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Abstract: Throughout historyecreationahathematics has always played a
prominent role in advancing resedrahowing in this tradition, in this paper

we extend some recent work with crazy seqrepréséntations of numbers—
equations made séquences @ne through nine (or nine through one) that
evaluate to a numbéil previous work on this type of puzzle has focused only
on baseten numbersand whethera solution existed. We generalizéhis
concept and examine how this extends to arbitrary bases, the ranges of possible
numbers, the combinatorialchallengeof finding the numbers, efficient
algorithmsand some interesting patterns across any besethe analysis,

we focus on bases three through témirther, we outline severahteresting
mathematicand algorithmic complexity problerakated to thisarea that

have yet to be considered.

Keywordsrepresentations, algorithms.

1 Introduction

One constant theme throughout the history of mathematics is the lure of and
the desire to create and solve puzzlésuntless areas oésearch have been
created and extended based on an investigation into recreational mathematics.
The study ofgames and puzzles has become a serious area in its own right
often providing insights into much deeper topics.

In this paper we look at an area of recreational mathematics based in number
theory and combinatorics began in 2013 by Tanejah#i%ontinued in [18,
20,21,22]. The crazy sequentiaépresentation of a number is an arithmetic
expression, equal to the value of the number, that contains the digits of a base
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34 representations of numbers for small bases

in order (ascending or descending) such as
3227 =123 + 45 x 67 + &% 3227 =9 + 87 + 6%x53 + 2) x 1.

This representation isoften not unique. The original work looked at
expressions with only addition and multiplication as well as concatenation and
exponentiation Taneja extended this work by also allowing subtraction and
division,and was able to find equations for allmbers 1 — 11111 with one
exception:an ascending equation fot0958. Without concatenation and
exponentiatiorwe could look at group operations to define possible values,

but these two operations do not provide closure.

There are examples dhis kind of representation aftegers at least as far

back as 1917 in a famous puzzle book by Dudeney &2 also in another
recreationabook by Madachy [10from 1966. Both of these worksonly
focused on the number 100 and used other operations such as factorials and
square rootsas wellas decimalsetc. Taneja was unaware tfiese books in

his originalwork, and discovered them later while working on the updated
version.

Our focus in this work is to look at possiblenumbersin other bases-
specifically bases less than\W@. also summarize the work related to base 10
and give an exhaustiveproof that under Taneja’srules, 10958 isindeed
impossible. We follow previous conventionand only allow addition,
concatenatiorexponentiatiomnultiplicationdivision,and negatioh along

with precedence constraints (parentheses).

Base | Increasing | Decreasing| Neither
3 0 0 0
4 13 11 16
5 27 17 27
6 67 77 92
7 260 262 292
8 614 809 1192
9 3293 4570 5414
10 10958 14324 21212

Table 1: A brief overview othe first integers that can not be sequentially
represented under the defined operations for bases 3 — 10.

We can examine the limitations gffecific operationand how the possible

results are affected by a changebage. Here,we focus on what is possible

within a given basés an example, Table 11 shows for each base less than 10
the first positiveintegerthat is impossiblefor increasing and decreasing
representations as well as the first positive integer that can not be sequentially
represented either increasingly or decreasingly.

1Taneja used the term ‘potentiation’ instead, which comes from the translated word used
for exponents.

2Taneja specified subtraction, but we use a broader operation, and we show that arbitrary
negation is still not sufficient for 10958.

Recreational Mathematics Magazine, Number 12, pp. 33-48
DOI: https://doi.org/10.2478/rmm-2019-0007



tim wylie 35

Historically,these kind ofderivationavere done tediously and slowlgnd
Taneja’s work also has this flavor with only using a program to find a few of
the difficultnumberd22]. Our approach leveragesodern computational
power and algorithmictechniquesto bring this topic squarely within
computationahathematics and search pdlssible combinationg/e discuss
these techniques and upper bounds in the paper.

A brute force approach to a problem like this has generally been classified as
computational mathematics - there is a point for many problems at which the
number of possible combinations becomes too large for a human, or humanity,
to check by hand in any reasonable amountiro. This has become more
common with effortsto verify and prove other long open questionsin
mathematics such as the Kepler Conjecture [5, 6, 7], the Boolean Pythagorean
Triples problem [8Finding Ramsey numbers [B4, 15],the Happy Ending

problem [1117],the 2-PATS problem [93dnd many others where brute-force
exhaustive-search solutions were required.

Fortunatelyfor us, this problem can also be approached with dynamic
programmingthrough calculating substrings that appear in multiple
equations. This recurrence relation yieldm efficientsolution allowing an
exhaustive examination within a reasonable amount offdmenost of the

bases in our study (3-9), even basic laptops are sufficient to check the millions
of combinationsFor base tenwe utilized some research servers due to the
high memory requirementshe program required around 20 gigabyts
memory to run, but the time was less than two hours.

In the next section we give the background and definitions nedksshen.
overview the approach and algorithms used in this research in Sedten 3.
discuss the small bases 2, 3, and 4 in Section 4, and then the more substantial
possibilities obases 5-9 in Section Section 6 covers what is known about

base 10 and the missing number 1F93d8ly, in Section 7 we outline several
interesting mathematiahd computationadpen problems related to their

study and conclude.

