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Abstract

Semidefinite programming is a powerful tool in the
design and analysis of approximation algorithms for
combinatorial optimization problems. In particular,
the random hyperplane rounding method of Goemans
and Williamson [23] has been extensively studied for
more than two decades, resulting in various extensions
to the original technique and beautiful algorithms for
a wide range of applications. Despite the fact that
this approach yields tight approximation guarantees for
some problems, e.g., MAX-CuT, for many others, e.g.,
MAX-SAT and Max-DiCurt, the tight approximation
ratio is still unknown. One of the main reasons for this
is the fact that very few techniques for rounding semi-
definite relaxations are known.

In this work, we present a new general and simple
method for rounding semi-definite programs, based on
Brownian motion. Our approach is inspired by recent
results in algorithmic discrepancy theory. We develop
and present tools for analyzing our new rounding algo-
rithms, utilizing mathematical machinery from the the-
ory of Brownian motion, complex analysis, and partial
differential equations. Focusing on constraint satisfac-
tion problems, we apply our method to several classical
problems, including MAX-CuT, MAX-2S5AT, and MAX-
DiCuT, and derive new algorithms that are competitive
with the best known results. To illustrate the versatil-
ity and general applicability of our approach, we give
new approximation algorithms for the MAx-CuT prob-
lem with side constraints that crucially utilizes measure
concentration results for the Sticky Brownian Motion, a
feature missing from hyperplane rounding and its gen-
eralizations.’
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1 Introduction

Semi-definite programming (SDP) is one of the most
powerful tools in the design of approximation algorithms
for combinatorial optimization problems. Semi-definite
programs can be viewed as relaxed quadratic programs
whose variables are allowed to be vectors instead of
scalars and scalar multiplication is replaced by inner
products between the vectors. The prominent approach
when designing SDP based approximation algorithms is
rounding: (1) an SDP relaxation is formulated for the
given problem, (2) the SDP relaxation is solved, and
lastly (3) the fractional solution for the SDP relaxation
is transformed into a feasible integral solution to the
original problem, hence the term rounding.

In their seminal work, Goemans and Williamson
[23] presented an elegant and remarkably simple round-
ing method for SDPs: a uniformly random hyperplane
(through the origin) is chosen, and then each variable,
which is a vector, is assigned to the side of the hyper-
plane it belongs to. This (binary) assignment is used
to round the vectors and output an integral solution.
For example, when considering MAx-CuT, each side of
the hyperplane corresponds to a different side of the
cut. Using the random hyperplane rounding, [23] gave
the first non-trivial approximation guarantees for funda-
mental problems such as MAX-CuT, MAx-25AT, and
Max-DiCut. Perhaps the most celebrated result of
[23] is the 0.878 approximation for Max-CuT, which
is known to be tight [26, 30] assuming Khot’s Unique
Games Conjecture [25]. Since then, the random hyper-
plane method has inspired, for more than two decades
now, a large body of research, both in approximation al-
gorithms and in hardness of approximation. In particu-
lar, many extensions and generalizations of the random
hyperplane rounding method have been proposed and
applied to a wide range of applications , e.g., MAX-
DiCut and MaAx-2SAT [19, 27], Max-SAT [5, 9],
Max-BisecTioN [8, 34], MAX-AGREEMENT in corre-
lation clustering [16], the CuT-NoRrM of a matrix [3].
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Despite this success and the significant work
on variants and extensions of the random hyper-
plane method, the best possible approximation ra-
tios for many fundamental problems still remain elu-
sive. Several such examples include MAX-SAT, Max-
BisecTioN, MAx-2CSP, and MaAx-DiCuT. Perhaps
the most crucial reason for the above failure is the
fact that besides the random hyperplane method and
its variants, very few methods for rounding SDPs are
known.

A sequence of papers by Austrin [6], Raghavendra
[32], Raghavendra and Steurer [33] has shown that SDP
rounding algorithms that are based on the random hy-
perplane method and its extensions nearly match the
Unique Games hardness of any MAx-CSP, as well as
the integrality gap of a natural family of SDP relax-
ations. However, the universal rounding proposed by
Raghavendra and Steurer is impractical, as it involves
a brute-force search on a large constant-sized instance
of the problem. Moreover, their methods only allow
computing an £ additive approximation to the approxi-
mation ratio in time double-exponential in 1/e.

1.1 Our Results and Techniques. Our main con-
tributions are (1) to propose a new SDP rounding tech-
nique that is based on diffusion processes, and, in par-
ticular, on Brownian motion; (2) to develop the needed
tools for analyzing our new SDP rounding technique
by deploying a variety of mathematical techniques from
probability theory, complex analysis and partial differ-
ential equations (PDEs); (3) to show that this round-
ing technique has useful concentration of measure prop-
erties, not present in random hyperplane based tech-
niques, that can be used to obtain new approximation
algorithms for a version of the MAX-CuT problem with
multiple global side constraints.

Our method is inspired by the recent success of
Brownian motion based algorithms for constructive
discrepancy minimization, where it was used to give the
first constructive proofs of some of the most powerful
results in discrepancy theory [10, 11, 12, 28]. The basic
idea is to use the solution to the semi-definite program
to define the starting point and the covariance matrix of
the diffusion process, and let the process evolve until it
reaches an integral solution. As the process is forced to
stay inside the cube [—1,1]" (for Max-CuT) or [0,1]”
(for MAx-2SAT and other problems), and to stick to
any face it reaches, we call the most basic version of
our algorithm (without any enhancements) the Sticky
Brownian Motion rounding. The algorithm is defined
more formally in Section 1.2.1.

Sticky Brownian Motion. Using the tools we in-
troduce, we show that this algorithm is already com-
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petitive with the state of the art results for MAX-CurT,
Max-2SAT, and Max-DiCuT.

THEOREM 1.1. The basic Brownian rounding achieves
an approrimation ration of 0.861 for the MaAX-CuT
problem. Moreover, when the MaX-CuT instance has
value 1 — g, Sticky Brownian Motion achieves value

1-Q(/7).

In particular, using complex analysis and evaluating
various elliptic integrals, we show that the separation
probability for any two unit vectors u and v separated
by an angle 6, is given by a certain hypergeometric
function of # (see Theorem 2.1 for details). This
precise characterization of the separation probability
also proves that the Sticky Brownian Motion rounding
is different from the random hyperplane rounding. The
overview of the analysis is in Section 1.2.2 and Section
2 has the details.

We can also analytically show the following upper
bound for MAX-2SAT.

THEOREM 1.2. The Sticky Brownian Motion round-
ing achieves approxrimation ratio of at least 0.8749 for
Max-2SAT.

While the complex analysis methods also give exact
results for MAX-2SAT, the explicit expressions are
much harder to obtain as one has to consider all
possible starting points for the diffusion process, while
in the MAX-CuUT case the process always starts at the
origin. Because of this, in order to prove Theorem 1.2
we introduce another method of analysis based on
partial differential equations (PDEs), and the maximum
principle, which allows us to prove analytic bounds
on PDE solutions. Moreover, numerically solving the
PDEs suggests the bound 0.921. The overview and
details of the MAX-2SAT analysis are, respectively, in
Sections 1.2.3 and 3. Section 5.1 has details about
numerical calculations for various problems.

For comparison, the best known approximation ra-
tio for MAX-CuT is the Goemans-Williamson constant
aow ~ 0.878, and the best known approximation ratio
for Max-2SAT is 0.94016 [27]. The result for Max-
Cut instances of value 1 — £ is optimal up to con-
stants [26], assuming the Unique Games Conjecture.

We emphasize that our results above are achieved
with a single algorithm “out of the box”, without
any additional engineering. While the analysis uses
sophisticated mathematical tools, the algorithm itself
is simple, efficient, and straightforward to implement.

Extensions. Next, we consider two different mod-
ifications of Sticky Brownian Motion that allow us to
improve the approximation guarantees above, and show
the flexibility of diffusion based rounding algorithms.

Copyright © 2020 by SIAM
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Algorithm | Max-Cut | Max-25AT | Max-DiCut *
Brownian 0.861 0.921 0.79
Slowdown |, o7et 0.929 0.81
Brownian

Table 1: Approximation ratios for Sticky Brownian Motion
rounding and Sticky Brownian Motion with Slowdown. { indicates
that for Max-CuT, the approximation for the slowed down walk
differs from the GW bound only in the fourth decimal. For MAX-
DiCur, the * indicates that we only consider the n+1-dimensional
walk.

The first one is to smoothly slow down the process de-
pending on how far it is from the boundaries of the cube.
As a proof of concept, we show, numerically, that a
simple modification of this kind matches the Goemans-
Williamson approximation of MAX-CuUT up to the first
three digits after the decimal point. We also obtain
significant improvements for other problems over the
vanilla method.

Second, we propose a variant of Sticky Brownian
Motion running in n + 1 dimensions rather than n di-
mensions, and we analyze it for the MAX-D1CuT prob-
lem. The extra dimension is used to determine whether
the nodes labeled 41 or those labeled —1 are put on
the left side of the cut. We show that this modifica-
tion achieves an approximation ratio of 0.79 for MaAx-
DiCuTt. Slowing down the process further improves this
approximation to 0.81. We give a summary of the ob-
tained results? in Table 1. An overview and details of
the extensions are given, respectively, in Sections 1.2.4
and 5.1.

Recent Progress. Very recently, in a beautiful re-
sult, Eldan and Naor [18] describe a slowdown process
that exactly achieves the Goemans-Williamson (GW)
bound of 0.878 for Max-Cut, answering an open ques-
tion posed in an earlier version of this paper. This shows
that our rounding techniques are at least as powerful as
the classical random hyperplane rounding, and are po-
tentially more general and flexible.

In general, given the dearth of techniques for round-
ing semidefinite programs, we expect that rounding
methods based on diffusion processes, together with the
analysis techniques introduced in this paper, will find
broader use, and, perhaps lead to improved results for
Max-CSP problems.

Applications. To further illustrate the versatility
and general applicability of our approach, we consider
the MAX-CuT with Side Constraints problem, abbre-

2Qur numerical results are not obtained via simulating the
random algorithm but solving a discretized version of a PDE that
analyzes the performance of the algorithm. Error analysis of such
a discretization can allow us to prove the correctness of these
bounds within a reasonable accuracy.
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viated MAX-CuT-SC, a generalization of the MAX-
BisecTiON problem which allows for multiple global
constraints. In an instance of the MAX-CuT-SC prob-
lem, we are given an n-vertex graph G = (V, E), a col-
lection F = {F4,..., Fi} of subsets of V', and cardinal-
ity bounds by, ...,b; € N. The goal is to find a subset
S C V that maximizes the weight |§(S)| of edges cross-
ing the cut (S,V \ §), subject to having |S N F;| = b;
for all i € [k].

