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15 Traditionally, computation within self-assembly models is hard to conceal because the self-assembly 16 process 

generates a crystalline assembly whose computational history is inherently part of the 17 structure itself. With no 

way to remove information from the computation, this computational 18 model offers a unique problem: how can 

computational input and computation be hidden while 19 still computing and reporting the final output? Designing 

such systems is inherently motivated by 20 privacy concerns in biomedical computing and applications in 

cryptography. 

21 In this paper we propose the problem of performing “covert computation” within tile self-assembly 22 that seeks 

to design self-assembly systems that “conceal” both the input and computational history 
23 of performed computations. We achieve these results within the growth-only restricted abstract tile 24 assembly 

model (aTAM) with positive and negative interactions. We show that general-case covert 25 computation is possible 

by implementing a set of basic covert logic gates capable of simulating any 26 circuit (functionally complete). To 

further motivate the study of covert computation, we apply 27 our new framework to resolve an outstanding 

complexity question; we use our covert circuitry to 28 show that the unique assembly verification problem within 

the growth-only aTAM with negative 29 interactions is coNP-complete. 
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34 1 Introduction 

35 Since the discovery of DNA over half a century ago, humans have been continually working 36 to 

understand and harness the vast amount of information it contains. The Human Genome 37 Project [17], 

which began in 1990 and took a decade, was the first major attempt to fully 38 sequence the human 

genome. In the years since, sequencing has become extremely cheap and 

39 easy, and our ability to manipulate DNA has emerged as a central tool for many applications 40 related 

to nanotechnology and biomedical engineering. 

41 Although this progress has many benefits, as we learn more about the information, we 

42 also must be careful with the shared data. There are databases of anonymous DNA sequences, 

43 which can sometimes be deanonymized with only small amounts of information such as a 44 

surname [14], or by reconstructing physical features from the DNA [7]. In order to address 
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45 these issues, there has been work on cryptographic schemes aimed at obscuring results 

related 46 to DNA or the input/output [8, 12, 15, 27]. 

47 In this work we take the first steps in addressing some of these issues within self- 

48 assembling systems by proposing a new style of computation termed covert computation 

49 with important motivations for private biomedical computing and cryptography. Self- 

50 assembly is the process by which systems of simple objects autonomously organize themselves 

51 through local interactions into larger, more complex objects. Understanding how to design 52 

and efficiently program molecular self-assembly systems is fundamental for the future of 53 

nanotechnology. The Abstract Tile Self-Assembly Model (aTAM) [9, 19], motivated by a 54 DNA 

implementaiton [13], has become the premiere model for the study of the computational 55 

power of self-assembling systems. In the aTAM, system monomers are modeled by four-sided 56 

Wang tiles which randomly combine and attach if the respective bonding domains on tile 57 edges 

are sufficiently strong. The aTAM is known to be computationally universal [26] and 58 

intrinsically universal [11]. 

59 Covert Computation. As a computational model, tile self-assembly differs from 60 traditional models 

of computation in that computational steps are defined by permanently 61 placing particular tile types 

at specific locations in geometric space. A history of each 62 computational step is thereby recorded in 

the final assembled structure. This presents a 63 unique problem to this type of computation: is it 

possible to conceal the input and history 64 of a computation within the final assembly while still 

computing and reporting the output 65 of the computation? Concealing the computational histories of 

the self-assembly process in 66 this way requires designing a computational system which encodes 

computational steps in 67 the order of tile placement, rather than the type and location of tile 

placements. We use 68 the term covert1 to describe this concealment of inputs and computational 

histories. This 69 method of computing is different than previous tile self-assembly computing methods 

and 70 requires novel techniques. 

71 Also, while the reader may notice many parallels between our work and traditional secure 72 multiparty 

computation [5], it should be made clear that our main result is the secure 73 computation of a function 

with only a single party. The challenges presented above make 74 this an interesting problem for tile self-

assembly. 

75 Motivation. The concept of covert computation within self-assembly has many potential 76 

applications. We briefly outline a few biomedical computing applications. Consider a set 77 of diagnostic 

tiles sent to a patient as a droplet of DNA to which the patient adds some 78 biological input such as a 

blood sample. From this the diagnostic system could compute some 79 desired function that outputs 

specific diagnostic statistics. The patient sends the combined 80 product to a medical facility for 

interpretation. With covert computation, only the results 81 can be read by the lab and the user’s 

biological input is obscured ensuring privacy. 

82 Another potential use involves implementing a cryptography system within a molecular 83 computing 

framework. The ability to covertly compute allows users to provide a personal key 84 input that may be 

combined with a publicly available covert system where the combination 

85 verifies some computable property of the input key without revealing any additional details 86 of the 

key. This style of cryptographic scheme fits well when the input keys are biological 87 based inputs. 

88 A final potential biological application might be engineering a system for unlocking key 

89 biological properties within bio-engineered crops. For example, by releasing a hidden “key” 

Model Negative Glues Detachment Complexity Theorem 

aTAM No No O(|A|2 + |A||T|) Thm. 3.2 in [1] 

aTAM Yes No coNP-complete Thm. 3 

 
1 It is important to note that the term covert has specific meaning in cryptography which does not apply here. 

E 
A 
T 
C 
S 

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de/


 A. A. Cantu, A. Luchsinger, R. Schweller, and T. Wylie 26:3 

 

ICALP 2019 

aTAM Yes Yes Undecidable [10] 

 Table 1 The complexity of Unique Assembly Verification in the aTAM in relation to negative glues. |A| refers 

to the size of an assembly and |T| is the number of tile types. 

