

Articles

Crazy sequential representations of numbers for small bases

Tim Wyliě

University of Texas - Rio Grande Valley timothy.wylie@utrgv.edu

Abstract: Throughout historyecreationahathematics has always played a prominent role in advancing reseafathowing in this tradition, in this paper we extend some recent work with crazy sequential entations of numbers—equations made sequences when through nine (or nine through one) that evaluate to a number previous work on this type of puzzle has focused only on baseten numbers and whether a solution existed. We generalize this concept and examine how this extends to arbitrary bases, the ranges of possible numbers, the combinatorial challenge of finding the numbers, efficient algorithms and some interesting patterns across any besethe analysis, we focus on bases three through tentrher, we outline severather esting mathematical algorithmic complexity problem to this area that have yet to be considered.

Keywords:representations, algorithms.

1 Introduction

One constant theme throughout the history of mathematics is the lure of and the desire to create and solve puzzlesuntless areas of search have been created and extended based on an investigation into recreational mathematics. The study of games and puzzles has become a serious area in its own right often providing insights into much deeper topics.

In this paper we look at an area of recreational mathematics based in number theory and combinatorics began in 2013 by Tanejandontinued in [18, 20,21,22]. The crazy sequential presentation of a number is an arithmetic expression, equal to the value of the number, that contains the digits of a base

^{*}This research was supported in part by National Science Foundation Grant CCF-1817602.

in order (ascending or descending) such as

$$3227 = 123 + 45 \times 67 + 209d$$
 $3227 = 9 + 87 + 64 + 5(3 + 2) \times 1$.

This representation isoften not unique. The original work looked at expressions with only addition and multiplication as well as concatenation and exponentiation Taneja extended this work by also allowing subtraction and division, and was able to find equations for allumbers 1-11111 with one exception: an ascending equation fol 10958. Without concatenation and exponentiation we could look at group operations to define possible values, but these two operations do not provide closure.

There are examples of this kind of representation of tegers at least as far back as 1917 in a famous puzzle book by Dudeney [2] also in another recreationabook by Madachy [10] from 1966. Both of these worksonly focused on the number 100 and used other operations such as factorials and square roots wellas decimal etc. Taneja was unaware of these books in his original work, and discovered them later while working on the updated version.

Our focus in this work is to look at possiblenumbersin other bases-specifically bases less than We also summarize the work related to base 10 and give an exhaustive proof that under Taneja's rules, 10958 is indeed impossible. We follow previous conventionand only allow addition, concatenation exponentiation multiplication division, and negation along with precedence constraints (parentheses).

Base	Increasing	Decreasing	Neither
3	0	0	0
4	13	11	16
5	27	17	27
6	67	77	92
7	260	262	292
8	614	809	1192
9	3293	4570	5414
10	10958	14324	21212

Table 1: A brief overview of the first integers that can not be sequentially represented under the defined operations for bases 3 - 10.

We can examine the limitations specific operation and how the possible results are affected by a change ase. Here, we focus on what is possible within a given bases an example, Table 11 shows for each base less than 10 the first positive integer that is impossible for increasing and decreasing representations as well as the first positive integer that can not be sequentially represented either increasingly or decreasingly.

¹Taneja used the term 'potentiation' instead, which comes from the translated word used for exponents.

²Taneja specified subtraction, but we use a broader operation, and we show that arbitrary negation is still not sufficient for 10958.

Historically, these kind of derivations were done tediously and slowland Taneja's work also has this flavor with only using a program to find a few of the difficult numbers [22]. Our approach leverage modern computational power and algorithmic techniques to bring this topic squarely within computational mathematics and search pubsible combination who discuss these techniques and upper bounds in the paper.

A brute force approach to a problem like this has generally been classified as computational mathematics - there is a point for many problems at which the number of possible combinations becomes too large for a human, or humanity, to check by hand in any reasonable amountime. This has become more common with efforts to verify and prove other long open questions mathematics such as the Kepler Conjecture [5, 6, 7], the Boolean Pythagorean Triples problem [8] finding Ramsey numbers [84, 15], the Happy Ending problem [1117], the 2-PATS problem [9] and many others where brute-force exhaustive-search solutions were required.

Fortunatelyfor us, this problem can also be approached with dynamic programmingthrough calculating substrings that appear in multiple equations. This recurrence relation yields efficientsolution allowing an exhaustive examination within a reasonable amount of the bases in our study (3-9), even basic laptops are sufficient to check the millions of combinations For base ten, we utilized some research servers due to the high memory requirements the program required around 20 gigabytes memory to run, but the time was less than two hours.

In the next section we give the background and definitions newsessaey. overview the approach and algorithms used in this research in Section 3. discuss the small bases 2, 3, and 4 in Section 4, and then the more substantial possibilities obases 5-9 in Section 5 Section 6 covers what is known about base 10 and the missing number 1095 ally, in Section 7 we outline several interesting mathematicand computational pen problems related to their study and conclude.

2 Preliminaries

We generalize the previous definitions with negation instead of subtraction, an explicit concatenation operator, and adding parentheses.

Definition (Crazy Sequential epresentation) Given a number $n \in \mathbb{R}$, an increasing crazy sequential presentation of in base b is an equation using the sequence of numbers $h1, 2, \ldots, b-1i$ (decreasing being $hb-1, \ldots, 2, 1i$) with the following operations allowed between any two of the nutibers two real numbers x, $y \in \mathbb{R}$ we define the following allowable operations:

- + Addition: x + y resulting in the sum of the two numbers.
- Negation:—x is allowable as well as the negation of an expression -(...). Addition with a negative is also equivalent to subtraction in this context, so subtraction is omitted from the list of operations.