Since even checking whether there is a feasible so-
lution is NP-hard [17], we aim for bi-criteria approx-
imation algorithms.®> We give the following result for
the problem, using the Sticky Brownian Motion as a
building tool.

THEOREM 1.3. There exists an O(nP°Y(os(k)/e))
time algorithm that on input a satisfiable instance
G=(V,E), F, and by,. .., by, as defined above, outputs
a (0.843 — g, ¢)-approrimation with high probability.

In the presence of a single side constraint, the prob-
lem is closely related to the MAX-BISECTION prob-
lem [8, 34], and, more generally to Max-CuT with a car-
dinality constraint. While our methods use the stronger
semi-definite programs considered in [34] and [8], the
main new technical ingredient is showing that the Sticky
Brownian Motion possesses concentration of measure
properties that allow us to approximately satisfy mul-
tiple constraints. By contrast, the hyperplane round-
ing and its generalizations that have been applied pre-
viously to the MAX-CuT and MAX-BISECTION prob-
lems do not seem to allow for such strong concentration
bounds. For this reason, the rounding and analysis used
in [34] only give an O(nP°Y¥(¥/2)) time algorithm for the
Max-CuT-SC problem, which is trivial for k = Q(n),
whereas our algorithm has non-trivial quasi-polynomial
running time even in this regime. We expect that this
concentration of measure property will find further ap-
plications, in particular to constraint satisfaction prob-
lems with global constraints.

Remark. We can achieve better results using
Sticky Brownian Motion with slowdown. In particular,
in time O(nP°(oe(*)/9)) we can get a (0.858 — g,¢)-
approximation with high probability for any satisfiable
instance. However, we focus on the basic Sticky Brown-
ian Motion algorithm to simplify exposition. Note that
due to the recent work by Austrin and Stankovié [7],
we know that adding even a single global cardinality
constraint to the MAX-CuT problem makes it harder to
approximate. In particular, they show that subject to a
single side constraint, MAX-CuT is Unique Games-hard

SWe say that a set S C V is an (a,<)-approximation if
l|S nF;| — b§| < en for all ¢ € [k], and |6(S)| = « - |6(T)| for
all T C V such that |T' N F;| =b; for all 7 € [k].
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to approximate within a factor of approximately 0.858.
Thus, assuming the Unique Games conjecture, our ap-
proximation factor for the MAx-CuT-SC problem is op-
timal up to small numerical errors. (We emphasize the
possibility of numerical errors as both our result, and
the hardness result in [7] are based on numerical calcu-
lations.)

1.2 Overview

1.2.1 The Sticky Brownian Motion Algorithm.
Let us describe our basic algorithm in some detail.
Recall that the Goemans-Williamson SDP for Max-
Cur is equivalent to the following vector program: given
a graph G = (V, E), we write

1-— W; W ij

max Z —a
(i,j)eEE
st. w;-w; =1 VieV

where the variables w; range over n dimensional real
vectors (n = |V]). The Sticky Brownian Motion
rounding algorithm we propose maintains a sequence
of random fractional solutions Xg,...,X7 such that
Xo =0and X7 € {—1,+1}" is integral. Here, a vertex
of the hypercube {—1,+1}" is naturally identified with
a cut, with vertices assigned +1 forming one side of the
cut, and the ones assigned —1 forming the other side.

Let A; be the random set of coordinates of X, ;
which are not equal to —1 or +1; we call these co-
ordinates active. At each time step t = 1,...,T, the
algorithm picks AX, sampled from the Gaussian distri-
bution with mean 0 and covariance matrix W;, where
(We)ij = wyi-wjif i,j € Ay, and (Wy);; = 0 otherwise.
The algorithm then takes a small step in the direction
of AXy, ie. sets X; = X;_1 + YAX; for some small
real number . If the i-th coordinate of X; is very close
to —1 or +1 for some i, then it is rounded to either —1
or +1, whichever is closer. The parameters v and T are
chosen so that the fractional solutions X; never leave
the cube [—1,1]", and so that the final solution X7 is
integral with high probability. As vy goes to 0, the tra-
jectory of the i-th coordinate of X; closely approximates
a Brownian motion started at 0, and stopped when it
hits one of the boundary values {—1,+1}. Importantly,
the trajectories of different coordinates are correlated
according to the SDP solution. A precise definition of
the algorithm is given in Section 2.1.

The algorithm for MAax-2SAT (and Max-DiCuT)
is essentially the same, modulo using the covariance ma-
trix from the appropriate standard SDP relaxation, and
starting the process at the marginals for the correspond-
ing variables. We explain this in greater detail below.
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1.2.2 Overview of the Analysis for Max-Cut. In
order to analyze this algorithm, it is sufficient to under-
stand the probability that an edge (i, §) is cut as a func-
tion of the angle # between the vectors w; and w;. Thus,
we can focus on the projection ((X¢)i, (X;);) of X;. We
observe that ((X;);, (X¢);) behaves like a discretization
of correlated 2-dimensional Brownian motion started at
(0,0), until the first time 7 when it hits the boundary
of the square [—1,1]%. After T, ((X¢)i,(X¢);) behaves
like a discretization of a 1-dimensional Brownian motion
restricted to one of the sides of the square. From now
on we will treat the process as being continuous, and
ignore the discretization, which only adds an arbitrarily
small error term in our analysis. It is convenient to ap-
ply a linear transformation to the correlated Brownian
motion ((X¢):, (X¢);) so that it behaves like a standard
2-dimensional Brownian motion By started at (0, 0). We
show that this linear transformation maps the square
[~1,1]? to a rhombus S centered at 0 with internal an-
gle #; we can then think of 7 as the first time B; hits the
boundary of S. After time 7, the transformed process is
distributed like a 1-dimensional Brownian motion on the
side of the rhombus that was first hit. To analyze this
process, we need to understand the probability distri-
bution of B;. The probability measure associated with
this distribution is known as the harmonic measure on
the boundary S of S, with respect to the starting point
0. These transformations and connections are explained
in detail in Section 2.2.

The harmonic measure has been extensively studied
in probability theory and analysis. The simplest special
case is the harmonic measure on the boundary of a disc
centered at 0 with respect to the starting point 0. In-
deed, the central symmetry of the disc and the Brow-
nian motion implies that it is just the uniform mea-
sure. A central fact we use is that harmonic measure in
2 dimensions is preserved under conformal (i.e. angle-
preserving) maps. Moreover, such maps between poly-
gons and the unit disc have been constructed explicitly
using complex analysis, and, in particular, are given by
the Schwarz-Christoffel formula [2]. Thus, the Schwarz-
Christoffel formula gives us an explicit formulation of
sampling from the harmonic measure on the boundary
S of the rhombus: it is equivalent to sampling a uni-
formly random point on the boundary of the unit disc
D centered at the origin, and mapping this point via a
conformal map F' that sends D to S. Using this formula-
tion, in Section 2.3 we show how to write the probability
of cutting the edge (i, j) as an elliptic integral.

Calculating the exact value of elliptic integrals is
a challenging problem. Nevertheless, by exploiting the
symmetry in the MAX-CuUT objective, we relate our par-
ticular elliptic integral to integrals of the incomplete
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beta and hypergeometric functions. We further sim-
plify these integrals and bring them into a tractable
form using several key identities from the theory of spe-
cial functions. Putting everything together, we get a
precise closed form expression for the probability that
the Sticky Brownian Motion algorithm cuts a given
edge in Theorem 2.1, and, as a consequence, we ob-
tain the claimed guarantees for MAX-CuT in Theo-
rems 1.1 and 2.4.

1.2.3 Overview of the Analysis for Max-2SAT.
The algorithm for MAX-2SAT is almost identical to
the MAX-CuT algorithm, except that the SDP solution
is asymmetric, in the following sense. We can think
of the SDP as describing the mean and covariance of
a “pseudo-distribution” over the assignments to the
variables. In the case of MaAX-CuT, we could assume
that, without loss of generality, the mean of each
variable (i.e. one-dimensional marginal) is 0 since S and
S are equivalent solutions. However, this is not the case
for MAX-2SAT. We use this information, and instead of
starting the diffusion process at the center of the cube,
we start it at the point given by the marginals. For
convenience, and also respecting standard convention,
we work in the cube [0, 1] rather than [—1,1]™. Here,
in the final solution X7, if (X1); = 0 we set the i-
th variable to true and if (X7); = 1, we set it to
false. We again analyze each clause C' separately, which
allows us to focus on the diffusion process projected
to the coordinates ((X);,(X;);), where i and j are
the variables appearing in C. However, the previous
approach of using the Schwarz-Christoffel formula to
obtain precise bounds on the probability does not easily
go through, since it relies heavily on the symmetry of
the starting point of the Brownian motion. It is not
clear how to extend the analysis when we change the
starting point to a point other than the center, as the
corresponding elliptic integrals appear to be intractable.

Instead, we appeal to a classical connection between
diffusion processes and partial differential equations [31,
Chapter 9]. Recall that we are focusing on a single
clause C' with variables 7 and j, and the corresponding
diffusion process ((X;)i, (X¢);) in the unit square [0, 1]?
starting at a point given by the marginals and stopped
at the first time 7 when it hits the boundary of the
square; after that time the process continues as a one-
dimensional Brownian motion on the side of the square
it first hit. For simplicity let us assume that both
variables appear un-negated in C. The probability
that C' is satisfied then equals the probability that the
process ends at one of the points (0,1), (1,0) or (0,0).
Let u : [0,1]2 — [0,1] be the function which assigns
to (z,y) the probability that this happens when the
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process is started at (z,y). Since on the boundary
d[0, 1)? of the square our process is a one-dimensional
martingale, the value of u(z,y) is easy to compute on
0[0,1]?, and in fact equals 1 — zy. Then, in the interior
of the square, we have u(z,y) = E[u((X,):, (X7);)]. It
turns out that this identifies u as the unique solution to
an elliptic partial differential equation (PDE) Lu = 0
with the Dirichlet boundary condition u(z,y) = 1 —
zy VY(z,y) € 8]0,1]%. In our case, the operator £ just

2 2
corresponds to Laplace’s operator L[u] = g—;& + g—y‘;‘

after applying a linear transformation to the variables
and the domain. This connection between our rounding
algorithm and PDEs is explained in Section 3.2.

