limitations of the original Morse decomposition. First, the resolution of the decompo-
sition, i.e., the granularity or size of the Morse sets is constrained by the resolution of the underlying mesh. That is, the
finest Morse set cannot be smaller than a triangle. This usually results in Morse sets with zig-zag like boundaries (Figure 1
(a)). This visually non-smooth representation is against the smooth nature of the flow. Second, the computation of Morse
decomposition requires the adaptive re-sampling of particles along the boundaries of each polygonal element, leading to
slow performance when processing large-scale data. This is because the adaptive framework is not easy to parallelize.
Third, the existing computation and visualization of Morse decomposition does not provide the information of the stability
of the Morse sets under different sources of uncertainty, such as the error introduced in the numerical integration and the
perturbation and noise in the data. This stability information may help the domain experts to evaluate where are the most
likely locations for the actual topological features (i.e., some special trajectories) within the detected Morse sets (i.e., some
discrete regions). This important information is not well-conveyed by the original Morse decomposition and its visualiza-
tion, because all points within a Morse set are shown with a uniform color (Figure 1 (a)), indicating the features can be
anywhere in the Morse sets with equal chance, which is not true.

To address these limitations, we introduce an Image-space Morse decomposition (ISMD) framework. Similar to other
image-space methods, we first project the original vector field that is defined in the object space onto an image plane. We
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Figure 1: The object-space Morse decomposition with τ = 0.2 (left), our image-space Morse decomposition (middle), and an ensemble
of the image-space Morse decomposition for the stability study of the Morse sets (right), of a synthetic data.3

then perform Morse decomposition based on the projected vector field. In contrast to the conventional Morse decomposi-
tion, ISMD estimates the flow maps by densely releasing particles within the individual pixels (i.e., some small squares)
instead of resorting to the adaptive sampling along the edges. This new framework enables the parallel implementation of
the flow map computation. The obtained directed graph represents the flow mapping between pixels, and thus, the extracted
Morse sets are comprised of set of pixels. Consequently, ISMD typically achieves pixel-level accuracy compared to the
original method (Figure 1 (b)). In addition, the performance of ISMD is independent of the size of the input data, thus, it
is scalable to large-scale data sets. Finally, the ISMD framework enables us to develop an ensemble analysis framework
for the study and visualization of the stability of the individual Morse sets with respect to different uncertainty sources
(Figure 1 (c)). We carefully study and report the performance of the ISMD framework with respect to 1) the resolution
of the image plane, 2) number of particles in each pixel, and 3) the integration steps. We also apply the proposed ISMD
framework for the analysis of a number of synthetic and real-world vector field data to demonstrate its utility.

In the meantime, we wish to point out that ISMD shares the similar limitations as other image-space methods, e.g., view
point dependency. In addition, it is equivalent to refining the underlying mesh to improve the estimation of the flow map,
while replacing the more accurate but slower adaptive edge sampling strategy with a uniform dense sampling for particle
placement to achieve faster computation. Hence, the accuracy of the obtained graph representation may not be guaranteed
when compared to the original method. Therefore, instead of replacing the original Morse decomposition, we consider the
ISMD a useful addition to the topology-based vector field analysis that produces an overview of the flow structure.

In the following, we will first review the related work in the literature of vector field visualization and analysis, and
describe the original Morse decomposition. Then, we will describe our ISMD framework. Third, we apply it to a number
of synthetic and real-world data sets and discuss the effectiveness of its utility. Fourth, we elaborate our framework of the
ensemble analysis based on the ISMD and discuss its application for the uncertainty analysis and visualization for various
flow data. Finally, we conclude our work with a discussion on its limitations and the future work.

2. RELATED WORK
Vector field analysis is of primary interest in many areas of science and engineering. There are a vast variety of visualization
and analysis techniques available these days for largely different vector-valued data. A series of survey papers4–8 provide a
comprehensive review of this literature. In the following, we review only the most related work to the presented research.

Vector field topology was first introduced by Helman and Hesselink9 to the visualization community. They defined
a topological skeleton that consists of first-order fixed points and their connectivity. This topological skeleton has been
extended to handle the boundary features10 and higher-order fixed points,11 respectively. Wischgoll and Scheuermann12

introduced a first solution to detecting periodic orbits from 2D steady vector fields, which has been extended to 3D vector
fields.13 Theisel et al.14 proposed a grid-independent method for the location of periodic orbits. Chen et al.3 introduced an
efficient method for periodic orbit detection from 2D/2.5D vector fields and defined a more complete vector field topology
by including periodic orbits into the topology construction. In the meantime, saddle-saddle connector has been introduced
by Theisel et al.15 for 3D vector field topology visualization to reduce the occlusion issue. Weinkauf et al.16 proposed to
extract high-order critical points to assist the simplification of 3D vector field topological representation.



