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1. Introduction

Let X be a smooth complex projective variety and let L be a nef line bundle on X. The Seshadri constant
of L at x € X is defined as the real number

L-C
X, L = inf ———
(X, L, z) e mult, C’
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where the infimum is taken over all irreducible and reduced curves passing through x. The Seshadri constants
were defined by Demailly in [4], motivated by the Seshadri criterion for ampleness ([14, Theorem 7.1]) which
says that L is ample if and only if e(X, L,x) > 0 for all z € X.

Seshadri constants have turned out to be fundamental to the study of positivity questions in algebraic
geometry and a lot of research is currently focused on problems related to Seshadri constants. One such
open problem is whether Seshadri constants can be irrational.

Assume that X is a surface. If L is an ample line bundle on X, then for any z € X, we have 0 <
e(X,L,z) < VL2. The first inequality is the Seshadri criterion for ampleness and the second inequality is
an easy observation. The largest and the smallest values of Seshadri constants as the point = varies are
interesting and generally they behave very differently.

To be more precise, one has the following two definitions:

e(X,L,1) :=sup e(X, L, z),
zeX

e(X,L):= xlg)f(&(X,L,x).

It is known that e(X, L,1) = (X, L, z) for very general points € X (see [16]). It is also expected that
e(X,L,1) = V/L? in many situations. For example, let X be the blow up of P2 at at least 9 general points.
If some well-known conjectures are true, then there exist ample line bundles on X such that (X, L,1) =
VL2 ¢ Q. See [5,11] for more details.

On the other hand, (X, L), called the global Seshadri constant, is usually attained at special points. In
this context, [19, Question 1.6] asks whether (X, L) is always rational for any pair (X, L). In this paper
we study this question in the case of blow ups of P? at very general points. On the one hand, it is easy
to exhibit ample line bundles L such that (X, L) is rational. On the other hand, we state a strengthened
version of the SHGH conjecture that implies that (X, L) can be irrational for some line bundles L close to
the boundary of the ample cone. See Example 4.10 for one such instance.

In fact, for p € Q we study uniform line bundles L = L(u) = pH — Y, E; on blow ups of P? at very
general points and exhibit a threshold pg such that e(X, L) € Q if pu > po. This is proved in Theorem 2.5.
We then state Conjecture 3.6 which strengthens the SHGH Conjecture. Assuming this conjecture is true,
we show in Theorem 4.1 that if y < po then e(X, L) ¢ Q unless VL2 € Q.

We will write (L) = (X, L) when the variety X is clear.

Acknowledgments. We thank the Mathematisches Forschungsinstitut Oberwolfach for hosting the Mini-
Workshop Asymptotic Invariants of Homogeneous Ideals during September 30 — October 6, 2018, where
most of this work was done. The research stay of the second author was partially supported by the Simons
Foundation and by the Mathematisches Forschungsinstitut Oberwolfach and he is grateful to them. We
would also like to thank the referee, whose comments helped improve the exposition of the paper.

2. Submaximality threshold

Let p1,...,pr € P2 be very general points and let X = Bl,, _, P? be the blowup of P? at p,...,p,.
Let E; be the exceptional divisor over p;, and let E = ). F;. Let H denote the pull-back of Op2(1).

We will focus on uniform line bundles L = dH — mFE on X, i.e., such where all exceptional divisors
appear with the same multiplicity m. We are interested in the rationality or irrationality of €(L). This only
depends on the ratio 4 = d/m and we work with the Q-divisor (d/m)H — E. More generally, for p € R, let
L(p) be the R-divisor pH — E. If L(u) is ample then p > +/r. If r > 10, then the converse is true if the
Nagata conjecture holds.

In this paper, we discuss the following question.
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Question 2.1. Let u € Q and suppose L) is ample. Is e(L(p)) rational?

Tt is well-known that if L is an ample Q-divisor and e(L,z) < v/ L? then ¢(L, x) is achieved by a curve C
containing x, and consequently, (L, z) € Q. So if €(L) is rational, then one of the following must be true:

(1) e(L)=VL?2€Q,or
(2) e(L) < V' L? and there is a pair (C,z) where C is an irreducible and reduced curve containing a point
2 such that

A curve C satisfying

L-C < VIZ

mult,C (-

is called a (weakly) submazimal curve for L with respect to x (note that if equality holds, then VL2 is
rational). In light of this discussion, if L is ample then we have £(L) € Q if and only if either VL2 € Q or
there is a weakly submaximal curve.