Unfortunately, it is still not straightforward to solve
the obtained PDE analytically. We deal with this
difficulty using two natural approaches. First, we use
the mazimum principle of elliptic PDE’s [20], which
allows us to bound the function u from below. In
particular, if we can find a function g such that g(z,y) <
u(z,y) = 1 — zy on the boundary of the square, and
Lg > 0 in the interior, then the maximum principle
tells us that g(z,y) < u(z,y) for all x,y in the square.
We exhibit simple low-degree polynomials which satisfy
the boundary conditions by design, and use the sum
of squares proof system to certify non-negativity under
the operator £. In Section 3.3, we use this method to
show that Sticky Brownian Motion rounding achieves
approximation ratio at least 0.8749.

Our second approach is to solve the PDE numeri-
cally to a high degree of accuracy using finite element
methods. We use this approach in Section 5.1 to nu-
merically obtain results showing a 0.921 approximation
ratio for MAX-2SAT.

1.2.4 Extensions of Sticky Brownian Motion.

Using different slowdown functions. Recall
that in the Sticky Brownian Motion rounding each in-
crement is proportional to AX; sampled from a Gaus-
sian distribution with mean 0 and covariance matrix
W,. The covariance is derived from the SDP: for ex-
ample, in the case of MAX-CuT, it is initially set to be
the Gram matrix of the vectors produced by the SDP
solution. Then, whenever a coordinate (X;); reaches
{—1,+1}, we simply zero-out the corresponding row
and column of W;. This process can be easily modi-
fied by varying how the covariance matrix W, evolves
with time. Instead of zeroing out rows and columns
of W;, we can smoothly scale them based on how far
(X;_1); is from the boundary values {—1,1}. A simple
way to do this, in the case of the MAx-CuT problem, is
to set

(Wi)ij = (1= (Xe—1)D)*2(1 = Xe—1) D) w; - wj,
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for a constant 0 < a < 2. Effectively, this means that
the process is slowed down smoothly as it approaches
the boundary of the cube [—1,+1]". This modified
diffusion process, which we call Sticky Brownian Mo-
tion with Slowdown, still converges to {—1,+1}" in fi-
nite time. Once again, the probability of cutting an
edge (i,j) of our input graph can be analyzed by fo-
cusing on the two-dimensional projection ((X;):, (X¢);)
of X;. Moreover, we can still use the general connec-
tion between diffusion processes and PDE’s mentioned
above. That is, if we write u(x,y) : [-1,1]2 — [0,1]
for the probability that edge (i, ) is cut if the process
is started at (z,y), then u can be characterized as the
solution of an elliptic PDE with boundary conditions
u(z,y) = 52 V(z,y) € 8[-1,1]%. We solve this
PDE numerically using the finite element method to es-
timate the approximation ratio for a fixed value of the
parameter «, and then we optimize over a. At the value
a =1.61 our numerical solution shows an approximation
ratio that matches the Goemans-Williamson approxi-
mation of MAX-CuUT up to the first three digits after
the decimal point. We also analyze an analogous al-
gorithm for MAX-2SAT and show that for o =1.61 it
achieves an approximation ratio of 0.929. The detailed
analysis of the slowed down Sticky Brownian Motion
rounding is given in Section 5.1.

A higher-dimensional version. We also con-
sider a higher-dimensional version of the Sticky Brow-
nian Motion rounding, in which the Brownian motion
evolves in n+1 dimensions rather than n. This rounding
is useful for asymmetric problems like MAX-DI1CuT? in
which the SDP produces non-uniform marginals, as we
discussed above in the context of MAX-2SAT. Such an
SDP has a vector wg in addition to wq,..., Wy, and the
marginals are given by wg - w;. Now, rather than using
the marginals to obtain a different starting point, we
consider the symmetric Sticky Brownian Motion pro-
cess starting from the center but using all the n + 1
vectors wo, ..., Wp. At the final step T' of the process,
in the case of MAX-DICuT, the variables whose value
is equal to (X)o are assigned to the left side of the cut,
and the variables with the opposite value are assigned
to the right side of the cut. Thus, for an edge i — j
to be cut, it must be the case that (Xr); = (X7)o and
(X7); = 1 — (Xr)o. While analyzing the probability
that this happens is a question about Brownian motion
in three rather than two dimensions, we reduce it to
a two-dimensional question via the inclusion-exclusion
principle. After this reduction, we can calculate the
probability that an edge is cut by using the exact for-

TThe input for Max-DICuUT is a directed graph G = (V,E)
and the goal is to find a cut S C V that maximizes the number
of edges going from S to S.
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mula proved earlier for the Max-CuT problem. Our
analysis, which is given in Section 5.2, shows that this
(n + 1)-dimensional Sticky Brownian Motion achieves
an approximation of 0.79 for Max-DiCut. Moreover,
combining the two ideas, of changing the covariance
matrix at each step, as well as performing the n + 1-
dimensional Sticky Brownian Motion, achieves a ratio
of 0.81.

1.2.5 Overview of the Analysis for
Max-Cut-SC. The starting point for our algo-
rithm for the Max-CuT-SC problem is a stronger
SDP relaxation derived using the Sum of Squares
(SoS) hierarchy. Similar relaxations were previously
considered in [8, 34] for the Max-BISECTION problem.
In addition to giving marginal values and a covariance
matrix for a “pseudo-distribution” over feasible solu-
tions, the SoS SDP makes it possible to condition on
small sets of variables. The global correlation rounding
method [13, 24] allows us to choose variables to condi-
tion on so that, after the conditioning, the covariance
matrix has small entries on average. Differing from
previous works [8, 34], we then run the Sticky Brownian
Motion rounding defined by the resulting marginals
and covariance matrix. We can analyze the weight
of cut edges using the PDE approach outlined above.
The main new challenge is to bound the amount by
which the side constraints are violated. To do so, we
show that Sticky Brownian Motion concentrates tightly
around its mean, and, in particular, it satisfies sub-
Gaussian concentration in directions corresponding to
sets of vertices. Since the mean of the Sticky Brownian
Motion is given by the marginals, which satisfy all side
constraints, we can bound how much constraints are
violated via the concentration and a union bound. To
show this key concentration property, we use the fact
that the covariance that defines the diffusion has small
entries, and that Brownian Motion is a martingale.
Then the concentration inequality follows, roughly,
from a continuous analogue of Azuma’s inequality. The
detailed analysis is given in Section 4. We again remark
that such sub-Gaussian concentration bounds are not
known to hold for the random hyperplane rounding
method or its generalizations as considered in [8, 34].

1.3 Related Work. Due to space constraints, this
section is omitted from here. Details are given in the
full version of the paper.

2 Brownian Rounding for Max-Cut via
Conformal Mappings

In this section, we use MAX-CUT as a case study for the
method of rounding a semi-definite relaxation via Sticky
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Brownian Motion. Recall, in an instance of the MAX-
Cut problem we are given a graph G = (V, E) with
edge weights a : E — R, and the goal is to find a subset
S C V that maximizes the total weight of edges crossing
the cut (5,V'\S), ie., a(d(5)) == X1y v} eEues,ves Quv-
We first introduce the standard semi-definite relaxation
for the problem and introduce the sticky Brownian
rounding algorithm. To analyze the algorithm, we
use the invariance of Brownian motion with respect to
conformal maps, along with several identities of special
functions.

2.1 SDP Relaxation and Sticky Brownian
Rounding Algorithm. Before we proceed, we recall
again the SDP formulation for the MAX-CuT problem,
famously studied by Goemans and Williamson [23].

(1 — W - Wj)
max Z a(e)f
e=(i,j)€E

st. w;-w; =1 Vi=1,..,n.

We now describe the Sticky Brownian Motion
rounding algorithm specialized to the MaxX-CuT prob-
lem. Let W denote the positive semi-definite correlation
matrix defined by the vectors wq,...,w,, i.e., for every
1 <4,j <n we have that: W; ; = w; - w;. Given a so-
lution W to the semi-definite program, we perform the
following rounding process: start at the origin and per-
form a Brownian motion inside the [—1,1]™ hypercube
whose correlations are governed by W. Additionally,
the random walk is sticky: once a coordinate reaches ei-
ther —1 or +1 it is fixed and does not change anymore.

Formally, we define a random process {X;},, as
follows. We fix Xo = 0. Let {B;},~, be standard
Brownian motion in R™ started at the origin,® and let
7, = inf{t : xo + W/?B, & [-1,1]"} be the first time
X+ W?B; exits the cube. With probability 1, you can
assume that 7 is also the first time that the process lies
on the boundary of the cube. Here W'/2 is the principle
square root of W. Then, for all 0 <t < 11 we define

X, = xo + W/?B,.

This defines the process until the first time it hits a
face of the cube. From this point on, we will force
it to stick to this face. Let A, = {i : (X;); # £1}
be the active coordinates of the process at time ft,
and let F; = {x € [-1,1]" : z; = (X;):Vi € A}
be the face of the cube on which X; lies at time t.
With probability 1, F;, has dimension n — 1. We
define the covariance matrix (W,);; = W,;; when

5We will always assume that a standard Brownian motion
starts at the origin. See the full version for a precise definition.
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i,j € A, and (Wy);; = 0 otherwise. Then we
take 75 = inf{t > 71 : X;, + W2 (B, — B,,) € F,, } to
be the first time that Brownian motion started at X,
with covariance given by W, exits the face Fr,. Again,
with probability 1, we can assume that this is also the
first time the process lies on the boundary of F;,. For
all m; <t < 15 we define

X; = X;, + W./2(B; — B,,).

Again, with probability 1, dim F, = n — 2. The
process is defined analogously from here on. In general,
r=inf{t>7_ X, , + WL, (B,—B,_,) ¢F, ,}
is (with probability 1) the first time that the process
hits a face of the cube of dimension n — i. Then for
Ti—1 <t <T1; we have X; = X, | —|—WT{.2_1(BE -B.._,).
At time 1,, X, € {—1,1}", so the process remains
fixed, i.e. for any t > 7,, Xy = X;_. The output of the
algorithm then corresponds to a cut S C V defined as
follows:
S={ieV:(X;,),=1}.

We say that a pair of nodes {i,j} is separated when
1SN0 {i,j} =1

Remark: While we have defined the algorithm as a
continuous diffusion process, driven by Brownian mo-
tion, a standard discretization will yield a polynomial
time algorithm that achieves the same guarantee up to
an error that is polynomially small. Such a discretiza-
tion was outlined in the Introduction. An analysis of
the error incurred by discretizing a continuous diffusion
process in this way can be found, for example, in [21]
or the book [22]. More sophisticated diserete simula-
tions of such diffusion processes are also available, and
can lead to better time complexity as a function of the
error. One example is the Walk on Spheres algorithm
analyzed by Binder and Braverman [15]. This algorithm
allows us to draw a sample X from the continuous dif-
fusion process, stopped at a random time 7, such that
X, is within distance £ from the boundary of the cube
[-1,1]™. The time necessary to sample X, is polyno-
mial in n and log(1/¢). We can then round X, to the
nearest point on the boundary of the cube, and continue
the simulation starting from this rounded point. It is
straightforward to show, using the fact that the proba-
bility to cut an edge is continuous in the starting point
of our process, that if we set € = o(n™!), then the ap-
proximation ratio achieved by this simulation is within
an o(1) factor from the one achieved by the continuous
process. In the rest of the paper, we focus on the contin-
uous process since our methods of analysis are naturally
amenable to it.