2 Preliminaries

We generalize the previous definitions with negation instead of subtraction, an
explicit concatenation operator, and adding parentheses.

Definition (Crazy Sequenti®epresentation)aiven a number n €R, an

increasing crazy sequenfigpresentation ofin base b is an equation using

the sequence of numbers hl, 2, ..., b — 1i (decreasing being hb — 1, ..., 2, 1i) with
the following operations allowed between any two of the nuiberstwo

real numbers x, yR&we define the following allowable operations:

+ Addition: x + y resulting in the sum of the two numbers.

— Negation:—x is allowable as well as the negation of an expression —(. .. ).
Addition with a negative is also equivalent to subtraction in this context,
so subtraction is omitted from the list of operations.
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36 representations of numbers for small bases

x Multiplication:x x y resulting in their product.
/ Division: x/y giving the fraction.
a® Exponentiationx meaning x to théypower.

xy Concatenationxy meaning the number xy in the given base (a.¢, 12
510 ). There are many standard symbols used for this opekd&anill
use ® when we need to explicitly showdtherwise it wilbe omitted
when clear by context- generally xy will be preferred instead of x @ y.

() Grouping: arbitrary parentheses are allowed with derivations following
the standard rule that expressions inside parentheses are evaluated first.

One goabf Taneja’s work is to minimize the number of operations used for a
given representation. Thus, the original work [19] focused on numbers
derivable from simply concatenation, addition, multiplication and
exponentiation.Later work to add missing numbersicluded division and
subtraction [1820, 21, 22]. We have also opted to generally prefdrose
originaloperations in the expression chosen when multiple expressions exists
for a given number, as well as simplicity and elegance.

Explicit Concatenation.An issue with the way Taneja uses concatenation

is that it is only allowed before evaluating the expressibis means 12 is

allowed as twelve (or 1 ® Ryt (1 + 2) @ 3 is not allowed to be evaluated as

33. This is the only defined operation not allowed during evaluatfowe

allow it, several other numbers are possible, including 10958 inlba$e10.
results, all expressions using this deviant version are colored red and use the @
symbolexplicitly. Our approach did not consider these solutions eitdrat,

thus there may be solutions of this form to some of the values listed without a
solution.

2.1 Combinatorics

In calculating an uppebound we are looking athe maximum amoundf

different numbers that could be represented in thathmseimber of parse

trees that can be generated with binary operators tells us the number of ways
to distribute the operationslf we, for the momentpnly consider a single
operation,this is the well-known Catalan numbers.Another view more

relevant is the number of ways to insert n — 1 pairs of parentheses in a word of
n letters. e.qg.,for n = 3 (t(2)) there are 2 wayd{ab)c) or (a(bc)) [4]The

Catalan numbers can be recursively derived by the following equation with

t(0) =1and t(1) = 1.

X
tin) =t — 1)t(n — i) (1)
i=1

Thus, for the bases considered harehave t: (2, 3, ... 29 (2, 5,14, 42,
132,429,1430,4862).This gives the number efays to group the operands

Recreational Mathematics Magazine, Number 12, pp. 33-48
DOI: https://doi.org/10.2478/rmm-2019-0007



tim wylie 37

(sequentiahumbers)and then we mustconsiderthe numberof operators
allowed. We allow five distinct operationsas defined above: addition,
multiplicationdivision,exponentiatiorand concatenation (subtraction will

be handled laterThis gives 51 ways to place the operations on n operands.
For base b, we therefore h&vé &ince we exclude 0 in the representation and
onlyusel, ..., (b—1).

The last issue to dealith is negationlf we only allow subtractiothen the
numberof operationsis 6"~1, however,we also allow negation. Thus,
expressionsuch as —(—4 + 5) are also allowed. Thus, for each of the
parenthese®r numbers, we could negateit, which adds all possible
combinations of negations over the parentheses and nuhhlierseans we
can also reduce our operations to only 5 (since we vilbk at adding the
negated number insteadhus, we have the power setmfpossible ways to
add negativesto the numbersfor n operands, and the power set of
{1, 2,...,n— 1} for possible ways to add negatives to the parentheses (for n
numberswe need at most n — 1 parenthesis for binary operat&nség for
base bwe have n = b — iyhen we include ghlossibilitiesthere is an upper
bound for the combinations for n numbers given base b.

Cn)=9"1xtn) x?2x 21 (2)
=971 x t(n) x 271, orin terms of b (3)
C(b) = 372x t(b — 1) x*273, (4)

The values for bases 3 — 10 are shown in Tahllet@.that the vast majority

of these combinations do not yield integbmyeverthe numbers are small
enough to output all possible numbers and then check the integ¥Erones.

of these resultare duplicateawith only parentheticadlifferenceshut the

number of combinations is still well within computational power to brute force
every possibility even if many are duplicBbedarger bases, an examination

of the unique parse treesvould reduce many othe duplicatesaused by
analyzing strings.