 \times Multiplication: $x \times y$ resulting in their product.

/ Division: x/y giving the fraction.

- a^b Exponentiation x^y meaning x to the the power.
- xy Concatenation xy meaning the number xy in the given base (e.g., 12 5_{10}). There are many standard symbols used for this operationall use \oplus when we need to explicitly show otherwise it wilbe omitted when clear by context- generally xy will be preferred instead of $x \oplus y$.
- () Grouping: arbitrary parentheses are allowed with derivations following the standard rule that expressions inside parentheses are evaluated first.

One goabf Taneja's work is to minimize the number of operations used for a given representation. Thus, the original work [19] focused on numbers derivable from simply concatenation, addition, multiplication and exponentiation. Later work to add missing number sincluded division and subtraction [1820, 21, 22]. We have also opted to generally preferose original operations in the expression chosen when multiple expressions exists for a given number, as well as simplicity and elegance.

Explicit Concatenation. An issue with the way Taneja uses concatenation is that it is only allowed before evaluating the expressibles means 12 is allowed as twelve (or $1 \oplus 20$): $(1 + 2) \oplus 3$ is not allowed to be evaluated as 33. This is the only defined operation not allowed during evaluation. allowed allow it, several other numbers are possible, including 10958 in base 10. results, all expressions using this deviant version are colored red and use the \oplus symbolexplicitly. Our approach did not consider these solutions either, thus there may be solutions of this form to some of the values listed without a solution.

2.1 Combinatorics

In calculating an upperbound we are looking at the maximum amount of different numbers that could be represented in that the seamber of parse trees that can be generated with binary operators tells us the number of ways to distribute the operations we, for the moment only consider a single operation, this is the well-known Catalan numbers. Another view more relevant is the number of ways to insert n-1 pairs of parentheses in a word of n letters. e.g., for n=3 (t(2)) there are 2 ways (ab)c) or (a(bc)) [4]The Catalan numbers can be recursively derived by the following equation with t(0)=1 and t(1)=1.

$$t(n) = \sum_{i=1}^{X^n} t(i-1)t(n-i)$$
 (1)

Thus, for the bases considered here, have $t:(2, 3, \ldots, -9)$ (2, 5, 14, 42, 132, 429, 1430, 4862). This gives the number of ays to group the operands

tim wylie 37

(sequentiahumbers) and then we mustconside the number of operators allowed. We allow five distinct operations as defined above: addition, multiplication division, exponentiation and concatenation (subtraction will be handled later). This gives 5^{-1} ways to place the operations on n operands. For base b, we therefore have since we exclude 0 in the representation and only use $1, \ldots, (b-1)$.

The last issue to dealith is negation we only allow subtraction the number of operations of 6^{n-1} , however, we also allow negation. Thus, expression such as -(-4+5) are also allowed. Thus, for each of the parentheses or numbers, we could negate it, which adds all possible combinations of negations over the parentheses and numbers each we can also reduce our operations to only 5 (since we whole at adding the negated number instead hus, we have the power set of possible ways to add negatives to the numbers for n operands, and the power set of $\{1, 2, \ldots, n-1\}$ for possible ways to add negatives to the parentheses (for n numbers we need at most n-1 parenthesis for binary operations for base n0 by hen we include ablossibilities there is an upper bound for the combinations for n0 numbers given base n1.

$$C(n) = 5^{n-1} \times t(n) \times 2 \times 2^{n-1}$$
 (2)

$$=5^{n-1}\times t(n)\times \hat{2}^{n-1}, \text{ or in terms of } b$$
 (3)

$$C(b) = 5^{-2} \times t(b-1) \times^{2b} 2^{-3}. \tag{4}$$

The values for bases 3-10 are shown in Tablet 2. that the vast majority of these combinations do not yield integles we verthe numbers are small enough to output all possible numbers and then check the integled rones. of these results are duplicates with only parenthetical differences but the number of combinations is still well within computational power to brute force every possibility even if many are duplicates are bases, an examination of the unique parse trees would reduce many of the duplicate saused by analyzing strings.

Base <i>b</i> 3		4	5	6	
Combinations $C(b)$	80	4000	2.24 × 10	1.344 × 10	

B ase <i>b</i> 7		8	9	10	
Combinations $C(b)$	8.448 × 1 ⁸ 0	5.4912 × 1 ¹ 0	3.6608 × 1 ¹ 8	2.489344 × 10	

Table 2:The upper bound on the number of combinations for crazy sequential representations for a given basehich is the maximum amount possible numbers that could be represented.

3 Algorithms

At a high-levelin order to find althe numbers possible for a given base, algorithm such as Algorithm 1 can be runst the numbers from 1 to b-1 (or b-1 down to 1)and then check for allalid expressions with the given operations. This includes both the removal any operation (concatenation) and the possibility of precedence in operations (parentheses).

There are severahotes ofinterest related to actual plementation. These include finding all binary partitions (and how this changes with concatenation), negation of terms, evaluation in the given base, and processing such large amounts offata. We cover these in the analysis of Migorithm 1, which is a dynamic programming solution to the problem utilizing a dictionary of substrings, we can exponentially reduce the number of computations necessary.

