
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, SEPTEMBER 2014 1

Robustness-Based Simplification of 2D Steady
and Unsteady Vector Fields

Primoz Skraba, Bei Wang, Member, IEEE, Guoning Chen, Member, IEEE, and Paul Rosen, Member, IEEE

Abstract—Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and
importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification
techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or
area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to
instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification
scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points
according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them.
This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification
algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the
piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications
for steady as well as unsteady vector fields.
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1 INTRODUCTION

V ECTOR fields and their analysis are indispensable for many
applications in science and engineering. With the increasing

gap between the size and complexity of the vector field data from
real-world applications and the limited bandwidth of our visual
perception channel, it is more and more challenging for domain
experts to interpret their data in detail or as a whole. This challenge
is prominent in 2D turbulence flows, where features are every-
where and feature sizes differ by a few orders of magnitude. Vector
field simplification aims at reducing the complexity of the flow
by removing features in order of their relevance and importance,
revealing prominent behavior, obtaining a compact representation
for interpretation, and giving a consistent and multiscale view of
the flow dynamics.

A considerable amount of research has been focused on vector
field simplification based on the notion of a topological skele-
ton [1], [2]. A topological skeleton consists of critical points con-
nected by special streamlines called separatrices, which provides
a condensed representation of the flow by dividing the domain into
regions of uniform flow behavior. However, existing simplification
techniques rely on the stable extraction of the topological skeleton,
which can be difficult due to instability in numerical integration,
especially when processing highly rotational flows, e.g., Fig. 1.
Furthermore, the distance and area-based relevance measures that
are commonly used to determine the cancellation ordering of
critical points typically rely on geometric proximities and do not
consider the flow magnitude, an important physical property of the
flow.
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In this paper, we propose a new vector field simplification
scheme derived from the recently introduced notion of robustness.
Robustness, a notion related to persistence [3], [4], is used to
represent the stability of critical points and assess their signifi-
cance with respect to perturbations of the vector field. Intuitively,
the robustness of a critical point is the minimum amount of
perturbation, with respect to a metric encoding flow magnitude,
that is required to cancel it within a local neighborhood. Our
contributions are:

• We propose a new hierarchical simplification strategy
based on robustness, which enables the pruning of sets
of critical points according to a quantitative measure of
their stability.

(a) (b)

(c)

Fig. 1. Topological skeleton: Sinks (and saddle-sink separatrices) are
red, sources (and saddle-source separatrices) are green, and saddles
are blue. (a) A highly rotational flow field where the pointed critical points
are close to Hopf-bifurcations. Numerical inaccuracies may accumulate
during integration and separatrices may intersect or switch. (b)-(c) In-
stability of separatrices under a small perturbation: The upper right sink
is not connected with the saddle on the left in (b), but is after a small
perturbation in (c).
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• An implementation in the piecewise-linear (PL) setting
applied to a number of synthetic and real-world datasets
included in the experimental results.

• We extend our simplification scheme from the steady
vector field to the time-varying (i.e. unsteady) case, il-
lustrating the utility and current limitations of our method
due to the consistency issues of the time-varying case.

We do not intend to show that the robustness-based method
is necessarily better than topological-skeleton-based or distance-
based methods across all scenarios. In the typical situation in-
volving pairs of critical points connected by separatrices, such
methods offer comparable visual results. Rather, the robustness-
based method provides a complementary perspective and can
handle more general boundary situations; it is scalable and gives a
novel, mathematically rigorous hierarchical simplification scheme.
Our method finds, in the space of all vector fields, the one that is
closest to the original vector field in the L∞ norm (the maximum
point-wise modification to the vector field) with a particular set
of critical points removed. Our results are optimal in this norm,
that is, there exists no simplification with a smaller perturbation.
This paper includes and extend our earlier work [5] by providing a
more complete exposition of the robustness-based simplification,
including simplifications that explore the entire hierarchy and
extensions to the time-varying setting.

2 RELATED WORK

Vector field simplification can be classified into topology-based
and non-topology-based techniques [6]. Non-topology-based tech-
niques typically focus on Laplacian smoothing of the potential of
a vector field [7], [8], [9]. Topology-based techniques modify the
vector field topology explicitly by merging or canceling nearby
critical points based on the notion of a topological skeleton [1],
[2], [6], [10]. De Leeuw and Van Liere [11], [12] made use of a
geometry-based relevance measure (e.g., with respect to distance
or area proximity) to determine the pair of critical points to be
cancelled. Tricoche et al. [13] focused on a piecewise analytic
description for the simplified field, which was later extended
to time-dependent 2D flows [14]. Theisel et al. [15] presented
a topology-preserved compression and simplification of vector
fields. Zhang et al. [6] introduced a framework for fixed point
pair cancellation based on Conley index theory. Chen et al. [10]
extended this idea to include periodic orbits and presented a
more complete pairwise cancellation framework. Recently, Chen
et al. [16], [17] introduced a multiscale hierarchy of the vector field
topology based on the Morse Connection Graph (MCG) computed
from Morse decomposition [17]. This work was extended to
address piecewise constant vector fields by Szymczak el al. [18],
[19]. Such representations could be used to simplify vector fields
by iteratively merging pairs of Morse sets that are adjacent in the
MCG. The order of the pairs for cancellation depends only on
the geometric characteristics of the Morse sets, i.e., the pairs that
lead to smaller merged Morse sets will be cancelled or merged
first. Weinkauf et al. [20] introduced a topological simplification
technique for 3D vector fields based on the extraction of higher-
order critical points. The simplification is assisted by a derived
auxiliary 2D vector field on a closed surface surrounding each
higher-order critical point.

Simplification of time-dependent vector fields is typically
performed slice-by-slice by considering the bifurcations that the
critical points may involve [21]. Chen et al. [22] described a

framework of simplifying a time-dependent vector field by sys-
tematically removing the detected bifurcations. In particular, only
isolated bifurcations and bifurcations that are connected by a short
life critical point can be removed. In addition, a spatio-temporal
Laplacian smoothing algorithm was introduced to reduce the
flow complexity within a given space-time sub-domain in a non-
topology-based fashion. Simplifications have also been proposed
in a combinatorial setting [23], [24]. Edelsbrunner et al. [3], [25]
performed pair cancellation on scalar fields defined on surfaces
by changing the values of the scalar function near the fixed point
pair. This is equivalent to simplifying the gradient vector field of
the scalar function. Finally, scale space techniques [4], [26] have
also been proposed to assess the importance of a critical point for
topology-based simplification.

