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Abstract

Dynamic networks are commonly used to model relational data that are observed over time. Statistical models for such data
should capture both the temporal variation of the relational system as well as the structural dependencies within each network.
As a consequence, effectively making inference on dynamic networks is a computationally challenging task, and many models
are intractable even for moderately sized systems. In light of these challenges, a family of dynamic network models known as
varying-coefficient exponential random graph models (VCERGMs) is proposed to characterize the evolution of network topology
through smoothly varying parameters. The VCERGM provides an interpretable dynamic network model that enables the inference
of temporal heterogeneity in dynamic networks. Estimation of the VCERGM is achieved via maximum pseudo-likelihood tech-
niques, thereby providing a computationally tractable strategy for statistical inference of complex dynamic networks. Furthermore,
a bootstrap hypothesis testing framework is presented for testing the temporal heterogeneity of an observed dynamic network se-
quence. Application to the US Senate co-voting network and comprehensive simulation studies both reveal that the VCERGM
provides relevant and interpretable patterns and has significant advantages over existing methods.

Keywords: Exponential random graph model, temporal graphs, basis spline, pseudo likelihood, penalized logistic regression

1. Introduction

Networks have been extensively used to explore, model, and analyze the relational structure of individual units, or
actors, in a complex system. In a network model, nodes represent the actors of the system, and edges are placed be-
tween nodes if the corresponding actors share a relationship. In many applications, the relationships among the actors
of a modeled system change over time, necessitating the use of dynamic networks. Two diverse examples, which we
analyze later in our application study, include the Congressional co-voting networks in Figure 1 and resting state brain
connectivity networks in Figure 2. A prominent way to analyze relational network systems is through the use of prob-
abilistic models, or graphical models, which describe the generative mechanism of an observed network. Although
there is a rich body of literature on graphical models for static networks [1, 2], the development of interpretable and
computationally tractable models for dynamic networks is in its early stages.

An important feature of dynamic networks that needs to be captured in any statistical model is the extent to which
its local and global features change through time. We refer to this property as temporal heterogeneity. Heterogeneity
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Figure 1. U.S. Senate co-voting network: Co-voting networks of US senators in Congress 40, 70 and 113. Red nodes represent Republican
Senators and blue nodes represent Democratic Senators.

(a) Time 10 (b) Time 20 (c) Time 47

Figure 2. Resting state fMRI network: Resting state fMRI network at observed times 10, 20 and 47. Each node represents a brain region. The
top 10% of partial correlation between regions form an edge.

directly affects the underlying process that best describes the formation of networks. In parametric models, hetero-
geneity may result in significant changes in parameters that characterize the observed network. Consider the U.S.
Senate co-voting network shown in Figure 1. One can readily observe an evolution of the network to form distinct
clusters of Republicans and Democrats by the 113th Congress. This configuration is in stark contrast with the sparse,
seemingly random configuration formed in the 40th Congress. On the other hand, the resting state functional mag-
netic resonance imaging (fMRI) network shown in Figure 2 remains fairly stable through time with only minor local
changes in edge formation. These contrasting examples exemplify the need to explicitly model the heterogeneity of a
network. We further analyze these dynamic networks in Sections 6 and Appendix F.

In this paper, we propose a probabilistic model for dynamic networks called the varying-coefficient exponential
random graph model (VCERGM). The model parameterizes time-varying topological features of dynamic networks
in continuous time. Our model builds on two major statistical methodologies. One is the exponential family of random
graph models [3, 4] that characterizes the marginal effect of local and global network features on the likelihood of
the network. The other major component is a varying-coefficient specification [5], which flexibly models the changes
of effect parameters over time. The VCERGM characterizes the temporal heterogeneity of dynamic networks by
modeling the parameter associated with each topological feature as a smooth function of time.

One prominent advantage of the VCERGM is its interpretability. By quantifying temporal heterogeneity of a
network via fluctuating parameters, we are able to analyze key properties of the local and global features of a dynamic
network. In addition to serving as a means to test for heterogeneity of a dynamic sequence, our method can also be
directly used for interpolation of missing networks or edges. For networks at unobserved time points, our method
provides robust estimates that reflect the structure of the unobserved networks without being strongly influenced by
outliers in the sequence. Furthermore, estimation of the VCERGM can be done with a computationally scalable
maximum pseudo-likelihood estimation (MPLE) approach, enabling efficient inference for large dynamic networks.

There are several related dynamic network models that have been investigated. The exponential random graph
model (ERGM) is a family of probability distributions on unweighted static network. The ERGM has been adapted
to dynamic networks in the pivotal work of [6]. The method is called the temporal exponential random graph model
(TERGM). The TERGM models the difference in topological features between every two consecutive networks in a
similar fashion to the ERGM. However, it ignores the heterogeneity of the differences, and cannot fully capture the
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time-varying patterns of the network structure. We investigate the situations under which the TERGM degenerates to
a collection of independent and identically distributed ERGMs in Appendix A.

The TERGM has been further investigated in many different perspectives. [7] devised the hidden TERGM, which
utilizes a hidden Markov process to express the nature of rewiring networks and model a time-specific network topol-
ogy. [8] generalized the TERGM to the separable TERGM (STERGM). The STERGM models the formation and
dissolution of networks by separately parameterizing prevalence and duration of fluctuations. It allows time-varying
overall rate of tie formation and dissolution while retaining homogeneous parameters for the other terms. [9] re-
laxed the temporal Markov and fixed vertex set assumption of [6] and demonstrated a parametric model for temporal
networks via dynamic network logistic regression.

The VCERGM, like the TERGM and ERGM, is a network-centric model. In other words, the VCERGM does not
explicitly model individual changes in a network; rather, the focus is to characterize motifs or subgraph properties.
An alternative to this modeling approach is what is known as ego-centric analysis, where individual change is the
focus. Perhaps the most popular ego-centric modeling strategy is the stochastic actor-oriented model (SAOM) [10].
It provides an alternative to dyadic models and instead is a localized actor-based model, which characterizes network
evolution as a consequence of each actors’ connectivity. Even if the SAOM considers the fluctuation between two
time points, it does not provide explicit form to parametrize the fluctuation in network topology. [11] and [12]
generalized the latent space model developed by [13] to dynamic networks. Unlike our current model, latent space
models characterize the dynamics of network structure through random effects in a latent space.

Another recent ego-centric model is that proposed in [14], where dynamic networks are modeled using multilinear
tensor regression. This work adapted autoregressive models to dictate temporal dependence in a sequence of networks,
and like the SAOM, proposed an actor-based dependence structure between edges in each network. It directly models
the temporal heterogeneity but may not be adequate for larger networks due to its computational complexity. [15]
considers capturing time-varying attributes of dynamic networks and parametrizes the evolving relationship of each
edge between nodes as a smooth function of time. Along with kernel smoothing approach, the ¢;-regularization
is utilized to ensure the smoothness. The parameters in the model provide a valuable intuition in understanding
the topological change of each edge, but fitting this model for larger networks can be computationally expensive
considering the number of parameters.

As an alternative, the proposed model exploits a varying-coefficient framework to model the temporal hetero-
geneity of topological features. The varying-coefficient framework is a family of semi-parametric models, where the
coeflicient of a parametric model evolves with some characteristics in a nonparametric fashion. It was first developed
to model non-linear effects of covariates on real-valued response variables [5]. Later it was extended to the dynamic
generalized linear models [16, 17]. The varying-coefficient models extend the classic parametric models to under-
stand the dynamic pattern of temporally evolving structure [18]. A detailed review of varying-coefficient models and
their applications are provided in [18]. In our proposed model, we model the coefficients of the topological features
in the ERGM as a function of time. As a result, the varying coefficients effectively capture the dynamic pattern of
the network structure. To our best knowledge, the VCERGM is the first attempt to generalize the idea to dynamic
networks.

2. Model

We begin by describing the exponential family of random graph models (ERGMs) and their temporal extension,
the TERGM, since our proposed model is closely related to these specifications. We then introduce our proposed
model the VCERGM.

2.1. Temporal Exponential Random Graph Models

Let the n X n random matrix X represent an unweighted network with n vertices, whose (i, j)th entry X;; is an
indicator that specifies whether or not node i and node j are connected by an edge. Self-loops are not allowed, and
thus the diagonal elements of X are all zero. Let X denote the family of all n X n unweighted networks so that X € X.
The ERGM is a probability distribution that characterizes the likelihood of X via a function of network statistics
h : X — RP? that describe the topological structure of X.
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Given h, the ERGM models X as a binary random matrix generated from the following probability mass function

exp{¢"h(x)}
> expl¢"h()}

zeX

PX=x|¢) = ey

where ¢ € RP parameterizes the influence of the network statistics h(X) on the likelihood of X. The coefficient
corresponding to the number of triangles in an undirected network, for example, characterizes how the number of
triangles changes the likelihood of a network with n nodes. Positive coefficients suggest that networks with a higher
number of triangles are more likely to occur than networks with lower number of triangles, and reflects clustering in
the observed network.