Algorithm 1 A recursive algorithm looking at the possible combinations using dynamic programming that builds a dictionary or lookup table of all expressible numbers.

```
1: function FindExpressions(base, low, high €<sup>+</sup>)
 2:
          if low € high then
              T = \{\}
 3:
               \mathsf{numstr} \leftarrow \mathsf{CASTSTR}(low) \oplus \ldots \oplus \mathsf{CASTSTR}(high)
 4:
 5:
               catnum ← CASTNUM(numstr)
               T \leftarrow T \cup (catnum, numstr) \cup (-catnum, "-" \oplus numstr)
 6:
 7:
              for all low 6 k 6 high do
 8:
                   L \leftarrow FindEpressions(base, low, k)
                   R \leftarrow FindEpressions(base, k+1, high)
 9:
10:
                   . All ways to combine the left and right expressions
11:
                   for all x \in LS do
12:
                        for all y \in RS do
                             T \leftarrow T \cup (x + y, `(' \oplus L_x \oplus ' + ' \oplus R_y \oplus ')')
13:
14.
                             T \leftarrow T \cup (x \times y, '(' \oplus L_x \oplus ' \times ' \oplus R_y \oplus ')')
                             T \leftarrow T \cup (x/y, (' \oplus L \times \oplus '/' \oplus R y \oplus ')')
T \leftarrow T \cup (x^y, (' \oplus L_x \oplus ' \wedge ' \oplus R y \oplus ')')
15:
                                                                                                                     . if y 6 = 0
16:
               return T
17: F = FindEpressions(10, 1, 9)
```

Finding Possible Parentheses possible ways parentheses can be nested for *n* items is a classic problem in Computer Science with the proof published by Guy and Selfridge in 1973/4/example of a Python algorithm to generate these is here [1, btilly].

Finding Negations. Given all possible nested parentheses, for each we need to find all possible negations **b** fie numbers and the individual pressions. With negation instead of subtraction, the following are all d frether:..., -(((1 + ..., (-((1 + ..., and ((-(1)

Coding with Bases. Another smallmplementation details the need to deal with switching between multiple bases, which python has a method within casting to do so 234 in base 7 would be float(int(237,7)).

4 Too small bases

This is a quick overview of basesthat are really too small to offer the necessary flexibility to count very highmely 2, 3, and 4. Five could be in this category but there is a massive jump between 4 and 5 we will put it with the larger bases.

Base 2. For base 2, since we do not use 0, only operations on the single digit 1 can be performed an 1 and -1 are the only numbers expressible in a sequential representation, we can ignore it.

Base 3. In base 3,we now have 2 digits at our disposation allows our operations to have valid operarlosweverthere are not many combinations and many operations lead to the same an sale a lists these values.

Table 3List of most of the possible base 3 numbers in increasing and decreasing sequential order.

Base 4. Base 4 is the smallest base where anything interesting happens and we can list a significant portion of integers with the largest number being 19683 since in base 4 it is 3^1 . Table 4 lists the first 20 values and then a few of interest.

```
Increasing
                                           Decreasing
                                                                                           Increasing
                                                                                                                                        Decreasing
                                                                                                                                       10_{10} = 22_4 = 3^2 + 1
0_{10} = 0_4 = 1 + 2 - 3
                                          0_{10} = 0_4 = 3 - 2 - 1
                                                                                          10_{10} = 22_4 = -1 + 23
                                                                                          11_{10} = 23_4 = 1 \times 23

12_{10} = 30_4 = 1 + 23
1_{10} = 1_4 = 1^{2+3}
                                         1_{10} = 1_4 = 3 - 2 \times 1
                                                                                                                                      11<sub>10</sub> = 23<sub>4</sub> =
2_{10} = 2_4 = 1 - 2 + 3
                                          2_{10} = 2_4 = 3 - 2 + 1
                                                                                                                                       12_{10} = 30_4 = 3 + 21
3_{10} = 3_4 = 12 - 3
                                          3_{10} = 3_4 = 3 \times (2 - 1)
                                                                                          13<sub>10</sub> = 31<sub>4</sub> =
                                                                                                                                       13<sub>10</sub> = 31<sub>4</sub> = 32 - 1
4<sub>10</sub> = 10<sub>4</sub> = 1<sup>2</sup> + 3
                                          4_{10} = 10_4 = 3 + 2 - 1
                                                                                          14<sub>10</sub> = 32<sub>4</sub> =
                                                                                                                                       14<sub>10</sub> = 32<sub>4</sub> = 32 × 1
5_{10} = 11_4 = -1 + 2 \times 3
                                          5_{10} = 11_4 = 3 + 2 \times 1
                                                                                          15_{10} = 33_4 = (1 + 2) \oplus 3
                                                                                                                                      15<sub>10</sub> = 33<sub>4</sub> = 32 + 1
6_{10} = 12_4 = 1 + 2 + 3
                                          6_{10} = 12_4 = 3 + 2 + 1
                                                                                          16<sub>10</sub> = 100<sub>4</sub> =
                                                                                                                                       16<sub>10</sub> = 100<sub>4</sub> =
7_{10} = 13_4 = 1 + 2 \times 3
                                          7_{10} = 13_4 = 3 \times 2 + 1
                                                                                          17<sub>10</sub> = 101<sub>4</sub> =
                                                                                                                                       17<sub>10</sub> = 101<sub>4</sub> =
                                          8_{10} = 20_4 = 3^2 - 1
                                                                                           18<sub>10</sub> = 102<sub>4</sub> = 12 × 3
8_{10} = 20_4 = (1 \times 2)^3
                                                                                                                                       18<sub>10</sub> = 102<sub>4</sub> =
9<sub>10</sub> = 21 4 = 12 + 3
                                                                                           27<sub>10</sub> = 123<sub>4</sub> = 123
                                                                                                                                       27<sub>10</sub> = 123<sub>4</sub> = 3 × 21
                                          9_{10} = 21_4 = 3 \times (2 + 1)
                                                                                                                                       57<sub>10</sub> = 321<sub>4</sub> = 321
                                                                                           57<sub>10</sub> = 321<sub>4</sub> =
```

Table 4List of most of the possible base 4 numbers in increasing and decreasing sequential order.

