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Abstract:Throughout history,recreationalmathematics has always played a
prominent role in advancing research.Following in this tradition, in this paper
we extend some recent work with crazy sequentialrepresentations of numbers−
equations made ofsequences ofone through nine (or nine through one) that
evaluate to a number.All previous work on this type of puzzle has focused only
on base ten numbersand whethera solution existed. We generalizethis
concept and examine how this extends to arbitrary bases, the ranges of possible
numbers, the combinatorialchallengeof finding the numbers,efficient
algorithms,and some interesting patterns across any base.For the analysis,
we focus on bases three through ten.Further,we outline severalinteresting
mathematicaland algorithmic complexity problemsrelated to thisarea that
have yet to be considered.

Keywords:representations, algorithms.

1 Introduction

One constant theme throughout the history of mathematics is the lure of and
the desire to create and solve puzzles.Countless areas ofresearch have been
created and extended based on an investigation into recreational mathematics.
The study ofgames and puzzles has become a serious area in its own right
often providing insights into much deeper topics.

In this paper we look at an area of recreational mathematics based in number
theory and combinatorics began in 2013 by Taneja [19]and continued in [18,
20,21,22]. The crazy sequentialrepresentation of a number is an arithmetic
expression, equal to the value of the number, that contains the digits of a base
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34 representations of numbers for small bases

in order (ascending or descending) such as

3227 = 123 + 45 × 67 + 89and 3227 = 9 + 87 + 6 + 54 × (3 + 2) × 1.

This representation isoften not unique. The original work looked at
expressions with only addition and multiplication as well as concatenation and
exponentiation1. Taneja extended this work by also allowing subtraction and
division,and was able to find equations for allnumbers 1 − 11111 with one
exception:an ascending equation for10958. Without concatenation and
exponentiation,we could look at group operations to define possible values,
but these two operations do not provide closure.

There are examples ofthis kind of representation ofintegers at least as far
back as 1917 in a famous puzzle book by Dudeney [2],and also in another
recreationalbook by Madachy [10]from 1966. Both of these worksonly
focused on the number 100 and used other operations such as factorials and
square roots,as wellas decimals,etc. Taneja was unaware ofthese books in
his originalwork, and discovered them later while working on the updated
version.

Our focus in this work is to look at possiblenumbersin other bases-
specifically bases less than 10.We also summarize the work related to base 10
and give an exhaustiveproof that under Taneja’srules, 10958 is indeed
impossible. We follow previous conventionand only allow addition,
concatenation,exponentiation,multiplication,division,and negation2 along
with precedence constraints (parentheses).

Base Increasing Decreasing Neither

3 0 0 0

4 13 11 16

5 27 17 27

6 67 77 92

7 260 262 292

8 614 809 1192

9 3293 4570 5414

10 10958 14324 21212

Table 1: A brief overview ofthe first integers that can not be sequentially
represented under the defined operations for bases 3 − 10.

We can examine the limitations ofspecific operations,and how the possible
results are affected by a change ofbase. Here,we focus on what is possible
within a given base.As an example, Table 11 shows for each base less than 10
the first positiveintegerthat is impossiblefor increasing and decreasing
representations as well as the first positive integer that can not be sequentially
represented either increasingly or decreasingly.

1Taneja used the term ‘potentiation’ instead, which comes from the translated word used
for exponents.

2Taneja specified subtraction, but we use a broader operation, and we show that arbitrary
negation is still not sufficient for 10958.
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Historically,these kind ofderivationswere done tediously and slowly,and
Taneja’s work also has this flavor with only using a program to find a few of
the difficultnumbers[22]. Our approach leveragesmodern computational
power and algorithmictechniquesto bring this topic squarelywithin
computationalmathematics and search allpossible combinations.We discuss
these techniques and upper bounds in the paper.

A brute force approach to a problem like this has generally been classified as
computational mathematics - there is a point for many problems at which the
number of possible combinations becomes too large for a human, or humanity,
to check by hand in any reasonable amount oftime. This has become more
common with effortsto verify and prove other long open questionsin
mathematics such as the Kepler Conjecture [5, 6, 7], the Boolean Pythagorean
Triples problem [8],finding Ramsey numbers [3,14, 15],the Happy Ending
problem [11,17],the 2-PATS problem [9],and many others where brute-force
exhaustive-search solutions were required.

Fortunatelyfor us, this problem can also be approached with dynamic
programmingthrough calculating substrings that appear in multiple
equations. This recurrence relation yieldsan efficientsolution allowing an
exhaustive examination within a reasonable amount of time.For most of the
bases in our study (3-9), even basic laptops are sufficient to check the millions
of combinations.For base ten,we utilized some research servers due to the
high memory requirements.The program required around 20 gigabytesof
memory to run, but the time was less than two hours.

In the next section we give the background and definitions necessary.We then
overview the approach and algorithms used in this research in Section 3.We
discuss the small bases 2, 3, and 4 in Section 4, and then the more substantial
possibilities ofbases 5-9 in Section 5.Section 6 covers what is known about
base 10 and the missing number 10958.Finally, in Section 7 we outline several
interesting mathematicaland computationalopen problems related to their
study and conclude.

2 Preliminaries

We generalize the previous definitions with negation instead of subtraction, an
explicit concatenation operator, and adding parentheses.

Definition (Crazy SequentialRepresentation).Given a number n ∈R, an
increasing crazy sequentialrepresentation ofn in base b is an equation using
the sequence of numbers h1, 2, . . . , b − 1i (decreasing being hb − 1, . . . , 2, 1i) with
the following operations allowed between any two of the numbers.Given two
real numbers x, y ∈R we define the following allowable operations:

+ Addition: x + y resulting in the sum of the two numbers.

− Negation:−x is allowable as well as the negation of an expression −(. . . ).
Addition with a negative is also equivalent to subtraction in this context,
so subtraction is omitted from the list of operations.
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36 representations of numbers for small bases

× Multiplication:x × y resulting in their product.