Robustness is closely related to the notion of persistence [3].
While persistence has been used successfully for scalar field
visualization and simplification of topological structures such as
contour trees and Jacobi sets [27], [28], [29], [30], robustness,
first introduced in [31], is specifically designed for vector-valued
data [32], [33]. Recent work [34] assigns robustness to critical
points in both stationary and time-varying settings and obtains
a structural description of the vector field. Such a structural
description implies the existence of a hierarchical simplification
strategy based on robustness, which is the focus of this paper.

In general, topology-based simplification techniques pair the
topological features for cancellation via the computation of sepa-
ratrices, which can be numerically unstable [17]. In contrast, the
proposed robustness-based method does not require the computa-
tion of topology, thus, is insensitive to the numerical errors. The
simplification hierarchy obtained from topology-based methods is
typically invariant to scaling (multiplying the vector field with
a scalar field), whereas our technique is sensitive to the change
of vector field magnitude as it directly corresponds to our per-
turbation metric (Sec. 3). The robustness-based method achieves
comparable results to the topology-based simplification for typical
scenarios and can handle more challenging cases in which the
topology-based methods may fail (Sec. 5).

3 BACKGROUND

We provide relevant background in degree theory and robustness
by reviewing previous work [32], [34] with minimal algebraic
definitions and illustrating the related concepts through an ex-
ample (Fig. 2 adapted from [34]). We also provide introductory
descriptions of isolating neighborhoods and Laplacian smoothing
[6], [10].
Degrees. For a critical point x in 2D, its degree deg(x) equals
its (Poincaré) index, that is, the number of field rotations while
traveling along a closed curve centered at x counter-clockwise.
Sources, sinks, centers, and saddles have indices +1, +1, +1 and
−1, respectively. Furthermore, for a (path-)connected component
C that encloses several critical points, its degree deg(C) is the
sum of the respective degrees of those critical points [32]. For
our robustness-based simplification strategy, we rely on a corol-
lary of the Poincaré-Hopf theorem (which is also employed by
topological-skeleton-based simplification, e.g., [21]), which states
that if a connected component C in 2D has degree zero, then it is
possible to replace the vector field inside C with a vector field free
of critical points.
Merge tree. To analyze a continuous 2D vector field f : R2→R2,
we define a corresponding scalar function (referred to as the flow
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Fig. 2. Figure adapted from [34]. Suppose the vector field is continuous,
where sinks are red, sources are green, and saddles are blue. From
left to right: vector fields f , relations among components of Fr, and
augmented merge trees. f contains four critical points, a sink x1, a
source x3, and two saddles x2 and x4. We use β , γ, ω, etc. to represent
components of the sublevel sets.

magnitude function) f0 : R2→R which assigns for each point the
magnitude (Euclidean norm) of the corresponding vector, f0(x) =
|| f (x)||2. We use Fr = f−1

0 (−∞,r] to denote the sublevel set of f0
for some r ≥ 0. F0 is precisely the set of critical points of f . We
assume that f is generic, which implies that the critical points of
f are isolated.

Increasing r from 0, the space Fr evolves and we can construct
a graph that tracks the (connected) components of Fr as they
appear and merge. This is called a merge tree (or join tree as
described in [35]). The root represents the entire domain of f0 and
the leaves represent the creation of a component at a critical point
of f (a local minimum). An internal node represents the merging
of two or more components. We further record an integer at each
node, which is the degree of the corresponding component in the
sublevel set, and refer to the result as an augmented merge tree.
An initial computation of the degrees of critical points is sufficient
to determine the degree of any component of any sublevel set by
computing the sum of the degrees of the critical points lying in it
[32]. An example is shown in Fig. 2. We ignore any components
that appear after r = 0 as they have zero degrees and so do not
correspond to any critical points of the vector field. The merge
tree on the right shows how the components of the sublevel sets
Fr evolve. At r = 0 there are four components that correspond
to the four critical points, each with nonzero degree. At r = r1,
components that contain x1 and x2 merge into a single component
β1, which has zero degree. When r = r2, components β1 and β2
merge into a single component γ1 with degree +1, while β3 grows
into γ2. Finally at r = r3, the single component ω1 has zero degree.
Static robustness and its properties. The (static) robustness of
a critical point is the height of its lowest degree zero ancestor in
the merge tree [34]. The static robustness quantifies the stability
of a critical point with respect to perturbations of the vector fields
through the following lemmas explicitly stated in [34].

We first define the concept of perturbation. Let f ,h : R2→R2

be two continuous 2D vector fields. Define the distance between
the two mappings as d( f ,h) = supx∈R2 || f (x)−h(x)||2. A contin-
uous mapping h is an r-perturbation of f , if d( f ,h)≤ r.

Lemma 3.1 (Critical Point Cancellation [34]). Suppose a critical
point x of f has robustness r. Let C be the connected com-
ponent of Fr+δ containing x, for an arbitrarily small δ > 0.
Then, there exists an (r + δ )-perturbation h of f , such that
h−1(0)∩C = /0 and h = f except possibly within the interior
of C.

Lemma 3.2 (Degree & Critical Point Preservation [34]). Suppose
a critical point x of f has robustness r. Let C be the connected
component of Fr−δ containing x, for some 0 < δ < r. For any
ε-perturbation h of f where ε ≤ r−δ , the sum of the degrees
of the critical points in h−1(0)∩C is deg(C). If C contains
only one critical point x, we have deg(h−1(0)∩C) = deg(x).
That is, x is preserved as there is no ε-perturbation that could
cancel it.