The ERGM has been successfully applied in a wide variety of fields, ranging from social networks to brain
connectivity networks [19, 20, 21]. Recent tutorials of exponential random graph models and their applications are
provided in [22, 23, 24]. Despite their popularity, an important obstacle that arises in discrete exponential family model
specification is the problem of degeneracy, a condition under which only a few network configurations - usually very
sparse and very dense networks - have high probability mass [25, 26, 27]. The issue of degeneracy strongly influences
the effectiveness of estimation algorithms, which often rely on Markov chain Monte Carlo simulation. In the case
that nearly empty (or nearly complete) networks are most probable, estimation via MCMC will fail to converge to
consistent parameter estimates. A common strategy to help mediate the degeneracy problem is to use geometrically
weighted network statistics, which downweight higher order statistics and reduces the computational complexity of
subgraph counting [28, 29, 30]. Furthermore, the generalized exponential random graph model for networks with
continuous-valued edge weights have been shown to avoid likelihood degeneracy in common specifications [31, 32].

We now describe the TERGM, a generalization of the ERGM that enables statistical inference of dynamic net-
works [33, 6]. Consider a temporally ordered sequence of networks X = {X1, X5, ..., X7} thatis observed at T discrete
and non-overlapping time periods, where each graph X, € X from X is unweighted, and observed for the set of vertices
[n] = {1,...,n}. The TERGM is a generative model for X that characterizes the conditional probability of X; given
X; ={X;:s=1,...,t— 1} via an exponential family of probability distributions. Under the first order TERGM, X
exhibits a one-step Markov dependence between sequential networks as follows:

PX; = x; | Xt_ = Xt_) =PX; = x | Xi-1 = x1). 2)

Under (2), one can fully specify the joint probability mass function of X by parameterizing the one-step transitions
from X;_; to X;. One models these dependencies using a function of transition statistics g : X X X — R”. These
statistics represent the temporal potential over cliques across two sequential networks and can represent, for example,
the change in the clustering or the change in overall connectivity between each pair of networks. For a chosen g, the
first-order TERGM specifies the likelihood of X; | X;_; forr =2,...,T as

expl{e” g(x;, xi-1))
D exp(¢” g xi1)

zeX

P(X; = x; | X;a¢) =PX; =x | Xeo1 = x-159) = (3)

where ¢ € R? parameterizes the influence of the transition statistics g(X;, X;—;) on the conditional likelihood of X,
given X;_;. Suppose that the marginal distribution P(X; = x; | @) is specified. The TERGM characterizes the joint
distribution of the dynamic sequence X by

T
PX=x[¢)=PX, =x|¢) H]P’(Xz =x | Xio1 = X1, 4). “
t=2

We note that in general if one is able to specify appropriate transition statistics, then the TERGM in (3) and (4) is
readily generalized to higher-order Markov dependency. Bootstrapped maximum-pseudolikelihood techniques are
typically used for estimation of the TERGM [33]. Estimation can be carried out using the btergm software package
[34].
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2.2. Varying-Coefficient Exponential Random Graph Models

Let X = {X; : 0 <t < T} be a stochastic sequence of temporally ordered networks observed continuously up
to some time 7 > 0. At each time point 7, X; € X represents an unweighted, directed or undirected network with
time-invariant size n. Our goal is to provide a dynamic network model for X that directly accounts for the temporal
heterogeneity of its local and global network structure.

The VCERGM consists of two components - (i) an ERGM representation for the marginal likelihood of each
observed network, and (ii) the coupling of networks over time via a varying-coeflicient model, where the coefficients
at time ¢ parameterize the marginal likelihood of the network X;. We first specify a set of functions h(x;) : X — R”
for t € [0, T], which quantify the p topological features of network x, with n nodes. Given h(x,) and the coefficient
vector ¢(t) = (¢1(1),- -+ , P p(t))T € R”, the marginal likelihood of X, at time ¢ has an ERGM representation given by

expi{é(n) h(x)}
Yex expigp(” h(z)}’

A large collection of topological features can be used in the VCERGM. Traditionally, the network statistics are raw
counts of different features in an observed network, such as the number of edges (edge density), the number of
triangles, or the number of reciprocal edges in a directed network.

The coefficients ¢(f) in model (5) characterize the influence of the corresponding network statistics on determining
the network structure. By evaluating the coefficient at time point ¢ € [0, 7], we can write the marginal distribution
of a graph X, as described in model (5). When a dynamic network evolves gradually over time, it is reasonable to
believe the coefficients will also change gradually. In such a case, ¢(¢) can be represented by smooth functions of
t with continuous second order derivatives over [0, 7] [35]. In the special case where all the separate functions in
&(?) are constant, the generative models underlying the dynamic networks are identical over time and the VCERGM
reduces to a family of marginally identically distributed ERGMs. In Section 4, we introduce a formal hypothesis
testing procedure to test the temporal heterogeneity of the coefficients.

PX; = x | ¢(0) = x €X. &)

2.3. Generalization to Higher Order Varying-Coefficient Exponential Random Graph Models

The VCERGM, in general, can be used to model the parameters describing the smooth transitions between con-
secutive networks in time. Model (5) investigates the dynamics of coefficients for marginal network statistics without
accounting for temporal dependency. However, this model can readily be extended to networks with a Markov de-
pendency like that described by the TERGM. For any non-negative integer g, one can incorporate an order ¢ Markov
dependency in the VCERGM. We denote such a model as a VCERGM of order ¢ (VCERGM(q)). We refer to model
(5) as the varying-coeflicient exponential random graph model of order 0 (VCERGM(0)). For ¢ > 1, one must specify
summary statistics that couple the dependence among g observed networks in the sequence. For example, when g = 1
we can model the one step transition between X,_; and X, using a suite of statistics h; (x;, x,_1) as

6Xp{¢{(l‘) hy(x;, x-1)}
Yex exp{d1 ()T hy(z, x-1)} ’

Here, h is the temporal potential over cliques across two time-adjacent networks. For examples of transition statistics
hy, see [6]. In model (6), ¢1(¢) = {¢1:(?),k = 1,..., p} can be modeled as smooth functions that describe the impact
of the one-step transition statistics from x,_; to x,. Therefore, model (6) effectively captures the rate of change of
the temporal potential between sequential graphs rather than the rate of change of the marginal features as done in
this work. Considering the higher order dependency, one could use the VCERGM to predict the network structure in
the future based on the Markovian framework. Like the TERGM, we can generalize the VCERGM to a higher order
Markov dependency, say order g > 1, by specifying appropriate transition statistics hy(x;, x;—1, . .., X;—¢).

In general, the VCERGM(q) characterizes the impact of the changes of transition between g consecutive networks.
Due to the Markov properties, the VCERGM with lags can be used for prediction. Furthermore, since coefficients
are smooth functions through time, one can readily interpolate for unobserved networks. Notably, the TERGM of
order g is a special case of the VCERGM(q) where ¢,(f) = ¢,. This requirement greatly restricts the family of
dynamic networks that can be modeled through the TERGM. By allowing smooth fluctuations, the VCERGM models
the effects of temporal heterogeneity more efficiently.

PX; = x| 91(1), x,-1) = x; € X. (6)

5
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3. Estimation

3.1. Spline-Based Representation of Time-Varying Coefficients

Without any constraint, the collection of coefficients {¢(¢) : 0 < ¢ < T’} contain an infinite number of parameters,
making inference on (5) intractable. To address this problem, we approximately represent these smooth functions as
a linear combination of basis functions. Possible strategies of defining basis functions include piecewise polynomials
[36], Fourier series [37] and wavelets [38]. For inferential purposes, we employ basis splines (b-splines) [36, 39] as
a way to reduce the dimensionality of estimation. B-splines are commonly used due to its flexibility in incorporating
smoothing constraints.

In particular, we first specify a collection of basis functions B (?), ..., By(#), 0 < < T, and then approximate ¢(f)
by a linear combination of these functions

q
Be(t) = )" B By(1),
(=1

where @y, quantifies the contribution of the £th basis function on ¢ (). Let ® = {Qy; k = 1,...,p, L = 1,...,q}
denote the p X g basis coefficient matrix and let B(r) = (B(?),..., Bq(t))T be the length g vector of basis functions.
We can represent the coefficients ¢(f) as

é(t) = ®B(). )

The set of g basis functions represents the smoothness of ¢(¢), and the coefficient matrix ® determines the shape and
trajectory of the fluctuations through time. Under the basis representation in (7), the distribution of X; in (5) is fully
specified by the pg parameters in the coefficient matrix ®@.