2.2 Analysis of the Algorithm. Our aim is to an-
alyze the expected value of the cut output by the Sticky
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Brownian Motion rounding algorithm. Following Goe-
mans and Williamson [23], we aim to bound the prob-
ability an edge is cut as compared to its contribution
to the SDP objective. Theorem 2.1 below gives an ez-
act characterization of the probability of separating a
pair of vertices {i,j} in terms of the gamma function
and hypergeometric functions. We refer to the full ver-
sion for the definitions of these functions and a detailed
exposition of their basic properties.

THEOREM 2.1. The probability that the Sticky Brown-
ian Motion rounding algorithm will separate a pair {i,j}
of vertices for which 6 = cos=!(w; - w;) equals

r(esl) lta l4a a
1- 1—a 2a 2'3F2[ 2(1102 : 2;1]?
L4z +1) 7 g1

where a = 8/, T' is the gamma function, and 3F5
is the hypergeometric function.

Theorem 1.1 will now follow from the following
corollary of Theorem 2.1. The corollary follows from
numerical estimates of the gamma and hypergeometric
functions.

COROLLARY 2.1. For any pair {i,j}, the probability
that the pair {i, j} is separated is at least 0.861 l_w%

We now give an outline of the proof of Theorem 2.1.
The plan is to first show that the desired probability can
be obtained by analyzing the two-dimensional standard
Brownian motion starting at the center of a thombus.
Moreover, the probability of separating 7 and j can be
computed using the distribution of the first point on the
boundary that is hit by the Brownian motion. Confor-
mal mapping and, in particular, the Schwarz-Christoffel
formula, allows us to obtain a precise expression for such
a distribution and thus for the separation probability, as
claimed in the theorem. We now expand on the above
plan.

First observe that to obtain the probability i and j
are separated, it is enough to consider the 2-dimensional
process obtained by projecting to the i** and j*" coor-
dinates of the vector X;. Projecting the process onto
these coordinates, we obtain a process )ﬂit € R? that
can be equivalently defined as follows. Let

W= (0051(6') c051(9)) ’

where 6 is the angle between w; and w;. Let B; be
standard Brownian motion in R? started at 0, and let
T = inf{t : W/?B; ¢ [-1,1]*} be the first time the
process hits the boundary of the square. Then for all
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0 <t < 7 we define X, = WY2B,. Any coordinate k
for which (X;)x € {£1} remains fixed from then on,
ie. for all t > 7, (X¢)r = (X;)k. The coordinate £ that
is not fixed at time 7 (one exists with probability 1)
continues to perform one-dimensional Brownian motion
started from (X;), until it hits —1 or +1, at which point
it also becomes fixed. Let o be the time this happens;
it is easy to show that o < oo with probability 1, and,
moreover, E[o] < co. We say that the process {X;}:>0

is absorbed at the vertex X, € {—1,1}2.

OBSERVATION 2.1. The probability that the algorithm
separates vertices i and j equals

Pr [{)it}t is absorbed in {(+1,—1), (—1,+1)}].

With an abuse of notation, we denote }it by X; and
W by W for the rest of the section which is aimed at
analyzing the above probability. We also denote by p =
cos(f) the correlation between the two coordinates of
the random walk, and call the two-dimensional process
just described a p-correlated walk. It is easier to
bound the probability that i and j are separated by
transforming the p-correlated walk inside [—1,1]? into
a standard Brownian motion inside an appropriately
scaled rhombus. We do this by transforming {X;}:>0
linearly into an auxiliary random process { Y }:>¢ which
will be sticky inside a rhombus (see Figures (1la)-
(1b)). Formally, given the random process {X;},~,, we
consider the process Y; = O - W—2. X, where O is
a rotation matrix to be chosen shortly. Recalling that
for 0 <t < 7 the process {X;},.,, is distributed as

{W'/>B, }0<t<T, we have that, for all 0 <t < T,
Y; =0. Bt = Bt.

Above = denotes equality in distribution, and follows
from the invariance of Brownian motion under rotation.
Applying OW ~"2 to the points inside [—1, 1], we get a
rhombus § with vertices by, ..., bs, which are the images
of the points (+1,—1), (+1,+1),(—1,+1), (-1, -1), re-
spectively. We choose O so that b; lies on the positive
r-axis and by on the positive y-axis. Since OW /2 is
a linear transformation, it maps the interior of [—1,1]?
to the interior of S and the sides of [—1, 1] to the sides
of S. We have then that 7 is the first time Y, hits the
boundary of S, and that after this time Y, sticks to
the side of S that it first hit and evolves as (a scaling
of) one-dimensional Brownian motion restricted to this
side, and started at Y,. The process then stops evolv-
ing at the time o when Y, € {b1,...,bs}. We say that
{Y:}:>0 is absorbed at Y,.

The following lemma, whose proof appears in the
full version, formalizes the main facts we use about this
transformation.
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LEMMA 2.1. Applying the transformation OW =2 to
{X¢}i>0 we get a new random process {Y}¢>o0 which
has the following properties:

1. If X, is in the interior/boundary/vertex of [—1,1]?
then Y is in the interior/boundary/vertex of S,
respectively.

2. S is a rhombus whose internal angles at by and bs
are 8, and at by and by are m—8. The vertex by lies
on the positive x-azxis, and by, bs,by are arranged
counter-clockwise.

3. The probability that the algorithm will separate the
pair {i,j} is exactly Pr[Y, is absorbed in by or bs)].

In the following useful lemma we show that, in order
to compute the probability that the process {Y;};>0
is absorbed in b; or bz, it suffices to determine the
distribution of the first point Y, on the boundary S
that the process {Y,};>o hits. This distribution is a
probability measure on S known in the literature as the
harmonic measure (with respect to the starting point
0). We denote it by pss. The statement of the lemma
follows.

LEMMA 2.2,

Pr[Y. is absorbed in by or bs] =

2 |p—b
p— byl
4. 1—-——d .
ﬂl 62 — oy [ 2P

Proof. Since both S and Brownian motion are symmet-
ric with respect to reflection around the coordinate axes,
we see that pgg is the same as we go from b, to by or
b4, and as we go from bs to by or by. Therefore,

Pr[pair {i,j} is separated] =
4 - Pr[pair {i,j} is separated | Y lies on [by, bo]].

The process {Y:}r<i<s is a one-dimensional martin-
gale, so E[Y;|Y;] = Y, by the optional stopping the-
orem [29, Proposition 2.4.2]. If we also condition on
Y. € [b1,bs], we have that Y, € {b;,b2}. An easy
calculation then shows that the probability of being
absorbed in b; conditional on Y, and on the event

3 Y'r_b‘Q J— _ Y'r_b
Y, € [by, bo] is exactly u—u||b2—b1|| =1 “—”"52_511” . Then,

Pr[pair {i, 4} is separated | Y, € [by, bo]] =

uY;—m” f% llp — b1
E [1 T 1| = 1— —— L duss(p).
[[b2 — by | b |lb2— b

This proves the lemma. O
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To obtain the harmonic measure directly for the
rhombus S we appeal to conformal mappings. We use
the fact that the harmonic measure can be defined for
any simply connected region U in the plane with 0
in its interior. More precisely, let B; be standard 2-
dimensional Brownian motion started at 0, and 7(U) =
inf{t : B; ¢ U} be the first time it hits the boundary of
U. Then pasy denotes the probability measure induced
by the distribution of B (1), and is called the harmonic
measure on U (with respect to 0). When U is the unit
disc centered at 0, the harmonic measure is uniform
on its boundary because Brownian motion is invariant
under rotation. Then the main idea is to use conformal
maps to relate harmonic measures on the different
domains, namely the disc and our rhombus S.

2.3 Conformal Mapping. Before we proceed fur-
ther, it is best to transition to the language of com-
plex numbers and identify R? with the complex plane
C. A complex function F' : U — V where U,V C C
is conformal if it is holomorphic (i.e. complex differen-
tiable) and its derivative f'(z) # 0 for all x € U. The
key fact we use about conformal maps is that they pre-
serve harmonic measure. Below we present this theorem
from Morters and Peres [29] specialized to our setting.
In what follows, ID will be the unit disc in C centered at
0.

THEOREM 2.2. [29, p. 204, Theorem 7.23]. Suppose Fy
is a conformal map from the unit disk D to S. Let pap
and pas be the harmonic measures with respect to 0.
Then pap © Fg_1 = [os-

Thus the above theorem implies that in our setting, the
probability that a standard Brownian motion will first
hit any segment S of the boundary of ID is the same as
the probability of the standard Brownian motion first
hitting its image under Fy, i.e. Fp(S) in 8S.

To complete the picture, the Schwarz-Christoffel
formula gives a conformal mapping from the unit disc
D to S that we utilize.

THEOREM 2.3. [2, Theorem 5, Section 2.2.2] Define
the function Fp(w) by

F = ds =
@) = [ fols)ds
/ (1 — 8)=0=0/) (1 4 §)=(1=6/7) (g _ §)=0/7 (5 4 1)=0/7 s,
s5=0

Then, for some real number ¢ > 0, cFy(w) is a confor-
mal map from the unit-disk I to the rhombus S.

The conformal map has some important properties
which will aid us in calculating the probabilities. We

Copyright © 2020 by SIAM
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(0.0)

ay &y

(a) {Xt},5p in [-1, 1)? square

(b) {Yt}tzo inS

wy
Gy “-w by
iy

() {Bt}tzo in D

Figure 1: Figure (a) depicts {X¢},»q in the [—1,1]2 square, Figure (b) depicts {Y:},~, in the rhombus S, and Figure (c) depicts
{Bt},~( in the unit disc D. The linear transformation W —Y/2 transforms the [—1, 1]2 square to § (Figure (a) to Figure (b)), whereas
the conformal mapping Fy transforms D to S (Figure (c) to Figure (b)).

collect them in the following lemma, which follows
from standard properties of the Schwarz-Christoffel
integral [2], and is easily verified.

LEMMA 2.3. The conformal map cFy(w) has the follow-
ing properties:

1. The four points located at {1,i,—1,—i} map to
the four vertices {by,...,bs} of the rhombus S,
respectively.

2. The origin maps to the origin.

3. The boundary of the unit-disk D maps to the bound-
ary of S. Furthermore, the points in the arc from
1 to i map to the segment [by, bs].