Revisiting the example in Fig. 2, the robustness of the critical
points x1,x2,x3, and x4 is r1,r1,r3, and r3, respectively. Since the
robustness of x3 is r3, for any δ > 0, we consider a component
C⊆Fr3+δ that is slightly larger than ω1 and contains x3 (in fact, ω1
contains all four critical points). Lemma 3.1 implies the existence
of an (r3 + δ )-perturbation that cancels x3 by locally modifying
the component C. Conversely, a component C′⊆Fr3−δ where r2 <
r3−δ < r3, then has degree +1. Lemma 3.2 states that any (r3−
δ )-perturbation preserves the degree of C′.
Isolating neighborhood and Laplacian smoothing. Previously,
topology-based simplification has focused on cancelling pairs of
critical points that are connected by separatrices. Zhang et al. [6]
and Chen et al. [10] proposed to compute an isolating neigh-
borhood surrounding a pair of critical points, where a critical-
point-free vector field can be found by solving a constrained
optimization problem, referred to as a vector-valued Laplacian
smoothing [6].

Based on Conley index theory, every boundary point of an
isolating neighborhood can be classified as either an entrance or
exit point. If an isolating region C in the domain contains multiple
critical points and has a trivial Conley index, the flow inside C
can be replaced with a new field free of critical points [6]. A
typical situation for C to have a trivial Conley index is when
its boundary ∂C consists of a single inflow and a single outflow
component. However such an isolating neighborhood is not always
straightforward to construct. The robustness-based method has no
such a constraint.

4 ROBUSTNESS-BASED SIMPLIFICATION ALGO-
RITHMS

In robustness-based simplification, we first locate sets of critical
points that share the lowest zero-degree ancestors in the merge tree
and sort them based on their robustness values. For each set with a
common robustness r, we compute the corresponding component
of the sublevel set C ⊆ Fr. Since by construction deg(C) = 0,
our strategy can simplify C, whereas the distance-based strategy
requires an isolating neighborhood with trivial Conley index.

4.1 Preliminary
First we introduce the relevant constructions in a smooth setting,
and then translate the corresponding language into the PL setting.
Given a 2D vector field restricted to a degree-zero component C,
f : C → R2, we define the image space of C, im(C). For each
point p ∈ C, we have a vector vp = f (p) ∈ R2. im(C) ⊂ R2 is
constructed by mapping p to its vector coordinates vp. The origin
in im(C) corresponds to the critical points (0 vectors) in C. Since
C ⊆ Fr, it follows that ∀p ∈ C, ||vp||2 ≤ r, therefore im(C) is
contained within a disc of radius r in R2. We denote the boundary
of this disc by S. Now suppose the boundary of C, denoted as
∂C, is a simple closed curve1. Note that the above maps ∂C to S,

1. This is not needed, but it simplifies the algorithm and exposition.
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Fig. 3. (a)-(b): Illustrative examples for uncovered (a) and covered (b)
boundaries of im(C). (c): A component and its image space with a few
mappings highlighted in the PL setting.

obtaining the image, im(∂C). We refer to the boundary of im(C)
as uncovered, if im(∂C) ⊂ S, otherwise, as covered. Fig. 3(a)-
(b) illustrate these concepts. Note that both examples have zero
degree. In 3(a), the region C encloses a saddle-sink pair connected
by a separatrix. By traversing counter-clockwise along ∂C and
observing how its image im(∂C) wraps around S, we see that the
boundary of im(C) is uncovered. In 3(b), the region C encloses a
saddle-sink pair not connected by separatrix and the boundary of
im(C) is covered.

In the PL setting, the vector field f is restricted to a trian-
gulation K of C, f : K → R2, where the support of K, |K| = C.
We construct the image of C by mapping each vertex p ∈ K to
its vector coordinates vp = f (p). Through linear interpolation,
this construction also maps edges and triangles in K to edges
and triangles in im(C) (Fig. 3(c)). The concept of covered and
uncovered boundaries of im(C) can be defined similarly up to a
small additive constant.

4.2 Algorithm Overview

Our simplification strategy consists of four operations:

• Smoothing(C): Perform Laplacian smoothing on C;
• Cut(C): Deform the vector field in its image space im(C)

to remove critical points in C;
• Unwrap(C): Modify the vector field in its image space

im(C) so part of its boundary is uncovered;
• Restore(C): Set the boundary to its original value.

Three cases are classified by the Conley index of C, denoted as
CH∗(C). The operations to simplify each case are:

(a) If CH∗(C) is trivial, return C1 = Smoothing(C).
(b) If CH∗(C) is nontrivial and the boundary of im(C)

is uncovered, then C1 = Cut(C), and return C2 =
Smoothing(C1).

(c) If CH∗(C) is nontrivial and the boundary of im(C) is
covered, then C1 = Unwrap(C), C2 = Cut(C1), C3 =
Restore(C2) and return C4 = Smoothing(C3).

By construction, deg(C) = 0 in all three cases. Otherwise, there
exists no simplification that can result in a vector field in C free of
critical points.

vq

ε

vp

c∗

v′p v′qs

`

O

vyvx

`′ ε
s

`

O

c∗

Fig. 5. Cut operation. Left: The projection of edges that intersect ` during
the Cut operation. Right: After Cut, the light blue region represents
im(C), which no longer contains (covers) the origin and so is critical
point free.

4.3 Algorithm Details

We describe the Cut and Unwrap operations in detail and dis-
cuss the maximum amount of perturbation needed due to these
operations. Smoothing is only used to achieve visually appealing
results.
Cut operation. Suppose the boundary of im(C) is uncovered. The
idea behind the Cut operation is to deform im(C) such that there
is a small neighborhood surrounding the origin that is not covered
by im(C). This corresponds to the situation where there is no
critical point in C after the deformation. As shown in Fig. 5(left),
we choose a point c∗ on the uncovered part of the circle S (this
point is referred to as the cut point) and define the line ` as the line
segment beginning at the origin O and terminating at c∗. Define
another line `′, which is orthogonal to ` and is ε away from the
origin. The point s ∈ `′ is at a distance ε from the origin. Next, we
find all the mesh edges vpvq (corresponding to the edge pq in K)
in the interior of im(C) that intersect with the line `, and project
their end points onto `′, forming the projected edge v′pv′q. In the
original domain, the vectors at p,q ∈ K are deformed from vp and
vq to the vectors v′p and v′q, respectively. Third, we locate all the
mesh edges vxvy where x ∈ ∂C (and so vx is on the boundary of
im(C) and vy is in the interior). We move the point vy to s so that
the edge vxvy no longer crosses ` and the boundary vector remains
unchanged. Since the boundary of im(C) is uncovered, there is
no edge that intersects ` whose end points are both located on
the boundary of im(C) (i.e., whose corresponding points are both
in ∂C). This operation creates an empty wedge around the origin
(Fig. 5 right), which ensures that there are no critical points in C
after the modification. By construction, the amount of perturbation
is less than r+ ε . When doing Laplacian smoothing, we keep the
projected vertices (end points of the cut edges) fixed to ensure that
the origin is not recovered.

