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Abstract:   The urban heat island (UHI) concept describes heat trapping that elevates urban 11 

relative to rural temperatures, at least in temperate/humid regions. In drylands, urban irrigation can 12 
instead produce an urban cool island (UCI) effect. But, the UHI/UCI characterization suffers from 13 
uncertainty in choosing representative urban/rural endmembers, an artificial dichotomy between 14 
UHIs and UCIs, and lack of consistent terminology for other patterns of thermal variation at nested 15 
scales. We use the case of an historically well-enforced urban growth boundary (UGB) around 16 
Portland (Oregon, USA): to explore the representativeness of the surface temperature UHI (SUHI) 17 
as derived from MODIS land surface temperature data, to test common assumptions of 18 
characteristically “warm” or “cool” land covers (LCs), and to name other common urban thermal 19 
features of interest. We find that the UGB contains heat as well as sprawl, inducing a sharp surface 20 
temperature contrast across the urban/rural boundary. The contrast ranges widely depending on 21 
the end-members chosen, across a spectrum from positive (SUHI) to negative (SUCI) values. We 22 
propose a new, inclusive “Urban Thermal Deviation” (UTD) term to span the spectrum of possible 23 
UHI-zero-UCI conditions. We also distinguish at finer scales “microthermal extremes” (MTEs), 24 
discrete areas tending in the same thermal direction as their LC or surroundings but to extreme (hot 25 
or cold) values, and microthermal anomalies (MTAs), that run counter to thermal expectations or 26 
tendencies for their LC or surroundings. The distinction is important because MTEs suggest a need 27 
for moderation in the local thermal landscape, whereas MTAs may suggest solutions. 28 

Keywords: urban heat island; urban cool island; land cover; urban growth boundary; land surface 29 
temperature; urbanization; SUHI 30 

 31 

1. Introduction 32 

Urbanization and climate warming continue to advance, but even at current levels urban 33 
warming and heat waves are already a leading cause of premature human mortality [1–9]. The spatial 34 
variation in heat-related mortality is regressive, with disproportionate negative impact on the poor, 35 
elderly, and people of color [10–15]. It is now well-appreciated that land use planning can play a 36 
major role in amplifying urban heat, or can provide mitigation to help temper local experiences of 37 
heat [16–21]. The elevation of a city’s temperature, by heat absorption and storage in the built 38 
environment and by heat production by dense and mechanized urban activity, is typically named an 39 
“urban heat island.” Equivalently, the “urban heat island intensity” or “urban heat index,” is defined 40 
by the difference in the representative (hot) temperature of the interior of an urban area and the 41 
(cooler) temperature of a nearby rural area [22–24]. This urban warming can be hazardous but is not 42 
necessarily intractable; local temperatures can be altered for better or worse as a result of local land 43 
cover (LC), landscaping, and design decisions [25–30]. The identification of profoundly elevated 44 
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urban temperatures in combination with present climate change and increased frequency and 45 
severity of urban heat waves has heralded much recent research into their cause, dynamics, and 46 
amelioration.  47 

The definition of an urban heat island and the reductive concept of the urban heat index are, 48 
themselves, somewhat fraught, however. The comparison of urban versus rural temperatures is not 49 
necessarily straightforward [31]. Where in the urban area should the ‘representative’ temperature be 50 
measured? Where in the rural area should it be compared to? Where even are ‘urban’ versus ‘rural’ 51 
lands? Martin-Vide et al. (2015) posed similar questions [32], yet answers remain elusive.  52 

Although literature distinguishes a UHI based on air temperature or atmospheric data from a 53 
surface urban heat island (SUHI) based on land surface temperature data (e.g., thermal infrared aerial 54 
or satellite data), there are similarities and common challenges with the two concepts. While useful 55 
as a single-valued metric to suggest, qualitatively, that an urban heat island exists, such simple 56 
characterization of the UHI or SUHI (hereafter (S)UHI if indicating both/either) by two-endmember-57 
comparison creates several challenges for effective and targeted management of urban land. To 58 
calculate a UHI, often air temperature at an urban weather station at an airport or among other 59 
densely impervious LC is compared to a rural weather station (e.g., [33,34]). In contrast to the 60 
atmospheric- and air temperature-based UHI, the surface urban heat island (SUHI) is calculated from 61 
remote sensing (RS) land surface temperature (LST) data by comparing the LST of a few “urban” RS 62 
pixels to “rural” pixels outside a city. This approach, targeting dense urban pixel areas for the urban 63 
end-member, was exhibited for example by Zhao et al. (2014), who compared a 3x3 (and/or 7x7) 64 
square area of 1-km MODIS LST pixels among the central urban core of built-up LC to the same sized 65 
area outside the city among “forests, grassland, cropland [or] bare soils” [35]. Deilami et al. (2018) 66 
reviewed at least 42 other papers that used the urban vs. rural LST comparison as a measure of SUHI 67 
[36], since satellite remote sensing of urban heat islands began in the 1970’s [37–39].  68 

Regardless if RS- or weather station-based, this LC-guided approach to calculating (S)UHI 69 
embeds the assumption that each LC has a predictable “urban” (typically warm) or “rural” (typically 70 
cool) temperature that is adequately represented by the one or few locations chosen as the reference 71 
for each half of the temperature dyad. Various other methods have been tested to calculate (S)UHI, 72 
especially from remote sensing data (see [40]) but also from air temperature data, but overall they 73 
maintain these same assumptions – either representativeness of few weather stations, 74 
representativeness of a few pixels, or underlying assumption of a “typical” thermal behavior of a 75 
given LC classification. An alternative conceptual model is that (S)UHI depends mainly on the 76 
density of impervious surfaces or green spaces [41], bringing into question the very premise of using 77 
linear urban-rural transects to study the complex and inherently four-dimensional phenomenon of 78 
urban landscapes and urban heat.  79 

It is also an ongoing challenge to objectively divide urban from rural areas and so define the two 80 
end-members of the (S)UHI dyad. Studies have used specific distance thresholds from the city center, 81 
population density thresholds, or built environment indices. While useful for specific analyses, such 82 
arbitrary divisions can introduce artifacts into analyses, and lack logical, place-based spatial points 83 
of reference to assist with mitigative urban planning, management, or policy. The choice of which 84 
urban and which rural end-member to use is not trivial, although typically not thoroughly tested by 85 
sensitivity analysis. From a management perspective, the inherently comparative nature of (S)UHI 86 
can make decision-making on its basis difficult since both end-members, the “characteristic urban” 87 
and “characteristic rural” temperatures, will naturally vary in space, vary over the diurnal cycle (e.g., 88 
[42,43]) and seasons (e.g., [43–45]), and vary with changes in land development (e.g., [46]) and climate 89 
(e.g., [47]) over longer timescales. 90 

Also, perhaps most confounding, while cities surrounded by vegetated or humid biomes may 91 
exhibit highest temperatures in the central city, others have surprisingly uniform temperatures across 92 
the urban-rural gradient [48] or can even exhibit negative (S)UHI values, i.e., urban temperatures 93 
cooler than rural temperatures, in irrigated cities within dry climates (i.e., urban cool islands, (S)UCIs) 94 
[35,49–51]. Rasul, et al. (2017), in their recent review of urban heat island and cool island research, 95 
offered a means to understand the relative differences in (S)UHIs and (S)UCIs [40], though omitted 96 
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the important caveat that different areas of the same LC classification can exhibit various land surface 97 
temperatures in different settings along the urban-to-rural gradient. Notably, Imhoff et al. (2010) and 98 
Zhao et al. (2014) found that the vegetation and biome of the lands surrounding a city may have as 99 
large or larger impact on the value and interpretation of a UHI metric as the urban warming itself 100 
[35,48].  101 