3.2. Fast Estimation via Maximum Pseudo Likelihood

For an observed dynamic sequence of unweighted graphs x = {x; € X : s = 11,...,1x,t; < tjx; € [0,T]}, our
goal is to estimate the coefficients {¢(f) : 0 < ¢ < T} given the sequence x. Let B; = {B,,; { = 1,..., g} be a vector
of length ¢ of which elements are the basis functions evaluated at time s. By applying the basis representation in (7),
we denote ¢; = ®B; as the smooth function ¢(-) evaluated at time s. Therefore, this estimation reduces to the task
of estimating the p X g coefficient matrix ®. A major obstacle in obtaining the maximum likelihood estimators of
the parameters in Model (5), similar to that of fitting an ERGM, is that calculation of the normalizing constant in the
denominator is computationally intractable. Although numerical approaches such as the Markov chain Monte Carlo
method can be used to estimate ® for small networks [40, 31], the computational cost is prohibitive for moderate to
large networks, let alone a sequence of networks. To alleviate the computational complexity, we exploit a maximum
pseudo-likelihood approach, originally adapted for fitting the ERGM [41, 42, 4]. We show that the maximum pseudo-
likelihood estimator (MPLE) for the VCERGM can be efficiently obtained via maximum likelihood estimation of a
logistic regression model. Below we describe the estimation procedure in more detail.

For each observed time point s = #,..., 1k, let X jj denote the binary random variable that describes whether or

not there is an edge between node i and node j at time s. Furthermore, let Xf(l.j) be the collection of (;) — 1 binary
random variables that describe whether or not there is an edge between all other pairs of nodes other than the node
pair 7 and j. For each observed time point s = fq,..., fx, assume the conditional independence between edges. The

marginal pseudo-likelihood function of @ given x; at time s is defined as
PL(®Ix) = [ | POG; = 31X = X ). ®)
i,j€ln]

Subsequently, the marginally independent composite pseudo likelihood of model (5) is

PL(®[x) = l_[ l_[ PXG; = X265 = X2)-

s=ty i,je[n]

The MPLE @ is obtained by maximizing PL(®|x). The pseudo-likelihood approach used for estimation and hypothe-
sis testing treats pairs of edges as pairwise independent. As the temporal dependence is parametrized by the coefficient
6
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&(1), the composite pseudo-likelihood function can be written as a product of marginal pseudo-likelihood functions at
the observed time points ¢4, ..., .

Let x! Sij denote the realization of x; with xj set to 1 and let x be the realization of x; with xj = 0. Define
AY h(x*.) - h(x{, ) as the vector describing the element-wise dlfference in the network statistics when x;. i changes

S,ij
from 0 to 1. One can readlly show that for each s = 11, ..., tk, the following relationship holds for all i, j € [n]:

P(X;, = 11X*

x5 )
. ) (1]) =(i))
logit {P(X;; = 1IX2; = I
ogit {IP( X2 ) = %)} = Og{P(X° =01X2) = iﬁﬁ)}

= log [explg(t)” (h(x;)) — h(x; ;)]
¢TA3 (9)

Let YY loglt{}P)(XY = 1|X“(l]) ( ))} andlet Y, = (Y¢ ., ,m)T Similarly, define Ay = (A} A

as the p X (2) matrix whose rth row contains the change in the rth network statistic when each edge changes from 0
to 1. Let vec(X) be the operator that stacks the columns of X into a column vector and let ® represent the Kronecker
product operator. Combining (7) and (9) yields

1 12"' 1 12"

Y, =AT®B, = (B, ®A,)" vec(®), s=1,...,0. (10)
LetY = (Y, - ,Y,K)T and define the pg X K(’;) design matrix H as

B, ®A,
H=| = |
B, ®A,

The relationship in (10) connects to a logistic regression where H represents a design matrix with its coefficient
vec(®@). In [41], it was shown that maximizing the pseudo-likelihood PL(®|x;) in (8) is equivalent to finding the
maximum likelihood estimator (MLE) of ® in the logistic regression model given in (9) with independent entries XS
Dependency among nodes in a network can be indirectly modeled by conditioning on the rest of the edges. As a result
the assumption of independent data points is not required. We expand this estimation strategy to temporal networks. It
follows from the independence of X and Xy for s # s" that maximizing PL(®|x) is equivalent to calculating the MLE
of @ in the logistic regression model Y = H vec(®) treating {ij 2i,j€[nl,s =1,...,tx} as mutually independent
variables. Correlation between neighboring time points is not explicitly specified, but the joint pseudo likelihood of
dynamic networks is defined by multiplying the pseudo likelihood for each observed time point. [43] showed that the
estimation procedure for varying-coefficient models based on the penalized spline and quadratic inference function
directly incorporates the correlation across time without further specifying a nuisance parameter associated with the
correlation.

This maximum pseudo likelihood approach can be also applied to the VCERGM(g) in an analogous fashion. For
simplicity, we consider the VCERGM(1) with one-step Markov dependence. The conditional likelihood of graph
X; given X,_; is specified as (5). For a collection of basis functions Bi(?),...,B,(#), 0 < t < T, we approximate
¢11(t) by a linear combination of these functions as ¢(f) = Z?zl @y Be(t) and represent the coefficient ¢ (7) as
a @ () = ®B(?), with a p X g matrix of basis coefficients ®;. The composite pseudo-likelihood functions for
VCERGM(1) can be expressed as

PL@X) = [ ] POe = <X, = x)
i,jeln]
g
x [T TT P =X = X0 Xoot = x0).
s=tp i,j€[n]

The likelihood of X;, has an ERGM representation and thus the marginal pseudo-likelihood at time #; is unconditional;

it has the same form as (8). Let A}, = = h(xs ij2 Xs- 1)— h(xs i , X;_1) denote the vector of differences in the transition statis-

tics when x,;; changes from O to 1. Then the relatlonshlp described in (9) can be similarly applied to VCERGM(1).
7
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A logistic regression model like (10) is used for parameter estimation and thus the remainder of the estimation steps
described above remain the same.

3.3. Penalized Logistic Regression

To obtain smooth estimates of the time-varying coefficients ¢(7), we further consider a roughness penalty on the
coeflicients of the basis functions [see 5, 39, 16, for example]. A commonly used penalty, which we use throughout
this paper, is the integrated squared second derivative defined for kth row of ®, denoted as @, as

P(®yy) = f (D26,(u))? du = D, Qb

where a smoothness matrix € in this case can be specified as

Q={Q;= f{DzBi(u)}{Dsz(u)}du; i, j=1,...q).

For networks observed at discrete time points 1, .. ., fx, the (i, j)th element of Q is

Ix

Q= Y UD*BAHD*By(s)). i j=1.....q.

S=h

For more examples of possible penalties, see the Chapter 5 in [35]. As the same collection of basis functions are
used to express ¢x(f), k = 1,. .., p, via basis representation, we impose the same £ on all ¢, (). Consequently, we add
the penalty term Pq(®) to the logistic log pseudo likelihood function where Pqo(®) is defined as

p
P (D) = Z @ QD) = vee(®) (Q B, )vec(®).
k=1

Similar with Y, let X denote a vector that stacks all edges from networks at 7y, ...,7x. Thatis, X = {xfj 10, j €

[n], s = t1,...,tx}. We calculate the penalized pseudo-likelihood estimator @, by maximizing the following penalized
log likelihood with tuning parameter A:

%" H vec(®) — 17 log[1 + exp{H vec(®)}] — 1P (D). (11)

To fit (11), we implement an iteratively reweighted least squares (IRLS) algorithm. A detailed description of this
procedure is available in Appendix B.

4. Testing for Heterogeneity

A key assumption of the VCERGM is that the effects of a specified collection of statistics vary through time. This
assumption reflects heterogeneity in an observed sequence of graphs x and provides intuition as to whether or not
summaries of X can be treated in aggregate. One can formally test for heterogeneity in x using bootstrap inference the
observed sequence of networks. Bootstrap inference has recently received a lot of attention for uncertainty quantifi-
cation of network summaries. For example, [44] applied a bootstrap to assess the variance of network statistics in an
observed network and demonstrated how to test differences between networks using t-test comparisons of calculated
network statistics. Recently, [45] developed a bootstrap inference strategy for uncertainty quantification of estimators
for node features in large networks. Here, we apply bootstrap inference on an observed sequence of networks to test
for temporal heterogeneity using a likelihood ratio test. Our approach is closely related to the recent model selection
strategy introduced in [46].