/ Division: x/y giving the fraction.

ab Exponentiation:xy meaning x to the yth power.

xy Concatenation:xy meaning the number xy in the given base (e.g., 123 =
510 ). There are many standard symbols used for this operation.We will
use ⊕ when we need to explicitly show it,otherwise it willbe omitted
when clear by context- generally xy will be preferred instead of x ⊕ y.

() Grouping: arbitrary parentheses are allowed with derivations following
the standard rule that expressions inside parentheses are evaluated first.

One goalof Taneja’s work is to minimize the number of operations used for a
given representation.Thus, the original work [19] focused on numbers
derivable from simply concatenation, addition, multiplication and
exponentiation.Later work to add missing numbersincluded division and
subtraction [18,20, 21, 22]. We have also opted to generally preferthose
originaloperations in the expression chosen when multiple expressions exists
for a given number, as well as simplicity and elegance.

Explicit Concatenation.An issue with the way Taneja uses concatenation
is that it is only allowed before evaluating the expression.This means 12 is
allowed as twelve (or 1 ⊕ 2),but (1 + 2) ⊕ 3 is not allowed to be evaluated as
33. This is the only defined operation not allowed during evaluation.If we
allow it, several other numbers are possible, including 10958 in base 10.In the
results, all expressions using this deviant version are colored red and use the  ⊕
symbolexplicitly.Our approach did not consider these solutions either,and
thus there may be solutions of this form to some of the values listed without a
solution.

2.1 Combinatorics

In calculating an upperbound we are looking atthe maximum amountof
different numbers that could be represented in that base.The number of parse
trees that can be generated with binary operators tells us the number of ways
to distribute the operations.If we, for the moment,only consider a single
operation,this is the well-known Catalan numbers.Another view more
relevant is the number of ways to insert n − 1 pairs of parentheses in a word of
n letters. e.g.,for n = 3 (t(2)) there are 2 ways:((ab)c) or (a(bc)) [4].The
Catalan numbers can be recursively derived by the following equation with
t(0) = 1 and t(1) = 1.

t(n) =
nX

i=1

t(i − 1)t(n − i) (1)

Thus, for the bases considered here,we have t : (2, 3, . . . , 9)=⇒ (2, 5, 14, 42,
132,429,1430,4862).This gives the number ofways to group the operands
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(sequentialnumbers),and then we mustconsiderthe numberof operators
allowed. We allow five distinct operationsas defined above: addition,
multiplication,division,exponentiation,and concatenation (subtraction will
be handled later).This gives 5n−1 ways to place the operations on n operands.
For base b, we therefore have 5b−2 since we exclude 0 in the representation and
only use 1, . . . , (b − 1).

The last issue to dealwith is negation.If we only allow subtraction,then the
numberof operationsis 6n−1, however,we also allow negation. Thus,
expressionssuch as −(−4 + 5) are also allowed. Thus, for each of the
parenthesesor numbers, we could negate it, which adds all possible
combinations of negations over the parentheses and numbers.This means we
can also reduce our operations to only 5 (since we willlook at adding the
negated number instead).Thus, we have the power set ofn possible ways to
add negativesto the numbersfor n operands, and the power set of
{1, 2, . . . , n − 1} for possible ways to add negatives to the parentheses (for n
numbers,we need at most n − 1 parenthesis for binary operations).Since for
base b,we have n = b − 1,when we include allpossibilities,there is an upper
bound for the combinations for n numbers given base b.

C(n) = 5n−1 × t(n) × 2n × 2n−1 (2)

= 5n−1 × t(n) × 22n−1, or in terms of b (3)

C(b) = 5b−2 × t(b − 1) × 22b−3. (4)

The values for bases 3 − 10 are shown in Table 2.Note that the vast majority
of these combinations do not yield integers,however,the numbers are small
enough to output all possible numbers and then check the integral ones.Many
of these resultsare duplicateswith only parentheticaldifferences,but the
number of combinations is still well within computational power to brute force
every possibility even if many are duplicates.For larger bases, an examination
of the unique parse treeswould reduce many ofthe duplicatescaused by
analyzing strings.

Base b 3 4 5 6

Combinations C(b) 80 4000 2.24 × 105 1.344 × 107

Base b 7 8 9 10

Combinations C(b) 8.448 × 108 5.4912 × 1010 3.6608 × 1012 2.489344 × 1014

Table 2:The upper bound on the number of combinations for crazy sequential
representations for a given base,which is the maximum amount ofpossible
numbers that could be represented.
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38 representations of numbers for small bases

3 Algorithms

At a high-level,in order to find allthe numbers possible for a given base,an
algorithm such as Algorithm 1 can be run.List the numbers from 1 to b − 1
(or b − 1 down to 1),and then check for allvalid expressions with the given
operations.This includes both the removalof any operation (concatenation)
and the possibility of precedence in operations (parentheses).

There are severalnotes ofinterest related to actualimplementation.These
include finding all binary partitions (and how this changes with
concatenation), negation of terms, evaluation in the given base, and processing
such large amounts ofdata. We cover these in the analysis ofAlgorithm 1,
which is a dynamic programming solution to the problem.By utilizing a
dictionary of substrings, we can exponentiallyreduce the number of
computations necessary.

Algorithm 1 A recursive algorithm looking at the possible combinations using
dynamic programming that builds a dictionary or lookup table of all expressible
numbers.
1: function FindExpressions(base, low, high ∈Z+ )
2: if low 6= high then
3: T = {}
4: numstr ← CASTSTR(low) ⊕ . . . ⊕ CASTSTR(high)
5: catnum ← CASTNUM(numstr)
6: T ← T ∪ (catnum, numstr) ∪ (−catnum,“−”⊕numstr)
7: for all low 6 k 6 high do
8: L ← FindEpressions(base, low, k)
9: R ← FindEpressions(base, k+1, high)

10: . All ways to combine the left and right expressions
11: for all x ∈ LS do
12: for all y ∈ RS do
13: T ← T ∪ (x + y,‘(’⊕ L x ⊕‘+’⊕ Ry ⊕‘)’)
14: T ← T ∪ (x × y,‘(’⊕ L x ⊕‘×’⊕ Ry ⊕‘)’)
15: T ← T ∪ (x/y,‘(’⊕ L x ⊕‘/’ ⊕ R y ⊕‘)’) . if y 6= 0
16: T ← T ∪ (x y ,‘(’⊕Lx⊕‘ˆ ’⊕Ry⊕‘)’)

return T
17: F =FindEpressions(10, 1, 9)

Finding Possible Parentheses.The possible ways parentheses can be nested
for n items is a classic problem in Computer Science with the proof published
by Guy and Selfridge in 1973 [4].An example of a Python algorithm to generate
these is here [1, btilly].