5 Overview of 5-9

For organizational easons, we overview things of interestabout bases 5 through 9, and the actual listings of the expressions are omitted for space with only the first 40 numbers shown for 5-7 and the first 20 shown for 8 and 9.

All possible results were generated (negativesmalsetc.), and everything could be listed rather than giving just the organized list as presented.

However, the sheernumber of results makes it infeasible to do so. For instance with base eight, here are over 45,000 integer results, most of them not being consecutive.

B_{10}	B_5	Increasing	g Decreasing	B_{10}	B_5	Increasin	g Decreasing
010	05	$1^2 + 3 - 4$	(4 - 3) - (2 - 1)	2010	405	$1 \times (2 + 3) \times 4$	4 × (3 + 2) × 1
110	15	1 ²³⁴	$(4-3) \times (2-1)$	2110	415	$(1 + 2) \times (3 + 4)$	4 + 32 × 1
210	25	1 + 2 + 3 - 4	-4 + 3 + 2 + 1	2210	425	1 + 2 + 34	4 + 32 + 1
310	35	$1 + 2 \times 3 - 4$	$4 - 3 + 2 \times 1$	2310	435	$-1 + 2 \times 3 \times 4$	$4 \times 3 + 21$
410	45	1 + 2 - 3 + 4	4 + (3 - 2 - 1)	2410	445	$1 \times 2 \times 3 \times 4$	$4 \times 3 \times 2 \times 1$
510	105	$1 + 2^3 - 4$	$4 + 3 - 2 \times 1$	2510	1005	$1 + 2 \times 3 \times 4$	$4 \times 3 \times 2 + 1$
610	115	1 - 2 + 3 + 4	4 + (3 - 2 + 1)	2610	1015	12 + 34	43 + 2 + 1
710	125	$1^2 \times 3 + 4$	$4 + 3 \times (2 - 1)$	2710	1025		
810	135	-1 + 2 + 3 + 4	4 + 3 + 2 - 1	2810	1035	$(1 + 2 \times 3) \times 4$	$4\times(3\times2+1)$
910	145	$-1 - 2 + (3 \times 4)$	$4 + 3 + 2 \times 1$	2910	1045	$(1 \times 2 + 3) \oplus 4$	$-4 + 3 \times 21$
1010	20 ₅	1 + 2 + 3 + 4	4 + 3 + 2 + 1	30 ₁₀	1105	$1 \oplus (-2 + 3 + 4)$	$(5-4) \oplus (3 \times 2 - 1)$
1110	215	$1 + 2 \times 3 + 4$	$4 + 3 \times 2 + 1$	3110	1115	$-1 + 2^{3} \times 4$	4 + 3 ²⁺¹
1210	225	-12 + 34	$4 \times 3 \times (2-1)$	3210	1125	$1 \times 2^3 \times 4$	$4 \times (3^{2} - 1)$
1310	235	$-1 + 2 + 3 \times 4$	$4 + 3 \times (2 + 1)$	3310	1135	$1 + 2^3 \times 4$	$(4^3)/2 + 1$
1410	245	$1 \times 2 + 3 \times 4$	$4 \times 3 + 2 \times 1$	3410	1145	123 – 4	43 + 21
1510	30 ₅	$1 + 2 + 3 \times 4$	$4 \times 3 + 2 + 1$	3510	1205	$1\oplus (-2+3\times 4)$	$4 \times 3^2 - 1$
1610	315	-1 + 23 + 4	$4 \times (3 + 2 - 1)$	3610	1215	$(1 + 2) \times 3 \times 4$	$4 \times 3 \times (2 + 1)$
1710	32 ₅	$1 \times 23 + 4$		3710	1225	$-1 + 2 \times 34$	$4 + 3 \times 21$
1810	335	1 + 23 + 4	4 + 3 + 21	3810	1235	1 × 2 × 34	$(4 + 3) \oplus (2 + 1)$
1910	345	$-1 + (2 + 3) \times 4$	$4 \times (3 + 2) - 1$	3910	1245	$1 + 2 \times 34$	

Table 5: List of base 5 numbers from 0 to 39 in increasing and decreasing sequential order.

- **Base 5**. There are four numbers in the representation for base five, and thus there is enough variability to begin making a meaniagfaunt of different combinations and possible integetial, this may be considered a relatively small base since the first impossible integer We also filled in some of the gaps with explicit concatenationable 5 shows a list of the positive integers 0-39 with their representations missing ones are not possible.
- **Base 6**. Each increasen base exponentially increases number of possibilities and the first positive integers that can not be expressed are 67 (increasing) and 77 (decreasing) d 97 is the first one not representable by either. Table 6 shows a list of the positive integers 0 39 with their representations.
- **Base 7**. Starting with base 7the amount ofnumbers possible explodes, and thus,we will simply list the numbers without trying to fit them onto a single pageln fact, every number is expressible ω 60. Curiously the first inexpressible decreasing integer is 262ble 7 shows a list ofthe positive integers 0 39 with their representations.