When the number r of points is at most 9, a complete answer to Question 2.1 is given in the following
theorem.

Theorem 2.2. Let r <9 and let p € Q be such that L(u) is ample. Then e(L(p)) € Q.

Proof. When r < 8, it is well-known that Seshadri constants of ample line bundles are rational at all points.
See e.g. [17, Remark 4.2]. More directly, it is also easy to exhibit weakly submaximal curves for r < 8. See
[19, Example 2.4] for more details. For example, let » = 8. In this case, L(x) is ample if and only if 1 > 17/6.
If 4 > 3, then an exceptional divisor E; and a point € F; give a weakly submaximal curve. Indeed, we
have

1= L(p)- Ei < VL(u)? = /2 =8,

whenever u > 3. For p € (17/6,3), let C be the sextic 6H — 3E; — 2(F3 + ... + Eg). This is a weakly
submaximal curve for L(u) if 64— 17 < /p? — 8. This holds for 2.828 < y < 3. It follows that e(L(u)) € Q.
Similarly, one can find submaximal curves for ample bundles L(x) when r < 8.

For r = 9, the line bundle L(p) is ample if and only if u > 3. We show that there is a weakly submaximal
curve for L(u). First, if g > /10 then, as above, an exceptional divisor FE; is a weakly submaximal curve
for L(p).

If instead p € (3,1/10), we need to give a different weakly submaximal curve. Consider the cubic C' =
3H — E through the 9 points, and let = € C. Then C gives a weakly submaximal curve for L(u) so long as

Bu—9=L(p)-C < /L(p)? = p? -9,
and this inequality holds for u € (3,3.75]. Therefore e(L(p)) € Q. O

Thus for the rest of the article we focus on the case r > 10. We can shift our focus to the existence of
weakly submaximal curves.

Question 2.3. For which real p > /7 does L(p) admit a weakly submazimal curve?
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The answer to Question 2.3 is perhaps most interesting when p is rational and L(u) is ample, but there
is no difficulty in stating or studying it more generally as we have done above. We first prove that there is
a critical value pg > +/r such that L admits a weakly submaximal curve if u > pg. It follows that if L(p) is
ample and p € Q then e(L(p)) € Q for pu > po.

Definition 2.4. Let X = Bl,, ., P? be the blowup of P? at 7 general points. A real number ug > /7 is
called the submazimality threshold for r if

(1) L(p) does not admit a weakly submaximal curve for p < pg, and
(2) L(p) does admit a weakly submaximal curve for p > puyg.

In Section 4, we prove that submaximality thresholds exist for » > 10, assuming a strengthening of the
SHGH Conjecture. This in particular means that if \/r < u < o and /L(u)? ¢ Q, then e(L(p)) ¢ Q. See
Conjecture 3.6 and Theorem 4.1.

Theorem 2.5. Let r > 1 and let p € R. Then we have the following.

(1) For any v, L(u) admits a weakly submazimal curve for all i > /r + 1.

(2) If r =10, then L(p) admits a weakly submazimal curve for all pn > 77/24 ~ 3.208.

(3) If r =11, then L(u) admits a weakly submazimal curve for all pn > 4 — @ ~ 3.422.

(4) If r = 13, then L(u) admits a weakly submazimal curve for all pn > %(26 —V13) ~ 3.732.

Provided the submaximality threshold pg for r exists, Theorem 2.5 can be viewed as giving a lower bound
for pg.

Proof. (1) As in the proof of Theorem 2.2, an exceptional divisor E; and a point = € E; give the required
weakly submaximal curve.
(2) For r = 10, consider the complete linear system

10
L=[10H - 4E, -3 _Ej|.

=2

It is known that this system is non-special, since [2] proves the SHGH Conjecture for all quasi-homogeneous
systems of the form |dH — nE; —m 2;22 E;|, when m < 3. In particular, the linear system L is a pencil,
since its expected dimension is 1. An equivalent version of the SHGH Conjecture [9, Conjecture 3.4] says
that only possible fixed curves of a non-special pencil are (—1)-curves. See the next section for a discussion
about the various formulations of the SHGH Conjecture.