Finding Negations.Given all possible nested parentheses, for each we need
to find all possible negations ofthe numbers and the individualexpressions.
With negation instead of subtraction, the following are all different:(((−1+. . . ,
−(((1 + . . . , (−((1 + . . . , and ((−(1 . . . .

Coding with Bases. Another smallimplementation detailis the need to
deal with switching between multiple bases, which python has a method within
casting to do so 234 in base 7 would be float(int(237,7)).
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4 Too small bases

This is a quick overview of basesthat are really too small to offer the
necessary flexibility to count very high.Namely,2, 3, and 4.Five could be in
this category,but there is a massive jump between 4 and 5,so we willput it
with the larger bases.

Base 2. For base 2, since we do not use 0, only operations on the single digit
1 can be performed,meaning 1 and −1 are the only numbers expressible in a
sequential representation.Thus, we can ignore it.

Base 3. In base 3,we now have 2 digits at our disposal,which allows our
operations to have valid operands,however,there are not many combinations
and many operations lead to the same answer.Table 3 lists these values.

Increasing Decreasing

010 = 0 3 = 010 = 0 3 =

110 = 1 3 = 1 2 110 = 1 3 = 2 − 1

210 = 2 3 = 1 × 2 210 = 2 3 = 2 × 1 or 2 1

310 = 10 3 = 1 + 2 310 = 10 3 = 2 + 1

510 = 12 3 = 12 710 = 21 3 = 21

Table 3:List of most of the possible base 3 numbers in increasing and decreasing
sequential order.

Base 4. Base 4 is the smallest base where anything interesting happens and we
can list a significant portion of integers with the largest number being 1968310

since in base 4 it is 321
4 . Table 4 lists the first 20 values and then a few of

interest.

Increasing Decreasing

010 = 0 4 = 1 + 2 − 3 010 = 0 4 = 3 − 2 − 1

110 = 1 4 = 1 2+3 110 = 1 4 = 3 − 2 × 1

210 = 2 4 = 1 − 2 + 3 210 = 2 4 = 3 − 2 + 1

310 = 3 4 = 12 − 3 310 = 3 4 = 3 × (2 − 1)

410 = 10 4 = 1 2 + 3 410 = 10 4 = 3 + 2 − 1

510 = 11 4 = −1 + 2 × 3 510 = 11 4 = 3 + 2 × 1

610 = 12 4 = 1 + 2 + 3 610 = 12 4 = 3 + 2 + 1

710 = 13 4 = 1 + 2 × 3 710 = 13 4 = 3 × 2 + 1

810 = 20 4 = (1 × 2) 3 810 = 20 4 = 3 2 − 1

910 = 21 4 = 12 + 3 910 = 21 4 = 3 × (2 + 1)

Increasing Decreasing

1010 = 22 4 = −1 + 23 1010 = 22 4 = 3 2 + 1

1110 = 23 4 = 1 × 23 1110 = 23 4 =

1210 = 30 4 = 1 + 23 1210 = 30 4 = 3 + 21

1310 = 31 4 = 1310 = 31 4 = 32 − 1

1410 = 32 4 = 1410 = 32 4 = 32 × 1

1510 = 33 4 = (1 + 2) ⊕ 3 1510 = 33 4 = 32 + 1

1610 = 100 4 = 1610 = 100 4 =

1710 = 101 4 = 1710 = 101 4 =

1810 = 102 4 = 12 × 3 1810 = 102 4 =

2710 = 123 4 = 123 2710 = 123 4 = 3 × 21

5710 = 321 4 = 5710 = 321 4 = 321

Table 4:List of most of the possible base 4 numbers in increasing and decreasing
sequential order.

5 Overview of 5-9

For organizationalreasons,we overview thingsof interestabout bases5
through 9, and the actual listings of the expressions are omitted for space with
only the first 40 numbers shown for 5 − 7 and the first 20 shown for 8 and 9.

All possible results were generated (negatives,decimals,etc.),and everything
could be listed rather than giving just the organized list as presented.
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40 representations of numbers for small bases

However,the sheernumberof resultsmakesit infeasibleto do so. For
instance,with base eight,there are over 45,000 integer results,with most of
them not being consecutive.

B10 B5 IncreasingDecreasing
010 05 12 + 3 − 4 (4 − 3) − (2 − 1)

110 15 1234 (4 − 3) × (2 − 1)

210 25 1 + 2 + 3 − 4 −4 + 3 + 2 + 1

310 35 1 + 2 × 3 − 4 4 − 3 + 2 × 1

410 45 1 + 2 − 3 + 4 4 + (3 − 2 − 1)

510 105 1 + 2 3 − 4 4 + 3 − 2 × 1

610 115 1 − 2 + 3 + 4 4 + (3 − 2 + 1)

710 125 12 × 3 + 4 4 + 3 × (2 − 1)

810 135 −1 + 2 + 3 + 4 4 + 3 + 2 − 1

910 145 −1 − 2 + (3 × 4) 4 + 3 + 2 × 1

1010 205 1 + 2 + 3 + 4 4 + 3 + 2 + 1

1110 215 1 + 2 × 3 + 4 4 + 3 × 2 + 1

1210 225 −12 + 34 4 × 3 × (2 − 1)

1310 235 −1 + 2 + 3 × 4 4 + 3 × (2 + 1)

1410 245 1 × 2 + 3 × 4 4 × 3 + 2 × 1

1510 305 1 + 2 + 3 × 4 4 × 3 + 2 + 1

1610 315 −1 + 23 + 4 4 × (3 + 2 − 1)