Realizing the numerical instability issues of the previous methods that focus on the computation of the differential
topology, Chen et al.2 introduced the first stable and discrete representation of vector field topology based on Morse
decomposition. This framework has been applied to 3D vector fields17 and extended to construct a hierarchical repre-
sentation of the flow structure,18 respectively. Recently, Szymczak and Zhang introduced a stable Morse decomposition
framework for piecewise constant vector fields.19 Our work improves the conventional Morse decomposition for a smooth
representation of vector field topology with the probability information encoded.

3. VECTOR FIELD BACKGROUND AND MORSE DECOMPOSITION
In this section, we will briefly review some important concepts of vector fields and Morse decomposition.

Consider a d-manifold M⊂ Rd (d = 2,3 in our cases), a general vector field can be expressed as an ordinary different
equation ẋ = V (x, t) or a map ϕ : R×M→ Rd , satisfying ϕ

t0
t0 (x) = x0 and ϕ

t+s
t0 (x) = ϕ t+s

s (ϕs
t0(x)) = ϕ

t+s
t (ϕ t

t0(x)). This
flow map describes the spatial correlation of points through trajectories (or flow paths) starting at time t0: ϕ t

t0(x). In steady
flows, a point x0 ∈M is a fixed point if ϕ(t,x0) = x0 for all t ∈ R. That is, V (x0, t) = 0. x is a periodic point if there exists
T > 0 such that ϕ(T,x) = x. The trajectory of a periodic point is called a periodic orbit. Both fixed points and periodic
orbits are examples of flow recurrent features. The connectivity of these flow recurrent features represents the qualitative
(or structural) information of the vector fields, which we define as vector field topology.

Morse Decomposition A Morse decomposition is a collection of disjoint closed sets (called Morse sets) that together
contain all the recurrent dynamics of the flow induced by the vector field. More precisely, sets Mi, i ∈ {1,2, . . . ,N} form
a Morse decomposition if and only if the trajectory of any point is either (i) entirely contained in one of the Morse sets
or (ii) is contained in some Morse set Mi for large enough negative times and in some other Morse set M j, with j > i, for
large enough positive times. Intuitively, (ii) means that the trajectory of any point outside the Morse sets can only move
from a set with lower subscript to a set with a higher subscript. (ii) excludes any recurrent dynamics outside the Morse
sets, making it gradient-like.20 In practice, the partial order between Morse sets can be represented as an acyclic directed
graph called Morse connection graph, or MCG.
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Figure 2: An MCG of a synthetic
vector field.18

An indexing of Morse sets consistent with the above definition can be obtained from
the MCG by means of topological sort. For an example shown in Figure 2, the Morse sets
forming a Morse decomposition can be M1 = R1, M2 = S1, M3 = S2, M4 = S3, M5 = A2,
M6 = A1. S1 and S3 are saddle-like Morse sets because they include saddle type of fixed
points. Clearly, the MCG contains more restrictions on connecting trajectories than the
resulting sequence (linear ordering) of Morse sets and therefore carries more information
about the structure of the flow.

Chen et al.2 describe a pipeline for the computation of Morse decompositions of the
given vector fields (see the left flow chart in Figure 3). In this pipeline, the input vector
field is firstly converted into a directed graph, denoted by F , through a numerical com-
putation, called flow combinatorialization. The nodes of F are the individual triangles of
the mesh where the vector field is defined. The directed edges indicate the flow mapping
relations between triangles. For instance, if there is a directed edge T1→ T2, the particles
inside triangle T1 can be advected by the flow and enter T2 over certain time τ . In other
words, F encodes the dynamics of the flow at a combinatorial level. Next, the strongly
connected components of F are extracted that correspond to the regions enclosing flow
recurrence. That is, they are the Morse sets. The Morse connection graph (MCG) is sub-
sequently constructed by searching graph paths that connect the extracted Morse sets. The
complete algorithm of this pipeline is provided in.2 The limitation of this original method is the non-smooth boundaries
of the obtained Morse sets in the visualization and the lack of the ability for the stability analysis (i.e., triangles are the
smallest elements, leading to insufficient granularity for the stability analysis without subdivision).

4. AN IMAGE-SPACE MORSE DECOMPOSITION
To address the limitations of the original Morse decomposition, we introduce an image-space Morse decomposition
(ISMD). Different from the conventional Morse decomposition that is applied to the vector field defined in the physi-
cal (or object) space. The ISMD applies to the vector field defined in an image plane, I. Therefore, the graph nodes of



MCG

T1

T7 T8

T5

T3T2

T6T4

T9

A1R1

A1R1

The quotient graph
derived from

Using the point of
view of a graph

Extracting strongly con-
nected components

Quotient operation

MCG construction

T1
T3

T6

T8T7

geometry-based method τ map guided method

vector field V surfaceX

OR
flow

combinatorialization

F

F
F

Original Morse decomposition Image-Space Morse decomposition

Project the input vector field 
onto an image plane

Compute directed graph 
with nodes corresponding to pixels

Extract Morse sets and 
MCG from 

FI

F I

Render pixels based on
their types

Figure 3: The original Morse decomposition computation pipeline (left) versus the proposed image-space Morse decomposition (right).

the obtained directed graph, FI , from the flow combinatorialization correspond to the pixels (i.e., some small quadrilateral
cells) of the image space instead of the polygonal elements in the object space.