The procedure to find a cut point c∗ is shown in Fig. 4(a)-(b).
In (a), by traversing counter-clockwise along ∂C and observing
how its image im(∂C) (blue curve) wraps around S, we define the
angle θ of a point along S to be its phase. In (b), we showcase (in
blue) the corresponding phase plot,a function h : ∂C→ θ where
θ ∈ [−π,π]. Traversing ∂C again, we can use phase-unwrapping
to compute a continuous function ϕ : ∂C→ φ for φ ∈ R (shown
in red) using the following equation

ϕ(i) = bθ(i)−ϕ(i−1)+ 1/2c+θ(i).

This is a standard discretization of phase-unwrapping commonly
used in signal processing. Since the boundary of im(C) is un-
covered, it follows that max∂C(ϕ)−min∂C(ϕ) < 2π . We set the
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Fig. 4. (a)-(b) Locating a cut point for the Cut operation: (a) Track the angle (a.k.a. phase) of a point in im(∂C) along S as we move along ∂C
counter-clockwise. (b) The corresponding phase plot (a.k.a. angle-valued function) is shown in blue. The result of phase-unwrapping is shown in
red. (c)-(e) Locating an unwrap point in Unwrap operation: (c) Track the angle of a point in im(∂C) along S as we move along ∂C counter-clockwise.
(d) The corresponding angle-valued function (shown in blue), the result of phase-unwrapping (shown in red), and the optimal unwrap point c∗
corresponding to phase φ ∗. (e) The modified boundary of im(C) (shown in purple), which becomes uncovered.

cutting angle φ ∗ as the mid-point of the uncovered part and the
corresponding cut point is

φ
∗ =

1
2

(
max

∂C
(ϕ)+min

∂C
(ϕ)

)
+π, c∗ = (r cosφ

∗,r sinφ
∗),

where r is the robustness parameter of the sublevel set (and the
radius of the disk S, where im(C) ⊂ S). By using the phase
parameter θ , we do not need to worry about PL effects when
computing c∗.
Unwrap operation. If the boundary of im(C) is covered, we must
first Unwrap the boundary before we perform the Cut procedure.
The Unwrap operation is divided into the steps illustrated in
Fig. 4(c)-(e). Similarly to the cut point, we determine the optimal
unwrap point. As before, we traverse ∂C and compute a phase plot
h : ∂C→ θ , unwrapping the phase to obtain a continuous function
ϕ : ∂C→ φ (Fig. 4(c)-(d)). The unwrapping point φ ∗, is

φ
∗ =

1
2

(
max

∂C
(φ)+min

∂C
(φ)+2nπ

)
,

where n is the smallest integer such that |min(θ) + 2nπ −
max(θ)|< π , and c∗ = (r cosφ ∗,r sinφ ∗). To Unwrap the bound-
ary, let X ∈ ∂C be the set of points on the boundary such
that φ(X) > φ ∗ − δ , and Y ∈ ∂C be the set of points that
φ(Y ) < φ ∗ + δ − 2nπ . As illustrated in Fig. 4(e) , to Unwrap
we set

vx =

(
r cos(φ(x))
r sin(φ(x))

)
x ∈ X , vy =

(
r cos(φ(y))
r sin(φ(y))

)
y ∈ Y,

where r is the magnitude of the vectors on the boundary (e.g.,
the sublevel set parameter). The final Restore step replaces the
vectors on the boundary of the simplified region with their original
values (i.e. the values before the Unwrap step). As in case (b), the
deformation is bounded by r+ ε (since the internal nodes move
less than r+ ε and boundary nodes have their original values).
Bounded perturbations. By construction, the algorithm comes
with theoritical guarantees on the amount of perturbation intro-
duced to the vector field. We formally state the following theorem
whose proof is deferred to the supplementary material.
Theorem 4.1. Let x be a critical point of robustness r, with

the corresponding component C(x). Let f and f̂ denote the
vector fields before and after simplification respectively using
Unwrap and Cut operations. Then || f (p)− f̂ (p)||∞ ≤ r + ε

for all p ∈C(x) and f (p) = f̂ (p) for p 6∈C(x).

4.4 Synthetic Examples
We illustrate our simplification strategy on three PL synthetic
examples, highlighting the different cases.

(b)

(c)

(d)

(e)

(f)

(a)

x1

x2

x3

x4

Fig. 6. SyntheticA. (a) The original vector field: sinks are red, sources
are green and saddles are blue. (b) The topological skeleton: saddle-
sink separatrices are red and saddle-source separatrices are green. (c)-
(d) 1st level simplification: before (c) and after (d) Smoothing. (e)-(f) 2nd
level simplification: before (e) and after (f) Smoothing.

(a) (b) (c)

Fig. 7. SyntheticB. (a) the original vector field with its topological skeleton.
(a)-(b): Single level simplification before (a) and after (b) by Cut and
Smoothing. (c) Only applying Smoothing does not make the region a
critical point free field.