1710 325 1 × 23 + 4

1810 335 1 + 23 + 4 4 + 3 + 21

1910 345 −1 + (2 + 3) × 4 4 × (3 + 2) − 1

B10 B5 IncreasingDecreasing
2010 405 1 × (2 + 3) × 4 4 × (3 + 2) × 1

2110 415 (1 + 2) × (3 + 4) 4 + 32 × 1

2210 425 1 + 2 + 34 4 + 32 + 1

2310 435 −1 + 2 × 3 × 4 4 × 3 + 21

2410 445 1 × 2 × 3 × 4 4 × 3 × 2 × 1

2510 1005 1 + 2 × 3 × 4 4 × 3 × 2 + 1

2610 1015 12 + 34 43 + 2 + 1

2710 1025
2810 1035 (1 + 2 × 3) × 4 4 × (3 × 2 + 1)

2910 1045 (1 × 2 + 3) ⊕ 4 −4 + 3 × 21

3010 1105 1 ⊕ (−2 + 3 + 4) (5 − 4) ⊕ (3 × 2 − 1)

3110 1115 −1 + 2 3 × 4 4 + 3 2+1

3210 1125 1 × 2 3 × 4 4 × (3 2 − 1)

3310 1135 1 + 2 3 × 4 (4 3 )/2 + 1

3410 1145 123 − 4 43 + 21

3510 1205 1 ⊕ (−2 + 3 × 4) 4 × 3 2 − 1

3610 1215 (1 + 2) × 3 × 4 4 × 3 × (2 + 1)

3710 1225 −1 + 2 × 34 4 + 3 × 21

3810 1235 1 × 2 × 34 (4 + 3) ⊕ (2 + 1)

3910 1245 1 + 2 × 34

Table 5: List of base 5 numbers from 0 to 39 in increasing and decreasing
sequential order.

Base 5. There are four numbers in the representation for base five, and thus
there is enough variability to begin making a meaningfulamount ofdifferent
combinations and possible integers.Still, this may be considered a relatively
small base since the first impossible integer is 27.We also filled in some of the
gaps with explicit concatenation.Table 5 shows a list of the positive integers
0 − 39 with their representations.The missing ones are not possible.

Base 6. Each increasein base exponentially increasesthe numberof
possibilities and the first positive integers that can not be expressed are 67
(increasing) and 77 (decreasing),and 97 is the first one not representable by
either. Table 6 shows a list of the positiveintegers0 − 39 with their
representations.

Base 7. Starting with base 7,the amount ofnumbers possible explodes,
and thus,we will simply list the numbers without trying to fit them onto a
single page.In fact,every number is expressible until260.Curiously the first
inexpressible decreasing integer is 262.Table 7 shows a list ofthe positive
integers 0 − 39 with their representations.
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B10 B6 Increasing Decreasing
010 06 123 + 4 − 5 5 − 4 − 3 + 2 × 1

110 16 12345 5 − 4 3−2×1

210 26 12 + 3 − 4 − 5 5 + 4 − 3 × 2 − 1

310 36 1 − 2 + 3 − 4 + 5 5 + 4 − 3 − 2 − 1

410 46 12 − 3 + 4 − 5 5 + 4 − 3 − 2 × 1

510 56 1 + 2 + 3 + 4 − 5 5 + 4 − 3 − 2 + 1

610 106 12 − 3 − 4 + 5 5 + 4 − 3 × (2 − 1)

710 116 1 + 2 + 3 − 4 + 5 5 + 4 − 3 + 2 − 1

810 126 1 + 2 × 3 − 4 + 5 5 + 4 − 3 + 2 × 1

910 136 1 + 2 − 3 + 4 + 5 5 + 4 + 3 − 2 − 1

1010 146 12 + 3 + 4 − 5 5 + 4 + 3 − 2 × 1

1110 156 12 − 3 × (4 − 5) 5 + 4 + 3 − 2 + 1

1210 206 12 + 3 − 4 + 5 5 + 4 + 3 × (2 − 1)

1310 216 1 − 2 × (3 − 4 − 5) 5 + 4 + 3 + 2 − 1

1410 226 12 − 3 + 4 + 5 54 − 32 × 1

1510 236 1 + 2 + 3 + 4 + 5 5 + 4 + 3 + 2 + 1

1610 246 1 + 2 × 3 + 4 + 5 5 + 4 + 3 × 2 + 1

1710 256 1 + 23 − 4 + 5 5 + 4 + 3 2 − 1

1810 306 1 + 2 3 + 4 + 5 5 + 4 + 3 × (2 + 1)

1910 316 1 × 2 + 34 − 5 5 + 4 + 3 2 + 1

B10 B6 Increasing Decreasing
2010 326 12 + 3 + 4 + 5 5 + 4 × 3 + 2 + 1

2110 336 123 + 4 × 5 5 + 4 × (3 + 2 − 1)

2210 346 123 − 45 5 − 4 + 32 + 1

2310 356 12 × 3 + 4 − 5 5 × 4 + 3 × (2 − 1)

2410 406 (12/3) × (4 + 5) 54 + 3 − 21

2510 416 12 + 34 − 5 54 − 3 × (2 + 1)

2610 426 1 + 2 + 3 + 4 × 5 5 × 4 + 3 + 2 + 1

2710 436 1 + 2 × 3 + 4 × 5 5 × 4 + 3 × 2 + 1

2810 446 1 × 2 − 3 + 45 54 − 3 − 2 − 1

2910 456 1 + 2 − 3 + 45 54 − 3 − 2 × 1

3010 506 12 × (3/4) × 5 54 − 3 − 2 + 1

3110 516 123 − 4 × 5 54 − 3 × (2 − 1)

3210 526 12 × (3 − 4 + 5) 54 − 3 + 2 − 1

3310 536 12 × 3 + 4 + 5 54 − 3 + 2 × 1

3410 546 12 − 3 + 45 54 + 3 − 2 − 1

3510 556 12 + 34 + 5 54 + 3 − 2 × 1

3610 1006 1 + 23 + 4 × 5 54 + 3 − 2 + 1

3710 1016 1 × 2 + (3 + 4) × 5 54 + 3 × (2 − 1)

3810 1026 1 + 2 + (3 + 4) × 5 54 + 3 + 2 − 1

3910 1036 1 × 2 × 34 − 5 54 + 3 + 2 × 1

Table 6: List of base 6 numbers from 0 to 39 in increasing and decreasing
sequential order.

