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w — Abstract

1s Traditionally, computation within self-assembly models is hard to conceal because the self-assembly is process
generates a crystalline assembly whose computational history is inherently part of the 17structure itself. With no
way to remove information from the computation, this computational 1s model offers a unique problem: how can
computational input and computation be hidden while 1sstill computing and reporting the final output? Designing
such systems is inherently motivated by 20 privacy concerns in biomedical computing and applications in
cryptography.

211n this paper we propose the problem of performing “covert computation” within tile self-assembly 22 that seeks
to design self-assembly systems that “conceal” both the input and computational history

23 0f performed computations. We achieve these results within the growth-only restricted abstract tile 2aassembly
model (aTAM) with positive and negative interactions. We show that general-case covert 2s computation is possible
by implementing a set of basic covert logic gates capable of simulating any 2 circuit (functionally complete). To
further motivate the study of covert computation, we apply 27 our new framework to resolve an outstanding
complexity question; we use our covert circuitry to 2s show that the unique assembly verification problem within
the growth-only aTAM with negative 2 interactions is coNP-complete.

30 2012 ACM Subject Classification General and reference - General literature; General and reference
a1 Keywords and phrases self-assembly, covert circuits
5 Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.26

;3 Funding This research was supported in part by National Science Foundation Grant CCF-1817602.

2 1 Introduction

s Since the discovery of DNA over half a century ago, humans have been continually working s to
understand and harness the vast amount of information it contains. The Human Genome 37 Project [17],
which began in 1990 and took a decade, was the first major attempt to fully sssequence the human
genome. In the years since, sequencing has become extremely cheap and

sseasy, and our ability to manipulate DNA has emerged as a central tool for many applications «wrelated
to nanotechnology and biomedical engineering.

a Although this progress has many benefits, as we learn more about the information, we
@ also must be careful with the shared data. There are databases of anonymous DNA sequences,
43 which can sometimes be deanonymized with only small amounts of information such as a

surname [14], or by reconstructing physical features from the DNA [7]. In order to address
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sthese issues, there has been work on cryptographic schemes aimed at obscuring results

related «to DNA or the input/output [8, 12, 15, 27].

a7 In this work we take the first steps in addressing some of these issues within self-

a8 assembling systems by proposing a new style of computation termed covert computation

a9 with important motivations for private biomedical computing and cryptography. Self-

50 assembly is the process by which systems of simple objects autonomously organize themselves

sithrough local interactions into larger, more complex objects. Understanding how to design s
and efficiently program molecular self-assembly systems is fundamental for the future of s
nanotechnology. The Abstract Tile Self-Assembly Model (aTAM) [9, 19], motivated by a s DNA
implementaiton [13], has become the premiere model for the study of the computational ss
power of self-assembling systems. In the aTAM, system monomers are modeled by four-sided s
Wang tiles which randomly combine and attach if the respective bonding domains on tile s;edges
are sufficiently strong. The aTAM is known to be computationally universal [26] and ss
intrinsically universal [11].
ss Covert Computation. As a computational model, tile self-assembly differs from «traditional models
of computation in that computational steps are defined by permanently « placing particular tile types
at specific locations in geometric space. A history of each & computational step is thereby recorded in
the final assembled structure. This presents a & unique problem to this type of computation: is it
possible to conceal the input and history e« of a computation within the final assembly while still
computing and reporting the output & of the computation? Concealing the computational histories of
the self-assembly process in e this way requires designing a computational system which encodes
computational steps in & the order of tile placement, rather than the type and location of tile
placements. We use e the term covert!to describe this concealment of inputs and computational
histories. This e method of computing is different than previous tile self-assembly computing methods
and »requires novel techniques.
nAlso, while the reader may notice many parallels between our work and traditional secure »multiparty
computation [5], it should be made clear that our main result is the secure scomputation of a function
with only a single party. The challenges presented above make 7this an interesting problem for tile self-
assembly.
» Motivation. The concept of covert computation within self-assembly has many potential
applications. We briefly outline a few biomedical computing applications. Consider a set 7 of diagnostic
tiles sent to a patient as a droplet of DNA to which the patient adds some 7 biological input such as a
blood sample. From this the diagnostic system could compute some 7 desired function that outputs
specific diagnostic statistics. The patient sends the combined s product to a medical facility for
interpretation. With covert computation, only the results 1 can be read by the lab and the user’s
biological input is obscured ensuring privacy.
sz Another potential use involves implementing a cryptography system within a molecular sscomputing
framework. The ability to covertly compute allows users to provide a personal key s input that may be
combined with a publicly available covert system where the combination
s verifies some computable property of the input key without revealing any additional details ss of the
key. This style of cryptographic scheme fits well when the input keys are biological zbased inputs.