Base b 3 4 5 6
Combinations C(b) 80 4000 2.24 x 19 1.344 x 10

Base b 7 8 9 10
Combinations C(b) | 8.448 x 1® | 5.4912 x 11§ | 3.6608 x 11§ | 2.489344 x 16

Table 2:The upper bound on the number of combinations for crazy sequential
representations for a given baseich is the maximum amount pbssible
numbers that could be represented.
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38 representations of numbers for small bases

3 Algorithms

At a high-leveljn order to find althe numbers possible for a given base,
algorithm such as Algorithm 1 can be ruust the numbers from1tob — 1
(or b — 1 down to 1)and then check for allalid expressions with the given
operations.This includes both the remowvafl any operation (concatenation)
and the possibility of precedence in operations (parentheses).

There are severahotes ofinterest related to actuaplementationThese

include finding all binary partitions (and how this changes with
concatenation), negation of terms, evaluation in the given base, and processing
such large amounts dfata. We cover these in the analysis Affgorithm 1,

which is a dynamic programming solution to the problenBy utilizing a

dictionary of substrings, we can exponentiallyreduce the number of
computations necessary.

Algorithm 1 A recursive algorithm looking at the possible combinations using
dynamic programming that builds a dictionary or lookup table of all expressible
numbers.

1: function FindExpressions(base, low, high &*)

2 if low & high then

3 T=1{}

4 numstr « CASTSTR(/low) @ . . . ® CASTSTR(high)

5: catnum « CASTNUM(numstr)
6: T « T u (catnum, numstr) u (—catnum,"—"@®numstr)

7.
8
9

for all low 6 k 6 high do
L « FindEpressions(base, low, k)
R « FindEpressions(base, k+1, high)

10: . All ways to combine the left and right expressions
11: for all x € LS do
12: for all y € RS do
13: TeTulx+y'(eLx ®@+'®Ry ®))
14: TeTuxxy, ' ((®@Lx @%xX'®@Ry &)
15: T<—Tu(x/y(®LX®’/’®Ry®’)’) .ify6=0
16: TeTu(xY,((eLx®"" "®@Ry®")’)
return T

17: F =FindEpressions(10, 1, 9)

Finding Possible Parenthesds.e possible ways parentheses can be nested
for n items is a classic problem in Computer Science with the proof published
by Guy and Selfridge in 1973Ad kxample of a Python algorithm to generate
these is here [1, btilly].

Finding Negations Given all possible nested parentheses, for each we need
to find all possible negations tifie numbers and the individuekpressions.

With negation instead of subtraction, the following are all differest.. . ,
—(((1+...,(-((1+...,and ((—(1

Coding with Bases. Another smalimplementation detasl the need to
deal with switching between multiple bases, which python has a method within
casting to do so 234 in base 7 would be float(int(237,7)).
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4 Too small bases

This is a quick overview of basesthat are really too small to offer the

necessary flexibility to count very hidgimely2, 3, and 4.Five could be in
this categonput there is a massive jump between 4 arsb5ye willput it

with the larger bases.

Base 2. For base 2, since we do not use 0, only operations on the single digit
1 can be performedieaning 1 and —1 are the only humbers expressible in a
sequential representatidhus, we can ignore it.

Base 3. In base 3,we now have 2 digits at our disposahich allows our
operations to have valid operartdsyeverthere are not many combinations
and many operations lead to the same anBalde 3 lists these values.

Decreasing

010 =03 =

110 =13 =2-1

210 =23 =2x1o0r2 1
3190 =103 =2+1

710 =213 =21

Increasing

010 =03 =

110 =13=12
2790 =23 =1x2
3170 =103 =1+2
510 =123 =12

Table 3List of most of the possible base 3 numbers in increasing and decreasing
sequential order.

Base 4. Base 4 is the smallest base where anything interesting happens and we
can list a significant portion of integers with the largest number beinng 19683
since in base 4 it is 3*. Table 4 lists the first 20 values and then a few of
interest.

Increasing Decreasing Increasing Decreasing

010 =04 =1+2-3 019 =04 =3-2-1 1079 =224 = -1+23 1079 =224 =32 +1
199 =14 =12%3 1j9=14=3-2x1 1119 =234 =1x23 1179 =234 =

210 =24=1-2+3 210 =24=3-2+1 1219 =304 =1+23 1279 =304 =3+21
310 =34 =12-3 310 =34=3x(2-1) 1319 =314 = 1379 =314 =32-1
410 =104 =12 +3 419 =104 =3+2-1 1470 =324 = 1479 =324 =32x1
510 =114 =-1+2x3 510 =114 =3+2x1 1510 =334 =(1+2) @3 1570 =334 =32+1
610 =124 =1+2+3 610 =124 =3+2+1 1619 =100 4 = 1619 = 100 4 =

710 =134 =1+2x3 710 =134 =3x2+1 1719 =101 4 = 1719 =101 4 =

810 =204 =(1x2) 3 810 =204 =32 -1 1819 =102 4 =12 x 3 1819 =102 4 =

919 =214 =12+3 9109 =214 =3x(2+1) 2710 =123 4 =123 2770 =123 4 =3 x 21

5710 =321 4 = 5710 =321 4 =321

Table 4List of most of the possible base 4 numbers in increasing and decreasing
sequential order.