4.1 Pipeline of the ISMD
Projection to an image plane, I To compute the vector field defined on an image plane, VI , from the original vector
field, we resort to a vector field projection process that encodes the vector field into a colored image. In particular, the R,
G, B color values of each pixel encode the x, y, z components of the vector value defined at the center of that pixel. For a
2D planar vector field, only the first two color channels, e.g., R,G, are utilized.

R =
vx− vxmin

vxmax− vxmin
; G =

vy− vymin

vymax− vymin
; B = 0.0;

where vxmin is the minimum value of the x component of the vectors over the domain, and vxmax is the maximum. After
encoding the vector values at samples into colors, the whole domain is rendered into a colored image using the standard
OpenGL shading.21 This rendering process automatically interpolates the colors between samples, which is equivalent to
interpolating the vector values based on the above encoding. The decoding of the vector value from the R, G, B colors can
be computed as follows.

vx = vxmin +R(vxmax− vxmin); vy = vymin +G(vymax− vymin);

Flow combinatorialization in the image plane After getting VI , the flow combinatorialization can be computed by
tracking the image of each pixel, pi, over a given time τ . To do so, we uniformly sample each pixel with nsd particles and
trace them by following the vector field VI over certain steps, nst p, and see where they end. A directed edge is then added
to the directed graph FI pointing from the starting pixel pi to each pixel p j that contains the image of a particle released
from pi. Without specifically mentioning, the results shown in this paper are computed using a Runge-Kutta second-order
(RK2) integrator with a constant step size. As VI is defined on an image plane, it can be represented as a texture. Hardware
acceleration techniques, such as OpenMP and CUDA can be utilized to efficiently integrate the trajectories of the released
particles. In this work, we focus only on the CPU implementation of the ISMD.

Note that the above computation simplifies the adaptive edge sampling algorithm for the estimation of the image of
the polygonal elements in the original Morse decomposition. However, in order to capture the divergence and stretching
behavior of the flow and maintain a simply-connected image of a pixel, a large number of particles should be released. In
a later discussion, we will study how different numbers of sampled particles within a pixel affect the ISMD results.



Extracting Morse sets and constructing MCG After getting the directed graph FI , the Morse sets can be similarly
extracted as the strongly connected components of FI . And the subsequent MCG can be constructed by searching the
paths between neighboring Morse sets. Both steps remain the same as the original Morse decomposition computation. We
follow the same classification criteria as the original method to classify the detected Morse sets. Specifically, a Morse set is
a source-like Morse set (colored in green) if its corresponding sub-graph does not have any edges pointing from the nodes
outside of the sub-graph to the nodes in the interior. A Morse set is sink-like (colored in red) if its corresponding sub-graph
does not have any edges pointing from the nodes of the sub-graph to the nodes outside of it. A Morse set is saddle-like
(colored in blue) if it is neither a source-like Morse set, nor a sink-like Morse set.

Effect of different numbers of samples According to the description above, the user needs to determine a proper number
of samples within each pixel in order to most accurately capture the image of the pixel and construct an accurate graph,
FI . However, determining the right number of samples and how they are distributed is not trivial. This is because we
are seeking for two conflicting goals. On the one hand, we want to place as many samples as possible within a pixel
for accuracy concern. On the other hand, we want a fast computation. In the current work, we resort to a simple uniform
sampling strategy and place the same amount of samples within all pixels. Figure 4 shows a study of how different numbers
of samples affect the obtained ISMDs. We use an oceanic current around the Iceland for this study. This data set consists
of 23,655 triangles. We show the ISMD results with 4, 9, and 36 samples, respectively. The result with only 4 samples
(upper-left image of Figure 4) contains a lot of Morse sets with non-smooth boundaries and missing interior pixels (i.e., not
simply-connected). With the increase of the number of samples, we obtain more and more well-connected Morse sets with
smoother boundaries. However, after releasing more than 9 samples within a pixel, the ISMD result does not improve a lot.
This may indicate that 9 samples are sufficient for this data set. As expected, with the increase of the number of samples,
the computation time increases, as shown in the upper-right plot of Figure 4. Further discussion on the performance of
ISMDs with respect to the number of samples will be provided in Section 4.2.