90 input, covert computation might allow a field of crops to become fertile. A company owning 91 

the patent on this type of activation might desire the security of ensuring that the release 

92 key cannot be deciphered from the activated crop based on a covert molecular computation. 

93 The final motivation of covert computation is within algorithmic self-assembly. We 94 believe the 

concept of covert computation is fundamental and hope that our novel design 95 techniques will be 

applicable to a number of future problems in the area. As evidence towards 96 this, we apply our 

techniques to resolve the complexity of the fundamental question of 97 verifying whether a tile 

system uniquely assembles a given assembly within the growth-only 98 negative-glue aTAM. 

99 Contributions. After formally defining the concept of covert computation in tile 

100 self-assembly, we implement several covert logic gates within the negative-glue growth- 

101 only abstract Tile Assembly Model (this growth-only restriction to negative glues has 

102 been seen in the 2HAM [4], and negative glues in tile assembly have received extensive 103 study 

[3, 10, 18, 21, 20, 22, 23]), and show these gates may be combined to create general 104 circuits, 

thereby showing that general covert computation is possible. Finally, we apply our 105 techniques 

and framework to address the fundamental problem of deciding if a negative-glue 

106 aTAM system uniquely produces a given assembly. We show this problem is coNP-complete. 

107 Table 1 outlines how our result compares to what was previously known. 

108 2 Definitions 

109 We begin with an overview of the Abstract Tile-Assembly Model (aTAM) and then give the 110 new 

definitions introducing covert computation. Due to space constraints, we only give a 

111 high-level overview of the aTAM. Formal definitions for all the concepts are in Appendix 8. 

112 2.1 Abstract Tile Assembly Model 

113 Figure 1 gives a high-level overview of the models with a couple of example systems. 

114 Essentially, we have non-rotating square tiles that have a glue label on each edge. The tile 115 with 

its labels is a tile type. The tile set is all the tile types. A glue function determines the 116 strength of 

matching glue labels. An assembly is a single tile or a finite set of tiles that have 117 combined via the 

glues. If the combined strength of the glue labels of a single attaching 118 tile to an assembly is 

greater than or equal to the temperature τ, the tile may attach. A 119 producible assembly is any 

assembly that might be achieved by beginning with the seed (the 120 specified starting assembly) 

and attaching tiles. A producible assembly is further said to be 

121 terminal if no further tile attachment is possible. A tile system is said to uniquely produce 

122 a (terminal) assembly A if all producible assemblies will eventually grow into A. A tile 123 system is 

formally represented as an ordered triplet γ = (T,s,τ) representing the tile set, 124 seed assembly, and 

temperature parameter of the system respectively. 
 Tile Set Glues Producible Assemblies Tile Set Glues Producible Assemblies 
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(b) Growth aTAM 

Figure 1 High-level overview of the aTAM with 

repulsive forces. Both systems have tiles that can 

attach to the seed tile given they can attach with τ strength. The arrows show the possible assembly paths 

from the seed tile with the terminal assembly being outlined. (a) A negative aTAM system that has a possible 

assembly path causing disassembly. One path is growth-only, but the other path can attach the tile with the 

purple/red glues, which causes the orange/red tile to become unstable and detach. (b) A growth only aTAM 

system where negative glues are used to block, but never cause disassembly. The only difference is that the 

purple glue attaches with strength 1, G(p) = 1. This yields two possible terminal assemblies, neither of which 

include disassembly. 

125 In a standard aTAM system, all glues are positive integral values, but here we look 126 at the negative 

aTAM where the glues may be negative/repulsive. Such repulsive forces 

127 may be used to block the attachment of tiles despite the presence of strong attractive glues. 

128 Moreover, the inclusion of repulsive forces may yield unstable producible assemblies where 129 a 

subassembly could detach because it no longer has enough binding strength. While this 130 type of 

detachment has been studied in the literature [10, 23], we avoid this feature in 131 this work as it’s 

inclusion drastically changes the complexity of the model by making most 132 types of verification 

problem undecidable, and may require more sophisticated techniques for 133 experimental 

implementation. Thus, we consider a system to be a valid growth-only system 134 if all producible 

assemblies are τ-stable. In this paper we restrict our consideration to valid 135 growth-only systems. 

 136 2.2 Covert Computation 
137 Here, we provide formal definitions for computing a function with a tile system, and the 

138 further requirement for covert computation of a function. Our formulation of computing 139 

functions is based on that of [16] but modified to allow for each bit to be represented by a 140 sub-

assembly potentially larger than a single tile. 

141 Informally, a Tile Assembly Computer (TAC) for a function f consists of a set of tiles, 

142 along with a format for both input and output. The input format is a specification for how 

143 to build an input seed to the system that encodes the desired input bit-string for function f. 

144 We require that each bit of the input be mapped to one of two assemblies for the respective 145 

bit position: a sub-assembly representing “0”, or a sub-assembly representing “1”. The input 146 

seed for the entire string is the union of all these sub-assemblies. This seed, along with the 147 

tile set of the TAC, forms a tile system. The output of the computation is the final terminal 148 

assembly this system builds. To interpret what bit-string is represented by the output, a 149 

second output format specifies a pair of sub-assemblies for each bit. The bitstring represented 

150 by the union of these subassemblies within the constructed assembly is the output of the 

151 system. 