We claim the pencil £ has a singular member. Suppose, on the contrary, that all members of the pencil
are smooth. We first claim that £ has no fixed curves. This is clear if the generic member of L is irreducible.
Otherwise, every member of the pencil is disconnected, since £ consists only of smooth curves. If C' is a
fixed curve, then by the observation in the previous paragraph, C is a (—1)-curve. Since members of £
are smooth, we have £ - C = C? < 0. But this is not possible, since £ is in standard form and hence has
non-negative intersection with all (—1)-curves (see [11]).

Resolve the indeterminacy locus of ¢, : P? --» P! by blowing up & (possibly infinitely near) points to
obtain a morphism Y — P!. Note that all members of £ are smooth curves of genus 3 = (g) — (3) — 9@)
Hence their pull-backs to Y are also smooth of genus 3 and topological Euler characteristic —4. Then
Xtop(Y) =2 (—4) = —8 (see [7, Theorem 7.17]), but also

XtOP(Y) = Xtop(P2) +k=3+k.
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This contradiction shows that there must be a singular member of the pencil.
Let C be a singular member of this pencil with singularity at € C. Then (C,x) gives a weakly
submaximal curve for L(u) if

10p—31  L(p)-C
2 - 2

< VL(p)? = /p? - 10,

and this inequality holds for p € [ﬁ %]

24>
Since 12 < /11, we need to give a different weakly submaximal curve for L(u) when p € (12,1/11).
Consider a cubic through 9 of the 10 points, as in the proof of Theorem 2.2 in the r = 9 case. This gives a

weakly submaximal curve for L(u) if

3u—9=Ln) - C < /L(u)? = /p?—10,

137
42

(3) For r = 11, there is a pencil of curves of class

and this inequality holds for p € [ ] Thus, L(u) admits a weakly submaximal curve for all y > %.

11
4H — 2B, — ZEZ

=2

By a similar computation as in the case r = 10, this pencil contains a singular curve C' with a singular point
x € C. The pair (C,z) gives a weakly submaximal curve if

w = L(n)- C < V/L(u)? = /2 — 11,

and this inequality holds for p € [4 — ?, 4+ @] Since 4 + @ > /12, we are done.

(4) Finally, for r = 13, there is a pencil of curves of class

13
4H — Z E;.
=1

Again as above, the pencil has a singular member C' with singularity = € C. It gives a weakly submaximal
curve so long as p1 € [$(26 — v/13), £(26 + v/13)], and since §(26 + v/13) > /14 we are done. O

3. A generalized SHGH conjecture

In Theorem 2.5, we established upper bounds on the submaximality threshold. Conversely, to produce
lower bounds on the submaximality threshold it is necessary to show that there are no weakly submaximal
curves. We state a generalization of the SHGH conjecture which would guarantee that such curves cannot
exist.
8.1. The SHGH conjecture

Suppose that we have integers d > 0 and my, ..., m, > 0. Consider the linear series

[,:|dH—m1E1—~-~—mTET|

on a general blowup X = Bl,, ., P2 The expected dimension of the series is defined to be
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edim £ = max{(d;2> —Zi: (mi; 1) — 1,—1}7

and the series is nonspecial if dim £ = edim £. There are many statements equivalent to the SHGH conjec-
ture, but the following version is relevant for our purposes.

Conjecture 3.1 (SHGH). If L is special, then every divisor in L is nonreduced.

The contrapositive statement “if there is a reduced curve in £ then £ is nonspecial” is also often useful.
Also note that if we add a very general simple point to the linear system £, then the dimension and expected
dimension drop exactly by 1. More precisely, we have dim £ = (dim £) — 1 and edim £’ = (edim £) — 1,

P2,
< PrsPr+1
Hence if Conjecture 3.1 is only stated for systems with edim £ = —1, then by imposing additional simple

where £’ is the linear system |dH — myFEy — -+ — m.E,. — E,.;1| on a general blow up Bl,, ..

points the full conjecture follows.

More refined versions of Conjecture 3.1 discuss the structure of the base locus of £ more carefully and
seek to completely classify the special systems. These various refinements have been stated and compared
by various authors including Segre [18], Harbourne [12], Gimigliano [8] and Hirschowitz [15]. The various
formulations are equivalent. See [3,13] for more details.

The following stronger version of the SHGH conjecture easily follows from a conjecture attributed to
Hirschowitz in [1, Conjecture 4.9]. It is also mentioned in [3, Conjecture 3.1 (iv)].