To explain why a uniform sampling strategy is adopted in our work, we show an ISMD result with 30 random samples
within each pixel in the lower-bottom image (highlighted by the red box) of Figure 4. As we can see, many of the obtained
Morse sets have disconnected regions and non-smooth boundaries. This is because the locally random sampling strategy
cannot capture the spatially coherent flow behavior. As discussed in the original Morse decomposition computation,2 the
number of samples that is needed is determined by the divergence of the flow during the particle advection, i.e., more
samples will be inserted if the distance between pairs of neighboring samples increases during the advection. This flow
divergence behavior can be measured by the rate of flow separation – a quantity computed using the Finite Time Lyapunov
Exponent (FTLE).22 Therefore, a more efficient and adaptive sampling strategy, such as those for the FTLE computation,23

can be adopted to improve our current sampling. We plan to investigate this in the future.

Table 1: Performance of the ISMDs of the Iceland current data with different numbers of samples within each pixel (res = 5122,
nst p = 5).
XXXXXXXXXXMeasurement

nsd 4 9 16 25 36 49 64

Time (s) 9.835 20.063 35.837 52.52 74.241 101.993 130.36
Memory (MB) 182.3 277.3 291.1 291.9 292.2 292.3 292.2
#Morse sets 132 128 126 121 121 116 116
#edges in FI 821,877 942,675 1,002,455 1,033,304 1,054,481 1,072,156 1,085,724

k = #edges
#nodes in FI 3.135 3.596 3.824 3.942 4.022 4.09 4.142

Table 2: Performance of the ISMDs of the Iceland current data with different image resolutions (nst p = 5, nsd = 16).
XXXXXXXXXXMeasurement

res
64 128 256 512 1024

Time (s) 0.644 2.277 9.071 35.837 140.033
Memory (MB) 45.6 58.1 104.1 291.1 1038.6
#Morse sets 34 49 88 126 147
#edges in FI 20,785 74,083 269,741 1,002,455 3,815,585

k = #edges
#nodes in FI 5.074 4.522 4.116 3.824 3.639
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Figure 4: ISMD results of the Iceland data with different uniformly distributed samples within a pixel from 4 to 49. These results are
computed with res = 512 and nst p = 5. The plot shows the times spent and memory consumptions of the regular sample results. The
image highlighted with a red rectangle shows the result with 30 random seeds within a pixel.

Table 3: Performance of the ISMDs of the Iceland current data with different integration steps (res = 5122, nsd = 16).
XXXXXXXXXXMeasurement

nst p 2 5 8 10 15 20 25

Time (s) 20.888 35.837 51.383 61.975 87.167 113.137 138.478
Memory (MB) 287.2 291.1 291.4 293.4 294.1 296.4 297.2
#Morse sets 56 126 143 159 155 148 142
#edges in FI 902,604 1,002,455 858,018 1,082,193 975,811 1,198,893 1,247,442

k = #edges
#nodes in FI 3.443 3.824 3.273 4.128 3.722 4.573 4.759

4.2 Performance of ISMD
To study the performance of the proposed image-space Morse decomposition, we conduct a number of experiments using
the oceanic currents around Iceland. There are a number of factors that may affect the performance (e.g., computational
time and memory consumption) of the ISMD. In these experiments, we particularly concentrate on three factors: 1) size
of the image plane, res 2) number of integration steps, nst p and 3) number of samples within one pixel, nsd . Tables 1,
2, 3 provide the performance report of this study, respectively. All the performance information is measured on a PC with
Intel Xeron 1.6GHz quad-core processor and 8GB RAM without parallel computation. Note that the object-space Morse
decomposition takes about 263 seconds to extract 86 Morse sets with τ = 0.15 for this data set, and its memory footprint
is 108 MB. The obtained directed graph has 257,415 edges.

To see how different sizes of the image plane affect the performance, we compute the ISMDs for the Iceland current
data with resolutions 64, 128, 256, 512, and 1024, respectively. Note that in all our experiments, we assume a square-like
image plane. Therefore, without further specification the number of pixels of the image with resolution res is res2. In all
these ISMD computations, we fix nst p = 5 and nsd = 16. From the experiments, we observe that with the increase of the
image size, both the computation and memory costs increase accordingly, especially, the complexity of computation cost
is linear with respect to the image resolution. This is expected as the computation time is determined by the number of
particles that are released in the image plane, and the memory consumption is determined by the size of the graph, FI .
Both the number of the particles and the size of FI are functions of the image resolution, res. Specifically, the number of
the particles that are released is res2× nsd and the graph size |FI | ≈ res2 + k× res2, where k = #edges

#nodes ∈ R+ is a positive
constant that measures the average number of edges adjacent to a node in FI . Figure 5 shows the ISMDs with different
resolutions and the corresponding plots of their performance. The last row of Table 2 shows the average number of edges,
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Figure 5: ISMD results of the Iceland data with different resolutions from 128 to 1024. These results are computed with a regular
sampling nsd = 16 and nst p = 5. The right most column shows the times spent and memory consumptions of these results.
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Figure 6: ISMD results of the Iceland data with different integration steps from 2 to 25. These results are computed with res = 512 and
nsd = 16.The right most column shows the times spent and memory consumptions of these results.

i.e., k, adjacent to each node in the obtained directed graph FI . As we see that k decreases when the resolution increases,
which indicates that the graph has been refined, i.e., one node is split to multiple ones, accordingly.