5 Overview of 5-9

For organizationafeasons,we overview thingof interestabout bases5
through 9, and the actual listings of the expressions are omitted for space with
only the first 40 numbers shown for 5 — 7 and the first 20 shown for 8 and 9.

All possible results were generated (negatieesnalsetc.),and everything
could be listed rather than giving just the organized listas presented.
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40 representations of numbers for small bases

However,the sheernumberof resultsmakesit infeasibleto do so. For
instancewith base eightthere are over 45,000 integer reswith most of
them not being consecutive.

Bi1p Bs IncreasingDecreasing Bip; Bs IncreasingDecreasing

010 05 12+3-4 (4-3)-@2-1) 2019 405 1x(2+3)x4 4x3B+2)x1
119 15 1234 (4-3)x(2-1) 2110 415 (1+2)x(3+4) 4+32x1

210 25 1+2+3-4 4434241 2210 425 1+2+34 4+3241
310 35 1+2x3-4 4-3+2x1 2310 435 -1+2x3x4 4x3+21
410 45 1+2-3+4 4+(3-2-1) 2410 445 1x2x3x4 4x3x2x1
510 105 1+23 -4 4+3-2x1 2579 1005 1+2x3x4 4x3x2+1
610 1l 1-2+3+4 4+(3-2+1) 2679 1015 12+34 43+2+1

710 125 12x3+4 4+3x(2-1) 2710 1025

810 135 -1+2+3+4 4+3+2-1 2819 1035 (1+2x3)x4 4x(3x2+1)
919 145 -1-2+(3x4) 4+3+2x1 2979 1045 (1x2+3)04 -4+3x21
1079 205 1+2+3+4 4+3+2+1 300 1105 1@ (-2+3+4) 5-4HeBx2-1)
1130 215 1+2x3+4 4+43x2+1 3179 1115 -1+23 x4 44321
1299 225 -12+34 4x3x((2-1) 3219 1125 1x23 x4 4x(32-1)
139 235 -1+2+3x4 4+3x(2+1) 3330 1135 1+23 x4 @432 +1
1419 245 1x2+3x4 4x3+2x1 3410 114 123-4 43+21

1570 305 1+2+3x4 4x3+2+1 3510 1205 1@ (-2+3x4) 4x32-1
1679 315 -1+23+4 4x(3+2-1) 3610 1215 (1+2)x3x4 4x3x(2+1)
1779 325 1x23+4 3710 1225 -1+2x34 4+3x21
1819 335 1+23+4 443421 3810 1235 1x2x34 @4+3)e@+1)
1979 345 -1+(Q+3)x4 4x(3+2)-1 3910 1245 1+2x34

Table 5: List of base 5 numbers from 0 to 39 in increasing and decreasing
sequential order.

Base 5. There are four numbers in the representation for base five, and thus
there is enough variability to begin making a meaniagfaunt ofdifferent
combinations and possible integ&isll, this may be considered a relatively
small base since the first impossible integer\i¢e2dlso filled in some of the
gaps with explicit concatenatidrable 5 shows a list of the positive integers

0 — 39 with their representatidie missing ones are not possible.

Base 6. Each increasen base exponentially increasébe numberof
possibilities and the first positive integers that can not be expressed are 67
(increasing) and 77 (decreasirag)d 97 is the first one not representable by
either. Table 6 shows a list of the positiveintegersO0 — 39 with their
representations.

Base 7. Starting with base 7the amount olmumbers possible explodes,
and thus,we will simply list the numbers without trying to fit them onto a
single pageln fact, every number is expressible ud@D. Curiously the first
inexpressible decreasing integer is 262ble 7 shows a list ofthe positive
integers 0 — 39 with their representations.
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B1o

110
210
310
410
510
610
710
810
910
1019
1179
1219
13190
1419
1519
1619
1719
1819
1919

Bs
06

16

26

36

46

56

10¢
11¢
12¢
13¢
l4g
156
20g
216
226
23g
24¢
256
30¢
31

Increasing Decreasing

123 44 -5
12345
12+3-4-5
1-2+3-4+5
12-3+4-5

1+42+3+4-5
12-3-4+5

142+3-44+5
142x3-44+5
142-3+44+5

12+3+4-5
12-3x(4-5)
12+3-4+5

1-2x(3-4-5)
12-3+4+5
1+42+3+4+5
1+42x3+4+5
1+23-4+5
1+23 +4+5
1x2+34-5

5-4-3+2x1
5 _43-2x1
5+4-3x2-1
5+44-3-2-1
5+44-3-2x1
5+44-3-2+1
5+44-3x(2-1)
5+44-3+2-1
5+44-3+2x1
5+44+3-2-1
5+4443-2x1
5+44+3-2+1
5+44+3x(2-1)
5+44+3+2-1
54-32x1
5+44+3+42+1
5+44+3x2+1
5+4+32-1
5+443x(2+1)
5+4+3241

B1o

2010
2179
2279
2310
24410
2510
2610
2710
2810
2919
3010
3130
3279
3310
3419
3510
3610
3710
3810
3910

Be
326
334
34¢
356
40¢
a1¢
42¢
43¢
a4¢
456
506
51¢
526
53¢
546
556
100¢
101¢
102¢
103¢