SyntheticA (Fig. 6) corresponds to the example in Fig. 2. It
involves pairs of critical points connected by separatrices. At r1,
we have a component that contains critical points x1 and x2 and
at r3 we have a component that contains all four critical points x1
to x4. The simplification hierarchy involves two steps ranked by
robustness values: first x1 and x2 are simplified, and then x3 and
x4. Since both components (marked by yellow boundary) have
a trivial Conley index, this corresponds to case (a), where only
Smoothing operations are needed. SyntheticB (Fig. 7) contains
four critical points interconnected by separatrices, which could be
simplified in a single level using a robustness-based strategy. Since
the component of interest has a nontrivial Conley index, directly
applying Laplacian smoothing fails (as shown in Fig. 7(c)). The
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(a) (b) (c)

Fig. 8. SyntheticC. (a) the original vector field with topological skeleton.
(b)-(c) Before (b) and after (c) simplification by combining Unwrap, Cut
and Smoothing.

component’s boundary is uncovered, so we apply case (b) of our
simplification by combining Cut with Smoothing.

SyntheticC (Fig. 8) corresponds to case (c) of our algorithm.
This is an atypical case involving a pair of critical points not
directly connected by a separatrix. In this case, the component
of interest C has nontrivial Conley index, and the boundary of
its image is covered. The robustness-based strategy cancels the
critical point pair without any issue by combining Unwrap, Cut
and Smoothing operations. We further focus on this example by
illustrating the image space of C, im(C), during various steps of
simplification in Fig. 9. In Fig. 9(a), the entire boundary and disk
are covered. However, from the left phase plot in Fig. 10, we can
see that the degree is 0. Once the optimal unwrapping point is
computed, we perform the Unwrap operation, giving the right
phase plot in Fig. 10 and the image space in Fig. 9(b), leaving the
boundary S uncovered. The effect of the Cut operation in image
space is shown in Fig. 9(c), creating a void surrounding the origin.
Lastly, in Fig. 9(d), the boundary is restored for the final output.

Fig. 9. SyntheticC. The image space is shown through the different steps:
(a) original, (b) after Unwrap, (c) after Cut, and (d) final output after
Restore.

2π

π

0

π

2π

π

0

π

Fig. 10. SyntheticC. Left: The phase plot, original version (blue), and
the phase-unwrapped version (red). Right: The phase plot with optimal
unwrap point (orange) and the modified phase plot with boundary un-
covered (purple).

5 RESULTS

We demonstrate our robustness-based simplification strategy on a
number of real-world datasets. When possible, we compare our
method with distance-based simplification.

The first real-world dataset we explore is the top layer of
a 3D simulation of global oceanic eddies [36] for 350 days of

the year 2002. The 2D time-varying vector field has resolution
3600× 2400. We extract tiles representing the flow in the central
Atlantic Ocean (60× 60) and construct standard triangulation
on the point samples. We select multiple time slices from this
data: OceanA contains slices #21217 and #21311; OceanB and
OceanC correspond to slices #20904 and #20821, respectively;
OceanD includes a time-varying sequence of slices from #20710
to #20715; OceanE includes slice #21232. We also extract a tile
representing the flow in the south Atlantic Ocean (100× 100):
OceanF contains slice #138 (under different indexing scheme). We
refer to the entire datasets as CentralAtlantic and SouthAtlantic.

Our second real-world dataset is a 2D time-varying vector field
simulation of homogeneous charge compression ignition (HCCI)
engine combustion [37] represented as a 640× 640 regular grid
with a periodic boundary. The data consists of 299 time-steps
at intervals of 10−5 seconds. We select slices #173 and #152
from this data, referred to as CombustionA and CombustionB
respectively. We refer to the entire dataset as the Combustion
dataset.

We apply vector field simplification to OceanA-OceanF,
CombustionA and CombustionB. In particular, we use datasets
OceanE, OceanF, CombustionB to demonstrate complete hier-
archical simplification. Finally, we illustrate an extension to the
method by applying simplification to time-varying vector field on
datasets CentralAtlantic, SouthAtlantic and Combustion.

5.1 Topologically Equivalent Scenarios

In many scenarios, our approach produces topologically equivalent
and visually comparable results to the distance-based approach,
such as for the OceanB dataset (Fig. 11(a)). The critical point
pairs of interest are highlighted by the black dashed boxes in the
top row left. The critical points are colored by their robustness
values (red—low, blue—high). The upper right pair is more robust
than the lower middle pair and is further apart. The simplification
results generated by distance-based and the robustness-based ap-
proaches are shown in the second and third rows, respectively.
The approximated isolating neighborhoods are highlighted by the
white boxes (middle row), whereas the sublevel sets the yellow
enclosure (bottom row). From the comparison, we observe that,
both the distance and robustness metrics generate the same pairs
of critical points and the simplification orderings determined by
these two metrics agree. A subtle difference in the resulting vector
fields is visible due to differences in the local regions determined
by the two metrics and algorithms for modifications.

OceanA dataset (Fig. 12 (a)-(b)) shows a more complex
scenario where the region encloses more than two critical points.
The vector fields in this example are from slices #21217 and
#21311. Each of these two clusters (highlighted by the black
dashed boxes in Fig. 12(a)-(b)) consists of four critical points that
are close in distance and have small identical robustness values.
The robustness metric groups them as one cluster automatically
and computes a region based on their sublevel set. The bottom
row of Fig. 12(a)-(b) provides the simplification results using the
algorithm introduced in Section 4. Although the distance-based
method cannot group these four critical points in one simpli-
fication, for comparison we compute an isolating neighborhood
that encloses them and apply Laplacian smoothing. Both methods
return similar results. Nevertheless, the robustness-based method
can handle regions with more complex boundary configurations.
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(b)(a)

Fig. 11. (a) The OceanB dataset. (b) The OceanC dataset. For each subfigure: Top Row: Left – shows robustness values with the region of interest
highlighted (robustness values are colored from red to white, where red means low and white means high robustness); Right – shows the vector
field marked by critical point types along with separatrices. Middle Row: the two-step hierarchical simplification based on distance. Bottom Row: the
two-step hierarchical simplification based on robustness.

(a) (b) (c)

Fig. 12. The OceanA dataset: (a) #20311; (b)-(c) #21217. (a)-(b) For each subfigure, Top Row: Left – shows robustness values with region of interest
highlighted; Right – shows the vector field marked by critical point types and its topological skeleton. Bottom Row: results after distance-based (left)
and robustness-based simplifications (right). (c) A region (yellow boundary) with a nontrivial Conley index and uncovered boundary (top), where
smoothing does not remove its critical points (bottom).