152 For a TAC to covertly compute f, the TAC must compute f and produce a unique 153 assembly for 

each possible output of f. We note that our formulation for providing input 

154 and interpreting output is quite rigid and may prohibit more exotic forms of computation. 155 We 

acknowledge this, but caution that any formulation must take care to prevent “cheating” 

156 that could allow the output of a function to be partially or completely encoded within the 157 input, for 

example. To prevent this, some type of uniformity constraint, similar to what 
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 (a) (b) (c) 

 Figure 2 Backfilling in covert computation. Given two gadgets A and B. (a) If true is output from Gadget A, 

that wire assembles to the next gadget. (b) Gadget B builds, and based on its function, outputs the true or 

false wire (false in this case). Once it received the input, it backfills the false wire towards A. (c) The false wire 

finishes assembling and both Gadget A and B have true and false paths filled. The true output wire of Gadget 

B will be backfilled from the next gadget. In this way, the input to B/output from A is “hidden.” 

158 is considered in circuit complexity [25], should be enforced. We now provide the formal 159 definitions 

of function computing and covert computation. 

160 Input/Output Templates. An n-bit input/output template over tile set T is a sequence 

161 of ordered pairs of assemblies over T: A = (A0,0,A0,1), ...,(An−1,0, An−1,1). For a given 162 n-bit string b 

= b0,...,bn−1 and n-bit input/output template A, the representation of b with 

163 respect to A is the assembly A(b) = 
S

i Ai,bi. A template is valid for a temperature τ if 164 this union never 

contains overlaps for any choice of b, and is always τ-stable. An assembly 

165 B ⊇ A(b), which contains A(b) as a subassembly, is said to represent b as long as A(d) * B 

166 for any d 6= b. 

167 Function Computing Problem. A tile assembly computer (TAC) is an ordered 168 quadruple = = 

(T,I,O,τ) where T is a tile set, I is an n-bit input template, and O is a 169 k-bit output template. A TAC 

is said to compute function f :  if for any b 170 and c  such that f(b) = c, then the tile 

system Γ=,b = (T,I(b),τ) uniquely assembles a 171 set of assemblies which all represent c with respect 

to template O. 

172 Covert Computation. A TAC covertly computes a function f(b) = c if 1) it computes 

173 f, and 2) for each c, there exists a unique assembly Ac such that for all b, where f(b) = c, 

174 the system Γ=,b = (T,I(b),τ) uniquely produces Ac. In other words, Ac is determined by c, 175 and 

every b where f(b) = c has the exact same final assemby. 

176 3 Covert Circuits 

177 Here we cover the machinery for making covert gadgets and the covert gadgets needed for 

178 functional completeness in circuits based on a dual-rail logic implementation: variables, wires, 

179 fanouts, and NANDs. We cover a NOT gate as a primitive used in the NAND construction. 180 

Traditionally, a crossover is also given, and we discuss why this is unnecessary in Section 4. 

181 For simplicity, we give some other common gates in Section 5. 

182 Some Conventions. All solid lines through two neighboring tiles indicate strength-2 183

 glues between them. The arrows indicate the build order (which may branch). Blue single 184

 glues are strength 1, and red are strength -1. Following the variable gadget (Figure 3b), all 185

 variables have a true and false path adjacent to each other (dual-rail logic), but only one may 

186 be traversed at a time until the next gadget. The true value is always to the left or on top of 

187 the false value, and for most gadgets, the true input is colored grey while the false input 188

 is colored green. Once a variable wire, true or false, reaches the next gadget, the unused 189

 variable wire is backfilled so that both wires are present. This is a key concept used in all 190

 constructions and is further explained in Figure 2. 

191 3.1 Variables and Wires 
192 A variable in our system is represented by two lines of connected tiles where only one exists 193 at a 

time when the wire is in use (dual rail). Figure 3a shows an example of the possible 194 input seeds on 2-

bits used in a half-adder. Figure 3b demonstrates how the variables might 
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are represented by a true and a false line where only one may exist. The variables build off the seed, but only 

the ti or the fi tile may attach due to the negative glue between the two tiles. (b) 

A gadget referred to as a logic diode. This ensures input from one direction and stops tiles from 

 

 (a) Basic NOT (b) NOT (c) H-NOT 

 Figure 4 (a) Basic NOT gate (b) NOT gate with the logic diode on the input (c) A covert NOT gate with an 

additional negative horizontal glue on the output to prevent incorrect backfilling. This modification is needed 

when using this gate for the construction of the NAND gate. 

195 be set nondeterministically, although generally the specific bits desired would already be 196 attached 

as part of the input seed (as in Figure 3a). Each variable vi has a sequence of tiles 197 ti representing a true 

setting and fi a false setting. The first tiles have a negative glue of 198 strength −1 meaning only the ti or 

the fi tile can attach. The other shown glues are strength 199 2. Once the variable is set, the setting travels 

to the gadget as a wire. 

200 The variable setup in Figure 3b is used in one of two ways: In the case of providing 

201 an input to a covert computation, this variable setup defines the input template for the 202 

computation, with the seed for a given binary input being the seed assembly with either a 

203 true or false tile (but not both) placed at each bit position. An example system (a half-adder) 

204 with a big seed input is shown in Section 5. Alternatively, the seed begins as a single seed tile 205 

that nondeterministically creates a valid input over all possible n-bit inputs. This approach 206 is used 

in Section 4 to show coNP-completeness for unique assembly verification. 