Increasing Decreasing

12+3+4+5
123 44 x5
123 - 45
12x3+4-5
(12/3) x (4 + 5)
12 +34-5
1+2+3+4x5
1+2x3+4x5
1x2-3+45
1+2-3+45

12 x (3/4) x 5
123 -4x5
12x(3-4+5)
12x3+4+5
12-3+45
12+34+5
1+23+4x5
1x2+(3+4)%x5
1+2+(3+4)x5
1x2x34-5

5+44x3+2+1
5+4x((3+2-1)
5-4+32+1
5x4+3x%x(2-1)
54 +3-21
54-3x(2+1)
5x4+3+2+1
5x4+3x2+1

54-3-2-1
54 -3-2x1
54-3-2+1
54-3x(2-1)
54-3+2-1
54 -3+2x1
54+3-2-1
54+3-2x1

54+3-2+1
54+3x(2-1)
54+3+2-1
54+3+2x1

Table 6: List of base 6 numbers from 0 to 39 in increasing and decreasing
sequential order.

B1o
010
110
210
310
410
510
610
710
810
910
1019
1179
1279
1319
1419
1519
1610
1719
1810
1919

By

157

257

Increasing
1234 456
12-3-4+5-6
12-3+4x%(5-6)
12-3-4-5+6
12+34-5x%6
12+43+4-5-6
12+3+(4-5)x6
12+3-4+5-6
123/45 + 6
12+3-4-5+6
12+3x4-5-6
12+3/(4+5)x6
123/45 x 6
12+3+@4-5 ©
12-34+5x%6
12+3+4+5-6
12+3-4x(5-6)
12+3+4-5+6
12+3x(4+5-6)
12+3-4+5+6

Decreasing B

6+5-4-3x2-1
6543-2-1
6+5-4-3-2x1
6+5+4+3-21
6 +54/3 - 21
6+5+4-3 2 -1
65+ 4 — 3 x 21
65-4x(3 2+1)
6+5+4-3x2-1
6+5+4-3-2-1
65-4x3 2 -1
65-4x3x(2+1)
65-4x3 2 +1
65-43-2-1
65-43-2x1
65-43-2+1
65— 43 x (2 1)
65-43+2 -1
65-43+2x1
6543 +2+1

2019
2199
2219
2310
2419
25190
2610
2710
2810
2919
3019
3110
3210
3319
3419
357190
3610
3710
3810
3910

B
267
307
317
327
335
345
355
367
407
415
425
435
445
455
465
507
515
527
535
544

Increasing
12 +34/5+6
123-4-56

123 -4 x(5+6)
12+34-5-6
123 x 4/(5 + 6)

12 - 34 + 56
12+43+4x5-6
123-45-6
12x3+(4-5 ©
123 +4 - 56
12-3x(4-5-6)
12x3-4x(5-6)
123 -4-5x%x6
12+34+5-6
12-34x (5-6)
12+434-5+6

12 4 34+5-6

12/3+4+5%x6
12+3+4x5+6
123 -45+6

Decreasing
65-4-32x1
65-4-32+1
65-4x3x2-1
65-4x3x2x1
65 +4 -3 2+1
65-4-3-21
65 x 4 — 321
65+4-32-1
65+4-32x1
65+4-32+1
6+5-4+32x1
65 — 43 + 21
65-4x3-2-1
65+4-3-21
65-4-3x(2+1)
65-4-32+1
654/3 2 — 1
654/3/(2 + 1)
654/3 2 + 1
65+4+3—21

Table 7: List of base 7 numbers from 0 to 39 in increasing and decreasing
sequential order.

Base 8.

more number8ase eight does not have an inexpressible number until 614 for

Table 8 shows a listof the positive integers 0 — 19 with their
representationdue to the length ofhe expressionshere is not room for