Conjecture 3.2. If the general curve C' € L is reduced, then L is nonspecial and C is smooth on X.
More precisely, a slightly weaker version of the original conjecture from [1] reads as follows.

Conjecture 3.3 (Hirschowitz [1, Conjecture 4.9]). Suppose L is nonempty and nonspecial, and let C' € L be
general. Suppose p,(C) > 0 and C is reduced. Then C is smooth and irreducible on X.

Remark 3.4. Let us show that Conjectures 3.1 and 3.3 imply Conjecture 3.2. By imposing additional simple
points, it suffices to check Conjecture 3.2 in the case where edim £ = 0. Let C' € £ be general and suppose
it is reduced. By Conjecture 3.1, £ is nonspecial. If C is irreducible, then p,(C) > 0 and C is smooth by
Conjecture 3.3. Suppose C is not irreducible. Then C = C"+C" for some curves C' € £ and C” € L. Since
edim £ = 0 and C is reduced, we have £ = {C} and therefore £’ = {C’'} and L” = {C"}. By Conjecture 3.1,
we have edim £’ = edim £” = 0 and

edim £ = edim £' + edim £ + C" - C".

Therefore C'-C"” = 0, and if C’ and C" are smooth then so is C. By induction on the number of irreducible

components, C is smooth.
8.2. A generalized SHGH conjecture

We now state a stronger SHGH conjecture by studying the loci in £ = |[dH — m1FEy — -+ — m, E,| of
curves with a singularity of some multiplicity ¢ > 2. Fix a point € X. Then the expected codimension
in £ of curves with a singularity of multiplicity ¢ at « is (t'gl). As the point x € X varies, the expected
codimension in £ of curves with a singularity of multiplicity ¢ at some point is (t'gl) - 2.

Various examples show that it is too much to hope for that the locus in £ of curves with a t-uple point
always has the expected codimension. But, the source of these counterexamples seems to be nonreduced

curves in the series.
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Example 3.5. For example, let » = 8 and consider the series
8
L=[6H-2) Ei.
i=1

The SHGH conjecture implies that dim £ = 28 — 24 — 1 = 3. The expected codimension in £ of curves with
a 4-uple point is (g) — 2 =8, so we would expect that there are not any such curves. On the other hand, in
the pencil of cubics through the 8 points there is a singular cubic, and its square is a member of £ with a
4-uple point.

In general, the locus in £ of nonreduced curves can be quite large and contain highly singular curves,
but it seems possible that this is the only source of unexpectedly singular curves in linear series. We make

the following conjecture.

Conjecture 3.6. Let X be a blow up of P2 at r > 0 very general points. Suppose d > 1, t > 1, and

mi,...,my > 0 are integers such that
d+2 ~ (m;+1 t+1
(220" ) = () -20p
Then any curve C € |dH — m1Ey — - -+ — m, E,.| which has a point of multiplicity t is non-reduced.

Some initial cases of Conjecture 3.6 are well-known. In particular, the case t = 1 is equivalent to the
edim £ = —1 case of Conjecture 3.1, so it is equivalent to Conjecture 3.1. When ¢ = 2, the conjecture is the
edim £ = 0 case of Conjecture 3.2, so it is equivalent to Conjecture 3.2.

Remark 3.7. We could weaken Conjecture 3.6 by changing the conclusion to “Then any curve C' € £ which
has a point of multiplicity ¢ is non-reduced or non-irreducible.” This weakened version would still be strong
enough to carry out the arguments in the next section. We highlight the stronger version instead since it is
more analogous to the SHGH and Hirschowitz Conjectures 3.1 and 3.2.

4. The submaximality threshold for 10 or more points

For the rest of the paper, we assume that Conjecture 3.6 is true. Under this assumption, we prove that
Theorem 2.5 is sharp.