Figure 6 shows the ISMDs with different integration steps, i.e., different integration times. In this study, we fix res =
512 and nsd = 16. From the obtained results, we see that with the increase of the integration steps (or times), the obtained
Morse sets become finer. This important property has been shown in the Morse decomposition computed in the object-
space,2 and has been applied to achieve multiscale representation of the flow structure.18 Similarly, with the increase of
the integration steps, the computation time increases linearly, while the increase of memory consumption is much slower.

The effect of the number of samples within each pixel and the sampling strategy has been discussed previously. How
different numbers of samples affect the performance is illustrated in the plots of Figure 4. Again, with the increase of the



number of samples within each pixel, the computational time increases linearly based on the discussion above, while the
memory consumption does not change much after increasing the number of samples above 9,

Figure 7: ISMD of the
HCCI data set (res = 512,
nst p = 50, nsd = 16).

meaning that the graph does not improve a lot with more samples. This indicates that for
this data set 9 samples per pixel should be sufficient. A similar observation can be seen for
other incompressible or weak-incompressible flow data, for instance, the combustion data as
shown in Figure 7. This is a 2D time-varying vector field simulation of a homogeneous charge
compression ignition (HCCI) engine combustion24 represented as a 640×640 regular grid with
a periodic boundary. The data set consists of 299 time steps. We use step 137 in our experiment.
The ISMD results do not improve much with the increase of the samples after 9 or more samples
are used. Note that Table 1 also shows that the average number of the edges adjacent to each
node, k, increases with the increase of samples, indicating that the accuracy of the graph has
been improved.

4.3 Comparison with the conventional Morse decomposition

(a) (b)

(c) (d)

source-like sink-like saddle-like

Figure 8: ISMDs (left) of a number of vector fields and their object-space Morse decompositions (right): (a)-(b) two synthetic vector
fields; (c) a slice of the diesel engine simulation;3 (d) a time step of the OSU wind tunnel data.25

As described before, image-space approach is suitable for providing a quick overview of the data set without worrying
about the size of the original data. Therefore, its performance is independent of the data size. This facilitates the analysis
and visualization of some large scale data that the traditional method may have trouble to handle. For instance, for the
aforementioned HCCI data (Figure 7), the memory of our machine (8GB) for this work is not enough for the object-space
method, while ISMD, with memory requirement of at most 1GB for resolution 10242, successfully computes the MCG.
The ISMD also provides smoother visualization of the detected Morse sets, which more closely reflects the smooth nature
of the underlying flow behavior when compared to the object-space Morse decomposition (Figure 8). In some cases, the
ISMD locates more accurate position of the Morse sets, especially when they are close to the boundary of the domain
where the sampling is not sufficient for an accurate computation in the object-space method. Figure 9 provides such an
example. It shows a 2D slice of the ABC flow. The magnified view of the left image highlights a Morse set (i.e., a green
triangle) that does not match the vortex center as indicated by the LIC texture. In contrast, our ISMD accurately locate and
highlight this vortex area (i.e., the blue disk). As this Morse set contains a saddle, thus, its type is saddle-like and shown
as blue.
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Figure 9: The object-space Morse decomposition (left) and our ISMD (right) of a 2D slice of the ABC flow. The magnified view
highlights a region in the flow where the object-space method fails to accurately locate the true Morse set (shown by the underlying LIC)
at the boundary of the domain, while our ISMD can accurately identify and visualize.

source-like sink-like saddle-like
Figure 10: OceanA data set from slice #20311 to #20314. Top row shows our ISMD results, while the bottom row shows the object-space
Morse decomposition with τ = 0.2.

We have also applied the ISMD to the analysis of two time-dependent vector fields. These two data sets are taken from
the top layer of a 3D simulation of global oceanic eddies for 350 days of the year 2002.26 The 2D time-varying vector
field has resolution 3600× 2400. We extract tiles from the central Atlantic Ocean (60× 60), denoted by OceanA, and
south Atlantic Ocean (100×100), denoted by OceanB, respectively. We use slices from #20311 to #20314 from OceanA,
and slices from #20606 to #20609 from OceanB for this experiment.26 We apply ISMD to the individual time steps of
the vector fields which are essentially steady vector fields. The resolution of the ISMD for these two examples is 512.
Figures 10 and 11 show the ISMD results (top row) of these two data sets for four consecutive time steps. For comparison,
we show the traditional Morse decomposition results in the bottom row. The computation of the ISMD results takes less
than 35 second per-frame, while the computation of the object-space Morse decomposition takes about 167 for OceanA
and 268 seconds for OceanB per-frame. Overall, the transition of Morse sets from ISMD over time is much smoother than
those from the traditional method.



source-like sink-like saddle-like
Figure 11: OceanB data set from slice #20606 to #20609. Top row shows our ISMD results, while the bottom row shows the object-space
Morse decomposition with τ = 0.2.