an increasing sequenaad 809 for a decreasing sequeridee first positive
integer that can not be expressed by either is 1192.
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42 representations of numbers for small bases
Bi1p Bs Increasing DecreasingB;y Bg Increasing Decreasing
019 0g 12345 467 746-5-4-3-2+1 2079 24g 12+34-5-6-7 76+5+4—-3x21
110 1g 1234567 76543-2-1 2119 253 123-4x5-6x7 76— 54 +3x (2-1)
219 2g 12+3-4+(5-6)x7 76 +5-43-2+1 2279 26g 123+4-5x(6+7) 76 -54+3+2-1
310 3g 12+3-4-5+6-7 76+5-43x(2-1) 239 27g 12+3+4+5-6+7 76 -54+3+2x1
419 4g 123-45-6x7 76 +5-434+2-1 2419 30g 12+3-4x(5-6)+7 76 -54+3+2+1
510 58 12+3-4-5-6+7 76 +5-43 +2x1 2519 3lg 12+3+4-5+6+7 76 -54+3x2+1
610 63 12 + 34 x (5 - 6)/7 76 +5-43 +2+1 2679 328 123-4-56-7 76-54+3 2 -1
710 78 12-3+4-5-6+7 76 — 5 x (4+3 x 2+1) 271¢ 33g 123 +4 -5 -67 76 +5-4x(3 2+1)
810 10g 123-4x5-67 76-54-3 2 -1 2879 34g 123+ (4 - 5) x 67 76-54+32+1
910 11g 12+3+4+5-6-7 76 —54 -3 x(2+1) 2919 35g 123 -4 +5-67 76 +5-43-2-1
1079 12g 123 x4-56x7 76 -54-3 2 4+1 3079 36g 12+34+5-6-7 76+5-43-2x1
1179 13g 123-4x(5+6+7) 76 +5+4x(3-21) 3119 37g 12+34+(5-6)x7 76+5-43-2+1
1219 14g 12+3+4+5x(6-7) 76 +5-4-3x21 3279 40g 123-4-5-6x7 76 +5-43x(2-1)
1319 15g 12+3+4-5-6+7 76 =54 -3-2x1 3310 41g 123 -45-6-7 76 +5-43+2-1
1479 16g 123-4-5x(6+7) 76 -54-3-2+1 3477 42g 123+4-56-7 76+5-43+2x1
1519 17g 12+34-5x6+7 76 +5—-43 - 21 3510 43g 12+3+4+5+6+7 76 +5-43+2+1
1619 20g 12+3+4+(5-6) / 76 -54-3+2-1 3679 44g 12+3x(4+5+6-7 76+5-4-32-1
1719 21g 12+34/(5+6-7) 76 -54-3+2x1 3779 45 123+4+5-67 76+5-4-32x1
1819 22g 12+3-45+6x7 76 —-54+3-2-1 3879 46g 12+3x(4+5) - (6-7) 76+5-4-32+1
1979 23g 123-4-5-67 76 -54+3-2x1 3979 47g 123 -4/5x67 76+5-4x(3x2+1)

Table 8: List of base 8 numbers from 0 to 47 in increasing and decreasing
seqguential order.

Base 9. Similar to base eighbnly representations for numbers 0 — 19 are
shown in Table 9. The first unrepresentable positive integers for increasing
and decreasing sequential representations are 3293 and 4570, reBpectively.
integer 5414 is the smallest positive integer unrepresentable by either.

B1o
010
110
210
310
410
510
610
710
810
910
1019
1119
1219
1319
1419
1510
1610
1710
1819
1919

By
09
19
29
39
49
59
69
79
89
109
11g
129
139
14g
159
169
179
189
209
219

Increasing

123456 ,7.g
12345678

123-4 x (5+6)-7 x 8
(123+45)/(6+7)-8
(123-4-5+67)/8
(123+4-5+67)/8
(123+4-56-7)/8
123+4+45-((6+7) x 8)
142+3+4+5-6+7-8
(123-45)/67+8
(123+(4 x 5-6 x 7))/8
(123+4-5-6-7)/8
123+(4-5) X 6 X (7+8)
(1234-5+6)/78
(123+4+5-6+7)/8

123 x (4/5+6) /8
((123+4 x 5)/67) x 8
(123445 x 6)/(7 X 8)
(123+45-6+7)/8
((123+45)/(6+7))+8

Decreasing
8-7-6+5+4-3-2+1
8+7-6-5-4+32 x 1
876-5 x ((4 x 3)
876/(5 43)+2+1
(87+6-54)/(3 x (2+1))
(876-5 4 +3)121
(87+65)/(4 x 3 x 2-1)
876-(5+4) 3+21
(87+6+5)/(4+3 x 2)-1
87+65-4 3 x 2+1
87+65-4 3 x 2 x 1
87+65-4 3 x 2+1
874+6+5-43 x2 x 1
87+6+5-43 x 2+1
(87+6+5-4 3)2+1
(87+6+5 x 4)/(3 x 2+1)
87+6+(5-43) x 2-1
87+6+(5-43) x (2 x 1)
87+65-(4 x (32+1))
(876+5)/((43-2)+1)

2,

B1o
2079
2139
2219
2319
2419
2579
2670
2710
2819
2979
3010
3179
3219
3319
3419
3510
3610
3710
3819
3919

By
229
239
249
259
269
279
289
309
319
329
339
349
359
369
379
389
409
4149
429
439

Increasing
123+4-(5 x 6)+(7 x 8)
123+4+5-(6 x (7+8))
123+(4 x (56-78))
(123+4+5-6)/7+8
123+(4-(5+(6+78)))
123+((4-5) x (6+78))
(123-4)+(5-(6+78))
123+((4 x (5-6))-78)
(123-(4+5))+(6-78)

Decreasing
87+65 x (4-3+2 x 1)
87+(65-(43 x (2+1)))
87+(65-(4 x (32 x 1))
(876-(5 ))/(3+(2-1)
((87+65)/(4 x 3)) x 2+1
87+(6+((5-((4  3)+2)+1))
87+(65-(4 x (32-1)))
87+(6+((5-(4 3)+(2-1))
(87+((6+(5+4))/3))/(2+1)

(123-(4+((5+6) x 7)))+8
123+((4+5) x ((6-7) x 8))
123-(4+(5+(6+(7 x 8))))
123+(4-(5+(67+8)))
123+((4-5) x (67+8))
123+(4+(5-(6+78)))
123+(4+((5-6) x 78))
123+((4-5)+(6-78))
123+((4-((5+6) x 7))+8)
123+(4 x (5-(6+(7+8)))
123+(45-((6+7) x 8))

87+(6+(5-(4+(3 x 21))))
(876-(54 x 3))21
((87+(6+5))/((4-3)+2))+1
((87+65)/4)-((3/2)+1)
(876+(5+4))/(3+21)
((87+(65 x 4))/(3
(876-(54+3))/21
((87+(65-(4 3)))/2)-1
(87+(65-(4 3))/2 x 1)
(876+5) x ((4-3)/21)
(87+(6+(5-(4 x 32 x 1)

2)-1

Table 9: List of base 9 numbers from 0 to 19 in increasing and decreasing
sequential order.