88 A final potential biological application might be engineering a system for unlocking key

8 biological properties within bio-engineered crops. For example, by releasing a hidden “key”
Model Negative Glues Detachment Complexity Theorem
aTAM No No O(|A]?+ |A]]T]) Thm. 3.2in [1]
aTAM Yes No coNP-complete Thm. 3

11t is important to note that the term covert has specific meaning in cryptography which does not apply here.
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‘ aTAM ‘ Yes Yes Undecidable [10]

Table 1 The complexity of Unique Assembly Verification in the aTAM in relation to negative glues. [A[ refers
to the size of an assembly and / T/ is the number of tile types.

input, covert computation might allow a field of crops to become fertile. A company owning o
the patent on this type of activation might desire the security of ensuring that the release
key cannot be deciphered from the activated crop based on a covert molecular computation.
The final motivation of covert computation is within algorithmic self-assembly. We « believe the
concept of covert computation is fundamental and hope that our novel design sstechniques will be
applicable to a number of future problems in the area. As evidence towards s this, we apply our
techniques to resolve the complexity of the fundamental question of « verifying whether a tile
system uniquely assembles a given assembly within the growth-only ssnegative-glue aTAM.
Contributions. After formally defining the concept of covert computation in tile
self-assembly, we implement several covert logic gates within the negative-glue growth-
only abstract Tile Assembly Model (this growth-only restriction to negative glues has
been seen in the 2HAM [4], and negative glues in tile assembly have received extensive 3 study
[3, 10, 18, 21, 20, 22, 23]), and show these gates may be combined to create general i circuits,
thereby showing that general covert computation is possible. Finally, we apply our wstechniques
and framework to address the fundamental problem of deciding if a negative-glue
aTAM system uniquely produces a given assembly. We show this problem is coNP-complete.
Table 1 outlines how our result compares to what was previously known.

2 Definitions

100 We begin with an overview of the Abstract Tile-Assembly Model (aTAM) and then give the 10 new
definitions introducing covert computation. Due to space constraints, we only give a

111

112

113

114

122

high-level overview of the aTAM. Formal definitions for all the concepts are in Appendix 8.

2.1 Abstract Tile Assembly Model

Figure 1 gives a high-level overview of the models with a couple of example systems.

Essentially, we have non-rotating square tiles that have a glue label on each edge. The tile 11s with
its labels is a tile type. The tile set is all the tile types. A glue function determines the usstrength of
matching glue labels. An assembly is a single tile or a finite set of tiles that have 117combined via the
glues. If the combined strength of the glue labels of a single attaching ustile to an assembly is
greater than or equal to the temperature t, the tile may attach. A usproducible assembly is any
assembly that might be achieved by beginning with the seed (the 10 specified starting assembly)
and attaching tiles. A producible assembly is further said to be

terminal if no further tile attachment is possible. A tile system is said to uniquely produce

a (terminal) assembly A if all producible assemblies will eventually grow into A. A tile 13 system is
formally represented as an ordered triplet y = (7,s,T) representing the tile set, 1..seed assembly, and

temperature parameter of the system respectively.
Tile Set Glues Producible Assemblies Tile Set Glues Producible Assemblies
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Figure 1 High-level overview of the aTAM with

repulsive forces. Both systems have tiles that can

attach to the seed tile given they can attach with t strength. The arrows show the possible assembly paths

from the seed tile with the terminal assembly being outlined. (a) A negative aTAM system that has a possible

assembly path causing disassembly. One path is growth-only, but the other path can attach the tile with the

purple/red glues, which causes the orange/red tile to become unstable and detach. (b) A growth only aTAM

system where negative glues are used to block, but never cause disassembly. The only difference is that the

purple glue attaches with strength 1, G(p) = 1. This yields two possible terminal assemblies, neither of which
include disassembly.

1sIn a standard aTAM system, all glues are positive integral values, but here we look 1sat the negative

aTAM where the glues may be negative/repulsive. Such repulsive forces
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may be used to block the attachment of tiles despite the presence of strong attractive glues.

Moreover, the inclusion of repulsive forces may yield unstable producible assemblies where s a
subassembly could detach because it no longer has enough binding strength. While this 1o type of
detachment has been studied in the literature [10, 23], we avoid this feature in 1s:this work as it’s
inclusion drastically changes the complexity of the model by making most 12 types of verification
problem undecidable, and may require more sophisticated techniques for 113 experimental
implementation. Thus, we consider a system to be a valid growth-only system . if all producible
assemblies are t-stable. In this paper we restrict our consideration to valid 1sgrowth-only systems.

s 2.2  Covert Computation
Here, we provide formal definitions for computing a function with a tile system, and the
further requirement for covert computation of a function. Our formulation of computing s
functions is based on that of [16] but modified to allow for each bit to be represented by a 10sub-
assembly potentially larger than a single tile.
Informally, a Tile Assembly Computer (TAC) for a function f consists of a set of tiles,
along with a format for both input and output. The input format is a specification for how
to build an input seed to the system that encodes the desired input bit-string for function f.
We require that each bit of the input be mapped to one of two assemblies for the respective s
bit position: a sub-assembly representing “0”, or a sub-assembly representing “1”. The input 1
seed for the entire string is the union of all these sub-assemblies. This seed, along with the 17
tile set of the TAC, forms a tile system. The output of the computation is the final terminal s
assembly this system builds. To interpret what bit-string is represented by the output, a 1o
second output format specifies a pair of sub-assemblies for each bit. The bitstring represented
10 by the union of these subassemblies within the constructed assembly is the output of the
system.