An additional challenge embedded in the prevalent (S)UHI’s urban versus rural comparison is 102 
the premise that population, the amount of built or impervious land, and the extent of heating are all 103 
positively related [22]. Generally at whole-city scales (i.e., ~10-50 km dimension) they are (e.g., [22]), 104 
but this assumption does not always hold at finer spatial scales; i.e., high-intensity development is 105 
frequently hotter and green parks are frequently cooler (e.g., LC features of dimension ~0.005-5 km), 106 
but this is not an absolute rule. A large proportion of recent studies of UHI or LST in urban areas 107 
have focused on the apparent cooling effects of urban green spaces, trees, and water bodies, which 108 
are typically correlated with cooler air temperatures and LST (e.g., [52–63]).  However, cities contain 109 
a wide variety of types green spaces (e.g. lawns, gardens, riparian greenways, etc.). These are placed 110 
by urban planning in contexts ranging from the heart of office park parking lots to the peri-urban 111 
fringes of the city. There are, likewise, a wide variety of urban development types (e.g., industrial, 112 
high or low density residential, mixed use, etc.) among different neighborhood LC contexts. Much 113 
literature on urban heating and (S)UHIs treat green spaces as fairly monolithically cool, and dense 114 
development as fairly monolithically hot. Even if this were true, how does the highly heterogeneous 115 
LC and thermal landscape of a city upscale to a single “characteristic urban” temperature for use in 116 
an overall (S)UHI calculation? Hamstead et al. (2016) needed 22 land use/land cover-combination 117 
classes to divide New York City into a suite of characteristic land surface temperatures [64]. Many 118 
fewer classes typically comprise LC data, however. It is not yet clear how much LC distinctions within 119 
the landscape are important for characterizing a city’s overall (S)UHI value. It is certain, however, 120 
that these distinctions are important if considerations of UHI are to come into management, policy, 121 
and design decisions for urban landscapes at scales to address human experiences and social 122 
(in)equities of urban thermal environments. 123 

To enable meaningful management and planning actions to mitigate urban warming, we need 124 
to understand how the variety of temperatures represented within and among LC classes assemble 125 
into an overall urban thermal landscape that is warmer or cooler than its “rural” surroundings. We 126 
need to understand the characteristics of specific spots within a city that are consistently coolest (or 127 
hottest) during a heat wave so as to emulate (or avoid) such designs more broadly across the urban 128 
area. We also need to understand the role that large-scale policy decisions, such as restricting urban 129 
sprawl via an urban growth boundary, can have on urban heating and the livability of our now 130 
majority-urban global human population [65].  131 

This study aims to contribute to the growing literature on assessments of urban heat by explicitly 132 
examining each of these needs with respecte to an example SUHI: the role of an urban growth (UGB) 133 
boundary in mediating temperatures, the assembly of the overall urban temperature from component 134 
LCs, and the sentinel and sometimes counter-intuitive variations in LST within specific urban LCs. 135 
Examining the relationship between urban heat and urban growth containment is particularly novel 136 
because it can provide a means for understanding the (S)UHI concept in ways that will help to 137 
improve the precision and accuracy of the nomenclature used in the field of urban climate studies. In 138 
studying an area that contains an historical and continually enforced UGB, (the Portland, Oregon and 139 
Vancouver, Washington metropolitan area, we are able to begin evaluation of the differences between 140 
those areas that are inside and outside the UGB, while controlling for the LC variations that earlier 141 
research attributes to causing characteristic temperatures and SUHI urban/rural contrasts. We 142 
hypothesize that well-enforced urban containment policies create unique landscape patterns that add 143 
dimensions to the consideration of UHI not present in literature to date. We also interrogate data to 144 
assess where and how important exceptions to the typical hot-urban and cool-rural assumptions are 145 
situated on the landscape (e.g., cool areas inside typically hot LC inside the city and hot areas among 146 
typically cool LC outside the city), which thereby affect the thermal landscape across the urban-rural 147 
gradient and, properly, should affect our understanding and interpretation of SUHI concepts.  148 
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2. Methods  149 

We examined the relationship between LST and LC within and around the UGB of the Portland, 150 
Oregon metropolitan area. We took the urban area to be those lands and waters inside the combined 151 
UGBs of the towns of Portland, Oregon [66] and Vancouver, Camas, and Washougal, in Clark 152 
County, Washington [67] (Figure 1). The Portland UGB was established in 1973 along with the only 153 
democratically elected regional government (Metro) with regulatory powers in the United States at 154 
the time. Other than a significant spatial expansion during 2002, the UGB has remained largely 155 
unchanged since its original physical designation [66]. Development permits are not approved 156 
outside the UGB unless under another jurisdiction. A recent study by Thiers et al., (2018) described 157 
how the Portland, Oregon UGB compares to the adjacent Vancouver, Washington growth restriction 158 
policies, and suggests that the comparison offers many opportunities for understanding local 159 
environmental consequences [68]. Now, almost 50 years in effect, the Portland UGB has fostered 160 
compact urbanization and the protection of surrounding farmland and rural communities from 161 
development sprawl. The Portland UGB is an evolving boundary but has permitted only six 162 
expansions of 1 to 14 km2 (0.1%-1%) each from 1998-2018, and one expansion of 76 km2 (5%) in 2002 163 
[66,69]. At the same time, the population has grown about 250% , from 1.0 million in the Portland-164 
Vancouver metropolitan statistical area in 1970 [70] to 2.5 million in the Portland-Vancouver-165 
Hillsboro metropolitan area in 2018 [71]. The Clark County UGBs of the greater metropolitan area 166 
have experienced similar expansions and growth. 167 

To delineate a suitable, nearby, non-urban region of similar area to compare to analysis inside 168 
the UGB, we applied a 10 km buffer around the UGB (e.g., as by [50]). This resulted in an outside-169 
UGB area of 2537 km2 compared to an inside-UGB total area of 1437 km2 delineated by the GIS vector 170 
outlines. The resulting urban and rural study area encompassed the cities of Portland, Beaverton, 171 
Gresham, Hillsboro, and Lake Oswego in Oregon, and Vancouver, Camas, Washougal, and 172 
Battleground in Washington State and included all major LC categories. The stark contrast between 173 
the urban and rural areas enabled by the historically enforced UGBs provide an ideal testbed to probe 174 
the reliability (or uncertainty) of the urban-rural difference framework for assessing SUHIs and the 175 
consistency and roles of component LCs in the thermal landscape within and outside a major 176 
temperate-zone metropolitan area.  177 

 178 

Figure 1. (a) Combined urban growth boundary (UGB) of the Portland, Oregon and Vancouver, 179 
Washington metropolitan areas (yellow line) and nearby rural lands outside the UGB within a 10 180 
km buffer (blue line). Areas examined in Discussion (Figures 7 and 8) are indicated by white boxes. 181 
(b) Washington and Oregon states showing location of Portland-area UGB. Basemap (a) Landsat 8 182 
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RGB visual image (LANDSAT_PRODUCT_ID = "LC08_L1TP_046028_20140706_20170305_01_T1").  183 
Basemap (b) state outlines from National Map. Basemap data obtained from U.S. Geological Survey.  184 

Land cover data for the study were the National Land Cover Database (NLCD 2011), obtained 185 
from the U.S. Multi-Resolution Land Characteristics Consortium (MRLC, www.mrlc.gov). The 2011 186 
NLCD products were used as the most recent complete release available. (The 2016 canopy fraction 187 
product was not yet available as of the time of this study.) As the NLCD was derived from Landsat 188 
data, its native resolution was 30m pixel size. Of the 20 LC classes present in the NLCD, five were not 189 
present in the study area (Perennial Ice/Snow, Dwarf Scrub, Sedge/Herbaceous, Lichens, Moss). The 190 
remaining 15 NLCD LC classes were combined into 10 simpler classes, for which the classification 191 
could be more semantically confident given the mixed urban-rural area. The 10 LC classes used were: 192 
(1) Open Water, (2) Developed Open Space, (3) Low Intensity Development, (4) Medium Intensity 193 
Development, (5) High Intensity Development, (6) Barren Land, (7) Forest (deciduous, evergreen, 194 
and mixed combined), (8) Grassland (shrub/scrub, grassland/herbaceous, and pasture/hay 195 
combined), (9) Crops, and (10) Wetlands (woody and emergent herbaceous combined). This 196 
reclassified LC map was then coarsened to 1 km pixel resolution according to the most abundant 197 
component LC class within each 1 km pixel (Figure 2a). This approach follows many other studies, 198 
e.g., Sun (2018), who used a 1 km analysis grid to match the resolution of MODIS LST [72]. We also 199 
obtained percentage impervious and percentage canopy cover raster data layers from MRLC (2011) 200 
and rescaled these to 1 km resolution by the average impervious or canopy fraction within each 1 km 201 
pixel (Figure 2c,d).  202 