6 Base 10

Taneja showed thatrazy increasing sequentiapresentationer base 10
numbers was possible for all numbers to 11111 with one exceptitwef?2].
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is no known solution to 10958 with the numbers in increasing ordeis
possible to get close, but not ex@.found two extremely close solutions.

10957.9775 = 132 /(6 + 7/8) + 9 (5)
10958.0021 = (1 + ((2 —¢y45%-71)78)) + 9 (6)
No closer solutions are possibRunning an exhaustive algorithm to look at
all possible combinations yields no solution of 108b& 10 lists alNalues,

and an expression yielding that value (there are many), that were found within
the range [10957.9, 10958.1].

Number Expression

10957.90411 -1 + ((2 — 3 x &)/(((6 — 7)/8) — 9)
10957.92857 —1/2 x 3 X (4 x (6/7 — 8) + 9)
10957.93277 (—1/(2 + 3) + (&-(6=7)/8) )) x 9
10957.97006 —(1/2) + (34 + ((5(6/7+8 )/9))
10957.97751 -1 + 35 /(6 +7/8)+9
10958.00206 ((1 + ((2 — ((—34)3(6x=7) ))=8)) + 9)
10958.06611 —1 — 2/3 + 4-(6-7/8 x 9
10958.09749 (1 + 234) x (5 x (6 + ((7/83)))

Table 10List of base 10 numbers and the expressions that are close to 10958.
This shows numbers within .1 of the desired numabdrare rounded to five
decimal digits due to the precision limitations in the calculations.

However, the original author uses concatenation without defining it as one of the
allowable operators between operands as dviipParker found a solution

if concatenation is allowed to occur as a stefhefcalculationwhich is not

done for any other number in the origpegler.Let ® be the concatenation
operatorThus, 234 would be shown as 2 ® 3 @ 4 in an equidiscsulution

is shown in [12, 13, Matt Parker] and is:

10958 =1x2@® 3+ ((4x5x6)®7+8)x09. (7)

There are many other solutionsaifiding a new operator is allowesich as
factorialsSome examples are

10958 = (1 —2 + 3) x (456 + 7! — 8 — 9), [16, Emmanuel Vanti@hem],
10958 =1 +2+ 31+ (-4 +5!+6 —7) x 89, [16, Inder ). Tan¢P],
10958 =1 x2x (3" —-4!'x (5+6)+ 7! —8—-29),[16, Indergntflanejal,
(10)
10958 = —(1+2 -3 +4 — ((5! + 6) x (78 + 9))), [16, Chris Srtiifh],

and it is possible if using the number 10 as shown by Taneja, 10958+= 1 * 2
(#+6+7%x8+9)%10 [16, Inder J. Tanefalr approach settles this definitively
through brute force search without the use of concatenation as a later step or
another operation allowed beyond the initial ®has, 10958 is the smallest
integer for which this is not possible.
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44 representations of numbers for small bases

Lemma 1. The integer10958is not expressiblén base 10 increasing
sequentiatepresentation (numbers 1 — 9) with only the operations addition,
multiplication, division, exponentiationan initial concatenatiorof the
numbers, arbitrary parentheses for operator precedence, and negation.

Proof. The proofis the program and its output afll combinations possible
and their evaluatiomhe source code is available, and can be viewed (albeit in
shortened form) in Appendix A. O

7 Some More Fun

Here we look at severalinteresting open problemsr additionalwaysto
explore this concept.

Fun Number Forms. Taneja gives a few in his paper for basea® we
extend this with a few examplesmfmbers that are always expressible in a
given base b.

—0= 11x2><...><(b—3) + (b — 2) — (b — ]_)

—1= 11x2><...><(b—1)

—1= 112...(b—1)

_ b - 1= 1><2><...><(b—2) X (b _ 1)
—b—1=162 x(h-1)

_ b = 11><2><...><(b—2) + (b _ 1)

_ b = 112...(b—2) + (b _ 1)

If bisodd,then0=(b-1)—-(b—-2)—-(b-3)+b—-4)—---+4-3-2+1,
and similar if b is even.

Taneja Primes. Based on his work related to these numbersdefine a
Taneja prime to be any prime expressible in crazy sequential representation for
a base bHere, we investigate some interesting questions.

— What is the smallest prime not expressible in a given base?
— What is the largest prime expressible in a given base?
— What is the sequence of primes not expressible (or expressible) in a given base?

— What is the characteristic function for the expressible or non-expressible primes
for a base?

— What is the sequence ofintegers(or primes)not expressible by eithean
increasing or decreasing representation.

— What is the smallest base a given prime (or integer) can be expressed in for
increasing and decreasing?