B_{10}	B_6	Increasing	Decreasing	B_{10}	B_6	Increasing	Decreasing
010	06	$1^{23} + 4 - 5$	5 - 4 - 3 + 2 × 1	2010	326	12 + 3 + 4 + 5	5 + 4 × 3 + 2 + 1
110	16	1 ²³⁴⁵	5 - 4 ^{3-2×1}	2110	336	$1^{23} + 4 \times 5$	$5 + 4 \times (3 + 2 - 1)$
210	26	12 + 3 - 4 - 5	$5 + 4 - 3 \times 2 - 1$	2210	346	123 – 45	5 - 4 + 32 + 1
310	36	1 - 2 + 3 - 4 + 5	5 + 4 - 3 - 2 - 1	2310	356	$12 \times 3 + 4 - 5$	$5 \times 4 + 3 \times (2 - 1)$
410	46	12 - 3 + 4 - 5	$5 + 4 - 3 - 2 \times 1$	2410	406	$(12/3) \times (4 + 5)$	54 + 3 - 21
510	56	1 + 2 + 3 + 4 - 5	5 + 4 - 3 - 2 + 1	2510	416	12 + 34 - 5	$54 - 3 \times (2 + 1)$
610	106	12 - 3 - 4 + 5	$5 + 4 - 3 \times (2 - 1)$	2610	426	$1 + 2 + 3 + 4 \times 5$	$5 \times 4 + 3 + 2 + 1$
710	116	1 + 2 + 3 - 4 + 5	5 + 4 - 3 + 2 - 1	2710	436	$1 + 2 \times 3 + 4 \times 5$	$5 \times 4 + 3 \times 2 + 1$
810	126	$1 + 2 \times 3 - 4 + 5$	$5 + 4 - 3 + 2 \times 1$	2810	446	$1 \times 2 - 3 + 45$	54 - 3 - 2 - 1
910	136	1 + 2 - 3 + 4 + 5	5 + 4 + 3 - 2 - 1	2910	456	1 + 2 - 3 + 45	$54 - 3 - 2 \times 1$
1010	146	12 + 3 + 4 - 5	$5 + 4 + 3 - 2 \times 1$	3010	506	$12 \times (3/4) \times 5$	54 - 3 - 2 + 1
1110	156	$12 - 3 \times (4 - 5)$	5 + 4 + 3 - 2 + 1	3110	516	$123 - 4 \times 5$	$54 - 3 \times (2 - 1)$
1210	206	12 + 3 - 4 + 5	$5 + 4 + 3 \times (2 - 1)$	3210	526	$12 \times (3 - 4 + 5)$	54 - 3 + 2 - 1
1310	216	$1-2 \times (3-4-5)$	5 + 4 + 3 + 2 - 1	3310	536	$12 \times 3 + 4 + 5$	$54 - 3 + 2 \times 1$
1410	226	12 - 3 + 4 + 5	54 - 32 × 1	3410	546	12 - 3 + 45	54 + 3 - 2 - 1
1510	236	1 + 2 + 3 + 4 + 5	5 + 4 + 3 + 2 + 1	3510	556	12 + 34 + 5	$54 + 3 - 2 \times 1$
1610	246	$1 + 2 \times 3 + 4 + 5$	$5 + 4 + 3 \times 2 + 1$	3610	1006	$1 + 23 + 4 \times 5$	54 + 3 - 2 + 1
1710	256	1 + 23 - 4 + 5	$5 + 4 + 3^2 - 1$	37 ₁₀	1016	$1 \times 2 + (3 + 4) \times 5$	$54 + 3 \times (2 - 1)$
1810	30 ₆	$1 + 2^3 + 4 + 5$	$5 + 4 + 3 \times (2 + 1)$	3810	1026	$1 + 2 + (3 + 4) \times 5$	54 + 3 + 2 - 1
1910	316	$1 \times 2 + 34 - 5$	$5 + 4 + 3^2 + 1$	3910	1036	1 × 2 × 34 – 5	$54 + 3 + 2 \times 1$

Table 6: List of base 6 numbers from 0 to 39 in increasing and decreasing sequential order.