For a TAC to covertly compute f, the TAC must compute f and produce a unique issassembly for
each possible output of f. We note that our formulation for providing input

1« and interpreting output is quite rigid and may prohibit more exotic forms of computation. i1ss We
acknowledge this, but caution that any formulation must take care to prevent “cheating”

issthat could allow the output of a function to be partially or completely encoded within the iszinput, for
example. To prevent this, some type of uniformity constraint, similar to what
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(a) (b) (c)

Figure 2 Backfilling in covert computation. Given two gadgets A and B. (a) If true is output from Gadget A,
that wire assembles to the next gadget. (b) Gadget B builds, and based on its function, outputs the true or
false wire (false in this case). Once it received the input, it backfills the false wire towards A. (c) The false wire
finishes assembling and both Gadget A and B have true and false paths filled. The true output wire of Gadget
B will be backfilled from the next gadget. In this way, the input to B/output from A is “hidden.”

1s8is considered in circuit complexity [25], should be enforced. We now provide the formal issdefinitions
of function computing and covert computation.
160 Input/Output Templates. An n-bit input/output template over tile set T is a sequence

161 of ordered pairs of assemblies over T: A = (Ao,0,A0,1), ..., (An-1,0, An-1,1). FOr a given 2 n-bit string b
= bg,...,bs-1and n-bit input/output template A, the representation of b with

warespect to A is the assembly A(b) = SfA,;b,-. A template is valid for a temperature t if 1. this union never

contains overlaps for any choice of b, and is always t-stable. An assembly
s B 2A(b), which contains A(b) as a subassembly, is said to represent b as long as A(d) * B

s foranyd6=b.

17 Function Computing Problem. A tile assembly computer (TAC) is an ordered s quadruple = =
(T,1,0,T) where Tis a tile set, I is an n-bit input template, and O is a e k-bit output template. A TAC
is said to compute functionf:- if forany b l...nd c- such that f(b) = ¢, then the tile
system = = (T,/(b),T) uniquely assembles a 1 set of assemblies which all represent ¢ with respect
to template O.

m Covert Computation. A TAC covertly computes a function f(b) = c if 1) it computes
173 f, and 2) for each c, there exists a unique assembly Acsuch that for all b, where f(b) = c,
174 the system I'-» = (T,/(b),T) uniquely produces Ac. In other words, Acis determined by ¢, 1 and

every b where f(b) = c has the exact same final assemby.

w3 Covert Circuits

17 Here we cover the machinery for making covert gadgets and the covert gadgets needed for
178 functional completeness in circuits based on a dual-rail logic implementation: variables, wires,
s fanouts, and NANDs. We cover a NOT gate as a primitive used in the NAND construction. s
Traditionally, a crossover is also given, and we discuss why this is unnecessary in Section 4.
11 For simplicity, we give some other common gates in Section 5.
1.2 Some Conventions. All solid lines through two neighboring tiles indicate strength-2 1s
glues between them. The arrows indicate the build order (which may branch). Blue single 1z
glues are strength 1, and red are strength -1. Following the variable gadget (Figure 3b), all 1
variables have a true and false path adjacent to each other (dual-rail logic), but only one may
16 be traversed at a time until the next gadget. The true value is always to the left or on top of
17 the false value, and for most gadgets, the true input is colored grey while the false input 1ss
is colored green. Once a variable wire, true or false, reaches the next gadget, the unused 1z
variable wire is backfilled so that both wires are present. This is a key concept used in all 1%
constructions and is further explained in Figure 2.

« 3.1  Variables and Wires

12 A variable in our system is represented by two lines of connected tiles where only one exists 3 at a
time when the wire is in use (dual rail). Figure 3a shows an example of the possible input seeds on 2-
bits used in a half-adder. Figure 3b demonstrates how the variables might
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(a) Possible Input Seeds (b) Variable (c) Logic Diode

Figure 3 (a) Example of the 4 possible input seeds for a half-adder from Section 5.1. (a) Variables
are represented by a true and a false line where only one may exist. The variables build off the seed, but only
the t;or the fitile may attach due to the negative glue between the two tiles. (b)

A gadget referred to as a logic diode. This ensures input from one direction and stops tiles from
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(a) Basic NOT (b) NOT (c) H-NOT

Figure 4 (a) Basic NOT gate (b) NOT gate with the logic diode on the input (c) A covert NOT gate with an
additional negative horizontal glue on the output to prevent incorrect backfilling. This modification is needed
when using this gate for the construction of the NAND gate.

1s be set nondeterministically, although generally the specific bits desired would already be wssattached

as part of the input seed (as in Figure 3a). Each variable vihas a sequence of tiles 17 tirepresenting a true

setting and fia false setting. The first tiles have a negative glue of 1sstrength -1 meaning only the tior

the fitile can attach. The other shown glues are strength 10 2. Once the variable is set, the setting travels

to the gadget as a wire.

200 The variable setup in Figure 3b is used in one of two ways: In the case of providing

201 an input to a covert computation, this variable setup defines the input template for the 2

computation, with the seed for a given binary input being the seed assembly with either a

w3 true or false tile (but not both) placed at each bit position. An example system (a half-adder)

s With a big seed input is shown in Section 5. Alternatively, the seed begins as a single seed tile 25
that nondeterministically creates a valid input over all possible n-bit inputs. This approach xsis used
in Section 4 to show coNP-completeness for unique assembly verification.