Theorem 4.1. Suppose Conjecture 3.0 is true, and let r > 10. Then the submaximality threshold pgy for r

exists, and

= if r =10
V) T
4-— % ifr=11

1
T L@26-vI3) ifr=13

vr+1 ifr=12 orr > 14.
Proof. Let 1o be the number in the statement, and let g be a number with /r < pu < pg. By Theorem 2.5

we need to show there is no weakly submaximal curve for L(u). If there is a weakly submaximal curve for
L(p) then there is an irreducible and reduced curve C and a point « € C such that
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L(p)-C
=L <\ /L(p)2.
mult, C — ()

Since p < +/r + 1, the curve C is not an exceptional divisor F;, so
Ox(C) = Ox(dH =Y m;E;)

with d > 0 and m; > 0. Let ¢ = mult, C, so 1 <t < d. Then by Conjecture 3.6 we have the simultaneous
inequalities

pZ2ami o oy (%)

t
(d;FQ) ; (m"; 1) > max{(t—; 1) 2,0}. (%)

We furthermore claim that we may assume t < d. Since C is reduced and irreducible, if ¢ = d then
t = d = 1. In that case (+*) shows ), m; <2, and (*) gives p > 1 + . But this contradicts u < v/r + 1.
In Proposition 4.3 we will show that since u < o these inequalities cannot be satisfied. O

The main work in the proof of Theorem 4.1 then lies in Proposition 4.3, which is essentially numerical.
To avoid repeating our assumptions we make the following definition.

Definition 4.2. A test pair (C,t) counsists of a curve class C = dH — Z;=1 m;E;, where d > 2 and m; > 0
are integers, and an integer ¢ satisfying 1 <t < d.

Notice that if (C,t) is a test pair satisfying («*) then the curve class C is effective, since the expected
dimension of the linear series |C| is nonnegative.

Proposition 4.3. Let r > 10, and let pg be the number in the statement of Theorem 4.1. Suppose p is a
number with \/r < p < pg. There is no test pair (C,t) satisfying (x) and (+x).

4.1. Bounding the multiplicities

Suppose (C,t) = (dH — Y, m; E;, t) is a test pair satisfying () and (+x), and let m = 13", m; € Q be
the average multiplicity. In this section we bound 77 and ¢ uniformly in terms of r, in order to decrease the
search space for counterexamples to Proposition 4.3.

From (%) and (*) and Cauchy-Schwarz we conclude

ud—rm< /—,u?—r (1)

— <
(d+2)(d+1) —r(m+ 1)m > (t+ 1)t — 4. 2)

Rearrange (1) to get

g< rm4ty/pu?—r
. :

Now we substitute this inequality into (2) and rearrange the terms to prove the following quadratic inequality
in m and ¢.
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Lemma 4.4. If (C,t) is a test pair satisfying (*) and (xx) with average multiplicity m, then the quadratic
expression

2 2
. r . 2r\/pu= —r__ T 9
Q(m,t) = (— — r) mi4+ =Y - —¢
I I I

2 _
+<ﬁﬁw>m+ EAV/S A PR
o p

satisfies Q(m,t) > 0. Therefore, the point (Tn,t) lies in the region Q0 of the (m,t)-plane defined by the
inequalities t > 1, m > 0, and Q(m,t) > 0.

Now we analyze the region {2 more carefully.

Lemma 4.5. Let r > 10. If /7 < u < /1 + 1, then the region Q in the (m,t)-plane is bounded. In particular,
Q is contained in the strip defined by the inequalities

G
== oy

and if t is an integer then

te{1,2,3,4,5} ifr=10
te{1,2,3,4} ifr=11
te{1,2,3} if r =12
te{1,2} if r > 13

Proof. The equation Q(m,t) = 0 defines a parabola in the (7,t)-plane, since the discriminant of the
homogeneous degree 2 part is

2
9 2 _ 2
<T\/ﬂ2 7‘) +4<7"27,>T20'
1 7 1
Observe that the point (77,t) = (0, 1) is in €, since

Q(0,1)25_L2+37W*T

I I

>0

since f1 > /.
Next we establish the bound on 7. View m > 0 as fixed and consider the discriminant A,(7) of the
polynomial Q(m,t) of ¢:

1
Ai(m) = e (—(47‘2 — 12rp + 4r\/ 2 — r)m + (157 + 10p% — 6/ p2 — r))
Then A;(m) is decreasing in m since r > 10 and pu? < 7 + 1, and A;(0) > 0. For

(1) = 15r + 10p? — 6pr/p? —r
4r?2 — 12rp +4r\/p? —r

we have A;(o(u)) = 0, so the parabola Q (7, t) = 0 is tangent to and left of the vertical line m = ().
The numerator in the quotient defining mo(p) is decreasing in p on [/r,v/r + 1], and the denominator

> 0,
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in the quotient is increasing in g on [y/r,+/r + 1]. This can be seen by differentiating the numerator and
denominator with respect to p and determining the signs of the derivatives on [\/7, /7 + 1]. Thus Ty (p) is

maximized on [\/7, /7 + 1] when u = /r, and for u € [\/r,+/r + 1] we have

(1) < ——
MO = G o

Thus the region  lies left of the line m = 25/(4r — 12y/r).