5.2 Inconsistent Hierarchical Scenarios

We also identified a number of scenarios where the distance-
based and robustness-based methods disagree. One example is the
OceanC dataset (Fig. 11(b)). Here, two pairs of critical points are
studied (highlighted in the top row of Fig. 11(b)). Even though
the pairing of these four critical points is consistent with both
metrics, their actual simplification orderings are different. The

distance-based method cancels the pair in the middle-right of
the domain first, while the robustness-based method cancels the
lower-middle pair first. Fig. 13 provides another example that
shows the discrepancy of the two approaches in determining the
simplification ordering of critical point pairs in the time-varying
setting. In this example, we look at consecutive time steps from
the OceanD dataset. Fig. 13(a) highlights the critical points of
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interest. The pairings of these four critical points again agree with
each other using both topological-skeleton and robustness metrics.
We perform a per-slice simplification using the two approaches.
The results are shown in the second (distance-based) and third
(robustness-based) rows in (b)-(c), respectively. From the results,
we see that the cancellation orderings change over time using
the distance-based metric. This is due to an increased distance
between the two critical points near the upper-right corner, result-
ing in a change of the simplification order. On the other hand,
the robustness for these two pairs is stable. In this example, the
robustness-based simplification returns a consistent outcome (i.e.,
pairing and simplification hierarchies) over the two time steps.

5.3 Challenging Scenarios

There are a number of cases where the topological-skeleton-
based metric combined with the Laplacian smoothing technique
is incapable of simplifying the given vector field. For example, for
the SyntheticB dataset shown in Fig. 7, it is impossible to find an
isolating neighborhood with a trivial Conley index that encloses
all the critical points due to the boundary condition. Therefore,
even though the obtained local region is guaranteed to be zero
degree, Laplacian smoothing fails to solve for a critical point free
field. On the other hand, the simplification algorithm introduced
in Section 4 successfully simplifies the field. A similar situation
occurs in Fig. 12(c) (OceanA slice #21217). In this example, we
try to apply Laplace smoothing in the local region computed based
on robustness (top). The boundary configuration of this region is
rather complex and does not satisfy a trivial Conley index. The
Laplacian smoothing based on this boundary configuration fails
(bottom), but the proposed simplification method succeeds. These
two examples showcase the utility of the proposed algorithm in
solving a critical point free field within any given regions with
zero degree. This relieves the requirement of the trivial Conley
index whose corresponding isolating neighborhood is sometimes
difficult to obtain.

Fig. 8 shows a nontypical case that involves the cancellation of
a pair of critical points not directly connected by separatrix. It is
impossible for the topological-skeleton-based method to compute
an isolating neighborhood that encloses two critical points (but
not the others) not connected by separatrix [10]. Nonetheless, the
robustness metric derives a local region that encloses only these
two critical points with total degree equal to zero under a certain
configuration of the flow magnitude. Hence, these two critical
points may be cancelled. Whereas this may rarely occur in the
real-world data, it illustrates the flexibility and generality of the
proposed method. In practice, a simpler but similar situation may
occur.

In the slice of the combustion data (Fig. 14), the simplification
results and hierarchies of the distance-based metric (first row),
and the robustness-based metric (second row) do not agree. The
corresponding vector field is a high resolution incompressible
flow. The topology-based simplification requires the extraction of
topology and the subsequent isolating neighborhood, which can
be difficult due to instability in numerical integration and compu-
tational cost with large-scale dataset. In contrast, the robustness-
based method does not require the computation of topology, and
its computation is fast and parallelizable, making it more practical
for large datasets.

5.4 Complete Hierarchy
In this experiment, we show complete hierarchical simplifications,
for OceanE, OceanF and CombustionB datasets. We start with the
OceanE dataset (Fig. 15). The merge tree contains 10 zero-degree
internal nodes (that correspond to 10 unique robustness values),
therefore, there are 10 levels in the merge tree that we simplify
where the simplification ordering is determined by robustness
values of the critical points. We use Li to denote the i-th level
of simplification, where level L0 corresponds to the original data
without any simplification and L10 is the highest level canceling
all critical points. At each level of simplification, we highlight
the sublevel sets (i.e., the colored regions) that will be simplified;
and after simplification, we highlight the simplified regions with
colored boundaries. There are several pairs of critical points whose
corresponding sublevel sets are nested within one and another.
Noticeably in (e), there is a maximum of three levels of nesting at
the lower half of the domain. The most interesting observation is
that the heat map visualizations of vector field magnitude function
before and after simplification ((f) & (g)) exhibit extremely similar
patterns. This indicates that the robustness based simplification
introduces only a small amount of perturbation to simplify this
vector field, which largely preserves the vector field magnitude
over the space. Fig. 16 shows a second example with the OceanF
dataset. There are 13 levels of simplification (e.g., 13 pairs of
critical points to be simplified) based on the merge tree structure.
We show simplification up to L12 where the pair with the largest
robustness remains intact. Here the vector field magnitude function
displays almost no changes between level 1 and level 11, however,
it exhibits a large change in the upper region between level 11
and 12 ((b) & (c)). This is because the pair of critical points to
be simplified at L12 has a larger robustness value compared to
previous ones (as indicated by a large sublevel set that encloses
more than 60% of the domain). Therefore, the required amount
of perturbation to eliminate this pair is relatively large, causing
the observed discrepancy between heat maps in (b) and (c). Fi-
nally, the smoothing process makes the simplified region visually
smooth.

Fig. 17 demonstrates the example of the CombustionB dataset.
There are 11 levels of simplification based on the merge tree.
We performs 10 levels of simplification, leaving a pair of critical
points with the largest robustness. This dataset has a higher
resolution mesh compared to the above two datasets, thus, the
extracted sublevel sets possess smooth boundaries. Similar to the
example of OceanE, after 10 levels of simplification, the vector
field magnitude is preserved at large (see the comparison between
(f) and (g)).