203 
Figure 2. (a) Dominant LC. Classes in legend are: 1 Open Water, 2 Developed Open Space, 3 Low 204 
Intensity Development, 4 Medium Intensity Development, 5 High Intensity Development, 6 Barren 205 
Land, 7 Forest, 8 Grassland/Scrub/Pasture, 9 Crops, 10 Wetlands. (b) MODIS LST in °C. (c) 206 
Impervious fraction. (d) Canopy fraction. Black outline is UGB. All maps at 1 km pixel resolution 207 
(matching MODIS LST). 208 

LST data from MODIS were used to interrogate SUHI patterns and contrasts, as guided by the 209 
recent findings by Phan and Kappas (2018) that MODIS both highly popular for and highly suitable 210 
for SUHI analysis [73]. Although of coarser resolution than Landsat and other sensors, the 4-times 211 
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daily return interval, strong surface temperature fidelity, and readily available post-processed LST 212 
data product yield MODIS a practical edge for application over a variety of city to region to global 213 
scales [73]. The Aqua satellite of the MODIS Terra-Aqua pair is thought to pass overhead at a time to 214 
record data more similar to the true daily maximum temperatures [73], and so was used in this study. 215 
The raster of maximum daily MODIS Aqua LST data for the study area were obtained from Climate 216 
Engine (climateengine.org) for the exemplary date 16 August 2012, resulting in a cloud-free, complete 217 
data set (Figure 2b). This date was chosen as a representative case study due to its temporal relevance 218 
to the 2011 NLCD data and its coincidence with a heatwave, reaching the hottest temperatures of the 219 
year (37.8 °C; compared to an annual maximum of 36.7 °C in 2010, 36.1 °C in 2011, and 36.7 °C in 220 
2013) [74]. Because of Aqua scan angle for this dataset, the nominally 1km x 1km square (1 km2) 221 
MODIS pixels were actually typically 1km high x 0.7km wide (0.7 km2). Due to this difference, the 222 
area inside the UGB encompassed 2057 pixels (1440 km2 pixel area) and the area outside the UGB 223 
encompassed 3619 pixels (2533 km2 pixel area). This agrees with the outside-UGB area of 2537 km2 224 
and inside-UGB total area of 1437 km2 noted above, with the small differences being due to the 225 
difference between raster-based and vector-based area calculations. In this paper, consistent with 226 
typical practice, we will still refer to the analysis pixels as nominally of “1km” resolution, size, or 227 
scale. 228 

Analyses were done in ArcMap 10.5 (ESRI, Redlands, CA, USA) and in MATLAB R2017a 229 
(Mathworks, Natick, MA, USA). GIS data were handled using projection 230 
NAD_1983_UTM_Zone_10N, whether natively or automatically re-projected by ArcMap, and using 231 
units of meters or kilometers. 232 

 233 

3. Results 234 

3.1. The Surface Urban Thermal Deviation (SUTD) and LST relations to an UGB 235 

The expected elevation of LST inside the UGB compared to LST outside the UGB was apparent 236 
for the Portland-Vancouver metropolitan area. On from the typical hot summer day examined, LST 237 
starkly contrasted across the UGB itself (Figure 2b).   238 

We herein define this contrast of urban versus surrounding background temperature, at 239 
approximately the whole-city scale, as the “Urban Thermal Deviation” (UTD). The UTD smoothly 240 
encompasses existing “urban heat island” and “urban cool island” concepts, reflecting them as 241 
differences in UTD sign. This resolves the previously arbitrary and somewhat illogical separation 242 
and semantic confusion between these terms in the literature. The UTD concept is actually a 243 
spectrum, spanning from a warmer-than-background city (positive value), to very little urban-rural 244 
thermal contrast (UTD near zero), to a cooler-than-background city (negative value).  245 

By example, the Portland-Vancouver metropolitan area exhibited a positive SUTD, on average, 246 
during the daytime summer heat wave examined. The median and mean LSTs were higher inside 247 
than outside the UGB (Table 1). For the whole study area (Overall, in Table 1, the LST statistics were 248 
between those of the inside- and outside-UGB values, but with slightly larger standard deviation. 249 
None of the three LST sample populations (inside UGB, outside UGB, overall) were normally 250 
distributed (nor did they fit exponential, extreme value, lognormal, or Weibull distributions; 251 
Anderson-Darling test, MATLAB R2017a). The median LSTs of each of the three distributions were 252 
different (p < 0.05, Wilcoxon rank sum test, MATLAB R2017a). The overall LST population was 253 
bimodal, due to its composition as a combination of a left-skewed subpopulation of LST values inside 254 
the UGB and a more symmetrical subpopulation of LST values outside the UGB (Figure 3a). LST 255 
values ≥ 44.0 °C in the study area were almost entirely found inside the UGB, whereas values ≤ 37.0 256 
°C were almost entirely found outside the UGB for the examined summer heatwave. 257 

Notable, however, was how poorly the mean (43.0°C) and median (43.9°C) values of the LST 258 
population inside the UGB fit the mode of the data (47°C), which was a substantially higher LST, near 259 
the highest value found anywhere in the study area inside out or outside the UGB (50.0°C). Although 260 
the median LST inside the UGB was 4.5 °C greater than the median LST outside the UGB, the mode 261 
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was a full 7 °C warmer inside the UGB compared to outside (Table 1, Figure 3a). Also, while the UGB 262 
appeared to effectively contain hot areas, we observed numerous exceptions where hot areas 263 
occurred outside of the UGB (Figure 2b). This highlights the challenge of interpreting SUHI (positive 264 
SUTD) urban-rural contrasts with the typical approaches of mean values or buy using a few pixels 265 
selected a priori. 266 

An exhaustive population of possible SUTD values was calculated by subtracting each LST value 267 
outside the UGB from each LST value inside the UGB. In other words, each of the 3615 pixels outside 268 
the UGB was subtracted, in turn, from each of the 2057 pixels inside the UGB, for 3615 x 2057 = 269 
7,436,055 pixel-by-pixel SUTD combinations. This calculated all combinations of possible SUTD 270 
values, were one pixel randomly chosen a priori from inside the UGB to be the “urban” end member 271 
and one pixel randomly chosen a priori from outside the UGB to be the “rural” end member. The 272 
resulting distribution of possible SUTD values was fairly symmetrical, with a median SUTD value of 273 
4.4 °C (Table 1). The mean and median of this SUTD distribution were similar, and also similar to but 274 
slightly lower than its mode, which fell in the histogram bin between 6.0-6.9 °C (Figure 3b). The mode 275 
of the entire SUTD distribution (5 °C) was 2 °C lower than the difference in the mode of the inside-276 
UGB and outside-UGB LST populations (i.e., 7 °C = mode(LST inside) – mode (LST outside), from 277 
Table 1). This again highlights the challenge of interpreting SUHI (positive SUTD) urban-rural 278 
contrasts with the typical approaches of mean values or a few selected pixels or stations. In fact, 22% 279 
of the possible SUTD values were negative. This means that for 22% of “urban” or “rural” paired 280 
points randomly selected a priori, the SUTD is negative and suggests a cooler urban than rural 281 
environment overall; the other 78% of random end-member choices give the opposite result, of 282 
positive SUTD suggesting a warmer urban than rural environment. Based on random selection of 283 
pixels inside vs. outside the UGB, an observer would be about as likely to calculate a SUTD of 0-5 °C 284 
as of 5-10 °C (~33% likelihood in each case; Table 2).  285 