207 Figure 3c shows what we refer to as a logic diode, and prevents timing issues. These 2
appear in every gadget and serves two purposes: if backfilling, this stops the filling at the 20

gadget level so it does not backfill a wire that has not been set, and second it ensures that 210 a
gadget must have input from the wire. All shown glues are strength 1 and the lines are 2

strength 2. This gadget is important for later constructions. The properties of the gadget 21 are

in Appendix 9.1.

a 3.2 Covert NOT Gadget
asThe first covert gadget we introduce is a NOT gadget. This gadget displays some of the key xsinsights
needed for covert computation, such as how blocking with negative glue adds power 2sto the system.
The NOT gadget is also used as a submodule within our NAND gadget. The 27 NOT gadget in Figure 4a is
the basic gadget with 4b only adding the logic diode on the 2asinput to ensure no backfill happens past
the gadget and that the gadget had input.
219 Given the variables and wires work as shown, the difficulty in a dual-rail NOT is that 20 there must be
at least one crossing tile that both the true and false paths place. This tile can
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(a) True Input 1 (b) True Input 2 (c) False Input 1 (d) False Input 2

Figure 5 (a) A NOT gadget with true input /" and output f7“". The true output can not place
from tile x due to the negative glues niand n; of strength -1. (b) Once the NOT gadget passes the false
output, glues hs, hscooperatively allow the false portion and wire to backfill. Glue h; is needed to fill in the
tile with n,. (c) A NOT gadget with false input fi" and output t°¥%; . The false output can not attach due to the
negative glue n,. The tile to the west of x may attach, but due to glue ns, no other tile can attach. (d) Once
the NOT gadget passes the true output, glues hs,hg allow the true portion and wire to backfill. Glue h; is
needed to counteract the n; glue when backfilling that tile.

I

|-

: sl [ - ——II_
_l>)_ 1. —[>v— H=HreH ] wull o

NOT blocks are shown outlined in Figures 4b and 4c. The left box is the standard NOT gadget and the right
box is the H-NOT gadget. (b) The full NAND gate with the two NOT gadgets filled in and compacted.

m be thought of as where the signals cross or switch. Figure 4a shows the basic NOT gadgets, 2»

and the tile shared by both paths is labelled x. The negative glues allow blocking around 23 this

tile so that only one path is possible once x is placed.

24 The specific properties that must hold are covered in Appendix 9.2. The conditions

25 guarantee that the gadget works correctly and that the gadget is covert (the gadget looks 2
indistinguishable before the output regardless of the input), and that the backfill works

n7correctly. Figure 5 discusses these elements and walks through how the true/false inputs 2sblock and

crossover correctly. The Figure does not show the logic diode though.

2 3.3 Covert NAND Gadget

230 The basic idea for the NAND gadget is to flip one of the inputs using a covert NOT, and 2uthen
we can compare the two true input lines to see if both inputs were true. Since a NAND 2 is
false only when both inputs are true, this is the only path that should result in a false s output. The
basic idea for the gadget is shown in Figure 6a with a representative block for »:the NOT gadget
already discussed. The second NOT block is the modified NOT gadget 2 (H-NOT) from Figure
4c. Both false inputs are routed to the true output. One must go 2 through another NOT in order
to flip to the top output position, while the other false line 257 skips this NOT and ties directly to the
true output.

238 For clarity, we discuss the block diagram first, then address a few technical issues in the 2
full version. The full list of properties necessary and sufficient for the covert NAND is given 2o in
Appendix 9.3. Once we flip the top input, we can use cooperative binding to compare the two

true inputs, and only if both are true do we send it as true into the second NOT block 2.2 (so the
gadget outputs false). All other input combinations output true.
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(a) FANOUT (c) False Input

Figure 7 (a) FANOUT gadget. (b) True input wire for the FANOUT gadget t™"; results in output wires tov;and
tout;2, (c) False input wire for the FANOUT gadget f/" results in output wires fivt1and fiouta.

23 We will show why NOT and H-NOT are both necessary. Looking at Figure 6b, the .. negative glue nuis
necessary in H-NOT to ensure that t°“*;, which skips the second NOT

s gadget, does not set the output t°“*;, and then also set f;°“*based on the assembly order.

us  Essentially, this protects from incorrect backfilling and setting both outputs. However, the 27 nx
glue should not exist in the standard NOT gadget, or it may backfill and could cause a 2s tile
to break off depending on build order. Given we want a purely growth model, this would 2s not
be allowed. It is possible to create a single NOT that incorporates these properties, but 0 ~ we
prefer to avoid the added complexity.

251 Finally, the logic diodes on the inputs (Figure 3c) ensure that if we only have one input,
32 the gadget does not backfill down the other input wire. Even if the gadget has already been
253 set, that input will wait until either the true or false wire comes before backfilling the wire.