We begin with a null hypothesis that x is homogeneous, namely that the coefficients ¢(f) under model (5) are fixed
as constants over time. This serves as the null model, under which the VCERGM(O0) is equivalent to fitting independent
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and identically distributed ERGMs. Let ¢0, e ‘/52 be the estimates under the time-invariant model fitting. With fixed
constants ¢, ..., #°, the null hypothesis corresponding to a homogeneous sequence of graphs can be written as

Ho: ¢1(1) = 47, ... ¢,(1) = ¢). (12)

With basis spline (b-spline) setup of basis expansion [36, 39], the basis functions satisfy Z;’z  Bi() = 1 for all
t € [0, T]. As aresult, any ¢(¢) is uniquely expressed as a linear combination of b-spline basis functions and setting
the function ¢ (¢) = ¢2 is equivalent to writing @y, = (152 forall £ = 1,...q. In other words, the null hypothesis in (12)
can be expressed more succinctly as

T T
Ho: ® =" =(¢),....¢)) x1,

where 1, is length g vector of 1’s. Such simplification is applicable for spline basis functions and we have implemented
a hypothesis test with spline basis functions. The condition 2;’21 By(t) = 1 forall ¢ € [0, T] does not necessarily hold
when other types of basis functions are used. Hypothesis test under other basis function specification remains to be
explored in the future. The coefficients under the null hypothesis are the restricted form of the VCERGM where the
basis coefficients for each network statistic are constants for all g basis functions.

The likelihood ratio test (LRT) is commonly used for conducting the test for heterogeneity in varying-coefficient
models [47, 48, 49, 18]. Due to the dependence between entries in each graph, we utilize a pseudo likelihood ratio
test (pLRT) [50]. As previously emphasized in Section 3, the joint pseudo likelihood consists of the distribution of X fj
given the rest of the data X* @) foralli, j € [n], s = 11, . .. tx. Furthermore, maximizing the pseudo likelihood simplifies
the estimation process as fitting a logistic regression. Namely, with observed networks x = {x; : s = #;,...,tx} withn
nodes, the pLRT compares the pseudo log likelihood function below under the null and alternative hypotheses:

Ik
logPL(®x) = Z Z log{P(X}; = x,IX2 ;) = Xi(z’j))}

s=t i,j€[n]

i > [x BT @A, — log(1 + exp(B] @7 AL} |

s=t i,j€[n]

Let (i)HO and (i)Hl be the estimates of @ under the null and alternative hypotheses. The estimate (i)Hl can be
calculated by fitting the VCERGM specified in (5) and (i)HO is the estimate from the VERCM with a restriction
of constant basis coefficients. Accordingly, let log PL((iDHOIX) and log PL(Ci)Hl [x) denote the pseudo log likelihood
functions under the null and alternative, respectively. Then, the test statistic is

2{log PL(®y[x) — log PL(®po|x)}

1,
ZZK: Z [x;jBf((i)Hl - ‘i’HO)TAfj + log{

s=t i,je[n]

T

1+ exp(Bfti){mAfj) }]
1+ exp(BT O] A?) )

13)

We reject the null hypothesis when 7" > C, where C, is the critical value of the test with significance level . We
introduce an approach that involves generating bootstrap samples to construct the null distribution of 7' [47, 18, 51].
It is s preferable for moderate network size. Analogous to the work in [52, 53, 54], the steps of obtaining the critical
value C, or calculating the p-value with parametric bootstrapping can be described as follows. For a large value of B,
the test statistics (13) calculated based on B bootstrap samples successfully represent the null distribution of 7'.

1. Create B bootstrap samples. For each bootstrap, indexed by b = 1,...,B, x*® = (x? : s = 1,...,1x} is a
sample from P(X|®y).

2. For each bootstrap sample x*®, estimate ® under the null and alternative hypotheses and denote them as @;‘g)

and (i);(f), respectively.
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3. Calculate the test statistic for each bootstrap sample as

7" = 2{log PL(®;P1x*®) — 1og PL(®; D x*®)), b =1,...,B.

4. The critical value C,, is determined as the (1 — )th quantile of (T*(, ..., T*®)). The p-value is the proportion
of times that the bootstrap test statistic values exceed the observed test statistic 7. Define an indicator function
I(A) which takes a value of 1 if A is true and 0 otherwise. Then the p-value can be written as

b IT < T®)

—value =
p-value B

The p-value is then used to determine whether or not to reject the null hypothesis. For values below a specified
significance value, a, one rejects the null hypothesis in (12) and decides that the sequence of networks does exhibit
heterogeneity in its parameters. In our applications below, we choose @ = 0.05 when evaluating any hypothesis test.

5. Simulation Study

The goal of our simulation study is two-fold: (i) to evaluate the power of the hypothesis testing procedure described
in Section 4 and (ii) to assess the goodness of fit of the VCERGM on dynamic networks with various magnitudes of
temporal heterogeneity. In Section 5.1, we evaluate the sensitivity of the hypothesis test in (12) for detecting temporal
heterogeneity in a sequence of networks with fluctuating parameters using both the bootstrap and permutation pro-
cedures. Section 5.2 assesses the performance of the VCERGM under various varying-coefficient specifications. We
compare the performance of the VCERGM with other competing methods. We further investigate how the VCERGM
performs when the networks are observed at unequally spaced time points due to missing networks. We explore the
performance of VCERGM when the network size is time-varying in Appendix D.

5.1. Power Evaluation for Testing Heterogeneity

We first investigate the power of the hypothesis test for heterogeneity that we introduce in Section 4. To do so,
we investigate both Type I and Type II errors of the test on dynamic networks over various magnitudes of temporal
heterogeneity. We simulate 100 sequences of dynamic networks x = {xy,...,Xjg0}, Where each sequence x,, =
{Xw.1,...,%yx}, contains K networks with 30 nodes observed at equally-spaced times ¢, ..., fx under the VCERGM
that models the temporal contributions of the edge density statistic. We set the coefficient on the edge density term,
@(1), to be a sinusoidal curve with amplitude M and period T. In particular, we model

é(t) = Msin(%), t€[0,T].

We vary the number of observed time points K from 10 to 100, and the amplitude M from 0 to 0.3 in increments of
0.05. In case that M = 0, we set ¢(¢) = 1, ¢ € [0, T] to represent an Erdés-Rényi model. For each value of K and M,
we calculate the proportion of rejections at @ = 0.05 level out of the 100 simulated dynamic network sequences. Table
1 reports these proportions when using the bootstrap procedure as well as the permutation test. For the permutation
test, instead of simulating networks from the estimated null, we simply permute the observed networks to break any
time-varying pattern, and re-estimate the model under the null and the alternative and then calculate the test statistics.
We learned that both testing strategies appear to be overly conservative. It is a valuable point we would like to address
for future research.

When M = 0, ¢(¢) is a constant function and as a result the proportion of rejections in this case provides an
estimate for the Type I error of each test. From Table 1, we see that both strategies obtain a Type I error at or below
0.05, as desired. For M > 0, the proportion of rejections provides an estimate of the power of the test. We see that
for higher signal (larger M) and for a larger number of observed networks (larger K), we obtain a higher power, as
expected. Across K, we see in general that the bootstrap procedure is consistently more powerful than the permutation
procedure for each amplitude value M. For M > 0.25 the power of both tests reaches 1, indicating that heterogeneity
is successfully identified by both tests. These results suggest that both tests are powerful for large enough signal
size, and that the bootstrap procedure slightly outperforms the permutation procedure for small signal sizes (between
M = 0.05 and 0.20).

10
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Table 1. Simulation results: Proportion of cases that we reject the null hypothesis out of 100 simulations at the significance level of @ = 0.05.
Bootstrap samples of size B = 1000 and permuted samples of size P = 1000 are used to make a decision for hypothesis testing.

M Bootstrap Permutation

K =10 30 50 70 100 K =10 30 50 70 100
0 0.02 0.03 0.07 0.01 0 0.03 0.04 0.03 0 0.01
0.05 0.15 036 046 059 0.71 0.07 029 049 0.63 0.73
0.1 042 077 091 093 097 032 0.82 098 0.99 1
0.15 0.74 0.98 1 1 0.99 0.52 1 1 1 1
0.2 0.98 1 1 1 1 0.63 1 1 1 1
0.25 1 1 1 1 1 0.87 1 1 1 1
0.3 1 1 1 1 1 0.97 1 1 1 1

5.2. Estimation Performance

We now evaluate the performance of VCERGM to accurately estimate fluctuating parameters ¢(t), ¢ € [0, T]. We
consider four different settings for ¢(¢): (i) sinusoidal curve ¢(f) = asin{(t + b)/c} + d of varying amplitude a; (ii)
quadratic curve ¢(t) = a(t— T/2)* + b of varying strength g; (iii) dynamic Erdés-Rényi random graph with probability
p of edges; and (iv) non-smooth (spiky) functions as a form of a sequence of random numbers with varying mean
and standard deviation for normal distribution. For each setting of varying coefficients, we model the occurrence
of graphs using the VCERGM with edge density and reciprocity statistics. We simulate 100 dynamic sequences of
directed graphs {xi, ..., X900} where each sequence x,, = {x,.1,..., X, 50} 1s observed at K = 50 equally-spaced time
points. We assume that the network size remains constant through time and consider estimation with networks of three
different sizes n = 30, 50, 100. Furthermore, we repeat (i)-(iv) with 1, 5, and 10 randomly chosen networks removed
from the time series to evaluate the performance on dynamic networks with observations missing at random.