 286 
Table 1. Descriptive statistics of LST values (°C) with respect to the UGB, difference between the 287 
inside and outside UGB median and mean LST values (Overall SUTD), and descriptive statistics of 288 
the whole population of possible pixel-by-pixel SUTD values (°C). 289 

 Overall Inside UGB Outside UGB Overall SUTD pixel-by-pixel 
SUTD 

median 40.4 43.9 39.4 4.5 4.4 

mean 40.5 43.0 39.0 4.0 4.0 

standard 
deviation 4.1 4.2 3.3 - 5.4 

skewness -0.2 -0.8 -0.6 - -0.3 

maximum 50.0 50.0 47.6 - 24.9 

minimum 25.2 27.6 25.2 - -20.0 

mode1 40 47 40 7 5 

n pixels 5,672 2,057 3,615 1 7,436,055 

1 Values rounded down to nearest lower integer prior to calculating mode. 290 

 291 
Table 2. Proportion of all possible SUTD values (N = 7,436,055; as in Figure 3b) within 5°C SUTD 292 
bands. Positive values compare a warmer pixel inside the UGB to a cooler pixel outside the UGB 293 
(+SUTD, as if representing an urban heat island). Negative values (shaded columns) compare a 294 
cooler pixel inside the UGB to a warmer pixel outside the UGB (-SUTD, as if representing an urban 295 
cool island). 296 

SUTD 
band: 

-25 to 
-20 °C 

-20 to 
-15 °C 

-15 to 
-10 °C 

-10 to 
-5 °C 

-5 to 
0 °C 

0 to 
5 °C 

5 to 
10 °C 

10 to 
15 °C 

15 to 
20 °C 

20 to 
25°C 

number 
pixel 
pairs 

1 3,006 61,816 363,554 1,215,090 2,422,931 2,485,655 784,613 88,224 11,165 

% of N 0.00 0.04 0.83 4.89 16.34 32.43 33.43 10.55 1.19 0.15 
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 297 

298 
Figure 3. (a) Comparison of histograms of MODIS LST throughout the study area (gray, n=5,672), 299 
inside the UGB (blue, n=2,057), and outside the UGB (red, n=3,615). The overlap of the semi-300 
transparent blue and red histograms may appear purple. For each distribution, the median (triangles) 301 
and mean (squares) with one standard deviation error bars are shown by points at top. (b) Histogram 302 
of all possible SUTD values, as obtained by subtracting each LST value outside the UGB from each 303 
LST value inside (N = 7,436,055). Notice mean and median SUTD are slightly less than mode, and 304 
SUTD range extends below zero. 305 

3.2. LST and SUTD relations with LC 306 

Analyzing an urban thermal landscape with respect to a formal and enforced UGB, we found 307 
that the UGB was as effective at demarcating the spatial division between developed and 308 
undeveloped lands as between generally higher urban and lower rural LSTs. The major LC classes 309 
inside the UGB were Low Intensity Development (35% of area) and Medium Intensity Development 310 
(28% of area). At the 1km scale analyzed, small developed areas may have been smoothed over, but 311 
the major LC classes in the 10 km buffer outside the UGB were Forest (28%), Grassland/Scrub/Pasture 312 
(44%), and Crops (16%), with only a few-percent of 1km-pixels dominated by development (Table 3).  313 

 314 
Table 3. Descriptive statistics of subpopulations of LST values within each dominant LC (dominant 315 
at 1km resolution) and inside or outside of the UGB or throughout the study area (Overall). Area % 316 
is fraction of spatial area of region covered by that LC, e.g., 3% of area inside UGB was covered by 317 
1km pixels of dominantly developed open space LC. At right, descriptive statistics of the SUTD 318 
within each LC, e.g., the median difference of LST between randomly paired pixels inside and 319 
outside the UGB if both pixels were dominated by developed open space was +1.4°C. 320 

 

Inside UGB Outside UGB Overall 
LC’s SUTDs (°C) 

% 
area 

LST (°C) % 
area 

LST (°C) % 
area 

LST (°C) 

Median Mean StDev Median Mean StDev Median Mean StDev Median Mean StDev 

Open 
Water 

7% 36.0 35.5 6.4 3% 33.0 32.3 5.1 5% 34.8 34.1 6.1 3.6 3.2 8.2 

Devel. 
Open 
Space 

3% 42.1 42.4 3.2 2% 40.6 40.8 1.5 3% 40.8 41.4 2.4 1.4 1.7 3.5 

Low 
Intensity 
Devel. 

35% 44.3 43.8 2.7 2% 41.6 41.9 2.3 14% 44.0 43.7 2.7 2.0 1.9 3.6 

Medium 
Intensity 
Devel. 

28% 46.8 46.2 2.3 1% 44.4 44.3 1.7 11% 46.7 46.0 2.3 2.1 1.9 2.8 



Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 24 

 

High 
Intensity 
Devel. 

8% 45.7 44.3 3.9 0% n/a n/a n/a 3% 45.6 44.3 3.9 0.2 -1.1 3.9 

Barren 
Land 

0% n/a n/a n/a 0% n/a n/a n/a 0% n/a n/a n/a n/a n/a n/a 

Forest 8% 38.9 38.9 3.3 28% 36.9 37.0 2.5 21% 37.1 37.3 2.7 1.8 1.9 4.1 

Grassland 8% 41.2 41.4 3.2 44% 39.9 39.6 2.4 31% 40.0 39.8 2.6 1.7 1.8 4.0 

Crops 1% 45.0 45.2 1.5 16% 41.6 41.3 2.4 11% 41.6 41.4 2.5 3.8 3.9 2.8 

Wetlands 2% 38.9 38.5 4.6 4% 37.7 37.0 3.7 3% 37.8 37.3 3.9 1.7 1.5 5.8 

overall: 100% 44.2 43.2 4.5 100% 39.3 38.9 3.3 100% 40.4 40.5 4.3 4.7 4.3 5.5 

Note: Only one pixel dominated by Barren Land inside UGB and none outside UGB. Only one pixel dominated by High 
Intensity Development outside UGB. These statistics therefore omitted. 

 321 
Position inside or outside the UGB did not affect which LCs were warmest or coolest on average, 322 

but did affect the absolute values of those LC’s typical LSTs. Both inside and outside the UGB the 323 
warmest LCs were High Intensity Development, Medium Intensity Development, Low Intensity 324 
Development, Developed Open Space (e.g., city parks), and Cropland (Table 3 and Figure 4). 325 
However, High Intensity Development outside the UGB and Barren Land inside or outside the UGB 326 
represented the dominant LC for so few 1km pixels that further conclusions from these LCs will not 327 
be pursued here. Inside the UGB, all the hottest portions of the study area were associated with 328 
developed and impervious surfaces, whereas outside the UGB, individual very hot areas were 329 
sometimes bare- and dry-looking, tan-colored agricultural fields. In general, the medians of these 330 
warm LCs were about 0-3°C warmer inside the UGB than outside. The absolute hottest LSTs (up to 331 
50.0 °C) in the study area during the examined heatwave were within the generally warm Medium 332 
Intensity Development LC. 333 

Both inside and outside the UGB the coolest LCs were Open Water, Forest, and Wetlands. Again, 334 
the typical LSTs of each of these LCs differed by position relative to the UGB, with median LSTs of 335 
these LCs generally cooler outside the UGB than inside (Table 3), although the interquartile ranges 336 
overlapped enough to make practical differences in these typically “cool” LCs perhaps small across 337 
the UGB (Figure 4). The absolute coolest pixels (as low as 25.2 °C) were within the generally cool 338 
Open Water LC. 339 