= 3.4 Covert FANOUT Gadget
255 The FANOUT gadget needs to duplicate the geometric wire, and also needs to only backfill s
once both outgoing wires have backfilled. Figure 7a shows the FANOUT gadget. Similar to 27 the
NOT, there is a shared set of tiles placed by both the true and the false path. Figures »ss  7b and 7c
show the true and false paths without any backfilling, respectively. The necessary 2o conditions
decscribing the gadget are in Appendex 9.4.

w & Covert Computation and Unique Assembly Verification

1 Inthis section we establish our main results related to covert computation in self-assembly

% systems. We first utilize our covert circuitry to show that any function is covertly computable s
(Thm. 1). We then apply covert circuitry to show that the open problem of Unique Assembly 2z
Verification within the growth-only negative glue aTAM is coNP-complete (Thm. 3).

s | Theorem 1. For any function f computed by a boolean circuit, there exists a tile assembly :scomputer

(TAC) that covertly computes f.

267 Proof. The proof of this theorem consists of a direct simulation of boolean circuits by way

268 of a series of covert gadget implementations for various logic gates and how to connect them.
269 The proof follows from the gadgets and machinery given in Section 3. J

270 We now prove that Unique Assembly Verification (UAV) in a growth-only negative

m glue aTAM system is coNP-complete by utilizing our covert gadgets. Without the growth-
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(b) NAND

(c) Crossover (d) XOR Crossover (e) XOR with NANDs

Figure 8 Constructing planar crossover gadgets with NAND gates. (a) XOR symbol. (b) NAND symbol. (c)
Two wires in a circuit that cross making it non-planar. (d) A planar circuit using XOR gates that act as a
crossover. (e) A planar circuit using only NAND gates that implement an XOR gate.

m only constraint, UAV in the atam with negative glues is undecidable as a Turing machine 2
simulation could use negative interactions to break down produced assemblies into a final 27
unique terminal assembly exactly when the Turing machine halts [10]. With no negative

275 glues however, the problem is in P [1]. We prove that with the ability to temporarily block, 27

the problem becomes coNP-complete. This result is achieved with a reduction from Circuit 277 SAT.

Unique Assembly Verification in our model is formally defined as follows:

s B Problem (Unique Assembly Verification (growth only)). Given a tile-system I' = (T,S,1)

a9 with the promise that it is a growth-only system, and an assembly A. Does I uniquely 2s0assemble
A?

21 A reduction from Circuit SAT generally requires a functionally universal set of gates :s:and variable,

wire, fanout, and crossover gadgets. Both NAND and NOR are functionally 2 complete gates, so given

either, all gates can be made. A crossover gadget is redundant since 2s4it can be made with XOR gates

and XOR gates can be made with NAND gates [24]. Figure

s 8 shows this derivation. Finally, Circuit SAT requires a DAG, and thus there are no cycles,

s and so the gadgets can be topologically sorted so that there are no crossovers that cause :s7a loop
(the output of a gadget can not crossover one of its input lines). Thus, a reduction 2ssfrom Planar
Circuit SAT is equivalent to a reduction from Circuit SAT.

9 | Definition 2 (Planar Circuit SAT). Instance: A planar directed acyclic graph (DAG)

w0 G = (V,E) with n boolean inputs, one output, and all gates are NAND gates (or NOR gates). 21 Every
v €V is either a NAND gate (deg(v) = 2, deg*(v) = 1) or a fanout (deg(v) = 1, .2deg*(v) = 2). The
source vertices, vi EV s.t. deg™(vi) =0 and 1 <i < n, are the variables.

w3 The sink vertex, s €V s.t. deg*(vi) = 0 is the “output” of the boolean circuit.

24 Question: Does there exist a setting of the inputs such that the output to the circuit is 1?

s | Theorem 3. Unique Assembly Verification in the aTAM with repulsive forces in a growth s  only
system is coNP-complete.

7 Proof. We first observe that Unique Assembly Verification with repulsive forces is in coNP xsas any

failure to uniquely assemble a target assembly A comes in the form of a polynomially

w9 Sized assembly that is inconsistent with A. The producibility of this assembly can be verified

s0 i polynomial time, and thus serves as a certificate for “no” instances to the UAV problem.

;0 We now show coNP-hardness by a reduction from Planar Circuit SAT. Given an instance s»  of
planar Circuit SAT C with inputs i3,...,inwhere i €{0,1}, i.e., a boolean circuit. By s our definition
we assume there are only NAND gates, fanouts, input variables and an ouput s variable in
the planar DAG.

s0s FOr our reduction, we build a tileset T by adding tiles corresponding to the covert gadgets s and

connections described in Section 3. Replace each NAND gate with a unique set of s tiles implementing

a NAND gadget, and each FANOUT gate with a unique set of tiles s implementing a  FANOUT
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26:10 Covert Computation in Self-Assembled Circuits

gadget. For each edge, a unique sequence of tiles is added to T s that connects the two gadgets
representing the two gates the edge connected.