Table 11 lists the first prime not expressible in a given base for increasing and
decreasing representations asasdihe first prime not expressible by either.

For an increasing representatiable 12 is the smallest base a prime can be
sequentially represented in as well as an expression giving the value.
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Base| Increasing Prime Decreasing Primé Both Prime
3 7 5 11
4 13 11 17
5 27 17 27
6 67 83 97
7 281 379 499
8 1153 809 1579
9 4597 5417 7027
10 15971 18493 25763

Table 11:A brief overview othe first primes not expressible in a given base
for increasing and decreasing representat@asngell as the first prime not
expressible by either.

B1o Base Increasing B1o Base Increasing

210 3 1x2 7310 6 1+2 x(4+5)

310 3 1+2 7%0 5 -1x2+3

T A RNt

10 89 6 1+42+3+5
110 4 1+23 9712 7 12x3x4-5-6
1;10 g Ii;2+3><4 10130 6 12x3x4+5
10 1030 6 (1+2°x4-5

%gw g ‘% 1 (22x+33;>24 10710 6 —1-2+34x5
10 - 1090 6 1-2+34x5

29 5,6 (1x223+3)®4,1+2—3+45 1130 6 1+24+3ax5
10 -

4170 6 (1+2)x3x4+5 B?O g 122 +§;5+ 56

43y, 6 12+(3+4)x5 15300 . 1 Xz 345

4710 6 1+2x(3+4x5) 910 X2+

53,0 c 1+23x4 149, 7 12 x 3 x 4 + 56

590 6 1-2+3x%x4x5 1519 6 —1+2X(34—5)

6110 6 12x(3+4)+5 15750 6 1x2x3F-5

670 6,7 1®(2+3)®(—4+5),123 + (4 — %) 1630 5 1+2x3

7110 6 1+2x(3+4)x5 16710 6 1x2x3+5

17310 6 14+2x(3+5)

Table 12Smallest base a prime is sequentially representable in for an increasing
representation.

Limited Operations.The flexibility gained in sequential representations as
the base gets larger is evideahd will continue for larger baseEach new
number exponentially increases the number of combinations.

Of interestwould be to prove some estimatesbout the first numbernot
expressiblefor a given base under certain operationssuch as just
addition/subtraction, just addition/multiplication, just
concatenation/exponentiation, etc.

— How many unique numbers,given the operationsabove,can a given base
generate?
— How many integers, given the operations above, can a given base generate?

— How many waysgiven the operations aboxegn a given number be uniquely
represented sequentially (ignoring parenthetical differences)?
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46 representations of numbers for small bases

— For n > 6, is the first missing decreasing number always greater than the first
missing increasing number?ls there a way to determineiif increasing or
decreasing will not express a number first?

— Does a sequential representation exist with a set of operations O in base b?

— For a given number, what bases can represent it?

Continuing Problems. All of the listed problems so far are also open to
questions about the complexiihat is the complexity of finding the smallest
base that a number N can be sequentially represented in? To slightly extend
the questiorgiven an N what bases can it be represented in? Furidigen

the computationalomain,what is the solution to some tfese questions if
limited strictly to integer arithmetic?

There are many more open questions related to this problem in recreational
mathematicsSuch as noting that we, along with the original authors, focused
solely on positive integesdl. of these questions are open for rational, real, or
other sets of numbers.
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48 representations of numbers for small bases

A Minimal Source Code

The source code listed here has been shortenedfor clarity (with
acknowledgemertts others). For base 10,it takeshoursto compute the
dictionary and over 50 Gigabytes of memory to run, so saving to a file may be
more efficientn order to not recompute the dictionary everytimdrute

forcing using limited memory takes longer, but can beAdexé file with a

single representation for every value is about 20 Gigabytes for base 10.

def FindExpressiong(ibase =10):
#creatdictionary

D={}
#concatenartumbers i toj in thegivenbase
nt =int(”"”.join([str(korx inrange(i, j+1)]),base)

#key is number between i,j in baseand thevalueis thestring
Dfloat(nt)dstr(nt)
#storenegativeersion
D[-float(nt)d"—" +str(nt)
#basecaseis i==j or i>j
if (i '=j):
fork inrange (i, j):
#getoptimadictionarkeftof k fromi thruk
DL=FindExpressionski base)
#getoptimadictionaryightof k fromk+1 to j
DR=FindExpressions(ktlbase)
#all ways to combine optimaleft/right
forx inDL:
fory inDR:
D[ x+y]="("+DL[x] +"+"+DR[y] +")"
D[x-y]l="("+DL[x] +"-"+DR[y] +")"
D[x*y]="("+DL[x] +”"*"+DR[y] +")"
if y!'=0:
Dix/yl ="("+DL[x] +"/"+DR[y] +")"

try :
Dlpow(x,y)]l="("+DL[x] +"" +DRly]l +")"
except :
pass
return D
if __name__ =="__main.":

#for each base3-10

forbaseinrange(2,11):
D=FindExpressionslydse -1, base)
#findthefirst k numbers not in thedictionary

k=10

i =0.

while k> 0:
while i inD:

i =i +1.
#printthenumber it couldn’find
print (i)

i =i +1.
k=k-1
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