6 TIME-VARYING VECTOR FIELDS

A natural extension is to apply robustness-based simplification to
2D time-varying data. Assume a 2D time-varying vector field is
represented by a discrete number of time slices. Robustness has
been used to give provable results on tracking critical points [38]
across time slices as well as highlighting interesting changes to the
topology [34]. The definitions extend naturally to the time-varying
case. We index the vector field by time t, ft :R2→R2, and assume
that it is c-Lipschitz in space and time (i.e., it varies slowly). We
further assume that critical points can be tracked under certain
conditions. In practice, we employ region overlap heuristic [39]
to track critical points, which works relatively well for our testing
datasets.
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21710(b) 21715(c)21710(a)

21711

21714

21715

Fig. 13. The OceanD dataset. (a) A sampled time series with pairs of critical points highlighted, where white numbers indicate time stamps. (b)
#21710. (c) #21715. For each subfigure (b)-(c), Top Row: The original vector field (left) and with the separatrices (right). Middle Row: The simplification
ordering for the distance-based strategy. Bottom Row: The simplification ordering for the robustness-based strategy. Orderings for distance and
robustness-based methods are consistent in (b) and different in (c).

Fig. 14. The CombustionA dataset. The bottom-up hierarchical simplifications (Top) from the distance-based strategy and (Bottom) from the
robustness-based strategy.

For time-varying vector fields, we would like to obtain consis-
tent simplification based on robustness. By consistency, we mean
that the simplified results do not introduce new critical points
nor create discontinuities in the vector field. A main challenge
for obtaining a consistent simplification across time is that the
per-slice robustness measure is not necessarily stable over time.
This instability is characterized by the so-called pairing switches.
Recall in Section 4, we identify a set of critical points that
share the lowest zero-degree ancestors in the merge tree and
apply simplification algorithm on such a set. The critical points

belong to the same set are considered paired with each other.
In other words, they are (pairing) partners. In the time-varying
setting, a given critical point may change its partner(s), and this
change is referred to as a pairing switch. For example, see the
two merge trees in Fig. 18(a)-(b) that correspond to two adjacent
time slices. At time i, critical points x1 and x2 are paired at r1
and x3 and x4 are paired at r2. At time i+ 1, x2 and x3 become
paired at r′1, while x1 and x4 are paired at r′3. This constitutes
a pairing switch. This type of event can lead to inconsistencies
during the simplification if we apply the simplification on the
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(a) L0

(b)

(c) (d)L4 L7 L10(e) (f)

(g)

Fig. 15. Hierarchical simplification of OceanE. (a)-(b): Vector field before simplification where critical points are colored by robustness pairing (a)
and robustness values (b). (c)-(e): Different levels of simplification, levels 4, 7 and 10, which correspond to robustness values 2.74, 4.06 and 7.48,
respectively; vector fields before (top row) and after (bottom row) simplification. (f)-(g) Vector field magnitude functions before (f) and after (g)
simplification; the function values are colored by heat map (where blue means low and red means high values).

(a) L0

(b)

(c) (d)L7 L8 L10(e) (f)

(g)

Fig. 17. Hierarchical simplification of CombustionB. (a)-(b): Vector field before simplification where critical points are colored by robustness pairing
(a) and robustness values (b). (c)-(e): Different levels of simplification, levels 7, 8 and 10, with robustness values 0.29, 0.35 and 0.39, respectively;
vector fields before (top row) and after (bottom row) simplification. (f)-(g) Vector field magnitude functions before (f) and after (g) simplification.

individual time slices independently. It is an interesting question
to understand what the pairing switches indicate in terms of the
structure of the time-varying vector field. Our interpretation is that
the robustness simplification after all is a global process, and that
pairing switches may indicate discrete, local, structural changes
in the vector fields (that complement the conventional structural
changes, e.g., bifurcations).

To ensure that we can maintain consistency across the entire
dataset (i.e., global consistency), we consider the task of simplify-
ing a specific critical point trajectory, that is, a PL path a critical
point takes when it moves through time. A set of trajectories are
then considered strict pairing partners if their associated critical
points are pairing partners across all time slices, and exhibit
no pairing switches. A simple solution to guarantee a globally
consistent simplification is to simplify the trajectories which are
strict pairing partners.

To do so, we assign a robustness value to a trajectory by
considering the maximum robustness value of the critical point
over its entire trajectory. If x(t) is a critical point at time slice t
and r(x(t)) returns its robustness at time t, the robustness value
over its trajectory is R(x) = max

t
r(x(t)). This is the minimum

amount of perturbation required to simplify the entire trajectory.

If we take a threshold smaller than R, there exists at least one time
slice where the critical point cannot be simplified. However, we
cannot simplify the sublevel sets corresponding to the value R(x)
in all the time slices. For example, in Fig. 18(b), suppose that the
maximum robustness value of x1 is its robustness value at time
i+1, that is, R(x1) = r′3. Then at time i+2, assume r

′′
3 > r′3 > r

′′
2 ,

the corresponding sublevel set at the value R(x1) has degree −1,
implying that it cannot be simplified. Therefore, simplification
should be performed according to the robustness value of the
critical point in each time slice, e.g., x1 would be simplified at
time i+2 within a sublevel set at a value in the range [r

′′
1 ,r

′′
2 ].

We now simplify a group of strict pairing partners on a per-
slice basis. At each time slice, the sublevel set to be simplified
is based on a minimum (i.e., local) robustness value that encloses
all the targeted points. The operations Cut, Unwrap and Restore
may be applied on each time slice independently and this will
result in a consistent vector field over time. The only problematic
operation is Smoothing. While this is not strictly needed, it does
make the resulting vector field look smoother. If the smoothing
is done on a per time slice basis (referred to as the spatial
smoothing), the result may not be coherent over time. We therefore
consider the PL tubes surrounding the critical points, which can be
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(a) (b) (c)L4 L11 L12

Fig. 16. Hierarchical simplification of OceanF. Top and middle rows:
vector fields before (top) and after (middle) simplification. Bottom: vector
field magnitude functions colored by heat map, where blue means low
and red means high values. (a)-(c) Different levels of simplification:
levels 4, 11 and 12, with corresponding robustness values 3.79, 12.72
and 14.11, respectively.
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Fig. 18. Examples of two pairing switches between adjacent time slices.
(a)-(c) t = i, t = i+1 and t = i+2 respectively.

considered as an envelop surrounding the trajectories (according
to the local robustness values). In spatial-temporal smoothing (as
first introduced in [22]), we fix the boundary of this tube (and the
cut points/edges) and perform Laplacian smoothing within it.