 340 

341 
Figure 4. Comparison of LST by LC class inside the UGB, outside the UGB, and overall. Bars are 342 
medians, boxes 25th and 75th percentiles (interquartile range, IQR), whiskers extend to 1.5 IQR, and 343 
+ symbols are outliers. Each group of 3 plots is for one LC class, as labeled. Lower x-axis labels indicate 344 
if plot is based on data from inside UGB, outside UGB, or overall. Note, High Intensity Development 345 
outside the UGB and Barren Land inside and outside the UGB were represented by only very small 346 
numbers of pixels. 347 

We also observed several surprising findings when inspecting the shapes and tails of the LST 348 
distributions within these “typically hot” and “typically cool” LCs (Figure 5). Only Forest, Grassland, 349 
Crop, and to some extent Wetland LCs resulted in normal, uni-modal, and unskewed LST 350 
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distributions with fairly balanced and low-frequency tails of coldest and hottest LST values. The 351 
merged Grassland LC class exhibited the most positive and negative LST statistical outliers, however 352 
(Figure 4). 353 

 354 

 355 
Figure 5. Comparisons of histograms of LST distributions by LC class for LC pixels occurring inside 356 
the UGB (blue), outside the UGB (red), and overall (gray). The overlaps of the semi-transparent blue 357 
and red histograms may appear purple. (See Supplement for histograms of % Impervious and % 358 
Canopy). Note, High Intensity Development outside the UGB and Barren Land inside and outside 359 
the UGB were represented by only very small numbers of pixels. 360 

High, Medium, and Low Intensity Development LST distributions were largely uni-modal but 361 
strongly right-skewed, such that their mean LSTs were not good representations of their higher 362 
medians and modes (Figure 5). The peaks of the High and Medium Intensity Development LSTs fell 363 
between 40-45 °C, with Low Intensity Development LSTs more spread between about 38-44 °C. All 364 
three types of intense development had their left-skewed tails extend near or to 30 °C LST lows, which 365 
were clearly very different than the presumed, and median/mode, much warmer LSTs of those LCs. 366 
After Grassland, Medium Intensity Development exhibited the most cool LST statistical outliers, all 367 
outside the UGB (Figure 4). In contrast to the other developed LCs, the Developed Open Space LST 368 
distribution was more right-skewed, such that its mean LST was not a good representation of its 369 
lower median and mode (Figure 5). The Open Space LST peak was between 30-35 °C, with very few 370 
cooler values but with sizable weight in the right-tail of LST values from 35-45 °C. After Grassland, 371 
Developed Open Space exhibited the most warm LST statistical outliers, all inside the UGB (Figure 372 
4). There were too few 1km pixels dominated by Barren Land to yield a useful distribution with 1°C 373 
histogram bins (Figure 5). 374 

The observed within-LC temperature variations were not entirely predictably correlated with 375 
impervious area fraction as was expected, however, nor with canopy area fraction. Overall, the 376 
relationship (linear regression) of LST with impervious cover >0% was positive, with LST increasing 377 
with increasing impervious fraction regardless of being located inside or outside the UGB (Figure 6 378 
a,b,c). However, inside the UGB some of the highest and lowest LST values each occurred in the same 379 
1km areas as both the highest and lowest average impervious fractions (Figure 6a), i.e., some very 380 
warm areas had very low impervious fractions, and vice versa.  381 

As expected, the overall relationship of LST with canopy cover was negative, with LST 382 
decreasing with increasing canopy fraction regardless of being located inside or outside the UGB 383 
(Figure 6 d,e,f), but again with substantial scatter around this tendency. The data exhibited smaller 384 
residuals around a linear regression outside the UGB, compared to inside, i.e., the linear model of 385 
LST with canopy fraction was more representative outside the UGB. This relationship broke down, 386 
however, for canopy fractions below about 10%, where LST took on a full range of low (~25 °C) to 387 
high (~50 °C) values. In fact, the greatest abundance of low LST values within any decile of canopy 388 
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fraction clustered at canopy fractions <10%. The scatter of various LST values was further illustrated 389 
when examining the tradeoff in area fraction between impervious and canopy cover (Figure g,h,i). 390 

 391 

 392 

Figure 6. Scatterplots of relations among LST, percent impervious area, and percent canopy area, 393 
inside the UGB (a,d,g), outside the UGB (b,e,h), and overall (c,f,i). Lines of best fit in black and 394 
equations, 95% prediction intervals in gray. 395 

4. Discussion 396 

The aim of this study was to examine the relation of urban temperatures to an urban growth 397 
boundary, the composition of the city’s elevated temperatures in relation to constituent LCs , and the 398 
sentinel and sometimes counter-intuitive variations in LST within LCs in and around a city. To date, 399 
the nomenclature of the atmospheric “Urban Heat Island” (UHI) and surface temperature “Surface 400 
Urban Heat Island” (SUHI) has provided a simple framework to interrogate how urban and rural 401 
areas differ in their thermal conditions. Studies that illustrate these differences span decades, yet, as 402 
we begin to examine the implications of our development and urbanization processes in relation to a 403 
warming climate, we argue that science and society need more precise and accurate nomenclature. 404 
The most compelling case for this argument is that fact that the original formulation of the (S)UHI 405 
concept was inadvertently biased by a perspective of an urban area in a surrounding densely 406 
vegetated, humid agro- or natural-ecosystem, typically of a temperate region; many recent studies 407 
have shown that, in drier and less vegetated regions, urban areas sometimes act as large “Urban Cool 408 
Islands” instead [40]. Replacing the (S)UHI vs. (S)UCI dipole with instead a more nuanced concept 409 
of an “Urban Thermal Deviation” of urban temperatures compared to background temperatures 410 
provides a fresh framework within which to seamlessly embrace UHI and UCI poles across a (S)UTD 411 
spectrum from positive (heat island-like), through zero (thermally comparable to background), to 412 
negative (cool island-like) values. This updated framework may help analysis begin to focus on the 413 
magnitudes of the urban vs. rural thermal contrasts as much as the signs. Also, by explicitly including 414 
a zero value within the (S)UTD spectrum, which was implicit but absent in the traditional dipole 415 
approach, the (S)UTD framework may enable compelling new research questions. For example: What 416 
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would it take to reduce a positive UTD to zero, seamlessly blending the urban thermal environment 417 
with its surroundings? 418 

Perhaps the most important, yet underappreciated, issue regarding all these nuances of 419 
calculating SUTD (or SUHI, UHI, SUCI, UCI, etc.) values is the socio-economic and racial equity 420 
dimensions of our practices to date for choosing “representative” urban and rural temperature end-421 
members. If a large number of weather stations were averaged, but their locations were accidentally 422 
skewed toward greener and cooler areas of the city, perhaps where more affluent homeowners 423 
establish online personal weather stations, then one might find highly skewed results about the 424 
difference between urban and rural areas that underestimates the heat stress of less green, less 425 
affluent neighborhoods. If, for example, a city has a small urban core and extensive lower density 426 
residential development within city limits, should the urban end-member temperature be in the 427 
residential or downtown areas? Even if one took an area-weighted average of the two, would that be 428 
“representative”? A growing body of literature is showing that urban greenery and related urban 429 
heat mitigation are systematically more available to more affluent residents, whereas lower-income 430 
neighborhoods frequently have lower canopy cover and higher local temperatures [11,14,26,75–77]. 431 
This begs the question, then, not only of how to choose an “urban” end member to be representative 432 
of the urban landscape, but also what is “representative – and for whom?” To tackle the important 433 
social and environmental justice angle of urban warming and its inequity, we first need more clear 434 
and precise language to describe different scales and magnitudes of warming or cooling. We then 435 
also need to develop a practice of more thoroughly interrogating the range of possible urban heat 436 
island or urban cool island experiences urban, peri-urban, and rural residents may experience, rather 437 
than leaning on fairly blunt, single-valued metrics such as (S)UHI. Moving beyond single-valued 438 
metrics may be a useful step toward expanding our perception and study of urban versus rural 439 
thermal equity. 440 