10 This yields a tile assembly computer (TAC), = = (T,/,0,1), for covertly computing s the circuit C. The
key modification to show coNP-hardness is the utilization of a seed that s12non-deterministically grows
any one of the possible n-bit input seeds for this TAC, and then sz evaluates the circuit. If the circuit is
not-satisfiable, then the final computation will be false siuregardless of the guessed input, and therefore
will yield the unique “no” assembly of the s1s TAC based on the fact that the circuit is computed covertly.
On the other hand, if there sis exists some satisfying n-bit input, there will be at least one final assembly
that differs from

si7the “no” assembly. Thus, the “no” assembly is uniquely produced if and only if the circuit C ssis not
satisfiable, thereby showing coNP-hardness.

sis Non-deterministic input selection. To non-deterministically form the possible input bits, s2owe include
the tile types and seed tile described in Figure 3b. The seed grows a length O(n)

s line with each bit being encoded by a pair of adjacent locations which expose a glue on the s2north
edge. For each pair of positions, the presence of the left tile denotes a “1” for the ssrespective bit, and
the placement of the right tile denotes a “0”. The “1” and “0” tiles share a x4 negative strength 1 glue,
making their mutual placement impossible until the covert gadgets

525 have passed on the computed signal and backfilled. J

126 Given that UAV is coNP-complete with negative glues by way of covert circuitry, yet s UAV is in P
without negative glues [1], it is reasonable to conjecture that the use of negative s:sinteractions is
needed to perform covert computation.

329 B Conjecture. For some function f computed by a boolean circuit, there does not exist a tile s

assembly computer (TAC) that covertly computes fin the aTAM without negative glues.

m 5 Further Motivation

33 Here, we give a few more motivating examples and some simplified gadgets. There is a lot of
333 future work in this vein of research that is extremely relevant to modern society. We first s
cover the covert AND and OR gadgets.

13s Simplified Gadgets Even though NAND gates alone are functionally complete, for ::ssome gates the

circuit is larger than desired. Here, we give compact direct versions of some 37 other useful gadgets and

gates. This does not affect the complexity, but does help build a ss more efficient covert computation
toolkit.

339 Covert AND Gadget. The covert AND gadget is nearly identical to the NAND gadget.

340 The only real difference is which two inputs the second NOT takes in. Also, similar to the sz H-
NOT needed for the NAND, we create a V-NOT, which is a NOT with one additional s vertically
aligned negative glue. Figure 9a shows the AND gadget with the blocks in place of :sNOTs for
clarity, and Figure 9b shows the full gadget.

E Covert OR Gadget. The covert OR gadget still uses a NOT to flip one of the inputs,
s but does several checks on the second flip to the point of drastically differing from a NOT.
36 Figure 10a shows the AND gadget with the blocks in place of NOTs for clarity, and Figure s

10b shows the full gadget.

us 5.1 Encryption and Cryptography

s Several encryption methods are based off problems that we believe to be “hard” computa-
;0 tionally. One of the most common is factoring the product of large prime numbers, which is s the
basis for several encryption schemes. Although factoring may be difficult, the function
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Figure 9 (a) Diagram of the covert AND gate with NOTs shown as blocks. The left box is the standard NOT
gadget and the right box is the V-NOT gadget (has an additional vertical glue). (b) The full AND gate with the
two NOT gadgets filled in and some simplification for space.
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Figure 10 (a) Block diagram for the OR gadget. (b) The covert OR gadget with the NOT gadget filled in.
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(c) Half-Adder (d) 2-Bit Multiplier

Figure 11 Constructing covert circuits for arithmetic building up to cryptography examples. (a) XOR
symbol. (b) AND symbol. (c) A half-adder, which has two 1-bit numbers as input and a 2-bit number as
output. (d) A 2-bit multiplier which has two 2-bit numbers as input and outputs a 4-bit number that is their
product. This can be expanded to use two large primes resulting in a large number that would be hard to
factor.

;2t0 generate the number is simple multiplication, which can be accomplished with simple ss3 circuits.
Figure 11d shows a simple 6-gate circuit implementing a 2-bit number multiplier ss. resulting in a 4-bit
output number. An n-bit multiplier scales linearly (in the number of bits) sss with additional AND gates
and full and half adders.

;s Implementing the multiplier with covert gates is not difficult, but the resulting assembly s is large
due to the inefficient crossover gadget used. Instead, we demonstrate a simple s half-adder. The
schematic for a half-adder is in Figure 11c. A covert half-adder as a TAC is sssshown in Figure 12b. The
XOR has been replaced by the 4 NAND gates as shown in Figure s« 8e. Further, 3 FANOUTSs were needed,
an AND gadget as shown above in Section 5, and 2 3 NOT gadgets were used to flip the input for the
gadgets. Figure 12a shows the four possible s2input seeds to build the assembly. A half-adder is simple
enough to know which seed was s used if 00 or 10 are output, but if 01 is output there is no way to

know.
ICALP 2019
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seed input is highlighted and all 4 possible seeds are shown in (a). Regardless of the seed, the final assembly
will look identical except the final T/F representing the bits of the numbers added. This implements the
schematic shown in Figure 11c and the XOR is implemented with NANDs as shown in Figure 8e.