B10 B7 Increasing Decreasing
010 07 1234 + 5 − 6 6 + 5 − 4 − 3 × 2 − 1

110 17 12 − 3 − 4 + 5 − 6 6543−2−1

210 27 12 − 3 + 4 × (5 − 6) 6 + 5 − 4 − 3 − 2 × 1

310 37 12 − 3 − 4 − 5 + 6 6 + 5 + 4 + 3 − 21

410 47 12 + 34 − 5 × 6 6 + 54/3 − 21

510 57 12 + 3 + 4 − 5 − 6 6 + 5 + 4 − 3 2 − 1

610 67 12 + 3 + (4 − 5) × 6 65 + 4 − 3 × 21

710 107 12 + 3 − 4 + 5 − 6 65 − 4 × (3 2 + 1)

810 117 123/45 + 6 6 + 5 + 4 − 3 × 2 − 1

910 127 12 + 3 − 4 − 5 + 6 6 + 5 + 4 − 3 − 2 − 1

1010 137 12 + 3 × 4 − 5 − 6 65 − 4 × 3 2 − 1

1110 147 12 + 3/(4 + 5) × 6 65 − 4 × 3 × (2 + 1)

1210 157 123/45 × 6 65 − 4 × 3 2 + 1

1310 167 12 + 3 + (4 − 5) 6 65 − 43 − 2 − 1

1410 207 12 − 34 + 5 × 6 65 − 43 − 2 × 1

1510 217 12 + 3 + 4 + 5 − 6 65 − 43 − 2 + 1

1610 227 12 + 3 − 4 × (5 − 6) 65 − 43 × (2 − 1)

1710 237 12 + 3 + 4 − 5 + 6 65 − 43 + 2 − 1

1810 247 12 + 3 × (4 + 5 − 6) 65 − 43 + 2 × 1

1910 257 12 + 3 − 4 + 5 + 6 65 − 43 + 2 + 1

B10 B7 Increasing Decreasing
2010 267 12 + 34/5 + 6 65 − 4 − 32 × 1

2110 307 123 − 4 − 56 65 − 4 − 32 + 1

2210 317 123 − 4 × (5 + 6) 65 − 4 × 3 × 2 − 1

2310 327 12 + 34 − 5 − 6 65 − 4 × 3 × 2 × 1

2410 337 123 × 4/(5 + 6) 65 + 4 − 3 2+1

2510 347 12 − 34 + 56 65 − 4 − 3 − 21

2610 357 12 + 3 + 4 × 5 − 6 65 × 4 − 321

2710 367 123 − 45 − 6 65 + 4 − 32 − 1

2810 407 12 × 3 + (4 − 5) 6 65 + 4 − 32 × 1

2910 417 123 + 4 − 56 65 + 4 − 32 + 1

3010 427 12 − 3 × (4 − 5 − 6) 6 + 5 − 4 + 32 × 1

3110 437 12 × 3 − 4 × (5 − 6) 65 − 43 + 21

3210 447 123 − 4 − 5 × 6 65 − 4 × 3 − 2 − 1

3310 457 12 + 34 + 5 − 6 65 + 4 − 3 − 21

3410 467 12 − 34 × (5 − 6) 65 − 4 − 3 × (2 + 1)

3510 507 12 + 34 − 5 + 6 65 − 4 − 3 2 + 1

3610 517 12 + 3 4+5−6 654/3 2 − 1

3710 527 12/3 + 4 + 5 × 6 654/3/(2 + 1)

3810 537 12 + 3 + 4 × 5 + 6 654/3 2 + 1

3910 547 123 − 45 + 6 65 + 4 + 3 − 21

Table 7: List of base 7 numbers from 0 to 39 in increasing and decreasing
sequential order.

Base 8. Table 8 shows a listof the positive integers 0 − 19 with their
representations.Due to the length ofthe expressions,there is not room for
more numbers.Base eight does not have an inexpressible number until 614 for
an increasing sequence,and 809 for a decreasing sequence.The first positive
integer that can not be expressed by either is 1192.
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B10 B8 Increasing Decreasing
010 08 12345 + 6 − 7 7+6-5-4-3-2+1

110 18 1234567 76543−2−1

210 28 12 + 3 − 4 + (5 − 6) × 7 76 + 5 − 4 3 − 2 + 1

310 38 12 + 3 − 4 − 5 + 6 − 7 76 + 5 − 4 3 × (2 − 1)

410 48 123 − 45 − 6 × 7 76 + 5 − 4 3 + 2 − 1

510 58 12 + 3 − 4 − 5 − 6 + 7 76 + 5 − 4 3 + 2 × 1

610 68 12 + 34 × (5 − 6)/7 76 + 5 − 4 3 + 2 + 1

710 78 12 − 3 + 4 − 5 − 6 + 7 76 − 5 × (4+3 × 2+1)

810 108 123 − 4 × 5 − 67 76 − 54 − 3 2 − 1

910 118 12 + 3 + 4 + 5 − 6 − 7 76 − 54 − 3 × (2 + 1)

1010 128 123 × 4 − 56 × 7 76 − 54 − 3 2 + 1

1110 138 123 − 4 × (5 + 6 + 7) 76 + 5 + 4 × (3 − 21)