207 Figure 3c shows what we refer to as a logic diode, and prevents timing issues. These 208

 appear in every gadget and serves two purposes: if backfilling, this stops the filling at the 209

 gadget level so it does not backfill a wire that has not been set, and second it ensures that 210 a 

gadget must have input from the wire. All shown glues are strength 1 and the lines are 211

 strength 2. This gadget is important for later constructions. The properties of the gadget 212 are 

in Appendix 9.1. 

 213 3.2 Covert NOT Gadget 
214 The first covert gadget we introduce is a NOT gadget. This gadget displays some of the key 215 insights 

needed for covert computation, such as how blocking with negative glue adds power 216 to the system. 

The NOT gadget is also used as a submodule within our NAND gadget. The 217 NOT gadget in Figure 4a is 

the basic gadget with 4b only adding the logic diode on the 218 input to ensure no backfill happens past 

the gadget and that the gadget had input. 

219 Given the variables and wires work as shown, the difficulty in a dual-rail NOT is that 220 there must be 

at least one crossing tile that both the true and false paths place. This tile can 
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from tile x due to the negative glues n1 and n3 of strength −1. (b) Once the NOT gadget passes the false 

output, glues h3,h4 cooperatively allow the false portion and wire to backfill. Glue h2 is needed to fill in the 

tile with n2. (c) A NOT gadget with false input fi
in and output tout

i . The false output can not attach due to the 

negative glue n2. The tile to the west of x may attach, but due to glue n3, no other tile can attach. (d) Once 

the NOT gadget passes the true output, glues h5,h6 allow the true portion and wire to backfill. Glue h1 is 

needed to counteract the n1 glue when backfilling that tile. 

 

NOT blocks are shown outlined in Figures 4b and 4c. The left box is the standard NOT gadget and the right 

box is the H-NOT gadget. (b) The full NAND gate with the two NOT gadgets filled in and compacted. 

221 be thought of as where the signals cross or switch. Figure 4a shows the basic NOT gadgets, 222

 and the tile shared by both paths is labelled x. The negative glues allow blocking around 223 this 

tile so that only one path is possible once x is placed. 

224 The specific properties that must hold are covered in Appendix 9.2. The conditions 

225 guarantee that the gadget works correctly and that the gadget is covert (the gadget looks 226 

indistinguishable before the output regardless of the input), and that the backfill works 

227 correctly. Figure 5 discusses these elements and walks through how the true/false inputs 228 block and 

crossover correctly. The Figure does not show the logic diode though. 

229 3.3 Covert NAND Gadget 
230 The basic idea for the NAND gadget is to flip one of the inputs using a covert NOT, and 231 then 

we can compare the two true input lines to see if both inputs were true. Since a NAND 232 is 

false only when both inputs are true, this is the only path that should result in a false 233 output. The 

basic idea for the gadget is shown in Figure 6a with a representative block for 234 the NOT gadget 

already discussed. The second NOT block is the modified NOT gadget 235 (H-NOT) from Figure 

4c. Both false inputs are routed to the true output. One must go 236 through another NOT in order 

to flip to the top output position, while the other false line 237 skips this NOT and ties directly to the 

true output. 

238 For clarity, we discuss the block diagram first, then address a few technical issues in the 239

 full version. The full list of properties necessary and sufficient for the covert NAND is given 240 in 

Appendix 9.3. Once we flip the top input, we can use cooperative binding to compare the 241 two 

true inputs, and only if both are true do we send it as true into the second NOT block 242 (so the 

gadget outputs false). All other input combinations output true. 
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 (a) FANOUT (c) False Input 

 Figure 7 (a) FANOUT gadget. (b) True input wire for the FANOUT gadget tin
i results in output wires tout

i 1 and 

tout
i 2. (c) False input wire for the FANOUT gadget fi

in results in output wires fi
out1 and fiout2. 

243 We will show why NOT and H-NOT are both necessary. Looking at Figure 6b, the 244 negative glue nH is 

necessary in H-NOT to ensure that tout
i , which skips the second NOT 

245 gadget, does not set the output tout
ij , and then also set fij

out based on the assembly order. 

246 Essentially, this protects from incorrect backfilling and setting both outputs. However, the 247 nH 

glue should not exist in the standard NOT gadget, or it may backfill and could cause a 248 tile 

to break off depending on build order. Given we want a purely growth model, this would 249 not 

be allowed. It is possible to create a single NOT that incorporates these properties, but 250 we 

prefer to avoid the added complexity. 

251 Finally, the logic diodes on the inputs (Figure 3c) ensure that if we only have one input, 

252 the gadget does not backfill down the other input wire. Even if the gadget has already been 

253 set, that input will wait until either the true or false wire comes before backfilling the wire. 

 254 3.4 Covert FANOUT Gadget 
255 The FANOUT gadget needs to duplicate the geometric wire, and also needs to only backfill 256

 once both outgoing wires have backfilled. Figure 7a shows the FANOUT gadget. Similar to 257 the 

NOT, there is a shared set of tiles placed by both the true and the false path. Figures 258 7b and 7c 

show the true and false paths without any backfilling, respectively. The necessary 259 conditions 

decscribing the gadget are in Appendex 9.4. 

 260 4 Covert Computation and Unique Assembly Verification 

261 In this section we establish our main results related to covert computation in self-assembly 

262 systems. We first utilize our covert circuitry to show that any function is covertly computable 263 

(Thm. 1). We then apply covert circuitry to show that the open problem of Unique Assembly 264 

Verification within the growth-only negative glue aTAM is coNP-complete (Thm. 3). 