Deﬁng the function r
|Fp(e'®) — Fo(1)].

[0,7/2] — R as r(¢) :=

LEMMA 2.4. The probability that vertices {i,j} are sep-
arated, given that the angle between w; and w; is 6, is

2 [P (o)
rr/o L ™

Proof. Rewriting the expression in Lemma 2.2 in com-
plex number notation, we have

ba _
Pr[{i,j} separated] =4 - / 1-— Md_&ag(z) =
by |b2 — b
i |2 — cFp(1)|
4. 1l———7—+——+d z).
J, 1= o rayests)

1

Since the conformal map Fy preserves the harmonic
measure between the rhombus S and the unit-disk I
(see Theorem 2.2) and by Lemma 2.3, the segment from
b, to by is the image of the arc from 1 to i under cFy,
we can rewrite the above as

[P |cFe(e'?) — cFy(1)]
=4 /0 1 c|Fg(i) — Fp(1)]

dpsp(e'?).
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The harmonic measure psp on the unit-disk is
uniform due to the rotational symmetry of Brownian
motion.

B ™2 |cFy(e?) — cFy(1)| do
=4 [ R R

Simplifying the above, we see that the right hand
side above equals

2 [ |Fae) —F)l 2 [T r(g)
E'A TR0 —F) rrﬂ @R

This completes the proof. O

dé.

To calculate the approximation ratio exactly, we
will make use of the theory of special functions. While
these calculations are technical, they are not trivial. To
aid the reader, we give a brief primer in the full version
and refer them to the work of Andrews et al. [4], Beals
and Wong [14] for a more thorough introduction.

The proof of Theorem 2.1, will follow from the
following key claims whose proofs are available in the
full version. Letting @ = 8/m and b = 1 — a, we have

Cram 2.1. r(g) = Zn2el&2YD " ypen 6 e [0, 7/9).

CrLAaM 2.2.

/2 Bla/2+1/2,1/2) lia lia g
. — ! . 2 2 ' 2.
1 ras . 3F2[ A ,1].

2.4 Asymptotic Calculation for 8 close to m. We
consider the case when the angle # = (1—¢)-m as e — 0.
The hyperplane-rounding algorithm separates such an
edge by #/m, and hence has a separation probability of
1 — e. We show a similar asymptotic behaviour for the
Brownian rounding algorithm, albeit with slightly worse
constants. We defer the proof to the full version.

THEOREM 2.4. Given an edge {i,7} with
cos Y (wlwj) = 6 = (1 — €)m, the Sticky Brouwn-
ian Motion rounding will cut the edge with probability
at least 1 — (2e + O(€?)).
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3 Brownian Rounding for Max-2SAT via
Partial Differential Equations

In this section we use MAX-2SAT as a case study for ex-
tending the Sticky Brownian Motion rounding method
to other constraint satisfaction problems besides MAX-
CuT. In the MAX-25AT problem we are given n vari-
ables z1,...,2, and m clauses C4,...,C,,, where the
j*0 clause is of the form y;, V y;, (y; is a literal of 2;,
i.e., zj or Z;). The goal is to assign to each variable z;
a value of true or false so as to maximize the number of
satisfied clauses.

3.1 Semi-definite Relaxation and Brownian

Rounding Algorithm. The standard SDP relaxation
used for MAxX-2SAT is the following:

max Y (1—vj, - Vj,)
=1

st. vgp-vg=1

(3.2) vo-vi=v;-v; Vi=-n,...,n
(3.3) vi-v_;=0 Yi=1,...,n
(34) vo-(vi+v_)=1 Yi=1,...,n
(38) 1>vg-vi+vVj-vo—vV;-V; Vi,j=-n,...,n
(3.6) vi-vo>vi-v; Vi,j=-mn,...,n
(3.7) wvi-v; >0 Vi,j=-n....,n

In the above vy is a unit vector that denotes the
false assignment (constraint 3.1), whereas a zero vector
denotes the true assignment. We use the standard
notation that v; denotes the literal z; and v_; denotes
the literal z;. Therefore, v; - v_; = 0 for every i =
1,....n (constraints 3.3 and 3.4) since z; needs to be
either true or false. The remainder of the constraints
(constraints 3.5, 3.6 and 3.7) are equivalent to the
£2 triangle inequalities over all triples of vectors that
include vy.

When trying to generalize the Brownian rounding
algorithm for MAX-CUT presented in Section 2 to MAX-
2SAT, there is a problem: unlike MAX-CuT the MAX-
2SAT problem is not symmetric. Specifically, for MAX-
CuT both S and S are equivalent solutions having the
same objective value. However, for MAX-2S5AT an
assignment to the variables z; = ay,...,2, = oy is not
equivalent to the assignment 2; =@y, ...,2, = @, (here
a; € {0,1} and @; = 16 a;). For example, if v; - v =1
then we would like the Brownian rounding algorithm
to always assign z; to false. The Brownian rounding
for MAX-CuUT cannot handle such a requirement. In
order to tackle the above problem we incorporate vy
into both the starting point of the Brownian motion
and the covariance matrix.
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Let us now formally define the Brownian rounding
algorithm for MAx-2SAT. For simplicity of presenta-
tion denote for every i = 1,...,n by x; the marginal
value of z;, formally: x; ;== v; - vj. Additionally, let w;
be the (unique) unit vector in the direction of the pro-
jection of v; to the subspace orthogonal to vg, i.e., w;
satisfies v; = x;vo + v/z; — 22w;.5 Similarly to Max-
Curt, our Sticky Brownian Motion rounding algorithm
performs a random walk in R™, where the i*? coordinate
corresponds to the variable z;. For simplicity of presen-
tation, the random walk is defined in [0, 1]™ as opposed
to [£1]", where 1 denotes false and 0 denotes true.”
Unlike MAX-CuT, the starting point Xj is not the cen-
ter of the cube. Instead, we use the marginals, and set
(Xp); := z;- The covariance matrix W is defined by
W, ; :=w;-w; for every 7,7 = 1,...,n, and similarly
to Max-CuT, let W2 be the principle square root of
W. Letting {B;};>¢ denote standard Brownian motion
in R", we define 71 = inf{t : W/2B; + X, € [0,1]"} to
be the first time the process hits the boundary of [0, 1]™.
Then, for all times 0 <t < 74, the process X, is defined
as

X, = W/B, + X,.

After time 71, we force X; to stick to the face F; hit at
time 7y ie. if (X4, ); € {0,1}, then we fix it forever, by
zeroing out the i-th row and column of the covariance
matrix of W for all future time steps. The rest of the
process is defined analogously to the one for MAX-CuT:
whenever X; hits a lower dimensional face of [0,1]", it
is forced to stick to it until finally a vertex is reached,
at which point X; stops changing. We use 7; for the
first time that X; hits a face of dimension n — i; then,
X, €{0,1}".

The output of the algorithm corresponds to the
collection of the variables assigned a value of true T' C
{1,...,n}:

T={i:(Xs,); =0},

whereas implicitly the collection of variables assigned a
value of false are {i: (X,), = 1}.

3.2 Analysis of the Algorithm. Our goal is to an-
alyze the expected value of the assignment produced
by the Sticky Brownian Motion rounding algorithm.
Similarly to previous work, we aim to give a lower
bound on the probability that a fixed clause C is sat-
isfied. Unfortunately, the conformal mapping approach

Tt is easy to see that z_; = 1 — z; and w_; = —w; for every
i=1,...,n.

"We note that the Brownian rounding algorithm for Max-
2SAT can be equivalently defined in [—1,1]", however, this will
incur some overhead in the notations which we would like to avoid.
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described in Section 2 does not seem to be easily applica-
ble to the extended Sticky Brownian Motion rounding
described above for MaAX-2SAT, because our calcula-
tions for MAX-CuUT relied heavily on the symmetry of
the starting point of the random walk. We propose a
different method for analyzing the Brownian rounding
algorithm that is based on partial differential equations
and the maximum principle. We prove analytically the
following theorem which gives a guarantee on the per-
formance of the algorithm. We also note that numerical
calculations show that the algorithm in fact achieves the
better approximation ratio of 0.921 (see Section 5.1 for
details).

THEOREM 3.1. The Sticky Brownian Motion rounding
algorithm for MAX-2SAT achieves an approxrimation of
at least 0.8749.

3.2.1 Analysis via Partial Differential Equa-
tions and Maximum Principle. As mentioned
above, our analysis focuses on the probability that a
single clause C' with variables {z;,z;} is satisfied. We
assume the variables are not negated. This is without
loss of generality as the algorithm and analysis are in-
variant to the sign of the variable in the clause.

For simplicity of notation we denote by x the
marginal value of z; and by y the marginal value of
zj. Thus, v; = zvo + vV —2?w; and v; = yvo +
vy —y?w;. Projecting the random process {X};>o
on the i and j coordinates of the random process, we
obtain a new process {X;}:>0 where Xy = (z,y). Let
W= ( 1 COS(S)) , Where @ is the angle between

cos(#) 1

w; and w;. Then X, = X+ WY2B, forall 0 <t <7,
where 7 = inf{t : Xo+W"Y2B, ¢ [0, 1]2} is the first time
the process hits the boundary of the square. After time
T, the process X; performs a one-dimensional standard
Brownian motion on the first side of the square it has
hit, until it hits a vertex at some time o. After time
o the process stays fixed. Almost surely ¢ < oo, and,
moreover, it is easy to show that Eo < co. We say that
{X:}t>0 is absorbed at X, € {0,1}.

OBSERVATION 3.1. The probability that the algorithm
satisfies the clause {z;, 2;} equals

Pr [f(g is absorbed in {(0,0), (0,1), (1, 0)}} .

We abuse notation slightly and denote }it by X; and
W by W for the rest of the section which is aimed
at analyzing the above probability. We also denote
p = cos(6).

Our next step is fixing # and analyzing the proba-
bility of satisfying the clause for all possible values of
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marginals = and y. Indeed, for different x and y but the
same 6, the analysis only needs to consider the same
random process with a different starting point. Observe
that not all such z, y are necessarily feasible for the SDP:
we characterize which ones are feasible for a given # in
Lemma 3.3. But considering all z, y allows us to handle
the probability in Observation 3.1 analytically.

Forany 0 <z <1,0 <y <1, let u(z,y) denote the
probability of starting the random walk at the point
(z,y) and ending at one of the corners (0,0), (0,1) or
(1,0). This captures the probability of a clause being
satisfied when the walk begins with marginals (z,y)
(and angle 8). We can easily calculate this probability
exactly when either = or y are in the set {0,1}. We
obtain the following easy lemma whose proof appears
in the full version.