Suppose to > 1 is a number such that Q(m,ty) < 0 for all @ > 0. Since Q(0,1) > 0, the parabola
Q(m,t) = 0 crosses the t-axis at a point (0,%;) between (0,1) and (0, ). Since the parabola is tangent to
m = () at some point, the only possibility is that the point of tangency lies below the line ¢ = ¢y. Then
Q) is contained in the half-space t < tg.

Thus to complete the proof, we must show that for all m > 0 and /7 < u < /7 + 1,

Q(m,6) <0 ifr=10
Q(m,5) <0 ifr=11
Q(m,4) <0 ifr=12
Q(m,3) <0 ifr>13.

Proving these inequalities is best left to the computer; for a given r and tq it is straightforward to maximize
Q(m,to) on the region of (M, u) with m > 0 and /7 < u < /r + 1. We carried this out to check the
inequalities for r < 19.

Once r > 20, we can give a straightforward argument. For m > 0 and /r < pu < v/r + 1, we compute

—Q(m,3) = (r—;—2>m2+ (r_ﬁ_&—\,ﬂﬂ“)m_'_ (—3——9V”:_r+%>

ju w2 w2

> rfﬁ T P I P B SR U
- r2 N/ Vroor+1

:(r—s\/F—G)m+(r%:1—%—3)~

Both coefficients of this linear polynomial are positive since r > 20, so Q(m,3) < 0 for allm > 0. O

4.2. Balanced pairs

Suppose the test pair (C,t) = (dH — ), m;E;,t) satisfies () and (+x). Write the multiplicities in
decreasing order my; > mo > --- > m,. If m; — m, > 2, we can replace m; by m; — 1 and m, by
m, + 1. Then the resulting test pair still satisfies (x) and (xx). Thus, if Proposition 4.3 is false, we can find
a test pair (C,t) satisfying (x) and (xx) where C is a balanced curve class of the form

dH —m(Ey+ -+ Ey) — (m = 1)(Es1 + - + E) (3)

We can compactly record a balanced class by the tuple (d; m?®, (m —1)"%), where s > 0 is as in (3). We call
a test pair (C,t) a balanced pair if C' is balanced.
Given a balanced pair satisfying («x), we can easily check if it is a counterexample to Proposition 4.3.

Lemma 4.6. Let (C,t) = ((d;m®, (m —1)"7%),t) be a balanced pair satisfying (+*), and let

M=sm+ (r—s)(m—1)=rm



L. Farnik et al. / Journal of Pure and Applied Algebra 224 (2020) 106345 11

and
A= M?*—r(d®—1?).
Then the balanced pair is not a counterexample to Proposition 4.3 if either

e« AO, or
e A >0, and the number

dM —tvV/A
T TR

satisfies p— > -

Proof. Inequality () reads

dp— M < t\/pu2 —r.

Both sides of the inequality are positive since C' is effective, so squaring both sides and rearranging shows
this is equivalent to

R(p) := (d? —t*)u? — 2dMp + (M? +t*r) < 0. (4)

Since t < d, the graph of R(u) is an upward parabola. The discriminant of the quadratic polynomial R(u)
is 4t?A. Therefore inequality (4) is false for u < g if either R(x) = 0 has no real roots (and A < 0), or if
the smaller root (which is p_) is at least pg. O

4.8. Critical pairs

We make one further reduction to further limit the search space for counterexamples to Proposition 4.3.
Let (C,t) be a balanced pair satisfying (%) and (). If we can increase the smallest multiplicity m, by 1
without making («x) false, then inequality (*) still holds. Similarly, if ¢ < d — 1 and we can increase ¢ by 1
without making (xx) false, then again inequality (x) still holds. We call a balanced pair (C,t) a critical pair
if (sx) is true but:

o increasing m, by 1 makes (xx) false, and
o either t = d — 1, or increasing ¢ by 1 makes () false.