265 I Theorem 1. For any function f computed by a boolean circuit, there exists a tile assembly 266 computer 

(TAC) that covertly computes f. 

267 Proof. The proof of this theorem consists of a direct simulation of boolean circuits by way 

268 of a series of covert gadget implementations for various logic gates and how to connect them. 

269 The proof follows from the gadgets and machinery given in Section 3. J 

270 We now prove that Unique Assembly Verification (UAV) in a growth-only negative 

271 glue aTAM system is coNP-complete by utilizing our covert gadgets. Without the growth- 
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 (c) Crossover (d) XOR Crossover (e) XOR with NANDs 

Figure 8 Constructing planar crossover gadgets with NAND gates. (a) XOR symbol. (b) NAND symbol. (c) 

Two wires in a circuit that cross making it non-planar. (d) A planar circuit using XOR gates that act as a 

crossover. (e) A planar circuit using only NAND gates that implement an XOR gate. 

272 only constraint, UAV in the atam with negative glues is undecidable as a Turing machine 273 

simulation could use negative interactions to break down produced assemblies into a final 274 

unique terminal assembly exactly when the Turing machine halts [10]. With no negative 

275 glues however, the problem is in P [1]. We prove that with the ability to temporarily block, 276

 the problem becomes coNP-complete. This result is achieved with a reduction from Circuit 277 SAT. 

Unique Assembly Verification in our model is formally defined as follows: 

278 B Problem (Unique Assembly Verification (growth only)). Given a tile-system Γ = (T,S,τ) 

279 with the promise that it is a growth-only system, and an assembly A. Does Γ uniquely 280 assemble 

A? 

281 A reduction from Circuit SAT generally requires a functionally universal set of gates 282 and variable, 

wire, fanout, and crossover gadgets. Both NAND and NOR are functionally 283 complete gates, so given 

either, all gates can be made. A crossover gadget is redundant since 284 it can be made with XOR gates 

and XOR gates can be made with NAND gates [24]. Figure 

285 8 shows this derivation. Finally, Circuit SAT requires a DAG, and thus there are no cycles, 

286 and so the gadgets can be topologically sorted so that there are no crossovers that cause 287 a loop 

(the output of a gadget can not crossover one of its input lines). Thus, a reduction 288 from Planar 

Circuit SAT is equivalent to a reduction from Circuit SAT. 

289 I Definition 2 (Planar Circuit SAT). Instance: A planar directed acyclic graph (DAG) 

290 G = (V,E) with n boolean inputs, one output, and all gates are NAND gates (or NOR gates). 291 Every 

v ∈ V is either a NAND gate (deg−(v) = 2, deg+(v) = 1) or a fanout (deg−(v) = 1, 292 deg+(v) = 2). The 

source vertices, vi ∈ V s.t. deg−(vi) = 0 and 1 ≤ i ≤ n, are the variables. 

293 The sink vertex, s ∈ V s.t. deg+(vi) = 0 is the “output” of the boolean circuit. 

294 Question: Does there exist a setting of the inputs such that the output to the circuit is 1? 

295 I Theorem 3. Unique Assembly Verification in the aTAM with repulsive forces in a growth 296 only 

system is coNP-complete. 

297 Proof. We first observe that Unique Assembly Verification with repulsive forces is in coNP 298 as any 

failure to uniquely assemble a target assembly A comes in the form of a polynomially 

299 sized assembly that is inconsistent with A. The producibility of this assembly can be verified 

300 in polynomial time, and thus serves as a certificate for “no” instances to the UAV problem. 

301 We now show coNP-hardness by a reduction from Planar Circuit SAT. Given an instance 302 of 

planar Circuit SAT C with inputs i1,...,in where i ∈ {0,1}, i.e., a boolean circuit. By 303 our definition 

we assume there are only NAND gates, fanouts, input variables and an ouput 304 variable in 

the planar DAG. 

305 For our reduction, we build a tileset T by adding tiles corresponding to the covert gadgets 306 and 

connections described in Section 3. Replace each NAND gate with a unique set of 307 tiles implementing 

a NAND gadget, and each FANOUT gate with a unique set of tiles 308 implementing a FANOUT 
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gadget. For each edge, a unique sequence of tiles is added to T 309 that connects the two gadgets 

representing the two gates the edge connected. 

310 This yields a tile assembly computer (TAC), = = (T,I,O,τ), for covertly computing 311 the circuit C. The 

key modification to show coNP-hardness is the utilization of a seed that 312 non-deterministically grows 

any one of the possible n-bit input seeds for this TAC, and then 313 evaluates the circuit. If the circuit is 

not-satisfiable, then the final computation will be false 314 regardless of the guessed input, and therefore 

will yield the unique “no” assembly of the 315 TAC based on the fact that the circuit is computed covertly. 

On the other hand, if there 316 exists some satisfying n-bit input, there will be at least one final assembly 

that differs from 

317 the “no” assembly. Thus, the “no” assembly is uniquely produced if and only if the circuit C 318 is not 

satisfiable, thereby showing coNP-hardness. 

319 Non-deterministic input selection. To non-deterministically form the possible input bits, 320 we include 

the tile types and seed tile described in Figure 3b. The seed grows a length O(n) 

321 line with each bit being encoded by a pair of adjacent locations which expose a glue on the 322 north 

edge. For each pair of positions, the presence of the left tile denotes a “1” for the 323 respective bit, and 

the placement of the right tile denotes a “0”. The “1” and “0” tiles share a 324 negative strength 1 glue, 

making their mutual placement impossible until the covert gadgets 

325 have passed on the computed signal and backfilled. J 

326 Given that UAV is coNP-complete with negative glues by way of covert circuitry, yet 327 UAV is in P 

without negative glues [1], it is reasonable to conjecture that the use of negative 328 interactions is 

needed to perform covert computation. 