B_{10}	B_7	Increasing	Decreasing	B_{10}	B_7	Increasing	Decreasing
010	07	$1^{234} + 5 - 6$	$6 + 5 - 4 - 3 \times 2 - 1$	2010	267	12 + 34/5 + 6	$65 - 4 - 32 \times 1$
110	17	12 - 3 - 4 + 5 - 6	6543-2-1	2110	307	123 - 4 - 56	65 - 4 - 32 + 1
210	27	$12 - 3 + 4 \times (5 - 6)$	$6 + 5 - 4 - 3 - 2 \times 1$	2210	317	$123 - 4 \times (5 + 6)$	$65 - 4 \times 3 \times 2 - 1$
310	37	12 - 3 - 4 - 5 + 6	6 + 5 + 4 + 3 - 21	2310	327	12 + 34 - 5 - 6	$65 - 4 \times 3 \times 2 \times 1$
410	47	$12 + 34 - 5 \times 6$	6 + 54/3 - 21	2410	337	$123 \times 4/(5 + 6)$	65 + 4 - 3 ²⁺¹
510	57	12 + 3 + 4 - 5 - 6	$6 + 5 + 4 - 3^{2} - 1$	25 ₁₀	347	12 - 34 + 56	65 - 4 - 3 - 21
610	67	$12 + 3 + (4 - 5) \times 6$	$65 + 4 - 3 \times 21$	2610	357	$12 + 3 + 4 \times 5 - 6$	65 × 4 – 321
710	107	12 + 3 - 4 + 5 - 6	$65 - 4 \times (3^{2} + 1)$	27 ₁₀	367	123 - 45 - 6	65 + 4 - 32 - 1
810	117	123/45 + 6	$6 + 5 + 4 - 3 \times 2 - 1$	2810	407	$12 \times 3 + (4 - 5)$ 6	$65 + 4 - 32 \times 1$
910	127	12 + 3 - 4 - 5 + 6	6 + 5 + 4 - 3 - 2 - 1	2910	417	123 + 4 - 56	65 + 4 - 32 + 1
1010	137	$12 + 3 \times 4 - 5 - 6$	$65 - 4 \times 3^{2} - 1$	30 ₁₀	427	$12 - 3 \times (4 - 5 - 6)$	$6 + 5 - 4 + 32 \times 1$
1110	147	$12 + 3/(4 + 5) \times 6$	$65 - 4 \times 3 \times (2 + 1)$	3110	437	$12 \times 3 - 4 \times (5 - 6)$	65 - 43 + 21
1210	157	123/45 × 6	$65 - 4 \times 3^{2} + 1$	3210	447	$123 - 4 - 5 \times 6$	$65 - 4 \times 3 - 2 - 1$
1310	167	12 + 3 + (4 - 5) 6	65 - 43 - 2 - 1	3310	457	12 + 34 + 5 - 6	65 + 4 - 3 - 21
1410	207	$12 - 34 + 5 \times 6$	$65 - 43 - 2 \times 1$	3410	467	$12 - 34 \times (5 - 6)$	$65 - 4 - 3 \times (2 + 1)$
1510	217	12 + 3 + 4 + 5 - 6	65 - 43 - 2 + 1	3510	507	12 + 34 - 5 + 6	$65 - 4 - 3^2 + 1$
1610	227	$12 + 3 - 4 \times (5 - 6)$	$65 - 43 \times (2 - 1)$	3610	517	12 + 3 ⁴⁺⁵⁻⁶	654/3 ² – 1
1710	237	12 + 3 + 4 - 5 + 6	65 - 43 + 2 - 1	37 ₁₀	527	$12/3 + 4 + 5 \times 6$	654/3/(2 + 1)
1810	247	$12 + 3 \times (4 + 5 - 6)$	$65 - 43 + 2 \times 1$	3810	537	$12 + 3 + 4 \times 5 + 6$	654/3 ² + 1
1910	257	12 + 3 - 4 + 5 + 6	65 - 43 + 2 + 1	3910	547	123 - 45 + 6	65 + 4 + 3 - 21

Table 7: List of base 7 numbers from 0 to 39 in increasing and decreasing sequential order.

Base 8. Table 8 shows a list of the positive integers 0-19 with their representation. Due to the length of the expression here is not room for more number. Base eight does not have an inexpressible number until 614 for an increasing sequence 809 for a decreasing sequente first positive integer that can not be expressed by either is 1192.