Difference measurement between ISMD and object-space Morse decomposition To compare with the object-space
Morse decomposition, we check whether a pixel that belongs to a Morse set from the ISMD falls in a triangle that is in a
Morse set in the object-space, and vice versa. We record the difference in two types, i.e., I) pixels in an ISMD Morse set
but not in an object-space Morse set, and II) pixels not in an ISMD Morse set but in an object-space Morse set. The former
we consider it a false positive, while the latter a false negative. The pixel-triangle mapping relation can be represented
by computing an additional image in the projection step of the ISMD pipeline. This image assigns a unique color to a
pixel based on the triangle ID that this pixel falls in. Similar method has been used in the coherent texture-based flow
visualization.21

Based on the above difference types, we define a measurement to quantify the difference between the two approaches.
Let nI and nII be the numbers of type I and type II pixels, respectively. We can define a number of error rate based on nI
and nII : 1) type I error rate, errI =

nI
res2 , 2) type II error rate, errII =

nII
res2 , and 3) total error rate, errtotal = errI + errII .

Since we wish to capture as many recurrent features as possible during analysis, type II error (i.e., missing features) is
more important when compared to the object-space results which are considered more accurate.

Table 4: Error study of the ISMDs of a number of data sets used in this work. (res = 512, nst p = 5, nsd = 16). The object-space Morse
decompositions of these data sets are typically computed with τ = 0.2 except for the wind tunnel data set where τ = 0.5 is used.
XXXXXXXXXXError

Datasets OceanA (see Fig. 12) OceanB ABC Fig.1 Fig.13311 312 313 314 606 607 608 609
errI 0.6% 0.5% 1.7% 1.1% 2.0% 2.0% 2.2% 2.1% 0.7% 0.1% 1.5%
errII 1.2% 1.5% 0.7% 3.4% 1.6% 1.9% 1.7% 1.7% 0.4% 0.4% 4.7%

errtotal 1.8% 2.0% 2.4% 4.5% 3.6% 3.9% 3.9% 3.8% 1.1% 0.5% 6.2%

Table 4 provides the statistics of the comparison of the ISMD and the traditional Morse decomposition via a number
of data sets. Note that all the ISMD results use res = 512, nst p = 5, and nsd = 16. Table 5 provides the error measurement
of the ISMDs of the Iceland current data with different numbers of samples when compared to an object-space Morse
decomposition with τ = 0.15. While the type I error increases with the increase of the numbers of samples within a pixel,
the type II error decreases accordingly. This indicates that with more samples, the ISMD results capture more and more
flow regions that have recurrent flows which are also identified by the object-space method. Visually, the Morse sets in



Table 5: Error study of the ISMDs of the Iceland current data with different numbers of samples within each pixel (res = 512, nst p = 5),
compared to the object-space Morse decomposition with τ = 0.15.
PPPPPPPPError

nsd 4 9 16 25 36 49 64

errI 2.2% 4.2% 4.4% 4.6% 4.7% 5.1% 5.6%
errII 5.2% 3.9% 3.5% 3.3% 3.26% 3.2% 2.7%

errtotal 7.4% 8.1% 7.9% 7.9% 7.96% 8.3% 8.3%
Table 6: Error study of the ISMDs of the Iceland current data with different resolutions (nst p = 5, nsd = 16), compared to the object-space
Morse decomposition with τ = 0.15.
PPPPPPPPError

nsd 64 128 256 512 1024

errI 9.3% 6.3% 5.1% 4.4% 4.1%
errII 3.2% 2.7% 3.4% 3.5% 4.0%

errtotal 12.5% 9.0% 8.5% 7.9% 8.1%

the image space have less missing interior pixels and smoother boundaries with more samples. Table 6 provides the error
measurement of the ISMDs of the Iceland current data with different resolutions when compared to an object-space Morse
decomposition with τ = 0.15. The type I error decreases with the increase of the image resolution, while the type II error
remains in a similar level with small fluctuation. The overall error rate generally decreases with the increase of the image
resolution, indicating that the accuracy is improved with higher image resolution (i.e., finer sampling), as expected.