329 B Conjecture. For some function f computed by a boolean circuit, there does not exist a tile 330 

assembly computer (TAC) that covertly computes f in the aTAM without negative glues. 

 331 5 Further Motivation 

332 Here, we give a few more motivating examples and some simplified gadgets. There is a lot of 

333 future work in this vein of research that is extremely relevant to modern society. We first 334

 cover the covert AND and OR gadgets. 

335 Simplified Gadgets Even though NAND gates alone are functionally complete, for 336 some gates the 

circuit is larger than desired. Here, we give compact direct versions of some 337 other useful gadgets and 

gates. This does not affect the complexity, but does help build a 338 more efficient covert computation 

toolkit. 

339 Covert AND Gadget. The covert AND gadget is nearly identical to the NAND gadget. 

340 The only real difference is which two inputs the second NOT takes in. Also, similar to the 341 H-

NOT needed for the NAND, we create a V-NOT, which is a NOT with one additional 342 vertically 

aligned negative glue. Figure 9a shows the AND gadget with the blocks in place of 343 NOTs for 

clarity, and Figure 9b shows the full gadget. 

344 Covert OR Gadget. The covert OR gadget still uses a NOT to flip one of the inputs, 

345 but does several checks on the second flip to the point of drastically differing from a NOT. 

346 Figure 10a shows the AND gadget with the blocks in place of NOTs for clarity, and Figure 347

 10b shows the full gadget. 

 348 5.1 Encryption and Cryptography 

349 Several encryption methods are based off problems that we believe to be “hard” computa- 

350 tionally. One of the most common is factoring the product of large prime numbers, which is 351 the 

basis for several encryption schemes. Although factoring may be difficult, the function 
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 (a) AND Block Diagram (b) AND 

 Figure 9 (a) Diagram of the covert AND gate with NOTs shown as blocks. The left box is the standard NOT 

gadget and the right box is the V-NOT gadget (has an additional vertical glue). (b) The full AND gate with the 

two NOT gadgets filled in and some simplification for space. 

 

 (a) Block OR (b) OR 

 Figure 10 (a) Block diagram for the OR gadget. (b) The covert OR gadget with the NOT gadget filled in. 

B 

A 

 (c) Half-Adder (d) 2-Bit Multiplier 

 Figure 11 Constructing covert circuits for arithmetic building up to cryptography examples. (a) XOR 

symbol. (b) AND symbol. (c) A half-adder, which has two 1-bit numbers as input and a 2-bit number as 

output. (d) A 2-bit multiplier which has two 2-bit numbers as input and outputs a 4-bit number that is their 

product. This can be expanded to use two large primes resulting in a large number that would be hard to 

factor. 

352 to generate the number is simple multiplication, which can be accomplished with simple 353 circuits. 

Figure 11d shows a simple 6-gate circuit implementing a 2-bit number multiplier 354 resulting in a 4-bit 

output number. An n-bit multiplier scales linearly (in the number of bits) 355 with additional AND gates 

and full and half adders. 

356 Implementing the multiplier with covert gates is not difficult, but the resulting assembly 357 is large 

due to the inefficient crossover gadget used. Instead, we demonstrate a simple 358 half-adder. The 

schematic for a half-adder is in Figure 11c. A covert half-adder as a TAC is 359 shown in Figure 12b. The 

XOR has been replaced by the 4 NAND gates as shown in Figure 360 8e. Further, 3 FANOUTs were needed, 

an AND gadget as shown above in Section 5, and 2 361 NOT gadgets were used to flip the input for the 

gadgets. Figure 12a shows the four possible 362 input seeds to build the assembly. A half-adder is simple 

enough to know which seed was 363 used if 00 or 10 are output, but if 01 is output there is no way to 

know. 
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seed input is highlighted and all 4 possible seeds are shown in (a). Regardless of the seed, the final assembly 

will look identical except the final T/F representing the bits of the numbers added. This implements the 

schematic shown in Figure 11c and the XOR is implemented with NANDs as shown in Figure 8e. 

 364 6 Conclusions and Future Work 

365 We have introduced the concept of covert computation in self-assembly and provided a 

366 general scheme to implement any boolean circuit under this restriction. Beyond potential 367 

applications to biomedical privacy, cryptography, and intellectual property, our techniques 368 and 

framework promise to impact self-assembly theory itself. As a first example we have 369 applied our 

techniques to the fundamental problem of Unique Assembly Verification in the 370 negative glue 

aTAM, and shown it to be coNP-complete with growth-only systems, essentially 371 as a corollary of 

our covert computation theory. 

372 A number of future directions stem from our work. Having established the general 

373 computation power of covert computation, a natural next step is the consideration of efficiency 

374 for computing classes of functions. The time complexity of self-assembly computation has 375 

been studied [2, 16] and shown to allow for a substantial amount of parallelism. Can similar 376 

results be achieved under the covert constraint? What general connections exists between the 

377 time complexity for unrestricted self-assembly computation versus that of covert computation? 378 

Other natural metrics include minimizing the number of distinct tile types, along with the 379 space taken 

up by the final assembly of the computation. 
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453 8 Formal Definitions 

454 Tiles. Let Π be an alphabet of symbols called the glue types. A tile is a finite edge polygon 455 with some 

finite subset of border points each assigned a glue type from Π. Each glue type 

456 g ∈ Π also has some integer strength str(g). Here, we consider unit square tiles of the same 457

 orientation with at most one glue type per face, and the location to be the center of the tile 458

 located at integer coordinates. 