Thus, if Proposition 4.3 is false, then there is a counterexample (C,¢) which is a critical pair.

Proposition 4.7. Proposition 4.3 is true for 10 < r < 19.

Proof. Fix some r with 10 < r < 19. Given integers d > 1 and ¢ > 1, there is at most one critical pair
((d;ym®, (m —1)"7%),1).

Since Lemma 4.5 bounds t and the average multiplicity m = %Zmi of any counterexample to Proposi-

tion 4.3, there are only finitely many critical pairs which are potentially counterexamples. We programmed

a computer to list them all. For each pair, Lemma 4.6 shows that the pair is not a counterexample to
Proposition 4.3. O
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Table 1

Critical pairs for r = 12.

C t M A we C t M A e
(2;1°) 1 5 —11 (11;4%,3) 2 37 —35
(3;1%) 19 —15 (12;4*,3%) 2 40 —80
(4;2%,111) 1 13 -1 (4;1%9) 3 10 16 4
(5;2%,18) 1 16 —32 (5;22,119) 3 14 4 4
(9;36,29) 1 30 —60 (6;25,17) 3 17 —35
(13;48,3%) 1 44 —80 (7;2%,1%) 3 21 -39
(3;1%) 2 8 4 4 (8;3%,21) 3 25 —35
(4;1'%) 2 12 0 4 (9;3%,2%) 3 28 —80
(5;2%,1%) 2 15 —27 (10; 3%, 2%) 3 32 —68
(6;27,15) 2 19 —23 (11;3%2) 3 36 —48

(7; 21,11 2 23 —11 (12;43,3%) 3 39 —99
(8;32,219) 2 26 —44 (13;47,3%) 3 43 —71
(9;3%,27) 2 29 —83 (14;4'°,3%) 3 46 —128
(10;3°,2%) 2 33 —63

We give more detail in the case r = 12.

Example 4.8. Let r = 12. In Table 1, we list all the critical pairs ((d; m?®, (m—1)'2#%), ) which are consistent
with Lemma 4.5. According to the lemma, t € {1,2,3} and the total multiplicity M is bounded by 46. For
each t, we increase d and list any corresponding critical pair until M would exceed this bound. In the
notation of Lemma 4.6 we then compute the number A, and if A > 0 we compute p_. By Lemma 4.6, if
A<Oorif A>0and pu_ > up then the critical pair is not a counterexample. In each case where A > 0,
we observe y_ =4 > /13 = pg. This proves Proposition 4.3 for r = 12.

On the other hand, once r > 20 we can give an argument that requires minimal computation.
Proposition 4.9. Proposition 4.3 is true for r > 20.

Proof. Suppose a critical pair (C,t) = ((d;m®, (m — 1)"~%),t) violates Proposition 4.3. Then Lemma 4.5
shows t € {1,2} and ™ < 1. For the last inequality, we use the hypothesis » > 20. Therefore m = 1 and
M=s<r.

Note that the inequality (+*) must be as sharp as possible for ((d;1°,0"%),¢); in other words, we have

(4 amm(4) 20}

Indeed, if this fails then the inequality (x*) is also satisfied by ((d;1571,0"=571) ¢), which contradicts the
hypothesis that ((d;1%,07%),t) is critical.
Since t € {1,2}, it follows that

an equality

(d+2)(d+1)
2

M = —t.

But then we claim that
A= M?*—r(d®>—t*) <0,
so that the pair is not a counterexample by Lemma 4.6. If d < 5 then the only critical pairs are ((2;1°),1),

((3;19),1), ((4;11%),1), ((3;18),2), and ((4;1'3),2), and the inequality holds in these cases since r > 20. So,
assume d > 5.
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Now since t € {1,2} and d > 5,

P AP-1) -2 M
M S {@dr)d+l) @D -

and therefore M2 —r(d®> —t?) < 0. O

Example 4.10. Let » = 10 and let L = 16H — 5E. Then L is ample by [6], see also [10, Theorem 2.18].
After normalizing, we have p = 3.2. Suppose that Conjecture 3.6 is true. Since p < 77/24 ~ 3.208, by
Theorem 4.1, there are no weakly submaximal curves for L(u). Since \/L(u)? = /0.24 ¢ Q, it follows that

(L(n)) ¢ Q. Hence (L) ¢ Q.
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