5.2.1. Competing Methods

For each simulated dynamic network, we compare the VCERGM with two other dynamic network models. First,
we fit cross-sectional ERGMs, where the ERGM in model (1) is fit separately at each of the K observed time points.
As an alternative competitive method, we also develop an ad hoc 2-step procedure, which adapts an ad hoc smoothing
procedure after fitting cross-sectional ERGMs for observed networks. Namely, let ¢(¢) denote the estimate of ¢(7).
The ad hoc smoothing mechanism aims to find a smooth function f(¢) that minimizes the penalized residual sum of
squares (RSS)

73
RSS(f, ) = > ((s) = f(9)P + 2 f (f (),
S=I
where A is a tuning parameter that controls the amount of roughness. The generalized cross validation (GCV) is used
to choose the tuning parameter A [55].

5.2.2. Performance Metrics

To assess the performance of each method, we calculate the integrated absolute error (IAE) of the estimated
coefficient curves. It measures the sum of point-wise absolute difference between estimated curve ¢(¢) and true curve
¢(1) at observed time points 71, .. ., fx, namely

TAE($(), $(1) = > 19(5) = ().

S=I

The mean and standard deviation (SD) are calculated to evaluate the performance of our proposed method com-
pared to cross-sectional ERGMs and ad hoc 2-step procedure. We provide the summary of IAE for each method on
dynamic networks with 30 nodes in Table 2 with (0, 1, 5, 10) missing networks. Settings for the results are (i) sinu-
soidal curves with (a, b, ¢, d) = (1,30, 5, 1) (edges) and (a, b, c,d) = (0.6, 20, 3, 0.4) (reciprocity); (ii) quadratic curves
with (a, b) = (1/202,0) (edges) and (a, b) = (-1/252,0.5) (reciprocity); (iii) Erdés-Rényi with Dedges = 0.85; (iv) a

11
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sequence of random numbers from N(0, 1) (edges) and N(1.5,0.5) (reciprocity). The performances of cross-sectional
ERGMs, ad hoc 2-step procedure, and VCERGM become more comparable with larger network size. For results of
n =50 and n = 100 case, see Tables C.5 and C.6 in Appendix C.

5.2.3. Results

We first investigate the results of the methods when there are no missing networks. These results are presented
in Figure E.6. We find that cross-sectional ERGMs are more likely to introduce unexpected spikes or increased
variability in estimating true ¢(¢), compared to VCERGM. Overall, the VCERGM estimates deviate less from the true
&(?) and has smaller variability compared to cross-sectional ERGMs and ad hoc 2-step procedure. In the first three
functional types, the VCERGM outperforms the cross-sectional ERGMs and ad hoc 2-step procedure. In the case
of non-smooth functions, the ad hoc 2-step procedure shows better performance than the VCERGM with respect to
TIAE. Both Table 2 and Figure E.6 indicate that the VCERGM potentially misses random deviations, which causes
greater bias on average compared to cross-sectional ERGMs. Despite this, the true non-smooth ¢(#) is well captured
by the VCERGM, and the variability of the VCERGM estimators are smaller than the coefficients for the cross-
sectional ERGMs. The performance of ad hoc 2-step smoothing procedure is comparable with the VCERGM, but the
VCERGM provides a more principled model for incorporating time-varying coefficients.

For all four functional types, the VCERGM is computationally more efficient than the cross-sectional ERGM:s.
We conduct an additional simulation study specifically tailored to compare the computing time between methods and
the results are presented in Tables 3 and 4.

Sinusoidal Quadratic Erdos-Renyi Non-Smooth
22-

24 2,

o Mool
v \ATAR e

1.6

05-

o4 0.0-
14-,

Time Time Time Time

04- 0.2-
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- i%'ﬁgﬁ'fﬁiﬁiﬁiﬂ

04-

20
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Method —— ERGM —— ERGM2 —— VCERGM

Figure 3. Parameter estimates with 30 nodes: Estimated parameters for edges (top) and reciprocity (bottom). Black line is the true ¢(f). Red
(ERGM) is for cross-sectional ERGMs, green (ERGM?2) is for ad hoc 2-step procedure, and blue (VCERGM) is for VCERGM. For each method,
solid line indicates the average of 100 estimated curves and the shaded band illustrates the first and third quantiles.

When there exist missing networks, cross-sectional ERGMs are no longer available to provide the estimates at
unobserved time points. Therefore, the IAE is calculated only for ad hoc 2-step procedure and VCERGM. Notably,
the performance of the VCERGM remains stable across each number of missing networks. Cross-sectional ERGMs
and the 2-step approach, on the other hand, suffer more than the VCERGM in the case of missing networks. Indeed,
as shown in Table 2, the VCERGM outperforms these competitive methods in the case that observations are missing
and is better able to capture the true coefficient curve in these cases.

In order to compare the computational efficiency, we vary the number of time points K and the number of nodes
n and record the computing time for VCERGM and cross-sectional ERGMs. Table 3 summarizes the computing

12
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Table 2. Simulation results with 30 nodes and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated absolute errors
(IAE) for each method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM
Sinusoidal 0 18.63(11.06) 11.79(11.76)  5.07 (1.05) 20.99 (11.11) 14.28(12.24)  6.54 (1.25)
1 1241 (11.79)  5.35(1.19) 14.63 (12.28)  7.13(1.32)
5 12.92 (11.83)  5.67 (1.37) 14.55 (12.25) 7.6 (1.3)
10 12.89 (13.76)  5.44 (1.21) 13.87 (12.97)  7.53 (1.33)
Quadratic 0 6.33 (0.74) 2.87(1.08)  2.86(0.97) 8.58 (0.87) 3.07 (1.1)  3.19(0.83)
1 29(1.09) 2.87(0.99) 3.16 (1.14)  3.22(0.86)
5 3.13(1.11) 298 (1) 3.38(1.27)  3.38 (0.89)
10 3.29(1.28)  3.05(0.97) 3.56(1.41)  3.52(0.93)
Erdés-Rényi 0 14.17 (2.5) 6.92(3.8) 593(2.71) 1591 (2.58) 7(3.76)  6.06 (2.67)
1 7(3.86) 5.98(2.76) 7.09 (3.83) 6.1 (2.75)
5 7.09 (3.79)  6.06 (2.68) 7.14 (3.83)  6.17 (2.69)
10 7.11 (4.03)  6.15(2.83) 7.28 (3.93)  6.35(2.81)
Non-smooth 0 12.62(6.53) 32.32(2.96) 31.27(0.35)  15.88 (6.61) 21.9 (4.46) 24.08 (0.93)
1 32.25(2.79) 31.16 (0.36) 21.86 (4.58) 22.65 (0.89)
5 3246 (3.47) 31.34 (0.45) 22.19 (5) 22.48 (0.88)
10 32.63 (4.13) 31.42 (0.44) 2291 (6.14) 23.46(0.92)

times of 100 simulated dynamic network sequences of 30 nodes and displays how computing time changes as the
number of time points K changes. Similarly, Table 4 shows the distribution of computing times of 100 simulated
dynamic network sequences for varying number of nodes » in temporal networks with 30 time points. The maximum
pseudo-likelihood approach is used for both ERGM and VCERGM estimation.

Table 3. Computing Time: Summary (Mean(SD)) of computing time (second) for dynamic networks with different number of time points K

Number of time points K
20 40 60 80 100
ERGM 1.35(0.07) 2.64 (0.08) 3.83(0.13) 5.08(0.10) 6.35(0.17)
VCERGM 0.95(0.07) 1.83(0.09) 2.69(0.14) 3.41(0.12) 4.37(0.11)

According to Table 3, the VCERGM takes significantly less time than cross-sectional ERGMs to complete the
parameter estimation. Even if both VCERGM and cross-sectional ERGMs show a linear increase in computing time,
the rate of change is much smaller for VCERGM. Both methods entail K separate steps to construct design matrix and
response vector at each time point, but the cross-sectional ERGMs require K separate MPLE steps while VCERGM
only needs one estimation. In other words, the longer the time series of networks are, the more efficient VCERGM is
compared to cross-sectional ERGMs.