The SUTD framework of this study takes a step further than the urban thermal variability 441 
reflected in prior studies of one-dimensional transects across a city (e.g., [48]), to now reflect the full 442 
variability of temperatures across a city and compared to its surroundings. Beyond transects, the 443 
SUTD framework encourages examining both LST and SUTD as histograms (e.g., Figures 3 and 5) 444 
and taking increased care to interrogate the meaning and representativeness of statistics such as LST 445 
and SUTD mean, median, or mode. Our findings, from testing the SUTD approach for an example 446 
city, suggest there is added value in characterizing the spatial variations in urban heat and coolness 447 
with greater statistical detail than has been possible, to date, using the prevalent, single-valued SUHI 448 
(or SUCI) metric and the binary SUHI versus SUCI conceptual framework. Moving toward more 449 
spatially exhaustive, statistical representations of urban heat, cool, or urban-rural thermal difference 450 
is quite easily achievable, especially for studies using increasingly abundant remote sensing data. 451 
Adopting, and using nomenclature to match, a view that (S)UHI and S(UCI) values exist on a (S)UTD 452 
spectrum from cool-to-zero-to-warm contrasts between urban and rural environments may provide 453 
a more accurate notion of both the relative thermal position and always-changing nature of the urban 454 
thermal environment. These two approaches, more spatially-exhaustive analysis and 455 
contextualization of urban/rural temperature contrast on a (S)UTD continuum, may together provide 456 
more nuanced and actionable information of scientific and societal value, compared to comparing 457 
“urban” or “rural” dipoles selected a priori and of uncertain representativeness.  458 

The results of this study also suggest that a single SUHI value is unlikely to be usefully 459 
representative of the urban thermal anomaly relative to the background rural landscape. 460 
Temperatures can be highly variable among (Figure 4), and highly skewed within (Figure 5), different 461 
LCs. Even if a “representative” LC class could be identified for an urban or rural setting, an 462 
accidentally anomalous choice of end-member location that is notably warmer or cooler than is 463 
typical for that LC is reasonably statistically probable given the long tails on some LC’s LST 464 
distributions (Figure 5). This may result in reported SUHI values in the literature to date often, but 465 
unknowingly and randomly, underestimating (or overestimating) urban warming. Such effects can 466 
be especially misleading if a SUHI calculation is based on few points in the urban and rural areas, or 467 
even if the SUHI calculation is based on spatially exhaustive data (such as remotely sensed data) but 468 
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mean values are used. Our results demonstrated that medians would generally be better choices than 469 
means (Figure 3b), but either may be several degrees higher or lower than the mode of a given LC’s 470 
temperature, which might arguably be the most representative. Statistical tests may also help identify 471 
if a suspected relationship between temperature and LC is random, underestimated or 472 
overestimated. 473 

4.1. Toward More Precise Descriptions of Variations in Urban Temperatures 474 

4.1.1. From Heat (or Cool) Islands to the Urban Thermal Deviation (UTD) 475 

To improve our ability to describe the variation in urban temperatures and so to study them 476 
effectively and seek to manage them equitably and efficiently, we propose three revisions to the 477 
confusing prevalent terminology around temperature variation in and around urban areas. In our 478 
first description, we define the contrast of urban temperature versus surrounding background 479 
temperature, at approximately the whole-city scale, as the “Urban Thermal Deviation” (UTD). The 480 
UTD is essentially the combination the existing “urban heat island” and “urban cool island” concepts, 481 
which have been separated to date despite being two sides of the same phenomenon. Within the 482 
(S)UTD concept, the deviation of the urban temperature from the rural thermal background lies on a 483 
spectrum from positive (S)UTD (city warmer than background), to very little (UTD near zero), to 484 
negative (S)UTD (cooler city).  485 

From a science and management perspective, a transition from (S)UHI and (S)UCI to the 486 
combined (S)UDT spectrum may help better represent how myriad urbanization processes (e.g. 487 
expansion, densification, watering status, etc.) can - and do - change over time both as sudden step-488 
changes and as gradual shifts along an urban thermal spectrum. The concept of urban heat as a 489 
spectrum from cooler-to-same-to-warmer conditions from the background might prove encouraging 490 
in setting management goals. For example, in the binary concept of a city presenting a UHI compared 491 
to a cooler background (or vice versa, and mainly as a function of its accidental fate to reside in a 492 
particular biome [35,48]), it might be difficult to recognize progress in cooling the city, e.g., by careful 493 
urban planning and resident action, as the city may still remain substantially warmer than its 494 
surroundings. Using the (S)UTD spectrum concept, however, a city might recognize its progress 495 
moving from a warmer position on the spectrum toward a more desirable value closer to zero, 496 
celebrate progress, and realistically motivate further progress.  497 

4.1.2. Distinguishing Urban Microthermal Extremes (MTEs)  498 

As at the city scale, making significant progress on the science and management of a warm (or 499 
cool) (S)UTD will also require improvement in understanding of neighborhood-by-neighborhood 500 
and block-by-block contributions to warming. Unfortunately, intra-urban variations in temperature 501 
have suffered to date in the literature from semantic conflation with city-scale terms. For example, an 502 
“urban cool island” has variously been used to describe a city that seems cooler than its surroundings 503 
on average (e.g., [40,48–51,78]), but also to describe a green park, at a much finer spatial scale, within 504 
otherwise warm development (e.g., [26,40,53,56,63,79–82]). Further, while “cool island” may be used 505 
to describe an urban park’s effect, the same phenomenon but of opposite sign, e.g., of a warm 506 
commercial area within an otherwise cooler low intensity development area, is more typically called 507 
a “hot spot” (e.g., [83]) rather than using parallel language. Finally, the usage of “park cool island” 508 
and “hot spot” in the literature has been vague as to if the neighborhood surrounding these foci must 509 
be of starkly different temperature (e.g., hot around a cool park, or quite cool around a hot spot), of 510 
merely contrasting temperature (e.g., moderate around a cool park, or warm around an exceptionally 511 
hot spot), or of opposite expected temperature (e.g., cool when expected to be hot according to its LC, 512 
or vice versa). 513 

To resolve these semantic confusions around thermal contrasts at the intra-city scale, we first 514 
define an urban “micro-thermal extreme” (MTE) as a discrete area the temperature of which is 515 
significantly more extreme than its land cover would suggest. In other words, an MTE is an intra-516 
city thermal variation of an expected, but extreme and notable, nature. For example, an exceptionally 517 
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hot industrial area within a generally warm industrial zone would be a hot MTE. An exceptionally 518 
cold tree stand within a generally cool vegetated area would be a cold MTE.  519 

In this study, although some LCs exhibited an overall tendency to be warmer and others cooler, 520 
as expected, we did find discrete areas of ‘typically warm’ LCs that exhibited exceptionally hot 521 
temperatures, and discrete areas of ‘typically cool’ LCs that exhibited exceptionally cold 522 
temperatures. An example of a hot MTE was present within the study area among some Medium and 523 
High Intensity Development in Vancouver, WA; here, ten of the hottest pixels of the study area 524 
occurred adjacent to each other (Figure 7a). More broadly throughout the study area, of the 26 hottest 525 
pixels in the entire metropolitan landscape ( > 49 °C LST), six were dominated by High Intensity 526 
Development, 16 by Medium Intensity Development, two by Grassland/Scrub/Pasture, one by Low 527 
Intensity Development, and one by Developed Open Space. Note, the threshold over which an area 528 
is considered a hot MTE will vary by study, by location, day, and example; in this study 49 °C was 529 
used as it provided a threshold exceeded by only about 0.5% of pixels within the examined data. In 530 
this study, hot MTEs typically had high impervious and low canopy fractions.  531 