We apply such a simplification algorithm to several time-
varying datasets, namely, CentralAtlantic, SouthAtlantic and
Combustion (Fig. 20). Each one shows our simplification result
in the space-time domain, where the line segments correspond to
the trajectories of the critical points over time. Each trajectory
is colored in (b) based on their pairing partnerships. A pairing
switch is indicated by the change of color along the trajectory. We
see that a handful of trajectories that exhibit no pairing switches
in (c) could be simplified. Most of them are in the neighborhoods
of bifurcations. We also observe some special scenarios (Fig. 19)
where sublevel sets that overlap with one and another across time
are simplified by our algorithm. See the supplementary video for
the animations of these three time-dependent vector fields before
and after simplification.

Using this first-order approach, we can guarantee the consis-
tency of our simplified results. However, to further improve the
algorithm to simplify more trajectories, while still maintaining

Time

Fig. 19. Simplified critical points trajectories that intersect with one
another. Time-varying simplification of SouthAtlantic.

global consistency, we relax the previous definition of strict pair-
ing partners, and define a set of trajectories to be pairing partners
if their associated critical points are paired among themselves.
That is, we partition all the trajectories into groups of trajectories
so that pairing switches occur only among trajectories within
the same group. A breadth-first search would suffice to construct
these groups. For CentralAtlantic, SouthAtlantic and Combustion
datasets, we obtain 48, 76 and 10 groups of pairing partners,
respectively. For Combustion, 9 out of 10 groups contain two
trajectories each, which are identical to the strict pairing partners
obtained by the first-order approach (Fig. 20 bottom row (c));
while the remaining 42 trajectories form a single group. The
largest groups for CentralAtlantic and SouthAtlantic contain 115
and 161 trajectories, respectively. We illustrate pairing partner
groups for CentralAtlantic and SouthAtlantic datasets in Fig. 21,
e.g., the purple group highlighted in Fig. 21(b) involves a total of 8
critical points (see the supplementary material for results involving
this group). Groups with a single trajectory (i.e., trajectories
with no pairing partners) and groups with the largest number of
trajectories are ignored (colored in grey).

(a) (b)

Fig. 21. Pairing partners colored by their group memberships for (a)
CentralAtlantic and (b) SouthAtlantic datasets.

There are two challenges when applying simplifications to
time-varying vector fields. First, over a large time scale, algorithms
based on (strictly) pairing partners may not generate sufficient
number of trajectories to be simplified. Second, to guarantee
global consistency, we may need to simultaneously simplify a
single group based on pairing partners, or multiple groups con-
taining intersecting/mixing trajectories (e.g., in scenarios similar
to Fig. 19). It is possible (in the worse case scenarios) that the
target of simplification contains a large collection (or almost
all) of the trajectories. In these cases, consistent simplifications
become less informative. In these situations, we argue that our
algorithms would be most useful by localizing the simplification
in time and space. By focusing our analysis on a small, user-
defined time interval, there are fewer pairing switches and thus
more simplification targets (Fig. 22). Alternatively, we could focus
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Fig. 20. Time-varying simplification of CentralAtlantic (top row), SouthAtlantic (middle row) and Combustion (bottom row). (a) Trajectories colored
by per-slice robustness values. (b) Trajectories colored by pairing before the simplification. (c) Trajectories (i.e., strict pairing partners) that are
simplified are highlighted with color.

our analysis on a sub-domain of the vector field or on a handful
of selected groups/trajectories, where hierarchical simplification
might no longer be maintained.

7 DISCUSSIONS

We have presented a new and complementary simplification
framework that does not depend on the topological skeleton but
incorporates topological information through robustness. Rather
than considering the geometric proximity of critical points, we
consider the minimum perturbation required to remove critical
points. Our algorithm comes with theoretical guarantees on the
amount of perturbation we introduce. The motivation for Lapla-
cian smoothing is to produce more visually appealing results.
However, to the best of our knowledge, no nontrivial bounds exist

on the amount of perturbation introduced by such a smoothing.
In practice, smoothing only marginally increases the amount
of perturbation. For the detailed perturbation measurements and
performance numbers, see the supplementary material.
Scalability and generality: Our method should scale to very large
datasets. The robustness computation and the simplification steps
(e.g., Cut and Unwrap) run in linear time in the size of the
mesh. For example, for a region of 21k vertices and 64k edges,
Cut required 2 seconds in MATLAB and 0.03 seconds in C++.
The simplification procedure requires only that the degree of the
boundary be zero and so applies to a wide range of cases. It can
deal with highly rotational data (e.g., centers) as well as cases
where critical points are not connected by separatrices.
Other metrics: We use robustness and the L∞ norm, but using
other metrics such as the L2-norm, which incorporates both the
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(a) (b) (c)

Fig. 22. Time-varying simplification with user-specified time intervals. (a) CentralAtlantic, interval 140− 264; (b) SouthAtlantic, interval 140− 264; (c)
Combustion, interval 100−175.

magnitude of the vectors and the area to capture a quantity
closer to the energy of a perturbation, would be interesting. The
algorithm only requires components have zero degree. While any
metric could be used to construct a hierarchy, it is an open question
to find degree-zero regions under different metrics.
3D vector fields: Many of the techniques in this framework
extend to 3D vector fields. The robustness computation works for
vector fields in any dimension [32], and certain operations (such as
cutting and smoothing) can be easily extended. For example, the
Cut operation involves projection to a plane rather than a line. One
obstacle for 3D simplification is performing the Unwrap operation
on a 2D sphere. The technical and theoretical obstacles will be
addressed thoroughly in a follow-up work.
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