Table 4. Computing Time: Summary (Mean(SD)) of computing time (second) for dynamic networks with different number of nodes n

Number of nodes n
20 40 60 80 100 200 500
ERGM 1.84 (0.11) 2.35(0.12) 3.20(0.09) 4.31(0.12) 5.89(0.18) 20.46(0.59) 224.73 (12.74)
VCERGM 1.21 (0.08) 1.66(0.06) 2.24(0.07) 3.15(0.09) 4.25(0.14) 14.53(0.48) 179.09 (11.11)

Table 4 above shows a consistently shorter computing time for VCERGM compared to cross-sectional ERGMs.
For both VCERGM and cross-sectional ERGMs, the increment in computing times is almost linear up to temporal
networks with 100 nodes. As the network size gets bigger than 100, the computing time increases exponentially, and
the difference in mean computing time between VCERGM and cross-sectional ERGMs for temporal networks with
500 nodes is close to 1 minute.
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6. Application to U.S. Congressional Co-Voting Behavior

We apply the VCERGM to analyze how the co-voting patterns among U.S. Senators have changed through time.
We analyze the effects of political affiliation (Republican or Democrat) on the likelihood of the voting networks. We
first test for temporal heterogeneity of any statistic included in the model using our bootstrap procedure from Section
4. We compare the VCERGM with cross-sectional ERGMs and the ad hoc 2-step procedure described in Section
5.2.1 We furthermore compare these with estimates from the TERGM model with the same specified statistics for
comparison.

6.1. Data and Model Specification

This dynamic network that describes the co-voting patterns among U.S. Democrat and Republican Senators from
1867 (Congress 40) to 2015 (Congress 113). Three of the voting networks are shown in Figure 1. This network was
first investigated in [56] and has been subsequently analyzed in [57]. The network is based off of the roll call voting
data fromhttp://voteview. com, which contains the voting decision of each Senator (yay, nay, or abstain) for every
bill brought to Congress. We model the co-voting tendencies of the Senators using a dynamic network where nodes
represent Senators and an edge is formed between two nodes if the two Senators vote concurringly (both yay or both
nay) on at least 80% of the bills to which they were both present. We note that we exclude Independent Senators for
this analysis.

As shown in Figure 1, there are noticeable fluctuations in the co-voting network structure over time. Previous
analyses in [56, 57] have identified significant changes in the community structure of the network over time, and that
this community structure is closely associated with the political affiliation of the Senators. To model these fluctuations,
we include a mixing matrix effect that counts the number of edges among Senators with the same affiliation as well
as the number of edges between Senators with different affiliations. We also include the geometrically weighted edge
shared partners (GWESP, decay = 1) and geometrically weighted dyadic shared partners (GWDSP, decay = 1). The
GWESP statistic measures the extent to which two senators who are tied share connections with other senators. The
GWDSP statistic captures the extent to which each pair of Senators share similar ties.

6.2. Model Estimates and Analysis

GWESP GWDSP Dem & Dem Dem & Rep Rep & Rep

a(t)
Q)

4 50 6 70 8 90 100 110 40 50 60 70 80 9 100 110 40 50 60 70 8 g0 100 110 40 50 60 70 8 80 100 110 40 50 60 70 8 0 100 110
Congress Congress Congress Congress Congress

Method —+~ ERGM —+- ERGM2 —+- VCERGM -+ TERGM

Figure 4. Parameter estimates of political networks: Coefficient estimates for the VCERGM, cross-sectional ERGM (ERGM), the ad hoc
smoothing approach to the ERGM (ERGM?2), as well as the TERGM.

The estimated parameters from i) cross-sectional ERGMs (ERGM), ii) ad hoc 2-step procedure (ERGM?2), iii)
VCERGM, and iv) TERGM are presented in Figure 4. Notably, all five network statistics exhibit temporal hetero-
geneity. The permutation test p-value for testing heterogeneity is < .001. Like we found in the simulation results, the
cross-sectional ERGMs exhibits spiky estimates, but the ad hoc smoothing recovers the lack of smoothness efficiently
and produces similar estimates as the VCERGM. We note that the TERGM coeficient estimates from the btergm
package are averages of the coefficient estimates from the cross-sectional ERGM. As explained in [33, 34], the reason
for this averaging behavior of the TERGM is because the btergm package identifies the maximum pseudo-likelihood
estimator for the coefficients in the sequence of graphs, which turns out to be the same as taking the average co-
efficient estimate across independent ERGM models with the same coefficients. In comparing the VCERGM with
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competing methods, we see that the coefficient estimates from the VCERGM are smooth functions across time that
simultaneously account for the heterogeneity of the coefficients as well as avoids outliers.

The political mixing matrix effect parameter estimate reveals an important trend in the political network. We
see that the coefficient value for this term generally increases over time, suggesting that political affiliation has had
a growing importance in co-voting behavior over time. This increasing pattern in the coefficient across affiliations
reflects that the number of ties formed with the same political affiliation positively influences the likelihood. We
notice that since the increase has been particularly evident since Congress 95, which matches the current theory of
“political polarization” described in [56].

Figure 4 reveals that the GWESP coefficient remained positive and relatively stable over time until Congress 107.
This trend suggests that the clustering of Senator votes positively influences the formation of the co-voting network. At
Congress 107, the GWESP coefficient estimate greatly increased. This closely aligns with the notable polarization of
Republicans and Democrats starting in the Clinton administration, which has also been noted in previous studies [56].
The GDWSP coefficient remained negative and relatively stable over time. This, in combination with the GWESP
results, supports the claim that the connection of two Senators has a positive influence on having shared partners and
suggests that their political alliances were formed over history. These findings suggest that the US Senate transitioned
from an “individual centric” network, where central figures influenced the voting habits of the Congress, to a “party
centric” network in which political affiliation was the primary determinant of voting habits. This finding augments
the empirical work in [56].

6.3. Goodness of Fit

We next assess the within-sample accuracy of the VCERGM through a goodness of fit study. To assess goodness
of fit, we follow the strategy established in [58], described as follows. First, for the rth network x, in the observed
sequence, we calculate the marginal coefficients ¢(r) from the results of the VCERGM. We then simulate 100 networks
with parameters ¢(¢) using Markov chain Monte Carlo as described in [40]. We calculate a family a summary statistics
for each of the simulated networks and compare the distribution of these statistics with the true observed value of the
statistic for x;. We did this comparison for each of the statistics in the model — triangle, two-star, and node-mix terms
— as well as several statistics not included in the model, including an edges term and a geometrically weighted edge
shared partners (GWESP) and geometrically weighted dyad shared partners (GWDSP). Our goodness of fit results are
plotted in Figure 5.
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Figure 5. Goodness of fit plots for the VCERGM. Estimated coefficients from the VCERGM were used to simulate 100 networks for each observed
time point. The distribution of each network statistic (log transformed) is shown for each Congress. The log of true observed statistics of the
co-voting network are shown with solid lines.

Figure 5 does not appear to suggest any systematic bias in the simulated network statistics. Indeed, the dynamic
trend of the simulated networks closely matches the trend of the statistics in the true dynamic sequence. To test this, we
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calculated the correlation between the median of network statistics from the simulated networks and the true observed
value. The range of calculated correlations is between 0.76 and 0.98. This is particularly reassuring, as pseudo-
likelihood estimation for static ERGMs may lead to biased parameter estimates for small networks [41, 42]. We note
that there are some time points at which the simulated networks do not closely match the observed Republican to
Republican mixing matrix effect and GWESP terms. These time points correspond to congresses where the smoothed
coefficient estimates of the VCERGM tend to differ from the jumpy nature of the cross-sectional ERGM estimates as
seen in Figure 4.

7. Discussion

In this paper, we introduce varying-coefficient models for dynamic networks. In particular, we described the
formulation and estimation of the VCERGM, a model that incorporates temporal changes in the coefficients of an
exponential random graph family of models. We demonstrated the advantages of applying the VCERGM over com-
peting methods through simulations and two dynamic network case studies. First, the VCERGM provides an intuitive
explanation of how a network changes through time. Both the cross-sectional ERGMs and ad hoc 2-step procedure
seemed to capture the temporal heterogeneity in a sense. However, by incorporating the temporal heterogeneity in the
modeling step, the VCERGM provides a compact and meaningful model to formally explain the temporal structure
of dynamic networks. Second, the VCERGM is robust to perturbations in observed temporal data. By imposing
smoothness on the coefficients, we are able to provide robust estimates that are resistant to outliers and noise. Third,
the VCERGM enables interpolation for missing networks through time. In practice, one can only observe a finite
number of networks in a dynamic sequence, which may be observed in unequally spaced time increments. Estimates
of the coefficients to the VCERGM can be evaluated at any time point in the domain and immediately interpreted
as the impact of network statistics at that time point. By presenting the results with unequally-spaced networks, we
illustrated how the varying-coeflicients through time can be useful especially in terms of interpolation.