459 Assemblies. An assembly is a finite set of tiles whose interiors do not overlap. If each 460 tile in A is a 

translation of some tile in a set of tiles T, we say that A is an assembly over 461 tile set T. For a given 

assembly Υ, define the bond graph GΥ to be the weighted graph in 

462 which each element of Υ is a vertex, and the weight of an edge between two tiles is the 463 strength of 

the overlapping matching glue points between the two tiles. Only overlapping 

464 glues of the same type contribute a non-zero weight, whereas overlapping, non-equal glues 465 

contribute zero weight to the bond graph. The property that only equal glue types interact 466 with each 

other is referred to as the diagonal glue function property and is perhaps more 467 feasible than more 

general glue functions for experimental implementation (see [6] for the 

468 theoretical impact of relaxing this constraint). An assembly Υ is said to be τ-stable for an 469

 integer τ if the min-cut of GΥ is at least τ. 

470 Tile Attachment. Given a tile t, an integer τ, and an assembly A, we say that t 471 may attach to A at 

temperature τ to form A0 if there exists a translation t0 of t such that 

472 A0 = A
S

{t0}, and the sum of newly bonded glues between t0 and A meets or exceeds τ. 

473 For a tile set T we use notation A →T,τ A0 to denote there exists some t ∈ T that may 

474 attach to A to form A0 at temperature τ. When T and τ are implied, we simply say A → A0. 

475 Further, we say that A →∗ A0 if either A = A0, or there exists a finite sequence of assemblies 476 hA1 

...Aki such that A → A1 → ... → Ak → A0. 

477 Tile Systems. A tile system Γ = (T,S,τ) is an ordered triplet consisting of a set of 

478 tiles T called the system’s tile set, a τ-stable assembly S called the system’s seed assembly, 479 

and a positive integer τ referred to as the system’s temperature. A tile system Γ = (T,S,τ) 

480 has an associated set of producible assemblies, PRODΓ, which define what assemblies can grow 

481 from the initial seed S by any sequence of temperature τ tile attachments from T. Formally, 482 S ∈ 

PRODΓ is a base case producible assembly. Further, for every A ∈ PRODΓ, if A →T,τ A0, 

483 then A0 ∈ PRODΓ. That is, assembly S is producible, and for every producible assembly A, if 484 A can 

grow into A0, then A0 is also producible. We further denote a producible assembly 485 A to be terminal if 

A has no attachable tile from T at temperature τ. We say a system 

486 Γ = (T,S,τ) uniquely produces an assembly A if all producible assemblies can grow into A 

487 through some sequence of tile attachments. More formally, Γ uniquely produces an assembly 488 A 

∈ PRODΓ if for every A0 ∈ PRODΓ it is the case that A0 →∗ A. Systems that uniquely 489 produce one 

assembly are said to be deterministic. 

490 Finally, we consider a system to be a valid growth-only system if all assemblies in PRODΓ 491

 are τ-stable. The existence of negative strength glues allows for the possibility that unstable 492

 assemblies are produced. 

493 9 Gadget Properties 

494 Here, we describe some of the gadgets in more detail by specifying the properties that each 495

 gadget must have in order to guarantee covert operation. 
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 496 9.1 Logic Diodes 

497 Logic Diodes are important to prevent timing issues in the dual rail logic related to backfilling 498 of the 

covert gadgets. They must have these properties. 

499 1. If tin
i enters, then only tout

i leaves. This is guaranteed due to h2,h3 cooperatively placing 500 the next 

tile. Without fi
in present, the only next tile which could be placed is this 501 cooperatively-placed tile from 

tout
i . 

502 2. If fi
in enters, then only fi

out leaves. This is guaranteed due to h4,h5 cooperatively placing 503 the next 

tile. Without tin
i present, the only next tile which could be placed is this 504 cooperatively-placed tile from 

fi
out. 

505 3. The fi
in wire will be backfilled if and only if tin

i enters. Without tin
i present, a given 506 backfilled false 

path will stop at the tile with h4,h5. With tin
i present, the tile with h1,h4 507 can cooperatively attach and 

backfill the false wire. 

508 4. The tin
i wire will be backfilled if and only if fi

in enters. Without fi
in present, a backfilled 509 false 

path will stop at the tile with h2,h3. However, with fi
in present, the h1,h2 tile can 510 cooperatively 

attach and backfill the false wire. 

 511 9.2 NOT Gadget 

512 In verifying that the gadget works as intended, we must verify six properties. 

513 1. If tin
i enters a NOT gadget, it results in fi

out and not tout
i . Figure 5a shows the gadget 514

 in this case− with true input tin
i and output fi

out. The true output can not place from 515

 tile x due to the negative glues n1 and n3 of strength −1. Given the build order, we are 516

 guaranteed fi
out and that tout

i can not build. 

517 2. If fi
in enters a NOT gadget, it results in tout

i and not fi
out. Figure 5c shows the gadget 518 in this case− 

with false input fi
in and output tout

i . The false output can not attach due 519 to the negative glue n2. The 

tile to the west of x may attach, but due to glue n3, no 520 other tile can attach. Given the build order, we 

are guaranteed tout
i and that fi

out can 

521 not build. 