Cold MTEs in the study area typically occurred over water features in the Portland-Vancouver 532 
metropolitan landscape. Even excluding open water LC, the banks, islands, and wetlands of the 533 
Columbia River still exhibited the coolest spots in the area during the examined heat wave (Figure 534 
7b), accounting for 25 of the 28 coolest, non-water pixels. The narrower and more urbanized banks of 535 
the Willamette River did not exhibit the same cold MTE effect as the wide Columbia River. Of the 28 536 
coolest, non-water pixels ( < 31 °C LST), nine were dominated by Wetland LC, ten by 537 
Grassland/Scrub/Pasture, eight by Forest, and one by Low Intensity Development. Interestingly, 538 
three of the eight exceptionally cool forest pixels provided the only cold MTE locations not occurring 539 
near the Columbia River. One of these points occurred adjacent to a large reservoir outside the UGB 540 
(Henry Haag Lake). The other two occurred in a patch of apparently dense (possibly un-logged), 541 
private forest land west of Gales Creek, Oregon. The one cold MTE detected within Low Intensity 542 
Development occurred on the eastern shore of the large and shallow Lake Vancouver, in Vancouver, 543 
WA. The remainder of the cold MTE lands in the study area were along the Columbia River banks. 544 
An additional 54 water LC pixels, all within the Columbia River or Vancouver Lake, were also 545 
exceptionally cool ( < 31 °C LST). Note, the threshold below which an area is considered a cold MTE 546 
will vary by study, by biome, climate, day, and example, as for the hot MTE threshold. 547 

 548 

549 
Figure 7. Examples of urban micro-thermal extremes (MTEs); locations shown in Figure 1 city map.  550 
(a) Hot MTEs: Exceptionally hot, discrete areas of typically warm/moderate-temperature LC or 551 
surroundings. (b) Cold MTEs: Exceptionally cold, discrete areas of typically cool/moderate-552 
temperature LC or surroundings. (LC classes are: 1 Open Water, 2 Developed Open Space, 3 Low 553 
Intensity Development, 4 Medium Intensity Development, 5 High Intensity Development, 6 Barren 554 
Land, 7 Forest, 8 Grassland/Scrub/Pasture, 9 Crops, 10 Wetlands.)  555 

4.1.3. Distinguishing Urban Microthermal Anomalies (MTAs) 556 
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In addition to observing that the temperatures of some areas within the metropolitan and peri-557 
urban region were in the expected direction but even more extreme than would have been predicted 558 
from the LC or surroundings (i.e., MTEs), we observed the opposite as well: specific areas within the 559 
region that exhibited temperatures opposite what would have been predicted from the LC or 560 
surroundings. To name and capture this phenomenon we define an urban “micro-thermal anomaly” 561 
(MTA) as a discrete area that exhibits temperatures opposite the typical expectation for its LC or 562 
surroundings. For example, a significantly cool park area within a typically warm, highly developed 563 
LC patch would be a cool MTA. Previously, this phenomenon may have been called an urban park 564 
“cool island,” but this is too easily confused with use of the term “cool island” to describe whole 565 
irrigated cities in dryland areas (i.e., UCI). Similarly, a significantly warm area such as a power 566 
transmission station within a densely forested park would be a warm MTA. Previously, this 567 
phenomenon may have been called a “hot spot,” but this language has been imprecise as it does not 568 
distinguish between notable, anomalous warm areas which would typically be cool (warm MTA) 569 
and hotter-than-usual areas of a typically warm LC (hot MTE).  570 

In the Portland-Vancouver area during the examined summer heatwave we did observe 571 
important exceptions to the general tendency of some LCs to be cooler and others warmer, where 572 
individual pixels or small clusters of pixels exhibited the opposite LST signature. These exceptions 573 
are especially important because they may be indicators of either cooling solutions in otherwise 574 
typically warm LC areas or, conversely, of problematically warm areas that may cause heat and 575 
drought stress more than the surrounding typically-cool LC classification might suggest. An example 576 
of a warm MTA occurred in an area of High Intensity Development mixed with Forest LC (Figure 577 
8a). This and other warm MTAs occurred in the study area among Open Water, Forest, or Wetland 578 
LC that would be expected to be typically cool but exhibited, instead, LST > 44 °C.  579 

For the example warm MTA illustrated in Figure 8a, both the scale and intensity of hot- and 580 
cool-LC juxtapositions likely played a role in producing this result, as did the resolution of the data 581 
analyzed. Despite the prominent forested parks in the area, the great intensity of impervious area 582 
and LC juxtaposition and mixing below the resolution of the analysis permitted LST values to be 583 
elevated, even in the locations of the “typically cool,” dominantly Forest LC pixels. This subgrid effect 584 
likely explains the four more northern points of interest in Figure 8a (upper 4 black dots). At 30m 585 
native NLCD scale, these points were located on the boundaries between forested and intensely 586 
developed LCs (right-most panel, Figure 8a), but at 1km scale the locations were dominated by forest 587 
area. Their expression as warm MTAs are therefore likely due to the heat from the intensely 588 
developed lands overwhelming, at subgrid scale, the coolness of the spatially slightly more abundant 589 
forest area.  590 

The southern two points of interest in this same neighborhood (lower two black dots, Figure 8a) 591 
exhibited a slightly different phenomenon leading to warm MTA conditions, however. These two 592 
points were classified as forest or wetland at 1km scale, and yet still exhibited highly elevated LST 593 
during a heatwave, >44°C. (Note, the temperature threshold or contrast from background for which 594 
an area is considered a warm MTA will vary by study, by biome, climate, day, and example.) In 595 
contrast to the more northern warm MTA forested points, though, these two more southern points 596 
were well-surrounded by water and wetland (blue), forest (dark green), and Grassland/Scrub/Pasture 597 
(yellow). The prior explanation of their warm MTA status being conveyed due to abundant heat form 598 
a sub-dominant LC at subgrid scale does not hold, therefore. In this case, it may be more likely that 599 
true anomalies of surface energy balance, or aerodynamic and biophysical effects of heat “spill-over” 600 
from nearby (but not immediately adjacent) intensely developed areas, were the key governing 601 
factors. These same factors may also have played a role in the elevated temperatures of the more 602 
northern four points, but it is more difficult to surmise from the available information.  603 

 604 
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605 
Figure 8. Examples of urban micro-thermal anomalies (MTAs); locations shown in Figure 1 city map. 606 
(a) Warm MTAs: Starkly warm, discrete areas of typically cool LC or surroundings.  (b) Cool MTAs: 607 
Starkly cool, discrete areas of typically warm LC or surroundings. (LC classes are: 1 Open Water, 2 608 
Developed Open Space, 3 Low Intensity Development, 4 Medium Intensity Development, 5 High 609 
Intensity Development, 6 Barren Land, 7 Forest, 8 Grassland/Scrub/Pasture, 9 Crops, 10 Wetlands.)  610 

Examples of cool MTAs in the Portland-Vancouver area also occurred during the examined 611 
heatwave, where typically warm LC such as High, Medium, or Low Intensity Development exhibited 612 
surprisingly low LST values (e.g., < 37 °C). Prominent areas of cool MTAs clustered: (i) among the 613 
High Intensity Development in northwest Portland between the large greenspace of Forest Park and 614 
the adjacent Willamette River, (ii) among the Medium-to-High Intensity Development of northern 615 
Portland between the airport and Hayden Island on the shores of the Columbia River, and (iii) among 616 
the mixed Low-Medium Intensity Development of Vancouver on the eastern shore of Vancouver 617 
Lake (Figure 8b). These areas all had in common their placement of intense development next to a 618 
large waterbody. As with the warm MTA occurrences discussed above, is likely that these apparent 619 
cool MTA occurrences reflect a combination of apparent cooling due to sub-grid mixing within the 620 
1km pixels and actually cooler biophysical processes and surface energy balance outcomes on the 621 
ground.  622 