w O Conclusions and Future Work

s We have introduced the concept of covert computation in self-assembly and provided a
w6 general scheme to implement any boolean circuit under this restriction. Beyond potential e
applications to biomedical privacy, cryptography, and intellectual property, our techniques sssand
framework promise to impact self-assembly theory itself. As a first example we have s applied our
techniques to the fundamental problem of Unique Assembly Verification in the s negative glue
aTAM, and shown it to be coNP-complete with growth-only systems, essentially s»:as a corollary of
our covert computation theory.
n A number of future directions stem from our work. Having established the general
73 computation power of covert computation, a natural next step is the consideration of efficiency
snufor computing classes of functions. The time complexity of self-assembly computation has 37
been studied [2, 16] and shown to allow for a substantial amount of parallelism. Can similar s
results be achieved under the covert constraint? What general connections exists between the
s;7time complexity for unrestricted self-assembly computation versus that of covert computation? sz
Other natural metrics include minimizing the number of distinct tile types, along with the s space taken
up by the final assembly of the computation.
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s 8 Formal Definitions

ssaTiles. Let 1N be an alphabet of symbols called the glue types. A tile is a finite edge polygon «sswith some
finite subset of border points each assigned a glue type from M. Each glue type

as6 g € also has some integer strength str(g). Here, we consider unit square tiles of the same 47
orientation with at most one glue type per face, and the location to be the center of the tile ass

located at integer coordinates.

sss Assemblies. An assembly is a finite set of tiles whose interiors do not overlap. If each sotile in A is a
translation of some tile in a set of tiles T, we say that A is an assembly over s tile set T. For a given
assembly Y, define the bond graph Gvto be the weighted graph in

w2 Which each element of Y is a vertex, and the weight of an edge between two tiles is the 3 strength of
the overlapping matching glue points between the two tiles. Only overlapping

s glues of the same type contribute a non-zero weight, whereas overlapping, non-equal glues s
contribute zero weight to the bond graph. The property that only equal glue types interact «swith each
other is referred to as the diagonal glue function property and is perhaps more s feasible than more
general glue functions for experimental implementation (see [6] for the

468 theoretical impact of relaxing this constraint). An assembly Y is said to be t-stable for an s
integer t if the min-cut of Gvis at least 7.

o Tile Attachment. Given a tile t, an integer t, and an assembly A, we say that t s» may attach to A at
temperature tto form A%if there exists a translation t? of t such that

m Al= As{to}, and the sum of newly bonded glues between t’and A meets or exceeds T.

= For atile set T we use notation A >7,:A°to denote there exists some t €T that may

s attach to A to form A%at temperature . When T and T are implied, we simply say A > A°.

ws  Further, we say that A ©>*ACif either A = A, or there exists a finite sequence of assemblies 475 hA1

WAk suchthat A > A1 ... > Ac> A%

a77 Tile Systems. A tile system I = (T,S5,7) is an ordered triplet consisting of a set of
a78 tiles T called the system’s tile set, a T-stable assembly S called the system’s seed assembly, a7
and a positive integer t referred to as the system’s temperature. A tile system I' = (T,S,1)

w0 has an associated set of producible assemblies, PRODr, which define what assemblies can grow

1 from the initial seed S by any sequence of temperature 7 tile attachments from T. Formally, S €
PRODris a base case producible assembly. Further, for every A €PRODy, if A >7,:A°,

ssthen A% € PRODy. That is, assembly S is producible, and for every producible assembly A, if s A can

grow into A% then A%is also producible. We further denote a producible assembly s A to be terminal if

A has no attachable tile from T at temperature t. We say a system

s [ =(T,S,1) uniquely produces an assembly A if all producible assemblies can grow into A

«7  through some sequence of tile attachments. More formally, I uniquely produces an assembly s A

€ PRODyrif for every A € PRODr it is the case that A’ >*A. Systems that uniquely s produce one
assembly are said to be deterministic.

4% Finally, we consider a system to be a valid growth-only system if all assemblies in PRODr 201
are t-stable. The existence of negative strength glues allows for the possibility that unstable s
assemblies are produced.

w9 Gadget Properties

494 Here, we describe some of the gadgets in more detail by specifying the properties that each s
gadget must have in order to guarantee covert operation.
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s 9.1  Logic Diodes

s7Logic Diodes are important to prevent timing issues in the dual rail logic related to backfilling «ss of the
covert gadgets. They must have these properties.

w9 1. If tienters, then only t°“!leaves. This is guaranteed due to hz,hs cooperatively placing sothe next
tile. Without fi" present, the only next tile which could be placed is this s: cooperatively-placed tile from
v,

s22. If fi" enters, then only f°“t leaves. This is guaranteed due to hs,hs cooperatively placing si: the next
tile. Without t"; present, the only next tile which could be placed is this si: cooperatively-placed tile from
fiout-

s0s3. The fi" wire will be backfilled if and only if t";enters. Without t"; present, a given sis backfilled false
path will stop at the tile with hs,hs. With t"; present, the tile with hi,hasecan cooperatively attach and
backfill the false wire.

sosd. The t7; wire will be backfilled if and only if f/" enters. Without f/" present, a backfilled swsfalse
path will stop at the tile with hy, hs. However, with f" present, the hi,ha tile can swo cooperatively

attach and backfill the false wire.

s 9.2 NOT Gadget

sz In verifying that the gadget works as intended, we must verify six properties.

sz LI enters a NOT gadget, it results in f*“*and not t°; . Figure 5a shows the gadget s
in this case— with true input t"; and output f°“*. The true output can not place from sis
tile x due to the negative glues niand ns of strength -1. Given the build order, we are s
guaranteed f°“*and that t°“4 can not build.