1210 148 12 + 3 + 4 + 5 × (6 − 7) 76 + 5 − 4 − 3 × 21

1310 158 12 + 3 + 4 − 5 − 6 + 7 76 − 54 − 3 − 2 × 1

1410 168 123 − 4 − 5 × (6 + 7) 76 − 54 − 3 − 2 + 1

1510 178 12 + 34 − 5 × 6 + 7 76 + 5 − 43 − 21

1610 208 12 + 3 + 4 + (5 − 6) 7 76 − 54 − 3 + 2 − 1

1710 218 12 + 34/(5 + 6 − 7) 76 − 54 − 3 + 2 × 1

1810 228 12 + 3 − 45 + 6 × 7 76 − 54 + 3 − 2 − 1

1910 238 123 − 4 − 5 − 67 76 − 54 + 3 − 2 × 1

B10 B8 Increasing Decreasing
2010 248 12 + 34 − 5 − 6 − 7 76 + 5 + 4 − 3 × 21

2110 258 123 − 4 × 5 − 6 × 7 76 − 54 + 3 × (2 − 1)

2210 268 123 + 4 − 5 × (6 + 7) 76 − 54 + 3 + 2 − 1

2310 278 12 + 3 + 4 + 5 − 6 + 7 76 − 54 + 3 + 2 × 1

2410 308 12 + 3 − 4 × (5 − 6) + 7 76 − 54 + 3 + 2 + 1

2510 318 12 + 3 + 4 − 5 + 6 + 7 76 − 54 + 3 × 2 + 1

2610 328 123 − 4 − 56 − 7 76 − 54 + 3 2 − 1

2710 338 123 + 4 − 5 − 67 76 + 5 − 4 × (3 2 + 1)

2810 348 123 + (4 − 5) × 67 76 − 54 + 3 2 + 1

2910 358 123 − 4 + 5 − 67 76 + 5 − 43 − 2 − 1

3010 368 12 + 34 + 5 − 6 − 7 76 + 5 − 43 − 2 × 1

3110 378 12 + 34 + (5 − 6) × 7 76 + 5 − 43 − 2 + 1

3210 408 123 − 4 − 5 − 6 × 7 76 + 5 − 43 × (2 − 1)

3310 418 123 − 45 − 6 − 7 76 + 5 − 43 + 2 − 1

3410 428 123 + 4 − 56 − 7 76 + 5 − 43 + 2 × 1

3510 438 12 + 3 + 4 + 5 + 6 + 7 76 + 5 − 43 + 2 + 1

3610 448 12 + 3 × (4 + 5) + 6 − 7 76 + 5 − 4 − 32 − 1

3710 458 123 + 4 + 5 − 67 76 + 5 − 4 − 32 × 1

3810 468 12 + 3 × (4 + 5) − (6 − 7) 76 + 5 − 4 − 32 + 1

3910 478 123 − 4/5 × 67 76 + 5 − 4 × (3 × 2 + 1)

Table 8: List of base 8 numbers from 0 to 47 in increasing and decreasing
sequential order.

Base 9. Similar to base eight,only representations for numbers 0 − 19 are
shown in Table 9. The first unrepresentable positive integers for increasing
and decreasing sequential representations are 3293 and 4570, respectively.The
integer 5414 is the smallest positive integer unrepresentable by either.

B10 B9 Increasing Decreasing
010 09 123456 +7-8 8-7-6+5+4-3-2+1

110 19 12345678 8+7-6-5-4+3-2 × 1

210 29 123-4 × (5+6)-7 × 8 876-5 × ((4 × 3) 2 -1)

310 39 (123+45)/(6+7)-8 876/(5 43 )+2+1

410 49 (123-4-5+67)/8 (87+6-54)/(3 × (2+1))

510 59 (123+4-5+67)/8 (876-5 4+3)/21

610 69 (123+4-56-7)/8 (87+65)/(4 × 3 × 2-1)

710 79 123+4+5-((6+7) × 8) 876-(5+4) 3+21

810 89 1+2+3+4+5-6+7-8 (87+6+5)/(4+3 × 2)-1

910 109 (123-45)/67+8 87+65-4 3 × 2+1

1010 119 (123+(4 × 5-6 × 7))/8 87+65-4 3 × 2 × 1

1110 129 (123+4-5-6-7)/8 87+65-4 3 × 2+1

1210 139 123+(4-5) × 6 × (7+8) 87+6+5-43 × 2 × 1

1310 149 (1234-5+6)/78 87+6+5-43 × 2+1

1410 159 (123+4+5-6+7)/8 (87+6+5-4 3)/2+1

1510 169 123 × (4/5+6) 7−8 (87+6+5 × 4)/(3 × 2+1)

1610 179 ((123+4 × 5)/67) × 8 87+6+(5-43) × 2-1

1710 189 (1234+5 × 6)/(7 × 8) 87+6+(5-43) × (2 × 1)

1810 209 (123+45-6+7)/8 87+65-(4 × (32+1))

1910 219 ((123+45)/(6+7))+8 (876+5)/((43-2)+1)

B10 B9 Increasing Decreasing
2010 229 123+4-(5 × 6)+(7 × 8) 87+65 × (4-3+2 × 1)

2110 239 123+4+5-(6 × (7+8)) 87+(65-(43 × (2+1)))

2210 249 123+(4 × (56-78)) 87+(65-(4 × (32 × 1)))

2310 259 (123+4+5-6)/7+8 (876-(5 4))/(3+(2-1))

2410 269 123+(4-(5+(6+78))) ((87+65)/(4 × 3)) × 2+1

2510 279 123+((4-5) × (6+78)) 87+(6+((5-((4 3)+2))+1))

2610 289 (123-4)+(5-(6+78)) 87+(65-(4 × (32-1)))

2710 309 123+((4 × (5-6))-78) 87+(6+((5-(4 3 ))+(2-1)))

2810 319 (123-(4+5))+(6-78) (87+((6+(5+4))/3))/(2+1)

2910 329 (123-(4+((5+6) × 7)))+8 87+(6+(5-(4+(3 × 21))))

3010 339 123+((4+5) × ((6-7) × 8)) (876-(54 × 3))/21

3110 349 123-(4+(5+(6+(7 × 8)))) ((87+(6+5))/((4-3)+2))+1

3210 359 123+(4-(5+(67+8))) ((87+65)/4)-((3/2)+1)

3310 369 123+((4-5) × (67+8)) (876+(5+4))/(3+21)

3410 379 123+(4+(5-(6+78))) ((87+(65 × 4))/(3 2))-1

3510 389 123+(4+((5-6) × 78)) (876-(54+3))/21

3610 409 123+((4-5)+(6-78)) ((87+(65-(4 3)))/2)-1

3710 419 123+((4-((5+6) × 7))+8) (87+(65-(4 3 )))/(2 × 1)

3810 429 123+(4 × (5-(6+(7+8)))) (876+5) × ((4-3)/21)

3910 439 123+(45-((6+7) × 8)) (87+(6+(5-(4 × 3))))/(2 × 1)

Table 9: List of base 9 numbers from 0 to 19 in increasing and decreasing
sequential order.