B_{10}	В8	Increasing	Decreasing	B_{10}	В8	Increasing	Decreasing
010	08	1 ²³⁴⁵ + 6 - 7	7+6-5-4-3-2+1	2010	248	12 + 34 - 5 - 6 - 7	76 + 5 + 4 - 3 × 21
110	18	1 ²³⁴⁵⁶⁷	7654 ³⁻²⁻¹	2110	25 ₈	$123 - 4 \times 5 - 6 \times 7$	$76 - 54 + 3 \times (2 - 1)$
210	28	$12 + 3 - 4 + (5 - 6) \times 7$	$76 + 5 - 4^3 - 2 + 1$	2210	268	$123 + 4 - 5 \times (6 + 7)$	76 - 54 + 3 + 2 - 1
310	38	12 + 3 - 4 - 5 + 6 - 7	$76 + 5 - 4^{3} \times (2 - 1)$	2310	278	12 + 3 + 4 + 5 - 6 + 7	$76 - 54 + 3 + 2 \times 1$
410	48	$123 - 45 - 6 \times 7$	$76 + 5 - 4^{3} + 2 - 1$	2410	308	$12 + 3 - 4 \times (5 - 6) + 7$	76 - 54 + 3 + 2 + 1
510	58	12 + 3 - 4 - 5 - 6 + 7	$76 + 5 - 4^{3} + 2 \times 1$	2510	318	12 + 3 + 4 - 5 + 6 + 7	$76 - 54 + 3 \times 2 + 1$
610	68	$12 + 34 \times (5 - 6)/7$	$76 + 5 - 4^{3} + 2 + 1$	2610	32 ₈	123 - 4 - 56 - 7	76 – 54 + 3 ² – 1
710	78	12 - 3 + 4 - 5 - 6 + 7	$76 - 5 \times (4+3 \times 2+1)$	2710	338	123 + 4 - 5 - 67	$76 + 5 - 4 \times (3^{2} + 1)$
810	108	$123 - 4 \times 5 - 67$	76 – 54 – 3 ² – 1	2810	348	$123 + (4 - 5) \times 67$	76 – 54 + 3 ² + 1
910	118	12 + 3 + 4 + 5 - 6 - 7	$76 - 54 - 3 \times (2 + 1)$	2910	35 ₈	123 - 4 + 5 - 67	76 + 5 - 43 - 2 - 1
1010	128	$123 \times 4 - 56 \times 7$	$76 - 54 - 3^2 + 1$	3010	36 ₈	12 + 34 + 5 - 6 - 7	$76 + 5 - 43 - 2 \times 1$
1110	138	$123 - 4 \times (5 + 6 + 7)$	$76 + 5 + 4 \times (3 - 21)$	3110	37 ₈	$12 + 34 + (5 - 6) \times 7$	76 + 5 - 43 - 2 + 1
1210	148	$12 + 3 + 4 + 5 \times (6 - 7)$	$76 + 5 - 4 - 3 \times 21$	3210	408	$123 - 4 - 5 - 6 \times 7$	$76 + 5 - 43 \times (2 - 1)$
1310	158	12 + 3 + 4 - 5 - 6 + 7	$76 - 54 - 3 - 2 \times 1$	3310	418	123 - 45 - 6 - 7	76 + 5 - 43 + 2 - 1
1410	168	$123 - 4 - 5 \times (6 + 7)$	76 - 54 - 3 - 2 + 1	3410	428	123 + 4 - 56 - 7	$76 + 5 - 43 + 2 \times 1$
1510	178	12 + 34 - 5 × 6 + 7	76 + 5 - 43 - 21	3510	438	12 + 3 + 4 + 5 + 6 + 7	76 + 5 - 43 + 2 + 1
1610	208	12 + 3 + 4 + (5 - 6)	76 - 54 - 3 + 2 - 1	3610	448	$12 + 3 \times (4 + 5) + 6 - 7$	76 + 5 - 4 - 32 - 1
1710	218	12 + 34/(5 + 6 - 7)	$76 - 54 - 3 + 2 \times 1$	3710	458	123 + 4 + 5 - 67	$76 + 5 - 4 - 32 \times 1$
1810	228	$12 + 3 - 45 + 6 \times 7$	76 - 54 + 3 - 2 - 1	3810	468	$12 + 3 \times (4 + 5) - (6 - 7)$	76 + 5 - 4 - 32 + 1
1910	238	123 - 4 - 5 - 67	$76 - 54 + 3 - 2 \times 1$	³⁹ 10	478	123 - 4/5 × 67	$76 + 5 - 4 \times (3 \times 2 + 1)$

Table 8: List of base 8 numbers from 0 to 47 in increasing and decreasing sequential order.

Base 9. Similar to base eightaly representations for numbers 0-19 are shown in Table 9. The first unrepresentable positive integers for increasing and decreasing sequential representations are 3293 and 4570, re**Epe**ctively. integer 5414 is the smallest positive integer unrepresentable by either.

B_{10}	B_9	Increasing	Decreasing	B_{10}	B_9	Increasing	Decreasing
010	09	1 ²³⁴⁵⁶ +7-8	8-7-6+5+4-3-2+1	2010	229	$123+4-(5 \times 6)+(7 \times 8)$	87+65 × (4-3+2 × 1)
110	19	12345678	8+7-6-5-4+3-2 × 1	2110	239	123+4+5-(6 × (7+8))	87+(65-(43 × (2+1)))
210	29	$123-4 \times (5+6)-7 \times 8$	$876-5 \times ((4 \times 3) ^{2}-1)$	2210	249	123+(4 × (56-78))	87+(65-(4 × (32 × 1)))
310	39	(123+45)/(6+7)-8	876/(5 ⁴³)+2+1	2310	259	(123+4+5-6)/7+8	(876-(5 ⁴))/(3+(2-1))
410	49	(123-4-5+67)/8	$(87+6-54)/(3 \times (2+1))$	2410	269	123+(4-(5+(6+78)))	$((87+65)/(4 \times 3)) \times 2+1$
510	59	(123+4-5+67)/8	(876-5 ⁴ +3)/21	25 ₁₀	279	$123+((4-5)\times(6+78))$	87+(6+((5-((4 ³)+2))+1))
610	69	(123+4-56-7)/8	$(87+65)/(4 \times 3 \times 2-1)$	26 ₁₀	28 ₉	(123-4)+(5-(6+78))	87+(65-(4 × (32-1)))
710	79	123+4+5-((6+7) × 8)	876-(5+4) ³ +21	27 ₁₀	309	123+((4 × (5-6))-78)	87+(6+((5-(4 ³))+(2-1)))
810	89	1+2+3+4+5-6+7-8	$(87+6+5)/(4+3 \times 2)-1$	2810	319	(123-(4+5))+(6-78)	(87+((6+(5+4))/3))/(2+1)
910	109	(123-45)/67+8	$87+65-4^{-3} \times 2+1$	29 ₁₀	32 ₉	$(123-(4+((5+6)\times 7)))+8$	87+(6+(5-(4+(3 × 21))))
1010	119	$(123+(4 \times 5-6 \times 7))/8$	$87+65-4^{-3} \times 2 \times 1$	3010	339	$123+((4+5)\times((6-7)\times8))$	(876-(54 × 3))/21
1110	129	(123+4-5-6-7)/8	$87+65-4^{3} \times 2+1$	3110	349	123-(4+(5+(6+(7 × 8))))	((87+(6+5))/((4-3)+2))+1
1210	139	$123+(4-5) \times 6 \times (7+8)$	$87+6+5-43 \times 2 \times 1$	3210	359	123+(4-(5+(67+8)))	((87+65)/4)-((3/2)+1)
1310	149	(1234-5+6)/78	$87+6+5-43 \times 2+1$	3310	369	$123+((4-5)\times(67+8))$	(876+(5+4))/(3+21)
1410	159	(123+4+5-6+7)/8	(87+6+5-4 ³)/2+1	3410	37 ₉	123+(4+(5-(6+78)))	$((87+(65 \times 4))/(3 ^{2}))-1$
1510	169	123 × (4/5+6) 7-8	$(87+6+5 \times 4)/(3 \times 2+1)$	3510	389	$123+(4+((5-6)\times78))$	(876-(54+3))/21
1610	179	$((123+4 \times 5)/67) \times 8$	87+6+(5-43) × 2-1	3610	409	123+((4-5)+(6-78))	((87+(65-(4 ³)))/2)-1
1710	189	$(1234+5 \times 6)/(7 \times 8)$	$87+6+(5-43) \times (2 \times 1)$	3710	419	$123+((4-((5+6)\times 7))+8)$	$(87+(65-(4^{-3})))/(2 \times 1)$
1810	209	(123+45-6+7)/8	87+65-(4 × (32+1))	3810	429	$123+(4 \times (5-(6+(7+8))))$	$(876+5) \times ((4-3)/21)$
1910	219	((123+45)/(6+7))+8	(876+5)/((43-2)+1)	³⁹ 10	439	123+(45-((6+7) × 8))	$(87+(6+(5-(4\times3))))/(2\times1)$