Figure 12: The difference between the ISMD versus the object-space Morse decomposition on the slice #20311 from the OceanA data.
There are nI = 1,471 type I pixels (yellow in the left image) and nII = 3,256 type II pixels (cyan in the middle image). The right image
shows all the pixels that the two methods do not agree.

5. A STUDY OF MORSE SET STABILITY USING ISMD
With the proposed ISMD framework, the stability of the detected Morse sets under different sources of uncertainty can
be approximated and visualized, which is difficult to obtain via the conventional Morse decomposition framework. This
is because the original Morse decomposition uses triangles as the smallest visual primitive for the visualization, which
may not provide enough resolution for a detailed uncertainty study. In this study, we consider two sources of uncertainty,
including 1) the error introduced during integration and 2) the noise contained in the vector field data. For both studies, we
artificially introduce error and noise to the data and the computation, and examine the behavior of the obtained ISMD in
an ensemble fashion.

5.1 Integration Error
In this study, we perform ISMD on the same vector fields with different numerical integrators and different integration
step sizes, i.e., with different integration error. In particular, we experiment with the Euler, RK2, and RK4 integrators,
respectively. Two random integer numbers, n1ran and n2ran, are computed before each ISMD computation, which are used
to determine the integrator and the corresponding step sizes for this ISMD computation. This results in an ensemble of the
ISMDs of the same vector field. For each of these ISMD results, we label each pixel as either 0 (not within a Morse set)



or k ∈ {1,2,3} (1–in a source-like Morse set, 2–in a sink-like Morse set, or 3–in a saddle-like Morse set). Next, we count
how many times a pixel falls in a Morse set, nhits, and what is the type of the Morse set where it falls in. This information
will be used to determine the color of the pixel in the rendering. Specifically, we adopt the HSV color space. For each
pixel, we assign the hue value as either 120 if most times,i.e., 50% or more out of the N trials, the pixel is in a source-like
Morse set; 0 if it is mostly in a sink-like Morse set; 240 if it is mostly in a saddle-like Morse set; or 330 if its type cannot
be determined. The saturation and intensity values of the pixel are both set as nhits

Ntrials
, where Ntrials is the number of trials for

this ensemble analysis. With this simple transfer function, a pixel that is more likely in a Morse set (i.e., larger nhits value)
will have brighter and more saturated color, while a pixel that has a low likelihood to be in a Morse set will get a darker
color.

Figure 13 shows the ensemble analysis of the ISMD and the stability of the Morse sets under different integration
schemes for two synthetic (left two images) and two real-world data sets (right two images). For these experiments,
res = 512, nst p = 5, nsd = 16, Ntrials = 20, n1ran ∈ {0,1,2}, and n2ran ∈ {1,2, ...,10}. For example, if n1ran = 0, the
Euler integrator with step size dt = ∆

n2ran
is selected, where ∆ is the interval between two neighboring pixels along X

direction. From these results, we see for all these vector fields, the less stable areas of the Morse sets under different error
introduced by the integration are near their boundaries (highlighted by the magenta arrows), while for the incompressible
flow data (the two middle fields), the less stable areas can also arise near the center of the vortices (highlighted by the
yellow arrows). This is expected because the numerical integrators, especially those with fixed step size, have trouble to
compute the accurate flow paths in areas with high flow curvature, e.g., the center of a vortex.

Figure 13: The ensemble ISMDs of a number of synthetic (left two) and real-world (right two) vector field data with randomly selected
integrators and integration step sizes.

5.2 Noise in the Data
In this study, we artificially perturb the vector value at every data point to mimic the noise in the data. Assuming no prior
knowledge is available, we perturb each vector by a uniform random noise. Specifically, given a vector pointing from p to
q, a new ending point q′ is selected from a disk with radius r and centered at q. Specifically, q′ = q+ r(sin(θ),cos(θ)).
r = c×|Vmax|, where |Vmax| is the largest magnitude among the vector values in the vector field and c ∈ (0,1] quantifies
the amount of perturbation. θ ∈ [0,2π) is a randomly generated angle. To increase the randomness, a probability value,
p ∈ (0,1], is set by the user to accept or reject the perturbation. Figure 14 (middle diagram) illustrates such a perturbation.
With this strategy, we generate a series of perturbed vector fields from the input data for an ensemble analysis. Similar to
the above study of integration error, we compute an ISMD for each perturbed vector field and record each pixel on whether
it is in a Morse set or not. With the aforementioned blending process, we generate a visualization so that the pixels that are
more likely on the true Morse sets will be assigned brighter colors, while the pixels with less certainty get darker colors.

We use a 2D data set obtained at the OSU wind tunnel25 to study this. This data set represents experimentally obtained
velocity components in a two dimensional plane along the centerline of a wing in a moderate Reynolds number (Re =
6×104 based on the chord length). This data set was obtained using particle image velocimetry and represents a snapshot
of the velocity field with a vector resolution of 0.684mm in a total field of 54mm × 47mm. The wing is at a 20◦ angle of
attack (chord line relative to flow direction) and as such experiences a leading edge separation.