Our work provides several avenues for future research. First, it is important to consider the evaluation of goodness
of fit and model selection in a dynamic context. Through empirical exploration, we found that the network statistics
used to fit a model are often highly correlated. For example, if there exists a triangle in a network, it is more likely
to find two-stars in the network. Model identifiability should be investigated both in static ERGM models and the
VCERGM to ensure appropriate model selection. For static ERGMs, one generally assesses goodness of fit through
a comparison of quantitative summaries of simulated networks from the fitted model with the summaries of the
observed network [58]. However, for dynamic networks this type of goodness of fit comparison captures only the
marginal aspects of the dynamic sequence. How exactly to assess the quality of a dynamic model is still an open
problem. A second avenue for future work involves adapting the varying-coefficient framework introduced here to
networks with weighted edges. To do this, one can extend the exponential models of networks for integer-valued
weights from [59] or to the models of networks for continuous-valued weights considered in [33, 31, 60, 61].

We discussed a maximum pseudo-likelihood approach for parameter estimation. This strategy provides a com-
putationally feasible approach to fitting dynamic networks with a large number of nodes or time steps, especially
when compared to the typical simulation-based MCMC-MLE approach. There have been several studies explor-
ing the relationship between the pseudo-likelihood and the likelihood of the ERGM, including [41] and [33], where
the efficacy of MPLE was empirically compared to MCMC-MLE. More recently, [62] compared the performance of
MCMCMLE and MPLE and empirically supported the accuracy of MPLE. Despite this, theoretical support for MPLE
is still lacking and is an open area for future research.

In many dynamic networks, it is often of interest to identify change-points in the network, namely points in time
where the network undergoes significant local or global structural change [63, 64]. It would be interesting to further
analyze how to utilize dynamic network models like the VCERGM to identify such changes. The test for heterogeneity
that we use in the paper may provide some idea of how to formally test for a change - through the identification of a
change in network parameter. We plan to pursue this idea further in future research.
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Appendix A. Stochastic Equivalence under the Difference Statistic Specification

Comparing the first-order TERGM with model (1), we see that the TERGM is closely related to the ERGM in that
it characterizes the conditional distribution of X; given X,_; using an ERGM representation. Perhaps not surprisingly,
these two models are much more closely related than this relationship.

Consider a simple univariate time series represented by the stochastic process Z = {Z;,...,Zr} for Z, € R.
Without any other information about Z, a natural non-parametric manner to investigate the rate of change in Z involves
analyzing the difference between sequential observations Z,_; and Z;, namely analyzing A(Z;) = Z;,—Z,_,. The analysis
of A(Z,) in univariate and multivariate time series is known as differencing, and is a common first step in the analysis
of time series data [65]. In the context of the TERGM, differencing corresponds to the analysis of difference statistics,
where one specifies transition statistics of the form

g(x;, x-1) =h(x) —h(x_y), t=2,...,T, (A.1)

where h : X — R?” is a topological summary of an input network with n vertices. Statistics of the form in (A.1)
can capture, for example, the differences in the edge weight of the network from time 7 — 1 to ¢, or the difference in
the number of triangles from one network to the next. Although incorporating difference statistics in the TERGM
is a natural first-step in the analysis of temporal networks, it turns out that doing so is equivalent to modeling each
network X; € X as an independent realization from the same exponential family probability mass function. This is
made precise in the next proposition.

Proposition 1. Let X denote the family of unweighted dynamic graph sequences on n vertices with T > 1 discrete
observations. Suppose that X = {Xy, ..., X7} € X is generated under the TERGM in (3), where fort =2,...,T

expl” gl 1))
2 eple’ gz x)

zeX

X | Xt_ ~PX = | Xemn = x5 @) =

Suppose g(-,-) € R? is a difference statistic of the form (A.1) where g(x,y) = h(x) — h(y) for some h(-) € R?. Then for
allt > 2, X, is independent of X; and can be generated as an independent realization of an ERGM with the following
probability mass function

exp(¢"h(x)
> expl¢"h()}

zeX

XX, ~PX,=x|¢) =

Proposition 1 reveals that under the difference statistic model specification, a dynamic network under the TERGM
reduces to an independent and identically distributed sequence of graphs under a corresponding ERGM. Hence under
this family of specifications, the TERGM does not capture temporal dependence in the underlying dynamic network
sequence. Although in practice one may utilize statistics that are not of the form (A.1), this relatively simple example
motivates further investigation between the relationship of the ERGM and the TERGM.

Appendix B. Iterative Reweighted Least Squares (IRLS)

The penalized logistic regression problem for fitting a VCERGM is to maximize the following penalized log
likelihood function:
Z"H vec(®) — 17 log[1 + exp{H” vec(®)}] — AP (D). (B.1)

The tuning parameter A controls the amount of roughness. We implement the iteratively reweighted least squares
(IRLS) to fit the logistic regression with the penalty term. Consider a link function g(u) = log(u/(1 — u)) and a convex
function b(n) = log(1 + €"). The IRLS without penalty term updates ® at the (u# + 1)th iteration

vec(@“y = (HTWWH)'H W® {Hvec((l)(")) + & —p®). g'(ﬂ<u>)} , (B.2)
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where g™ = b’ (Hvec(®™)) and W™ is a diagonal matrix with

1 1
() _
D b (I veo(®@W)) g/(u))2”

i=1,2,....,(px¢q.

With the penalty term (@), we only need to replace HY W®WH by H WWH + 2 (Q®1,,) in (B.2). The generalized
cross validation (GCV) is used to choose the tuning parameter A [55]. Namely, the A is a minimizer of G(A), which is
defined as

1 1 2
G() = %~ HHH + NAQ) 'H )| / {Ntr(l —-HMH"H + N/IQ)’IHT)} ,

where N is the number of rows in matrix H.

Appendix C. Additional Simulation Results

Tables below show the mean and standard deviation of IAE associated with fitting ERGMs and VCERGMs to
temporal networks of size 50 and 100 with O, 1, 5, and 10 randomly missing networks. The results are from the
settings (i) sinusoidal curves with (a,b,c,d) = (1,30,5,1) (edges) and (a,b,c,d) = (0.6,20,3,0.4) (reciprocity);
(i1) quadratic curves with (a,b) = ( 1/20%,0) (edges) and (a,b) = (—1/257,0.5) (reciprocity); (iii) Erds-Rényi with
Dedges = 0.85; (iv) a sequence of random numbers from N(0, 1) (edges) and N(1.5,0.5) (reciprocity).

Table C.5. Simulation results with 50 nodes and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated absolute errors
(IAE) for each method.

Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM
Sinusoidal 0 7.84(2.05 4.24(2.89) 4.06 (2.8) 8.53(0.99) 4.62(1.23) 4.35(1.05)
1 4.82(2.89) 4.45(2.82) 5.05(1.23) 4.89 (1.06)
5 5.58 (2.85) 4.94 (2.8) 5.65(1.2) 5.46 (1)
10 5.19 (277) 443 (2.63) 5.42 (1.46) 5.32(1.1)
Quadratic 0 38(0.62) 1.84(0.96) 1.89(091) 5.06(0.57) 1.76(0.63) 2.06 (0.46)
1 1.91 (0.93) 1.93(0.89) 1.82 (0.64)  2.08 (0.49)
5 2.12 (0.87)  2.05(0.83) 2.04 (0.69)  2.19(0.53)
10 2.2(0.93) 2.12(0.82) 2.09 (0.67)  2.31(0.58)
Erdés-Rényi 0 84262 4.28(3.81) 4.21(3.7) 8.62(1.43) 3.17(1.94) 3.14 (1.4)
1 4.22 (3.82) 4.22 (3.7) 3.15(1.95) 3.16(1.39)
5 4.34(3.75) 4.3 (3.65) 3.2(2.01) 3.24(1.45)
10 4.29 (3.58) 4.31(3.48) 3.43(2.06)  3.38 (1.35)
Non-smooth 0 5.77 (1.34) 30.92(0.28) 30.21(0.28) 7.9(1.95) 19.68(0.74) 23.23(1.01)
1 30.98 (0.3) 30.03 (0.29) 19.64 (0.76) 21.91 (0.84)
5 30.81(0.25) 30.12 (0.38) 19.75 (0.79) 21.64 (0.74)
10 30.62 (0.26)  30.24 (0.39) 19.85(0.79) 23.01 (0.89)

Appendix D. Estimation for Networks with Time-Varying Network Size

In dynamic networks, networks at different time points may have differing numbers of nodes, making it inap-
propriate to compare networks using un-normalized counts. Instead, one should standardize the network statistics
to make them comparable over time. We propose to standardize network counts by its maximal possible value. By
using density (proportion) instead of count, we can measure and compare the change in the ratio of certain network
statistics when the number of nodes is time-varying. For a directed binary graph X; with n; nodes, for example, edge
density and reciprocity can be defined as 3;,; x;; / {n/(n,— 1)} and 3, X xt/ (';’ ), respectively. Fitting a VCERGM to

ij tji
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Table C.6. Simulation results with 100 nodes and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated absolute errors