LemMmaA 3.1. For ¢(z,y) = 1 — zy, we have
(3.8) u(x) = ¢(x) for all x € 9]0,1]°.

Moreover, for all x in the interior of the square [0,1]2,
u(x) = EX[¢(X;)], where EX denotes expectation with
respect to starting the process at Xy = X.

Next we use the fact that Brownian motion gives
a solution to the Dirichlet boundary problem. While
Brownian motion gives a solution to Laplace’s equation
([29] chapter 3), since our random process is a diffusion
process, we need a slightly more general result®. We
state the following result from [31], specialized to our
setting, that basically states that given a diffusion
process in [0,1]% and a function ¢ on the boundary, the
extension of the function defined on the interior by the
expected value of the function at the first hitting point
on the boundary is characterized by an elliptic partial
differential equation.

THEOREM 3.2. ([31] THEOREM 9.2.14) Let
D= (0, 1)2 C Rz, ¥ € R?*2 and let a1, @13, 021,022 be
defined as follows

(011 &12) :122—'—
ag; Qoo 2 '

For any x € D, consider the process X; = Xy + XB;
where B; is standard Brownian motion in R2%. Let
T = inf{t : Xy € D}. Given a bounded continuous
function ¢ : 8D — R, define the function v : D — R
such that

u(x) = E*[¢(X7)],
where EX denotes the expected value when Xo = x € R2.
Le., u(x) is the expected value of ¢ when first hitting

¥This result can also be derived from Theorem 3.12 in [29] after
applying a linear transformation to the variables.
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0D conditioned on starting at point x. Consider the
uniformly elliptic partial differential operator L in D

defined by:
2 82
L= i
Z alj 81',;8:1:3;
i,j=1
Then u € C%(D) is the unique solution to the partial
differential equation®:

Lu=0 in D

)ll_[;%r u(x) = o(y) for ally € 8D.
xeD

We instantiate our differential equation by choosing
> = W2 and thus a;; are the entries of W. It is
important to note that all a;;s are independent of the
starting point x € [0,1]2. Thus, we obtain that u
is the unique function satisfying the following partial
differential equation:

u  %u 8%u

dx2 * Ay2 * 2'033:8_1;
u(z,y) = (1 —zy)

=0 ¥(z,y) € Int[0, 1]?
Y(z,y) € 8[0,1)>.

Above, and in the rest of the paper, we use Int D to
denote the interior of a set D, and 8D to denote its
boundary.

It remains to solve the above partial differential
equation (PDE) that will allow us to calculate u(z,y)
and give the probability of satisfying the clause.

3.3 Maximum Principle. Finding closed form so-
lutions general PDE’s is challenging and, there is no
guarantee any solution would be expressible in terms of
simple functions. However, to find a good approxima-
tion ratio, it suffices for us to find good lower-bounds on
the probability of satisfying the clause. I.e. we need to
give a lower bound on the function u(z,y) from the pre-
vious section over those (z,y) that are feasible. Since
the PDE’s generated by our algorithm are elliptic (a par-
ticular kind of PDE), we will use a property of elliptic
PDE’s which will allow us to produce good lower-bounds
on the solution at any given point. More precisely, we
use the following theorem from Gilbarg and Trudinger
[20].

Let £ denote the operator £ := Zij aij %’ and we
say that £ is an elliptic operator if the coefficient matrix
A = [a;;]; ; is positive semi-definite.

We restate a version of Theorem 3.1 in Gilbarg and
Trudinger [20] that shows how the maximum principle
can be used to obtain lower bounds on u(z,y). Here D
denotes the closure of D.

9 € C*(D) means that u has a continuous k*! derivative over
D, and u € C%(D) means that u is continuous.
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THEOREM 3.3. (MAXiMUM PRINCIPLE) Let L be ellip-
tic on a bounded domain D and suppose L[g](z) >
0 Vz € D for some g € C*(D)NC°(D). Then the
mazimum of g on D is achieved on 8D, that is,

sup g(x) = sup g(z).
zeD zEAD

Theorem 3.3 has the following corollary that allows
us to obtain lower bounds on u(z,y).

CoROLLARY 3.1. Let L be elliptic on a bounded domain
D and for some u,g € C%(D) N C°(D).

1. L[g](z) > L[u](z) VYxre D
2. g(z) <u(z) VredD,
then g(z) < u(z)v¥z € D.

We refer the reader to [20] for a formal proof.
Thus, it is enough to construct candidate functions
g:[0,1)2 — R such that

8%qg 0% 8%g
—+—=+2p——>0
O0x? + oy? + pamay -

g(z,y) < (1 —zy)

Then we obtain that g(z,y) < u(z,y) for all (z,y) €
[0,1]2. In what follows we construct many different such
function each of which works for a different range of the
parameter # (equivalently, p).

¥(z,y) € Int[0, 1]?

Y(z,y) € 9[0,1)?

3.4 Candidate Functions for Maximum Princi-
ple. We now construct feasible candidates to the maxi-
mum principle as described in Corollary 3.1. We define
the following functions:

1. g1(z,y) =1 — zy — cos(O)vx — x2/y — y2.

- a1(
2. go(z,y) =1 —zy — 2cos(0)(z — 2%)(y — ¥?).
3. gs(z,y) = 1—zy—5(1+5cos(0))(z—2?) (y—y?) (z+
Y)(2—z—y).

The following lemma shows that the above functions
satisfy the conditions required for the application of the
maximum principle (its proof is available in the full

version).
LEMmMA 3.2. Each of g1,g2,93 satisfies the boundary

conditions, i.e. gi(z,y) = u(zx,y) for all z,y € 9[0,1]2
and for all values 8. Moreover, we have the following
for each (z,y) € [0,1]%:

1. If1 > cos(6) > 0, then Lg; > 0.
2. If 0 > cos(6) > —1, then Lgy > 0.
3. If — > cos(0) > —1, then Lgs > 0.
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While some of these proofs are based on simple
inequalities, proving others requires us to use sum of
squares expressions. For example, to show Lg3 > 0,
we consider Lg3 = p(z,y,cos(f)) as a polynomial in
x,y and cos(#). Replacing z = cos(f), our aim is to
show p(z,y,2) > 0if 0 < z,y <land -1 <2 < —%.
Equivalently, we need to show p(z,y,2) > 0 whenever
ri(z,y,2) =z —22 >0, ro(z,y,2) :=y —y? > 0 and
r3(z,y,2) == —(2+%) > 0 and r4(z,y,2) := (2+1) > 0.
We show this by obtaining polynomials g;(z,y,z) for
i = 0,1,2,3,4 such that each g; is a sum of squares
polynomial of fixed degree and we have

4

p(l‘u U, Z) = ql](I: ‘y,Z) + ZQi(mu y,Z)'f’gj(T, ‘y,Z).
i=1

Observe that the above polynomial equality proves the
desired result by evaluating the RHS for every 0 <
r,y < 1and —1/2 > z > —1. Clearly, the RHS is
non-negative: each g; is non-negative since it is a sum
of squares and each r; is non-negative in the region
we care about, by construction. We mention that we
obtain these proofs via solving a semi-definite program
of fixed degree (at most 6) for each of the ¢; polynomials
(missing details are available in the full version).

Let us now focus on the approximation guarantee
that can be proved using the above functions g1, g2, and
g3. The following lemma compares the lower bounds
on the probability of satisfying a clause, as given by
g1, g2, and g3, to the SDP objective. Recall that the
contribution of any clause with marginals  and y and
angle € to the SDP’s objective is given by: 1 — zy —
cos(#)v/x — z2+/y — y?. We denote this contribution by
SDP(z,y,6). It is important to note that not all triples
(z,y,0) are feasible (recall that 6 is the angle between
w; and w;), due to the triangle inequalities in the SDP.
This is summarized in the following lemma.

LEmMA 3.3. Letx,y, 0 be as defined by a feasible pair of
vectors v; and v;. Then they must satisfy the following
constraints:

1. 0<z<1,0<y<1,0<0 <.

2. CO\S(Q) 2 4 / %.
3. cos(f) > —ﬁil;‘”xﬂyl_—yl.

Finally, we prove the following lemma which proves
an approximation guarantee of 0.8749 for MAx-2SAT
via the PDE and the maximum principle approach.
As before, these proofs rely on explicitly obtaining
sum of squares proofs as discussed above. We remark
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that these proofs essentially aim to obtain g = 0.875-
approximation but errors of the order 10~ allow us to
obtain a slightly worse bound using this methods. The

details appear in the full version.

LemMA 3.4. Consider any feasible triple (x,y, 6) satis-
fying the condition in Lemma 3.3. We have the follow-
ng.

1. If1 > cos(8) > 0, then gi(z,y) > 1-SDP(z,y,8).

2 0 >
92(1‘1 y) 20-8749'SDP($1 Y, 9)'

cos(#) > -1, then

3. If —3% > cos(f) > —1,  then
93(z,y) >0.8749-SDP(z,y,0).
4 Max-Cut with Side Constraints
(Max-Cut-SC)
In this section we describe how to apply the Sticky
Brownian Motion rounding and the framework of
Raghavendra and Tan [34] to the Max-CuT-SC prob-
lem in order to give a bi-criteria approximation algo-
rithm whose running time is non-trivial even when the
the number of constraints is large.

4.1 Problem Definition and Basics. Let us recall
the relevant notation and definitions. An instance of the
MAax-CuT-SC problem is given by an n-vertex graph
G = (V,E) with edge weights a : E — R,, as well
as a collection F = {F}y,..., F;} of subsets of V, and
cardinality bounds by, ..., b € N. For ease of notation,
we will assume that V = {1,...,n}. Moreover, we
denote the total edge weight by a(E) = > _paf(e).
The goal in the MAX-CuT-SC problem is to find a
subset S C V that maximizes the weight a(4(S)) of
edges crossing the cut (S,V \ S), subject to having
|[SNEF;| = b; for all i € [k]. These cardinality constraints
may not be simultaneously satisfiable, and moreover,
when &k grows with n, checking satisfiability is NP-
hard [17]. For these reasons, we allow for approximately
feasible solutions. We will say that a set of vertices
S C V is an (a,&)-approximation to the Max-Cut-
SC problem if ||S N Fi| — b;| < en for all i € [k],
and a(6(S)) > a-a(6(T)) for all T C V such that
[T NF;| =0b; for all i € [k]. In the remainder of this
section we assume that the instance given by G, F, and
b is satisfiable, i.e. that there exists a set of vertices T’
such that [TNF;| = b; forall € [k]. Our algorithm may
fail if this assumption is not satisfied. If this happens,
then the algorithm will certify that the instance was not
satisfiable.