6 Base 10

Taneja showed thatcrazy increasing sequentialrepresentationsfor base 10
numbers was possible for all numbers to 11111 with one exception [22].There
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is no known solution to 10958 with the numbers in increasing order.It is
possible to get close, but not exact.We found two extremely close solutions.

10957.9775 = −1 + 2(34)/5 /(6 + 7/8) + 9 (5)

10958.0021 = (1 + ((2 − (−3−4)5/(6×−7) )−8)) + 9 (6)

No closer solutions are possible.Running an exhaustive algorithm to look at
all possible combinations yields no solution of 10958.Table 10 lists allvalues,
and an expression yielding that value (there are many), that were found within
the range [10957.9, 10958.1].

Number Expression

10957.90411 −1 + ((2 − 3 × 4)5)/(((6 − 7)/8) − 9)

10957.92857 −1/2 × 3 × (45 × (6/7 − 8) + 9)

10957.93277 (−1/(2 + 3) + (45−((6−7)/8) )) × 9

10957.97006 −(1/2) + (34 + ((5−(6/7)+8 )/9))

10957.97751 −1 + 23
4 /5 /(6 + 7/8) + 9

10958.00206 ((1 + ((2 − ((−3−4 )5/(6×−7) ))−8 )) + 9)

10958.06611 −1 − 2/3 + 45−(6−7)/8 × 9

10958.09749 (1 + 234) × (5 × (6 + ((7/8)−9 )))

Table 10:List of base 10 numbers and the expressions that are close to 10958.
This shows numbers within .1 of the desired number,and are rounded to five
decimal digits due to the precision limitations in the calculations.

However, the original author uses concatenation without defining it as one of the
allowable operators between operands as a step.Matt Parker found a solution
if concatenation is allowed to occur as a step ofthe calculation,which is not
done for any other number in the originalpaper.Let ⊕ be the concatenation
operator.Thus, 234 would be shown as 2 ⊕ 3 ⊕ 4 in an equation.His solution
is shown in [12, 13, Matt Parker] and is:

10958 = 1 × 2 ⊕ 3 + ((4 × 5 × 6) ⊕ 7 + 8) × 9. (7)

There are many other solutions ifadding a new operator is allowed,such as
factorials.Some examples are

10958 = (1 − 2 + 3) × (456 + 7! − 8 − 9), [16, Emmanuel Vantieghem],(8)

10958 = 1 + 2 + 3!! + (−4 + 5! + 6 − 7) × 89, [16, Inder J. Taneja],(9)

10958 = 1 × 2 × (3!! − 4! × (5 + 6) + 7! − 8 − 9), [16, Inder J. Taneja],and
(10)

10958 = −(1 + 2 − 3 + 4 − ((5! + 6) × (78 + 9))), [16, Chris Smith],(11)

and it is possible if using the number 10 as shown by Taneja, 10958 = 1 ∗ 23 +
(45+6+7∗8+9)∗10 [16, Inder J. Taneja].Our approach settles this definitively
through brute force search without the use of concatenation as a later step or
another operation allowed beyond the initial ones.Thus, 10958 is the smallest
integer for which this is not possible.
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Lemma 1. The integer10958is not expressiblein base 10 increasing
sequentialrepresentation (numbers 1 − 9) with only the operations addition,
multiplication,division, exponentiation,an initial concatenationof the
numbers, arbitrary parentheses for operator precedence, and negation.

Proof. The proof is the program and its output ofall combinations possible
and their evaluation.The source code is available, and can be viewed (albeit in
shortened form) in Appendix A.

7 Some More Fun

Here we look at severalinteresting open problemsor additionalways to
explore this concept.

Fun Number Forms. Taneja gives a few in his paper for base 10,and we
extend this with a few examples ofnumbers that are always expressible in a
given base b.

— 0 = 11×2×...×(b−3) + (b − 2) − (b − 1)

— 0 = 12...(b−3) + (b − 2) − (b − 1)

— 1 = 11×2×...×(b−1)

— 1 = 112...(b−1)

— b − 1 = 11×2×...×(b−2) × (b − 1)

— b − 1 = 112...(b−2) × (b − 1)

— b = 11×2×...×(b−2) + (b − 1)

— b = 112...(b−2) + (b − 1)

If b is odd, then 0 = (b − 1) − (b − 2) − (b − 3) + (b − 4) − · · · + 4 − 3 − 2 + 1,
and similar if b is even.

Taneja Primes. Based on his work related to these numbers,we define a
Taneja prime to be any prime expressible in crazy sequential representation for
a base b.Here, we investigate some interesting questions.

— What is the smallest prime not expressible in a given base?

— What is the largest prime expressible in a given base?

— What is the sequence of primes not expressible (or expressible) in a given base?

— What is the characteristic function for the expressible or non-expressible primes
for a base?

— What is the sequence ofintegers(or primes)not expressible by eitheran
increasing or decreasing representation.

— What is the smallest base a given prime (or integer) can be expressed in for
increasing and decreasing?

Table 11 lists the first prime not expressible in a given base for increasing and
decreasing representations as wellas the first prime not expressible by either.
For an increasing representation,Table 12 is the smallest base a prime can be
sequentially represented in as well as an expression giving the value.
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Base Increasing Prime Decreasing Prime Both Prime
3 7 5 11
4 13 11 17
5 27 17 27
6 67 83 97
7 281 379 499
8 1153 809 1579
9 4597 5417 7027
10 15971 18493 25763

Table 11:A brief overview ofthe first primes not expressible in a given base
for increasing and decreasing representationsas well as the first prime not
expressible by either.