The seven eastern points of interest in Figure 8b (five points in a row toward the right of the 623 
figure, one point nearby to their northwest, and one point more inland from the lake near the top of 624 
the figure) we interpret as more likely arising from the latter explanation, actual less-than-expected 625 
longwave radiation due to aerodynamic or biophysical effects on the surface energy balance. These 626 
points are well surrounded by intense development that would otherwise be typically warm, are set-627 
back from direct shoreline exposure, and so must have a compensatory cooling process in effect. 628 
These seven locations would be ideal candidates to investigate further with ground-based research 629 
measurements, to determine more specifically what is supporting their desirable, apparently cooler, 630 
conditions.  631 

In contrast, the nine western points of interest in Figure 8b (nine black dots more to the left sides 632 
of the panels), may include some of the same real aerodynamic or biophysical cooling effects, but we 633 
interpret as perhaps being dominated by subgrid mixed-pixel effects. Although intense development 634 
covered a majority of the 1km pixel, it is possible that forest or water LC was only slightly less 635 
extensive, and quite cool, skewing the overall apparent LST at the 1km scale. However, even if this 636 
is the case, it bears noting that a similar situation occurred among the warm MTA examples of Figure 637 
8a, but in those warm MTA cases the slight majority of area covered by forest or water LC was not 638 
able to overcome the subgrid warmth provided by the minority intense development. In this situation 639 
of cool MTAs, the opposite seems to be occurring, where a slight minority of area covered by forest 640 
or water LC was able to overcome the subgrid warmth provided by majority intense development. 641 
Therefore, although the identification of these MTA may include artifacts from subgrid scales, there 642 
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is still something to be learned from why some locations on the landscape show up as warm MTAs 643 
but other similar ones as cool MTAs; this might be a useful subject of future research. 644 

Although not perhaps surprising that large cool waterbodies may provide a cooling ecosystem 645 
service to adjacent more typically warm LCs as shown by these cool MTAs, this highlight should not 646 
be overlooked as a tool of potential use to urban planners. For example, typically warm High 647 
Intensity Development could be intentionally planned for shorelines to maximize the cooling service 648 
of adjacent large water bodies; of course, this might also prove contentious. Building a public 649 
greenway park along the shores of a large, cool waterbody might meet with more vocal approval and 650 
be intended to provide riparian habitat value and physical and mental health opportunities (although 651 
not necessarily equitably [15,76,84,85]). However, the insight of cool MTAs located on shorelines at 652 
least inspires new compelling questions: Is placing a green LC, that would typically already be cool, 653 
in the location of maximum cooling service from the waterbody the most efficient way to mitigate 654 
overall urban heat? And for whom? As many cities worldwide are found on river, lake, or ocean 655 
shorelines [86], this topic of urban design relative to the natural cooling services of the waterbodies 656 
warrants further research to determine biophysical, environmental, and social tradeoffs and 657 
consequences for urban ecology and resident equity, particularly amid ongoing broader trends of 658 
urbanization and climate change. In sum, we find that it may be useful in guiding more nuanced 659 
appreciation of relations between SUTD and LC and urban planning to pay attention to occurrences 660 
of MTAs, distinguish them from MTEs, and interrogate whether MTAs arise from actual biophysical 661 
contrasts in urban surface energy and water balances, from subgrid effects of resolution of analysis, 662 
or perhaps a combination of both, as they are not mutually exclusive possibilities; this is an area of 663 
ongoing development in the research field. 664 

5. Conclusions 665 

The field of urban climate studies is rapidly expanding with new assessments, techniques, and 666 
applications. While a large proportion of these studies rely on LST to characterize variations in urban 667 
temperatures, only few challenge long-held presumptions about surface urban heat islands (SUHIs). 668 
It is becoming apparent that the long-standing, dominant (S)UHI nomenclature, and the presumption 669 
that cities are typically warmer than their surroundings, is actually an historical artifact of a 670 
temperate-zone/humid-zone sampling bias of much of the work in this field. Recent evidence from 671 
cities in the Middle East, southwest US, and other dryland areas indicate that urban areas can also be 672 
consistently cooler than adjacent rural areas [40]. However, the resulting addition of “urban cool 673 
islands” to the literature has only enabled partial progress toward resolving this bias, as it has moved 674 
a monolithic UHI field into a still-too-simplistic binary UHI/UCI framework. In fact, the difference 675 
between urban and background temperature must fall across a continuum from negative (cooler city) 676 
to positive (warmer city) values, also inclusive of a hypothetical zero-difference value. In this study 677 
we advance the spanning concept of the “Urban Thermal Deviation” (UTD or SUTD) to encompass 678 
this continuum of urban/rural temperature contrasts and expand the UHI/UCI binary to a spectrum. 679 
Further, we demonstrate and encourage further interrogation of single-valued metrics of urban/rural 680 
thermal contrast, and especially of the representativeness of the urban and rural end-members that 681 
must be chosen a priori for such calculations. In addition to asking “Representative of what?” – how 682 
statistically representative are the chosen end-members of the urban landscape, really? – we also 683 
encourage future research to ask “Representative for whom?” – being conscious that LCs, urban 684 
canopy, urban temperatures, and micrometeorological infrastructure [31] are not typically equitably 685 
distributed among city residents [11,14,26,75–77].  686 

In this study we developed and demonstrated this updated framework for understanding 687 
urban/rural contrasts in temperature as a SUTD spectrum, aided by evidence from a discrete case of 688 
a metropolitan area with a well-established urban growth boundary. Comparing urban and rural 689 
pixels across this well-demarcated boundary, we found that the SUTD is better understood as a 690 
distribution of a whole population of possible urban/rural LST contrasts, rather than any random 691 
urban/rural pairing, or even mean or median SUTD values (Figure 3b). In fact, we surmise that most 692 
SUHI and SUCI values reported to date, if based on a difference between mean (or even median) 693 
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temperature values within the chosen urban and rural end-members as is typical, are at best 694 
indicative, not representative, and at worst, misleading as to the characteristic urban and rural 695 
temperatures and their contrast.  696 

At the finer spatial scale of LC patches within a city, it is well-appreciated that major exceptions 697 
to background urban and rural temperatures exist and are important useful to understand, such as 698 
cool parks inside a city and hot dry fields outside a city. A useful distinction that has been lacking to 699 
date, however, is whether local thermal exceptions are what we term (a) microthermal extremes 700 
(MTEs), which tend in the same direction (warm or cool) as their LC or surroundings but to extreme 701 
values, or (b) true microthermal anomalies (MTAs), which run counter to expectations for their LC 702 
or surroundings. The distinction is important because the former, MTEs, suggests a need for 703 
moderation in the thermal landscape, whereas the latter, MTAs, may suggest possible solutions.  704 

In sum, the novel study of a metropolitan setting with an historically enforced urban growth 705 
boundary has provided insight into the utility of a UGB for controlling the sprawl of both urban 706 
development and its associated thermal signature into the rural surrounds. It has also inspired 707 
suggestion of more inclusive terminology aimed toward escaping strictures of past semantically 708 
conflated or binary heat/cool island frameworks to more general urban thermal deviations. We 709 
submit that the (S)UTD framework, in addition to being more inclusive, may be more hopeful 710 
framework for considering urban thermal conditions. As the (S)UTD spectrum naturally includes the 711 
zero-point, where urban temperature would be equivalent to the background biome, it is the first 712 
framework, to our knowledge, to suggest an environment-neutral target for urban thermal 713 
management. Arguably, working toward SUTD = 0 may be an important and useful goal for urban 714 
sustainability in the age of climate change. Under conditions of rising heat-related urban mortality 715 
due to both densification and climate change, it is more important and urgent than ever to understand 716 
and characterize just how hot a city is, for comparison to surrounding areas, other cities, and other 717 
times in the past or future.  718 
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Figure S1. Comparisons of histograms of % Impervious distributions by LC class for LC pixels 
occurring inside the UGB (blue), outside the UGB (red), and overall (gray).   

Figure S2. Comparisons of histograms of % Canopy distributions by LC class for LC pixels occurring 
inside the UGB (blue), outside the UGB (red), and overall (gray).   
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