s172. If fi" enters a NOT gadget, it results in t°“;and not f°“*. Figure 5¢c shows the gadget sisin this case-

with false input f/" and output t°“;. The false output can not attach due sisto the negative glue n». The

tile to the west of x may attach, but due to glue ns, no swother tile can attach. Given the build order, we

are guaranteed t°“;and that f°“!can

521 not build.
2 3.1ft"; enters a NOT gadget and f°“leaves, the gadget and f/"is backfilled up to tile x.
523 Figure 5b shows the desired result. Glues hs, hacooperatively allow the false portion and s.awire

to backfill. Glue h2is needed to fill in the tile with n.
s 4. If fi"enters a NOT gadget and t°“!; leaves, the gadget and t";is backfilled up to tile ssx. Figure 5d
shows the desired result. Glues hs,he allow the true portion and wire to s backfill. Glue h1is needed to
counteract the niglue when backfilling that tile.
s2s5. If the gadget resulted in f°“, a future gadget can backfill t°“!;and the gadget will be s:scomplete. If
the gadget is in the configuration of Figure 5b, the true wire can directly s backfill until the tile directly

above tile x. The glue n1 would prevent this tile from s placing except x will be there and the tile can
cooperatively be placed using the north s»glue of x and the south glue of the backfilling wire.

s36. If the gadget resulted in t°“!, a future gadget can backfill f°**and the gadget will be ssacomplete. If
the gadget is in the configuration of Figure 5d, the false wire can directly

s3s backfill until the tile directly east of tile x. The glue n2would prevent this tile from s placing except x
is there and the tile can cooperatively be placed using the east glue of x svand the west glue of the
backfilling wire.

s3s The first two conditions guarantee that the gadget works correctly. The second two s conditions
guarantee the covertness of the gadget, i.e., the gadget looks indistinguishable s« before the output
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regardless of the input. The final two conditions verify that the backfill ss:from future gadgets will work
correctly, and no trace of the build path will be evident.

a2 9.3 NAND Gadget

sisThere are many specific issues related to the NAND gadget handled in the text. The s« properties that
it must have are as follows.

ss 1. Given fi" or fi", the wire t°“!jleaves the gadget. If wire fi" = t°“is set, this is tied sisdirectly to the
output wire t°“%;. If the wire f" comes in, it comes in as the false input s» of the second H-NOT gadget,

which means it leaves as t°“!;by the validity of the NOT

548 gadget.

549 2. If wires t"; and t"; are set, then the wire fj°“*should leave the gadget. Wire t"; exits
the

550 first NOT gadget as fi°“t. This wire, f°“, and t”; both stop and expose glues a, and as, ss:

respectively. Both are strength 1 glues, and thus the tile with glues a2and az can only
552 place if both the glues are exposed. Thus, only if wires t"; and t"; are set, will wire t"jsss
ever enter the H-NOT gadget, which results in the wire fj°“*as the gadget output.
s 3. All components backfill correctly. The NOT gadget backfills correctly. If f" was set, sssthen t7is
backfilled from the H-NOT gate. When the tiles are placed such that glues aisssand az are placed, the
tile can cooperatively place that backfills fi°“¢. Similarly, when
557 the other tiles place with glues asand as, a tile cooperatively attaches to backfill the t™;.

558 4. The growth-only constraint is not violated with the negative glues. This can only happen sss
given a stable assembly where a tile attaches with a negative glue that destabilizes part s« of
the assembly. The additional negative glue nycould do this if the green tile is placed

561 after the blue tile, however, the build path is intentional to ensure this can not happen. s

If the wire fi°“* were placed and t°“4; is backfilled, the tile with nswould be the last tile ses that

could attach and the assembly would never be unstable.

see 5. The gadget does not behave incorrectly with only one input. The logic diode guarantees sethe
backfilling never goes beyond the gadget. If one input is false, the NAND can send ssthe t°“ wire and
backfill the NAND gadget without having yet receieved the second szinput. When it arrives, that wire is
backfilled.

e 9.4 FANOUT Gadget

569 The FANOUT gadget needs to duplicate the geometric wire, and also needs to only backfill s
once both outgoing wires have backfilled. Figure 7a shows the FANOUT gadget. It has the sn
following necessary properties.

s21. With input t";, the gadget outputs wires t°“;1and t°*;2, and does not output f“"1and s fout,
Figure 7b shows the true fanout without the backfilling. Due to n1and ny, the s false outputs can not
assemble. Both settings share the same middle four tiles, but with s placement order niis placed
first and then cooperative glues are used to place the first 7 tile of the four (with glues gs,ga).

s7 2. With input f/", the gadget outputs wires f*“1and f°“%2, and does not output t°“1

s and t°Y%2, Figure 7c shows the false fanout without the backfilling. Due to niand na, s»the true
outputs can not assemble. With placement order n2is placed first and then s cooperative glues are
used to place the first of the four middle tiles (with glues hs, ha). s: 3. With input wire 7, wire f"

only backfills once f*“t or fe“zhave backfilled. Both s wires backfill independently, and only when
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feUis backfilled will wire fi" backfill. sss4. With input wire fi", wire t";only backfills once t°“zor t°4;

2have backfilled. Both wires

584 backfill independently, and only when t°!1is backfilled will wire t"; backfill.
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