We start with a simple baseline approximation algo-
rithm, based on independent rounding. The algorithm
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outputs an approximately feasible solution which cuts a
constant fraction of the total edge weight. For this rea-
son, it achieves a good bi-criteria approximation when
the value of the optimal solution OPT is much smaller
than ea(E). This allows us to focus on the case in which
OPT is bigger than ca(E) for our main rounding al-
gorithm. The proof of the lemma, which follows from
standard arguments, is available in the full version.

and ¢ < L.

LEMMA 4.1. Suppose that n > 2
There exists a polynomial time algorithm that on input
a satisfiable instance G = (V,E), F, and by, ..., by, as
defined above, outputs a set S CV such that, with high
probability, a(5(S)) > £a(E), and ||S N Fj| — b;| < en
for all i € [K].

21n(8k/<=)
b TS

4.2 Sum of Squares Relaxation. Our main ap-
proximation algorithm is based on a semidefinite relax-
ation, and the sticky Brownian motion. Let us suppose
that we are given the optimal objective value OPT of
a feasible solution: this assumption can be removed by
doing binary search for OPT. We can then model the
problem of finding an optimal feasible solution by the
quadratic program

Z a(e)(z; —z;)* > OPT

e=(i,j)€E

st. Y z;=b Vi=1,...,k
JeF;

rj(l—z;) =0 Vi=1,...,k

Let us denote this quadratic feasibility problem by
Q. The Sum of Squares (Lasserre) hierarchy gives a
semidefinite program that relaxes Q. We denote by
S0S,(Q) the solutions to the level-¢ Sum of Squares
relaxations of Q. Any solution in SoS;(Q) can be
represented as a collection of vectors ¥V = {vg : S C
[n],0 < |S| < £}. To avoid overly cluttered notation, we
write v; for vy;); we also write vo for vg. We need the
following properties of V, valid as long as £ > 2.

1. Vo-V():]_.

2. vg - vp = vgr - v for any S,5’,T,T’ such that
SUT = S"UT" and |SUT| < k. In particular,
Vv; - V; = V; - v for any i.

3. For any i and j the following inequalities hold:

(4.9) ]_EVD‘Vi-FVj'VO—Vé'Vj
(4.10) ViV 2 V- VJ
(4.11) Vi Vj. 2 0

4. Ze:(i,j)eE a(e)||lvi —v;||* > OPT
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5. For any i, there exist two solutions V*—? and Vi—1
in SoS,_1(Q) such that, if we denote the vectors
in V7% by v, and the vectors in V'7! by v, we
have

vs-vo=(1—v;-vo)vs-v]+ (vi - vo)Vvs - vg.

Moreover, a solution V € SoS; can be computed in time
polynomial in nf.

Intuitively, we think of V as describing a pseudo-
distribution over solutions to @, and we interpret vg-vr
as the pseudo-probability that all variables in SUT are
set to one, or, equivalently, as the pseudo-expectation of
[Licsur xi- Usually we cannot expect that there is any
true distribution giving these probabilities. Neverthe-
less, the pseudo-probabilities and pseudo-expectations
satisfy some of the properties of actual probabilities.
For example, the transformation from V to VP corre-
sponds to conditioning x; to b.

We will denote by g = vg - vp the marginal value
of set S. In particular, we will work with the single-
variable marginals r; = z(;; = v; - Vo, and will denote
x = (z1,...,Tn). As before, it will be convenient to
work with the component of v; which is orthogonal to
vo. We define w; = v; — 7;vp, and w; = mvﬁh Note
that, by the Pythagorean theorem, |w;||? = z; — 22,

and v; = 7;Vg + / Ti — m?wi. We define the matrices

W and W by Wi?j =w; -w; and W, ; :=
We can think of W as the covariance matrix of the
pseudodistribution corresponding to the SDP solution.
The following lemma, due to Barak, Raghavendra, and
Steurer [13], and, independently, to Guruswami and
Sinop [24], shows that any pseudodistribution can be
conditioned so that the covariances are small on average.

Wi - Wj.

LemMMA 4.2. For any g9 < 1, and any V € S05;(Q),
where £ > ﬁ; + 2, there exists an efficiently computable
o

V' € S0S_1/:4(Q), such that

(4.12) iiﬁ?gj < egn?.
i=1 j=1

In particular, V' can be computed by conditioning V on

L variables.
€n

4.3 Rounding Algorithm. For our algorithm, we
first solve a semidefinite program to compute a solu-
tion in SoS;(Q), to which we apply Lemma 4.2 with
parameter £¢, which we will choose later. In order to be

able to apply the lemma, we choose £ = [Eﬂ + 2. The

rounding algorithm itself is similar to the one we used
for MAx-25AT. We perform a Sticky Brownian Motion
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with initial covariance W, starting at the initial point
Xy = X, i.e. at the marginals given by the SDP solution.
As variables hit 0 or 1, we freeze them, and delete the
corresponding row and column of the covariance matrix.
The main difference from the MAX-2SAT rounding is
that we stop the process at time 7, where 7 is another
parameter that we will choose later. Then, indepen-
dently for each i = 1,...,n, we include vertex i in the
final solution S with probability (X;);, and output S.

The key property of this rounding that allows
us to handle a large number of global constraints is
that, for any F; € F, the value } . p(X;); that
the fractional solution assigns to the set F; satisfies
a sub-Gaussian concentration bound around b;. Note
that ) jer,(X¢); is a martingale with expectation equal
to b;. Moreover, by Lemma 4.2, the entries of the
covariance matrix W are small on average, which allows
us to also bound the entries of the covariance matrix
‘W, and, as a consequence, bound how fast the variance
of the martingale increases with time. The reason we
stop the walk at time 7 is to make sure the variance
doesn’t grow too large: this freedom, allowed by the
Sticky Brownian Motion rounding, is important for our
analysis. The variance bound then implies the sub-
Gaussian concentration of 3, . (X;); around its mean
b;, and using this concentration we can show that no
constraint is violated by too much. This argument
crucially uses the fact that our rounding is a random
walk with small increments, and we do not expect
similarly strong concentration results for the random
hyperplane rounding or its variants.

The analysis of the objective function, as usual,
reduces to analyzing the probability that we cut an edge.
However, because we start the Sticky Brownian Motion
at X, which may not be equal to 0, our analysis from
Section 2 is not sufficient. Instead, we use the PDE
based analysis from Section 3, which easily extends to
the MAX-CuT objective. One detail to take care of
is that, because we stop the walk early, edges incident
on vertices that have not reached 0 or 1 by time T
may be cut with much smaller probability than their
contribution to the SDP objective. To deal with this, we
choose the time 7 when we stop the walk large enough,
so that any vertex has probability at least 1 — poly(¢)
to have reached {0,1} by time 7. We show that this
happens for 7 = O(log(1/¢)). This value of 7 is small
enough so that we can usefully bound the variance of
>_jer,(Xr)i and prove the sub-Gaussian concentration
we mentioned above.

Let us recall some notation that will be useful in our
analysis. We will use 7; for the first time ¢ that X, hits
a face of [0,1]™ of dimension n — i; then, X, € {0,1}".
We also use W; for the covariance used at time step t,
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which is equal to W with rows and columns indexed by
{i:(X¢): € {0,1}} zeroed out.

As discussed, our analysis relies on a martin-
gale concentration inequality, and the following lemma,
which is proved with the methods we used above for the
MAax-2SAT problem. A proof sketch can be found in
the full version.

LEMMA 4.3. For the SDP solution V and the Sticky
Brownian Motion X, described above, and for any pair
{i,7} of vertices

Pr[(Xr,): # (Xr,)j] > 0.843 - [|vi — v,

The next lemma shows that the probability that any
coordinate is fixed by time ¢ drops exponentially with ¢.
We use this fact to argue that by time 7 = O(log(1/¢))
the endpoints of any edge have probability at least
1 — poly(e) to be fixed, and, therefore, edges are cut
with approximately the same probability as if we didn’t
stop the random walk early, which allows us to use
Lemma 4.3. The proof of this lemma, which is likely
well-known, appears in the full version.

LEMMA 4.4, For any i, and any integer t > 0,
Privs <t:0< (X{); <1] <47t

The following concentration inequality is our other
key lemma. The statement is complicated by the
technical issue that the concentration properties of the
random walk depend on the cova:rfignce matrix W, while
Lemma 4.2 bounds the entries of W. When z;(1—z;) or
zj(1—x;) is small, Wé,j can be much smaller than W ;.
Because of this, we only prove our concentration bound
for sets of vertices i for which z;(1 — z;) is sufficiently
large. For those i for which z;(1 — z;) is small, we
will instead use the fact that such z; are already nearly
integral to prove a simpler concentration bound.

LemMA 4.5. Let gg9,61 € [0,1], and n > Si—;g. Define

Voey = {0 22;(1 — x;) > &1}. For any set F C V-,
and any t > 0, the random set S output by the rounding

algorithm satisfies
€1t2
>t <4 —].
> eun] < exp( 47)

IFns|= =
ieF

We defer the proofs of Lemma 4.5 and Theorem 1.3

to the full version of our paper.

Pr

5 Extensions of the Brownian Rounding

In this section, we consider two extensions of the Brow-
nian rounding algorithm. We also present numerical re-
sults for these variants showing improved performance
over the sticky Brownian Rounding analyzed in previous
sections.
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5.1 Brownian Rounding with Slowdown. As
noted in section 2, the Sticky Brownian rounding algo-
rithm does not achieve the optimal value for the MAX-
CuT problem. A natural question is to ask if we can
modify the algorithm to achieve the optimal constant.
In this section, we will show that a simple modification
achieves this ratio up to at least three decimals. Our
results are computer-assisted as we solve partial differ-
ential equations using finite element methods. These
improvement indicate that variants of the Brownian
Rounding approach offer a direction to obtain optimal
SDP rounding algorithms for MAX-CuUT problem as well
as other CSP problems.

In the sticky Brownian motion, the covariance
matrix W; is a constant, until some vertex’s marginals
(X:); becomes +1. At that point, we abruptly zero
the it row and column. In this section, we analyze
the algorithm where we gradually dampen the step size
of the Brownian motion as it approaches the boundary
of the hypercube, until it becomes 0 at the boundary.
We call this process a “Sticky Brownian Motion with
Slowdown.”

Let (X:); denote the marginal value of vertex i at
time t. Initially (Xp); = 0. First, we describe the
discrete algorithm which will provide intuition but will
also be useful to those uncomfortable with Brownian
motion and diffusion processes. At each time step, we
will take a step whose length is scaled by a factor of
(1 — (X;)?)™ for some constant a. In particular, the
marginals will evolve according to the equation:

(5.13)
(Xerae)i = (Xe)i + (1 — (Xe)i)?) 2 - (wi - Ge) - Vat.

where G, is distributed according to an n-dimensional
Gaussian and dt is a small discrete step by which we
advance the time variable. When X, is sufficiently close
to —1 or +1, we round it to the nearest one of the two:
from then on it will stay fixed because of the definition
of the process, i.e. we will have (X;); = (X,); for all
s >1.