522 3. If tin
i enters a NOT gadget and fi

out leaves, the gadget and fi
in is backfilled up to tile x. 

523 Figure 5b shows the desired result. Glues h3,h4 cooperatively allow the false portion and 524 wire 

to backfill. Glue h2 is needed to fill in the tile with n2. 

525 4. If fi
in enters a NOT gadget and tout

i leaves, the gadget and tin
i is backfilled up to tile 526 x. Figure 5d 

shows the desired result. Glues h5,h6 allow the true portion and wire to 527 backfill. Glue h1 is needed to 

counteract the n1 glue when backfilling that tile. 

528 5. If the gadget resulted in fi
out, a future gadget can backfill tout

i and the gadget will be 529 complete. If 

the gadget is in the configuration of Figure 5b, the true wire can directly 530 backfill until the tile directly 

above tile x. The glue n1 would prevent this tile from 531 placing except x will be there and the tile can 

cooperatively be placed using the north 532 glue of x and the south glue of the backfilling wire. 

533 6. If the gadget resulted in tout
i , a future gadget can backfill fi

out and the gadget will be 534 complete. If 

the gadget is in the configuration of Figure 5d, the false wire can directly 

535 backfill until the tile directly east of tile x. The glue n2 would prevent this tile from 536 placing except x 

is there and the tile can cooperatively be placed using the east glue of x 537 and the west glue of the 

backfilling wire. 

538 The first two conditions guarantee that the gadget works correctly. The second two 539 conditions 

guarantee the covertness of the gadget, i.e., the gadget looks indistinguishable 540 before the output 
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regardless of the input. The final two conditions verify that the backfill 541 from future gadgets will work 

correctly, and no trace of the build path will be evident. 

542 9.3 NAND Gadget 

543 There are many specific issues related to the NAND gadget handled in the text. The 544 properties that 

it must have are as follows. 

545 1. Given fi
in or fj

in, the wire tout
ij leaves the gadget. If wire fi

in = ti
out

 is set, this is tied 546 directly to the 

output wire tout
ij . If the wire fj

in comes in, it comes in as the false input 547 of the second H-NOT gadget, 

which means it leaves as tout
ij by the validity of the NOT 

548 gadget. 

549 2. If wires tin
i and tin

j are set, then the wire fij
out should leave the gadget. Wire tin

i exits 

the 

550 first NOT gadget as fi
out. This wire, fi

out, and tin
j both stop and expose glues a2 and a3, 551 

respectively. Both are strength 1 glues, and thus the tile with glues a2 and a3 can only 

552 place if both the glues are exposed. Thus, only if wires tin
i and tin

j are set, will wire tin
ij 553

 ever enter the H-NOT gadget, which results in the wire fij
out as the gadget output. 

554 3. All components backfill correctly. The NOT gadget backfills correctly. If fj
in was set, 555 then tin

ij is 

backfilled from the H-NOT gate. When the tiles are placed such that glues a1 556 and a2 are placed, the 

tile can cooperatively place that backfills fi
out. Similarly, when 

557 the other tiles place with glues a3 and a4, a tile cooperatively attaches to backfill the tin
j . 

558 4. The growth-only constraint is not violated with the negative glues. This can only happen 559 

given a stable assembly where a tile attaches with a negative glue that destabilizes part 560 of 

the assembly. The additional negative glue nH could do this if the green tile is placed 

561 after the blue tile, however, the build path is intentional to ensure this can not happen. 562

 If the wire fij
out were placed and tout

ij is backfilled, the tile with nH would be the last tile 563 that 

could attach and the assembly would never be unstable. 

564 5. The gadget does not behave incorrectly with only one input. The logic diode guarantees 565 the 

backfilling never goes beyond the gadget. If one input is false, the NAND can send 566 the tout
ij wire and 

backfill the NAND gadget without having yet receieved the second 567 input. When it arrives, that wire is 

backfilled. 

568 9.4 FANOUT Gadget 

569 The FANOUT gadget needs to duplicate the geometric wire, and also needs to only backfill 570

 once both outgoing wires have backfilled. Figure 7a shows the FANOUT gadget. It has the 571

 following necessary properties. 

572 1. With input tin
i , the gadget outputs wires tout

i 1 and tout
i 2, and does not output fi

out1 and 573 fi
out2. 

Figure 7b shows the true fanout without the backfilling. Due to n1 and n2, the 574 false outputs can not 

assemble. Both settings share the same middle four tiles, but with 575 placement order n1 is placed 

first and then cooperative glues are used to place the first 576 tile of the four (with glues g3,g4). 

577 2. With input fi
in, the gadget outputs wires fi

out1 and fi
out2, and does not output tout

i 1 

578 and ti
out2. Figure 7c shows the false fanout without the backfilling. Due to n1 and n2, 579 the true 

outputs can not assemble. With placement order n2 is placed first and then 580 cooperative glues are 

used to place the first of the four middle tiles (with glues h3,h4). 581 3. With input wire tin
i , wire fi

in 

only backfills once fi
out1 or fi

out2 have backfilled. Both 582 wires backfill independently, and only when 
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fi
out2 is backfilled will wire fi

in backfill. 583 4. With input wire fi
in, wire tin

i only backfills once tout
i 1 or tout

i 

2 have backfilled. Both wires 

584 backfill independently, and only when ti
out1 is backfilled will wire tin

i backfill. 