Figure 15 shows the ensemble visualization of the ISMDs with different amount of perturbations being added randomly.
For all these computations, we set res = 512, nst p = 5, nsd = 16, and Ntrials = 20. From these results, we see that with
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Figure 14: Generation of the ISMD ensemble by perturbation. First, each vector value of the input vector field is perturbed to generate a
series of new vector fields, as described in the middle illustration. Second, ISMDs of these new vector fields are computed and recorded.
Finally, this ensemble of ISMDs are blended to generate the visualization shown in the right image.
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Figure 15: The ensemble ISMDs of the PIV wind tunnel data with different amount of perturbations, c: 5%, 10%, 20%, and 30%. The
probability p to accept the perturbation is set 0.8 and res = 512, nst p = 5, nsd = 16 for all these computations.
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Figure 16: Illustration of how small perturbation can affect the detected strongly connected components. (a) the perturbation causes the
change of the direction of an edge (starting from a node p, highlighted as green), which makes p becomes part of a strongly connected
component. (b) the perturbation removes an interior edge starting from a node q (highlighted as green). This does not change the original
strongly connected component.

more perturbations the obtained Morse sets tend to have larger less certain areas, i.e., those dark regions. Also, in most
cases, those less certain areas are typically located at the boundaries of the Morse sets (also shown in Figure 1(c)), which
is expected as the points (here pixels) near the boundary of a Morse sets are most influenced by the perturbation. This can
be explained by the behavior of the strongly connected components of a directed graph. As shown in Figure 16, a small
perturbation may change some edges of the graph. The change of the edges at the boundary (Figure 16(a)) of the strongly
connected component has larger influence than those in the interior (Figure 16(b)) of the strongly connected component.

From the results shown in Figure 15, we observe that two Morse sets are less stable under perturbation than the others.
The Morse set highlighted by the yellow arrows becomes less stable, shown by the dark color, with the increasing amount
of perturbation. Similarly, the Morse set highlighted by the magenta arrows changes type, i.e., from sink-like to saddle-like
Morse set, with the increasing amount of perturbation. Both Morse sets are close to the wing that indicate certain vortex
behavior of the air. However, what causes this instability will need in-depth discussion with the domain experts.



6. CONCLUSION
In this work, we present an Image-Space Morse decomposition (ISMD). Compared to the original Morse decomposition
that is computed in the object-space, the ISMD first projects the input vector field onto an image plane. Then, a directed
graph, FI , is constructed based on the projected vector field defined in the image plane, where the graph nodes correspond
to the individual pixels and the directed edges indicate the flow mapping relation between pixels. This is in contrast to
the object-space method where the graph nodes correspond to the triangles (or other polygonal elements) of the space
discretization. Next, the Morse decomposition is computed using the original method based on FI . With this modification,
ISMD addresses the boundary smoothness issue of the original representation and achieves pixel-level accuracy in the
visualization. In addition, with the ISMD framework, the stability of the Morse sets under different sources of uncertainty,
including the error introduced in the numerical integration and the perturbation or noise in the data, can be studied and
visualized, which is difficult to achieve via the original method. We have also provided a thorough study of the performance
of the proposed ISMD and applied it to a number of synthetic and real-world vector field data to demonstrate its utility.

Limitations and future work ISMD framework can be extended to 3D volumetric vector field analysis by resorting to the
3D voxelization process. However, it currently does not apply to vector fields defined on curved surfaces. This is because
even though any local neighborhood of a surface point behaves like a plane, without a proper surface parameterization, it is
impossible to project a general surface vector field on to a planar image. Another limitation of the ISMD is its view point
dependency, which requires the recomputation of the ISMD whenever the user changes the view point, such as zooming
and panning. In addition, if a portion of a circulating feature is outside of the image plane due to the user interaction, the
ISMD will not be able to capture it, as the projected vector field will not be able to represent the whole feature. This is an
inherent limitation of all the image-space methods. Therefore, instead of claiming the proposed ISMD to be better than the
original method, we consider it a valuable addition to the existing Morse decomposition techniques, which may provide a
quick overview of the flow recurrent behavior.

In the future, we would like to extend the current ISMD framework to handle the tangential vector fields defined
on curved surfaces and 3D vector fields. We would also like to combine the ISMD framework with the object-space
method to further enhance the information encoding during the construction of the graph for the development of a new and
unified graph-based vector field analysis framework, and continue improving the smoothness of the visual representation
of the decomposition results. In addition, we will explore the utility of ISMD framework for the uncertainty analysis and
visualization of vector fields, as well as the hierarchical representation of the flow structure. Finally, we plan to improve the
performance of the current ISMD by studying a better sampling strategy and more compact representation of the graph.
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