More formally, X, is defined as an It6 diffusion pro-
cess which satisfies the stochastic differential equation

(5.14) dX, = A(X,)- W'/2.dB,

where B; is the standard Brownian motion in R™ and
A(X;) is the diagonal matrix with entries [A(X:)]i; =
(1 — (X;)?)2/2. Since this process is continuous, it
becomes naturally sticky when some coordinate (X;);
reaches {—1,1}.

Once again, it suffices to restrict our attention to the
two dimensional case where we analyze the probability
of cutting an edge (i,j) and we will assume that
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= 1 cos(#)
W= (005(6') 1
w; and w;.

Let 7 be the first time when X, hits the boundary
8[—1,1]2. Since the walk slows down as it approaches
the boundary, it is worth asking if E[7] is finite. In the
full version, we show that E[r] is finite for constant a.

Let u(z,y) denote the probability of the Sticky
Brownian Walk algorithm starting at (x,y) cutting an
edge, i.e. the walk is absorbed in either (+1,—1) or
(—1,41). It is easy to give a precise formula for u
at the boundary as the algorithm simplifies to a one-
dimensional walk. Thus, u(z,y) satisfies the boundary
condition ¢(z,y) = (1 — zy)/2 for all points (z,y) €
bd[—1,1]?%. For a given (z,y) € Int[—1,1]?, we can say

u(z,y) = ECV[$(X, (4), X (7))],

where E(®¥) denotes the expectation of diffusion process
that begins at (z,y). Informally, u(z,y) is the expected
value of ¢ when first hitting d[—1,1]? conditioned on
starting at point (z,y). Observe that the probability
that the algorithm will cut an edge is given by (0, 0).

The key fact about u(z,y) that we use is that it is
the unique solution to a Dirichlet Problem, formalized
in Lemma 5.1 below.

) , Where 6 is the angle between

LEMMA 5.1. Let L% denote the operator

52
o o AN
LY=(1-1z%) 952
+2cos(0)(1 — z2)/2(1 — y?) /12—
dzy
52
+1 =) %5

then the funection u(zx,y) is the unique solution to the
Dirichlet Problem:

L*u)(z,y) =0 ¥(z,y) € Int([-1,1]?)
lim u(z,y) = 6(,9) V(Z,79) € 9[-1,1]%.
(=.y)—(2.3),
(z,y)€nt([—1,1]2)
The proof again uses [31, Theorem 9.2.14], however,
the exact application is a little subtle and we defer the
details to the full version.

Numerical Results. The Dirichlet problem is pa-
rameterized by two variables: the slowdown parameter
a and the angle between the vectors #. We can numeri-
cally solve the above equation using existing solvers for
any given fixed a and angle 8 € [0,7]. We solve these
problems for a variety of a between 0 and 2 and all val-
ues of # in [0, 7] discretized to a granularity of 0.02.1°

TWOur code, containing the details of the implementation, is

available at [1].
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We observe that as we increase « from 0 to 2, the ap-
proximation ratio peaks around a = 1.61 for all values
of 8. In particular, when o = 1.61, the approximation
ratio is 0.878 which matches the integrality gap for this
relaxation up to three decimal points.

The Brownian rounding with slowdown is a well-
defined algorithm for any 2-CSP. We investigate 3
different values of slowdown parameter, i.e., a, and show
their relative approximation ratios. We show that with
a slowdown of 1.61 we achieve an approximation ratio
of 0.929 for MAX-2SAT. We list these values below
in Table 2.

For the MaAx-CuT problem, since we start the
walk at the point (0,0), we only need to investigate
the performance of the rounding for all possible angles
between two unit vectors which range in [0, 6] (Figure 2).
In particular, we are able to achieve values that are
comparable to the Goemans-Williamson bound.

a Max-Cut | MaAax-25AT

0 0.861 0.921

1 0.874 0.927
1.61 0.878 0.929

Table 2: Approximation ratio of Sticky Brownian Motion round-
ing with Slowdown for Max-CuT and Max-2S5AT.

5.2 Higher-Dimension Brownian Rounding.
Our motivating example for considering the higher-
dimension Brownian rounding is the MAX-D1CuT prob-
lem: given a directed graph G = (V, E) equipped with
non-negative edge weights a : E — R, we wish to find
a cut S C V that maximizes the total weight of edges
going out of S. The standard semi-definite relaxation
for MAX-D1CurT is the following:

(Wo + wi) - (Wo — W)
max g *

2 i
e=(i—+j)EE
Vi=0,1,..,n
Wi — Wil + lw; — well* > [lws — wl|?

Vi, j,k=0,1,...,n.

st. w;-w; =1

In the above, the unit vector w, denotes the cut S,
whereas —wg denotes S. We also include the triangle
inequalities which are valid for any valid relaxation.
The sticky Brownian rounding algorithm for MAX-
DiCut fails to give a good performance guarantee.
Thus we design a high-dimensional variant of the al-
gorithm that incorporates the inherent asymmetry of
the problem. Let us now describe the high-dimensional
Brownian rounding algorithm. It is similar to the origi-
nal Brownian rounding algorithm given for Max-CurT,
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except that it evolves in R™*! with one additional di-
mension for wo. Let W € R(+DX("+1) denote the
positive semi-definite correlation matrix defined by the
vectors wg, Wq,..., Wy, i.e., for every 0 < i,j7 < n we
have that: W; ; = w; - w;. The algorithm starts at the
origin and perform a sticky Brownian motion inside the
[£1]"*+! hypercube whose correlations are governed by
W.

As before, we achieve this by defining a random
process {X;},5, as X; = WY?B,, where {B.},, is
the standard Brownian motion in R™*! sta:rtin?g at
the origin and W'/2 is the square root matrix of W.
Additionally, we force {X;},, to stick to the boundary
of the [+1]™*! hypercube, i.e., once a coordinate of X,
equals either 1 or —1 it is fixed and remains unchanged
indefinitely. This description can be formalized the
same way we did for the MAX-CuT problem. Below
we use ¢ for the time at which X, € {—1,1}"*!, which
has finite expectation.

Unlike the Brownian rounding algorithm for MAx-
CuT, we need to take into consideration the value wy
was rounded to, i.e., (Xs),, since the zero coordinate
indicates S. Formally, the output S C V is defined as
follows:

S={ieV:(Xs),=(Xs)o}-

To simplify the rest of the presentation, let us denote
Z; = (X;), for every i = 0,1,...,n.

The event that an edge (i — j) € F is an outgoing
edge from S, i.e., i € S and j € S, involves three
random variables: Z;, Z;, and Z,. Formally, the above
event happens if and only if Z; = Zp and Z; # Zo.
We now show how events on any triplet of the random
variables £y, Z1, ..., Z, can be precisely calculated. To
simplify the presentation, denote the following for every
i,7,k=0,1,2,...,n and o, 8,7y € {£1}:

pi(a) £ Pr[Z; = o
p‘ij(a?ﬁ) £ Pr[Z@ = a'JZj = !8]
p‘ijk(a?ﬁ?ﬁ}() £ Pr [Zﬂl = G, Zj = }81 Zk = F]{] .

OBSERVATION 5.1. The following two hold:

1. pi(a) = pi(—a), pij(a, B) = pij(—a,—pB), and
pijk(au :6:' F]() = pijk(_a:! _JB'J _f}() fOT EVETY i’:ju k=
0,1,2,...,n and o, B,y € {£1}.

2. pi(a) = 12 for every i = 0,1,2,...,n and a €
{+1}.

The proof of Observation 5.1 follows immediately from
symmetry.

The following lemma proves that every conjunc-
tion event that depends on three variables from

Co i;right © 2020 by STAM
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Ange

(a) a=0.

Ange . ) Argla

(b)a=1.

(c) a=1.61.

Figure 2: Comparing the performance of three values of the slowdown parameter for the MAX-CuT problem.

ZoyZ1, 2o, ..., %, can be precisely calculated. (The
proof is available in the full version.)

LEMMA 5.2. For every i,5,k = 0,1,2,...,n and
a, B,y € {£1}:

1 1
Pijk(ce,B7) = 5 pij(a, B) + pir(c, ) + ik (B,7) — 3

Let us now consider the case study problem MAX-
DiCuTt. One can verify that an edge (i — j) € E is
a forward edge crossing the cut S if and only if the
following event happens: {Z; = Zy # Z;} (recall that
Zo indicates S). Thus, the value of the Brownian
rounding algorithm, when considering only the edge
(¢ — 7), equals pos;(1,1,—1) + posj(—1,—1,1). Lemma
5.2 above shows that if one knows the values of p;;(a, 3)
for every i,j = 0,1...,n and «a,8 € {£1}, then
poij(1,1,—1) and poi;(—1, —1,1) can be calculated (thus
deriving the exact probability that (i — j) is a forward
edge crossing S).

How can we calculate p;;(c, ) for every i,j =
0,1...,nand a,f € {£1}? Fix some i, j, @ and 5. We
note that Theorem 2.1 can be used to calculate p;;(a, ).
The reason is that: (1) Theorem 2.1 provides the value
of pij(—=1,1) +pi; (1, —1); (2) pi; (=1, —1) +pi;(—1,1) +
pij(1,-1) + pi;(1,1) = 1; and (3) pi(-1,-1) =
pij(1,1) and p;;(—1,1) = p;;(1,—1) from symmetry.
We conclude that using Theorem 2.1 we can exactly
calculate the probability that (i — j) is a forward
edge crossing S, and obtain that this probability equals
%[poj +Ppij —Poi), Where p;; is the probability that ¢ and
j are separated as given by Theorem 2.1.

Similarly to MAX-25AT, not all triplets of angles
{60i,00;,0;;} are possible due to the triangle inequality
constraints (here 6;; indicates the angle between w; and
w;). Let us denote by F the collection of all possible
triplet of angles for the MAx-Di1CuT problem. Then,
we can lower bound the approximation guarantee of the
Brownian rounding algorithm as follows:

min { 1(poj + pij — Poi) }
(60i,005,8:5)EF %(1 — cos(fo;) + cos(fo;) — cos(8;5))
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This results in the following theorem.

THEOREM 5.1. The high dimensional Brownian round-
ing algorithm achieves an approxrimation ratio of 0.79
for the MAX-DI1CuT problem.

We also remark that we can introduce slowdown (as
discussed in Section 5.1 to the high dimensional Brown-
ian rounding algorithm. Numerically, we show that this
improves the performance to 0.79-approximation.
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