(IAE) for each method.
Missing Edges Reciprocity
ERGM ERGM2 VCERGM ERGM ERGM2 VCERGM

Sinusoidal 0 18.48(20.76) 17.81(21.23) 17.74 (21.3) 8.44 (5.11) 7.61(5.71) 7.5 (5.75)
1 18.4 (20.95) 18.28 (21.04) 7.9 (5.5) 7.85 (5.51)

5 18.95 (20.55) 18.81 (20.65) 8.26 (5.34) 8.22 (5.38)

10 18.3(20.78) 18.07 (20.97) 8.23 (5.45) 8.07 (5.51)

Quadratic 0 9.14(12.84) 8.59(13.16) 8.67(13.12) 3.53(1.95) 2.44 (2.53) 2.56 (2.33)
1 8.61 (13.09)  8.66 (13.06) 2.49 (2.52) 2.59 (2.33)

5 8.58 (12.96) 8.6 (12.95) 2.59 (2.42) 2.68 (2.27)

10 8.63 (12.97)  8.65 (12.95) 2.6 (2.42) 2.67 (2.26)

Erdds-Rényi 0 23.22(27.46) 22.32(28.11) 22.47(28.01) 3.61 (0.96) 1.09 (0.53) 1.5(0.4)
1 22,34 (28.11) 22.49 (28.02) 1.05 (0.54) 1.49 (0.39)

5 22.36 (28.08) 22.55(27.97) 1.14 (0.52) 1.59 (0.38)

10 22.36 (28) 22.52(27.87) 1.3 (0.65) 1.73 (0.49)

Non-smooth 0 10.95(9.95) 32.92(3.96) 30.6 (3.98) 16.63 (15.89) 26.48 (10.91)  26.32(9.67)
1 33.05(3.97)  30.52(4.01) 26.39 (10.8)  25.66 (9.94)

5 32.72(3.92)  31.16 (3.99) 26.75(11.08) 25.73 (10.39)

10 32.69 (4.06)  31.53 (4.02) 26.76 (10.99) 27.1509.7)

temporal networks is to capture the evolution of connectivity pattern of overall relational data. Therefore, even if the
network size is time-varying, using standardized statistics enables us to detect the overall pattern as well as maintain
the smoothness assumption of ¢(z).

Let X, denote the all obtainable networks with » nodes, and define a set of functions h(x;,n,;) : X,, — R? for
t € [0,T], which quantify the p topological features of network x, with size n,. Given h(x,, n,;) and the coefficient
vector ¢(7) = (¢1(), - -~ ,¢p(t))T € R?, the marginal likelihood of X; at time ¢ has an ERGM representation given by

exp{¢(t)Th(x,, n)}
S, eXpIFOT hiz,m))

P(X: = x| (1)) = x; € Xy, (D.1)

We randomly vary the network size over time, simulate the networks with time-varying network size and (0,
1, 5, 10) randomly missing networks, and estimate the parameters. The results are from the settings (i) sinusoidal
curves with (a, b, c,d) = (1,30,5, 1) (edges) and (a, b, ¢, d) = (0.6,20, 3,0.4) (reciprocity); (ii) quadratic curves with
(a,b) = (1/20%,0) (edges) and (a,b) = (—1/25,0.5) (reciprocity); (iii) Erd6s-Rényi with Dedges = 0.85; (iv) a
sequence of random numbers from N(0, 1) (edges) and N(1.5, 0.5)(reciprocity).

Appendix E. Estimation with Different Number of Basis Functions

We vary the number of basis functions (5, 7, 10, 12, 15, 17, 20) and compare the performance of VCERGM in
estimating the smooth sinusoidal true ¢(#) from temporal networks with K = 50. There is no significant difference in
estimation performance when the number of basis functions is greater than 10.

Appendix F. fMRI Dataset

We next analyze the structure of brain connectivity in the data provided by the WU-Minn Consortium Human Con-
nectome Project (HCP). The dataset is available at https://db.humanconnectome.org. See [66] for an overview
of data acquisition and analysis. The dataset includes the resting-state functional magnetic resonance imaging (rfMRI)
of 500 subjects. For each subject, a 15-minute run of rfMRI is recorded. We set 47 local windows and calculate a
precision matrix between 50 brain regions based on observations within each window. For a transition from precision
matrices to a sequence of dynamic networks, we define the edge density of a network as the proportion of edges in the
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Table D.7. Simulation results with time-varying network size and (0, 1, 5, 10) missing networks: Mean and standard deviation of the integrated
absolute errors (IAE) for each method.

Missing Edges Reciprocity

ERGM ERGM2 VCERGM ERGM ERGM?2 VCERGM
Sinusoidal 0 20.63(12.37) 13.79(13.14)  4.99 (1.28) 22.77 (12.32) 16.54 (13.57)  6.72(1.37)
1 14.43 (13.16)  5.26 (1.37) 16.97 (13.43) 7.5 (1.33)
5 14.21 (13.21)  5.32(1.47) 163 (13.32)  7.98 (1.41)
10 14.86 (14.6)  5.32(1.18) 15.58 (12.83)  7.81(1.52)
Quadratic 0 6.48 (0.66) 272 (1.11)  2.47(0.74) 8.95 (1.02) 3.06 (1.27)  3.14 (0.86)
1 279 (1.07)  2.56 (0.69) 3.15(1.35)  3.16 (0.87)
5 3.1(1.1)  2.82(0.68) 3.23(1.24)  3.33(0.93)
10 3.11(1.1)  2.94(0.78) 3.5(1.49) 3.52(1.02)
Erdds-Rényi 0 1452 (1.67) 5.25(2.43) 4.72 (1.39) 16.24 (1.84) 548 (2.57) 5.18(1.52)
1 526 (2.51) 4.74 (1.42) 542 (247 5.21(1.54)
5 5.4 (2.44) 4.9 (1.49) 5.54(2.47) 5.41(1.59)
10 5.51(2.65) 5.12 (1.6) 5.83(2.59) 5.71(1.61)
Non-smooth 0 11.36 (5.46) 31.84(2.61) 31.84(0.43) 14.65(5.52) 21.08(3.98) 24.61(1.25)
1 31.81(2.47) 31.57 (0.41) 21.01 (4.03) 23.35(1.22)
5 31.92 (3.11) 31.74 (0.45) 21.29 (4.42) 2296 (1.23)
10 31.87 (3.46)  32.29 (0.58) 21.76 (5.21) 23.82(1.27)

NBasis = 5 NBasis = 7 NBasis = 10 NBasis = 12 NBasis = 15 NBasis =17 NBasis = 20
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Figure E.6. Parameter estimates with 30 nodes: Estimated parameters for edges (top) and reciprocity (bottom).
blue line indicates the average of 100 estimated curves and the shaded band illustrates the first and third quantiles.

Black line is the true ¢(7). The
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Figure F.7. Parameter estimates of fMRI networks: Results of two randomly chosen individuals. For all three network statistics, one individual
(first row; permutation test p-value = 0.314) displays slightly more fluctuations than the other individual (second row; permutation test p-value =
0.681). The ad hoc 2-step procedure and VCERGM show similar estimates.

network. Once the edge density is specified, the threshold can be determined to form an edge between brain regions.
With the edge density of 10%, for example, the greatest 10% of partial correlation values would form edges.

[20, 67] fit the ERGMs to brain networks and conducted extensive model selection. Their final model includes
network statistics such as geometrically weighted edge-wise shared partner (GWESP) and geometrically weighted
non-edge-wise shared partner (GWNSP). We keep our analysis simple for the sake of comparison of methods. We
model our rfMRI networks with three network statistics: edges, triangle and two-star and compare i) cross-sectional
ERGMs (ERGM), ii) ad hoc 2-step procedure (ERGM2) and iii) VCERGM. We leave the model selection for the
VCERGM for future research.

Figure F.7 shows the results of two individuals from this study. Computing time for cross-sectional ERGMs
and VCERGM are about 1 second. As the data are the resting-state fMRI records, little fluctuation is expected in
parameters over time. For both individuals, both ad hoc 2-step procedure and VCERGM provide estimates with a
small range of fluctuation for all three network statistics. Overall, the ad hoc 2-step procedure and VCERGM provide
relatively similar estimates, while both estimates cross the cross-sectional ERGM estimates. The estimates from
cross-sectional ERGMs are extremely jagged that they may introduce inaccurate inference with regard to explaining
the topological change in brain networks over time. The VCERGM not only produces fairly static estimates but also
captures small variations through time more sensitively than ad hoc 2-step procedure. Therefore, even with relatively
stable dynamic networks, the VCERGM performs consistently well. Figure F.8 shows the goodness of fit plots for two
individuals in Figure F.7. Similar with co-voting network, there was no any systematic bias in the simulated network
statistics.
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