B 10 Base Increasing
210 3 1 × 2
310 3 1 + 2
510 3 12
710 4 1 + 2 × 3
1110 4 1 + 23
1310 5 −1 + 2 + 3 × 4
1710 5 1 + 2
1910 5 −1 + (2 + 3) × 4
2310 5 −1 + 2 × 3 × 4
2910 5, 6 (1 × 2 + 3) ⊕ 4, 1 + 2 − 3 + 45
3110 5 −1 + 23 × 4
3710 5 −1 + 2 × 34
4110 6 (1 + 2) × 3 × 4 + 5
4310 6 12 + (3 + 4) × 5
4710 6 1 + 2 × (3 + 4 × 5)
5310 5 1 + 23 × 4
5910 6 1 − 2 + 3 × 4 × 5
6110 6 12 × (3 + 4) + 5
6710 6, 7 1 ⊕ (2 + 3) ⊕ (−4 + 5), 123 + (4 − 5)6

7110 6 1 + 2 × (3 + 4) × 5

B 10 Base Increasing
7310 6 1 + 23 × (4 + 5)
7910 5 −1 × 2 + 34

8310 5 1 × 2 + 34

8910 6 1 + 2 + 34 + 5
9710 7 12 × 3 × 4 − 5 − 6
10110 6 12 × 3 × 4 + 5
10310 6 (1 + 2)3 × 4 − 5
10710 6 −1 − 2 + 34 × 5
10910 6 1 − 2 + 34 × 5
11310 6 1 + 2 + 34 × 5
12710 5 −1 + 23+4

13110 7 12 + 34 + 56
13710 6 12 × 345
13910 6 1 × 2 + 345
14910 7 12 × 3 × 4 + 56
15110 6 −1 + 2 × (34 − 5)
15710 6 1 × 2 × 34 − 5
16310 5 1 + 2 × 34

16710 6 1 × 2 × 34 + 5
17310 6 1 + 2 × (34 + 5)

Table 12:Smallest base a prime is sequentially representable in for an increasing
representation.

Limited Operations.The flexibility gained in sequential representations as
the base gets larger is evident,and will continue for larger bases.Each new
number exponentially increases the number of combinations.

Of interestwould be to prove some estimatesabout the first numbernot
expressiblefor a given base under certain operations such as just
addition/subtraction, just addition/multiplication, just
concatenation/exponentiation, etc.

— How many unique numbers,given the operationsabove,can a given base
generate?

— How many integers, given the operations above, can a given base generate?

— How many ways,given the operations above,can a given number be uniquely
represented sequentially (ignoring parenthetical differences)?
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— For n > 6, is the first missing decreasing number always greater than the first
missing increasing number?Is there a way to determine if increasing or
decreasing will not express a number first?

— Does a sequential representation exist with a set of operations O in base b?

— For a given number, what bases can represent it?

Continuing Problems. All of the listed problems so far are also open to
questions about the complexity.What is the complexity of finding the smallest
base that a number N can be sequentially represented in? To slightly extend
the question,given an N ,what bases can it be represented in? Further,given
the computationaldomain,what is the solution to some ofthese questions if
limited strictly to integer arithmetic?

There are many more open questions related to this problem in recreational
mathematics.Such as noting that we, along with the original authors, focused
solely on positive integers.All of these questions are open for rational, real, or
other sets of numbers.
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A Minimal Source Code

The source code listed here has been shortened for clarity (with
acknowledgementsto others). For base 10,it takeshoursto compute the
dictionary and over 50 Gigabytes of memory to run, so saving to a file may be
more efficientin order to not recompute the dictionary everytime.Brute
forcing using limited memory takes longer, but can be done.A text file with a
single representation for every value is about 20 Gigabytes for base 10.

def F i n d E x p r e s s i o n s ( i, j , b a s e =10):
#c r e a t ed i c t i o n a r y
D={}
#c o n c a t e n a t enumbers i t o j i n t h e g i v e nb a s e
nt = i n t ( ” ” . j o i n ( [ s t r ( x )f o r x in range ( i , j + 1 ) ] ) , b a s e )
#key i s number between i , j i n b a s eand t h e v a l u ei s t h e s t r i n g
D[ f l o a t ( nt ) ]= s t r ( nt )
#s t o r en e g a t i v ev e r s i o n
D[− f l o a t ( nt ) ]= ”−” + str ( nt )
#b a s ec a s ei s i==j or i >j
i f ( i != j ) :

f o r k in range ( i , j ) :
#g e t o p t i m a ld i c t i o n a r yl e f t o f k from i t h r uk
DL = F i n d E x p r e s s i o n s ( i, k , b a s e )
#g e t o p t i m a ld i c t i o n a r yr i g h t o f k from k+1 t o j
DR = F i n d E x p r e s s i o n s ( k+1,j , b a s e )
#a l l ways t o combine o p t i m a ll e f t / r i g h t
f o r x in DL:

f o r y in DR:
D[ x+y ] = ” ( ” + DL[ x ] + ”+” + DR[ y ] + ” ) ”
D[ x−y ] = ” ( ” + DL[ x ] + ”−” + DR[ y ] + ” ) ”
D[ x* y ] = ” ( ” + DL[ x ] + ” * ” + DR[ y ] + ” ) ”
i f y != 0 :

D[ x/y ] = ” ( ” + DL[ x ] + ”/” + DR[ y ] + ” ) ”
try :

D[pow( x , y ) ]= ” ( ” + DL[ x ] + ”ˆ” + DR[ y ] + ” ) ”
except :

pass
return D

i f name == ” m a i n ” :
#f o r each b a s e3−10
f o r b a s ein range ( 2 , 1 1 ) :

D = F i n d E x p r e s s i o n s ( 1 ,base −1, b a s e )
#f i n d t h e f i r s t k numbers no t i n t h e d i c t i o n a r y
k = 10
i = 0 .
while k > 0 :

while i in D:
i = i + 1 .

#p r i n t t h e number i t c o u l d n ’ tf i n d
print ( i )
i = i + 1 .
k = k − 1
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