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Abstract—The emerging Cross-Technology Communication
(CTC) has enabled the direct communication among different
protocols, which will greatly enhance the spectrum efficiency.
However, it will also bring security challenges to end IoT
devices since the attacks can be from heterogeneous devices.
Current deployed security mechanisms cannot be applied among
heterogeneous devices. This work proposes a new mechanism to
verify the legitimacy of signal source so that only the signals
from legal CTC devices can be further processed. We verify the
legitimacy of devices by embedding authorization codes into the
packets at the sender side and verify them at the receiver side.
Theoretical analysis and experiments show that this mechanism
can provide effective protection on heterogeneous communication
pairs.

Index Terms—Cross-Technology Communication, physical
layer security, device authentication

I. INTRODUCTION

The wide deployment of the Internet of Things (IoT) has

caused serious problems of wireless spectrum scarcity [1]. To

solve this problem, Cross-Technology Communication (CTC)

was proposed to support direct communication among devices

with different wireless protocols (e.g., WiFi, Bluetooth, and

ZigBee) [2]. Different from the existing indirect methods such

as deploying a multi-protocol gateway, CTC can save the

deployment cost and reduce the number of wireless transmis-

sion. However, the use of CTC also brings some potential

security risks. For example, a ZigBee smart lock may receive

commands (LOCKING/UNLOCKING) from various kinds of

devices, including the authorized ZigBee gateway, some legal

smartphones or other illegal WiFi devices. As a result, this new

paradigm provides opportunities for malicious WiFi devices to

manipulate the ZigBee smart lock. Since both of the legal and

illegal devices use the same command, how to differentiate the

legitimacy of received signals becomes a challenging problem.

Most existing security mechanisms (such as [3], [4]) cannot

differentiate the source of received packets when they have

the same content. They can only use the timestamp to prevent

the replay attack. In this poster, we propose a physical layer

security mechanism to provide device authentication between

WiFi and ZigBee devices under the condition that allowing

replay. Our idea is to embed an authorization code (AC) into

the packet at the sender side and verify it at the receiver side.

The embedded AC will change over time, making attackers

unable to predict or reuse the overheard AC for attacking

purposes.

II. SYSTEM DESIGN

A. System Overview

Our designed scheme uses a hash function to generate a

chain of ACs [5], which will be known only by both the legal

CTC device and the ZigBee receiver. Each time, an AC is

embedded in the preamble (i.e., “00000000A7”, as shown

in Fig. 1) of a ZigBee packet and sent by a legal CTC device.

If the receiver finds that the received AC is correct, the packet

will be regarded as from a legal CTC device. According to the

Direct Sequence Spread Spectrum (DSSS) technique adopted

by ZigBee, a symbol is further represented by 32 chips. If we

pick out some positions (e.g., the yellow chips in Fig. 1) to

embed our AC, these 32 chips can still be correctly decoded

because of the fault tolerance of DSSS.

Preamble Start-of-packet 
Delimiter

PHY 
Header

PHY Service 
Data Unit

00000000 A7 XX XX

x 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0Decoded

1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1
1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0

Rcvd I 
Rcvd Q

Fig. 1. Format of ZigBee Packet

B. Authorization Code Generation

To generate a chain of ACs, we select a random number

nr and deliver it to the legal CTC device and ZigBee receiver

in a secure way (e.g., input it manually by the user). Then,

they recursively computes ni = h(ni+1) to get the AC chain

{n1, ..., nr−1}, in which i ∈ [1, r − 1] and h(·) denotes

the cryptographic one-way hash function such as SHA-1.

Finally, the legal CTC device uses ni as the AC of the i-th
transmission. Because the order of generation and usage of the

ACs are different, even if the attacker can overhear the current

AC, it cannot derive the next available value.

C. Authorization Code Encoding

Our AC encoding mechanism is inspired by the ZigBee

decoding mechanism. A received symbol consists of in-phase

and quadrature parts, which have an offset of half chip. The

even and odd chips will be decoded as I ⊕ Q and I ⊕Q,

respectively, shown as the blue chips and red chips in Fig.

1. According to this characteristic, we can find that if we

flip (turn 1 to 0 or turn 0 to 1) I and Q simultaneously,

the decoding result does not change. Therefore, we decide
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to pick out some positions from the signal I to embed the

AC and flip some adjacent chips to ensure the decoding result

does not have too many errors. Fig. 2 shows an example of

how to embed AC and reduce chip error. By flipping some

adjacent chips, we can push the wrong chips to any position.

If two wrong chips have been pushed to the same position,

the number of wrong chips is reduced.
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Fig. 2. Auth Code Embedding

D. Authorization Code Decoding

At the receiver side, the ZigBee device only needs to extract

the chip value from predefined positions. After collecting a

complete AC, it can verify whether this value is correct.

Because of the channel condition may be not good, we do

not require the value to be completely correct. We can set

a threshold, e.g., as long as 80% of the bits are correct, we

regard it as a correct AC.

III. PERFORMANCE EVALUATION

In this section, we mainly evaluate the following two per-

formance. One is whether the AC can be extracted accurately

at the receiver side, especially when the channel condition

is not good. The other is whether embedding AC will bring

a bad effect on data accuracy. We conduct both simulation

and field experiments to evaluate the performance, in which

simulation is based on GNU Radio and field experiments are

based on USRP and TI CC26X2R1 launchpad. Each time we

send 100 WiFi-emulated ZigBee packets, each packet includes

20 symbols. Then we test various kinds of error rate at the

receiver side.

A. Decoding Accuracy of Authorization Code

Fig. 3(a) shows the decoding error rate (DER) of the AC

with different SNRs. It can be seen that the DER of AC has

no significant difference with that of general chips. In other

words, as long as the packet can be received accurately, the

AC can be extracted accurately.

B. Bad Effects of Authorization Code

Fig. 3(b) to Fig. 3(d) shows whether embedding AC will

bring some bad effects to data accuracy. From Fig. 3(b), we

can find that it does increase the chip error rate (CER), but the

increase is steady and bounded, which mainly depends on how

many chips have been modified. In this example, in order to

embed AC, there are averagely two unavoidable wrong chips

in each symbol. Therefore, after embedding AC, the average

number of wrong chips in each symbol is approximately 2

chips larger than before embedding.
Fig. 3(c) and Fig. 3(d) show the variation of symbol error

rate (SER) and packet error rate (PER) caused by embedding

AC. It can be seen that it does increase the error rate, especially

when SNRs are relatively low. However, when the SNRs are

greater than 0 (we did not show them in these figure because

their values are very close to 0), they do not have a significant

difference, indicating the error is acceptable.
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(b) Chip Error Rate
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(c) Symbol Error Rate
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Fig. 3. Decoding Accuracy Evaluation

IV. CONCLUSION

In this poster, we propose a physical layer security mech-

anism to verify the legitimacy of the signal source for het-

erogeneous IoT. It verifies the legitimacy by checking the AC

that embedded in the packet. Experiment results demonstrate

that the receiver can recognize the embedded AC accurately

while maintaining the normal communication.
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