Table 9: List of base 9 numbers from 0 to 19 in increasing and decreasing sequential order.

6 Base 10

Taneja showed that razy increasing sequential presentation for base 10 numbers was possible for all numbers to 11111 with one except one [22].

is no known solution to 10958 with the numbers in increasing orders possible to get close, but not exact found two extremely close solutions.

$$10957.9775 = -1^{(3^{4})/2}/(6 + 7/8) + 9 \tag{5}$$

$$10958.0021 = (1 + ((2 - ^{-1})^{-5})^{6(x-7)})^{-8}) + 9$$
 (6)

No closer solutions are possibRunning an exhaustive algorithm to look at all possible combinations yields no solution of 1005& 10 lists alvalues, and an expression yielding that value (there are many), that were found within the range [10957.9, 10958.1].

Number	Expression
10957.90411	$-1 + ((2 - 3 \times 4)/((6 - 7)/8) - 9)$
10957.92857	$-1/2 \times 3 \times (4 \times (6/7 - 8) + 9)$
10957.93277	$(-1/(2+3)+(4^{-((6-7)/8)}))\times 9$
	$-(1/2) + (34 + ((5^{(6/7)+8})/9))$
10957.97751	$-1+2^{4/5}/(6+7/8)+9$
10958.0020	$((1 + ((2 - ((-3^4)^{5/(6 \times -7)}))^{-8})) + 9)$
10958.06611	$-1 - 2/3 + 4^{-(6-7)/8} \times 9$
10958.09749	$(1 + 234) \times (5 \times (6 + ((7/8)^{9})))$

Table 10:List of base 10 numbers and the expressions that are close to 10958. This shows numbers within .1 of the desired number rounded to five decimal digits due to the precision limitations in the calculations.

However, the original author uses concatenation without defining it as one of the allowable operators between operands as a Matep Parker found a solution if concatenation is allowed to occur as a stemper fealculation which is not done for any other number in the originapler. Let \oplus be the concatenation operator. Thus, 234 would be shown as $2 \oplus 3 \oplus 4$ in an equal to some or shown in [12, 13, Matt Parker] and is:

$$10958 = 1 \times 2 \oplus 3 + ((4 \times 5 \times 6) \oplus 7 + 8) \times 9. \tag{7}$$

There are many other solutionsaidding a new operator is allowed, ch as factorials Some examples are

10958 =
$$(1-2+3) \times (456+7!-8-9)$$
, [16, Emmanuel Vanti@hem],
10958 = $1+2+3!!+(-4+5!+6-7) \times 89$, [16, Inder J. Tane],
10958 = $1\times2\times(3!!-4!\times(5+6)+7!-8-9)$, [16, Inder interpolation],
(10)
10958 = $-(1+2-3+4-((5!+6)\times(78+9)))$, [16, Chris Srhith)],

and it is possible if using the number 10 as shown by Taneja, $109\% = 1 * 2 (4^5+6+7*8+9)*10$ [16, Inder J. Tane@1]r approach settles this definitively through brute force search without the use of concatenation as a later step or another operation allowed beyond the initial \overline{o} hes, 10958 is the smallest integer for which this is not possible.

Lemma 1. The integer 10958 is not expressible base 10 increasing sequential epresentation (numbers 1-9) with only the operations addition, multiplication, division, exponentiation initial concatenation of the numbers, arbitrary parentheses for operator precedence, and negation.

Proof. The proofis the program and its output of ll combinations possible and their evaluation he source code is available, and can be viewed (albeit in shortened form) in Appendix A. □

7 Some More Fun

Here we look at severalinteresting open problems additionalways to explore this concept.

Fun Number Forms. Taneja gives a few in his paper for baseal Ω , we extend this with a few examples Ω fmbers that are always expressible in a given base b.

$$-0 = 1^{1 \times 2 \times ... \times (b-3)} + (b-2) - (b-1)$$

$$-0 = 1^{2 ... (b-3)} + (b-2) - (b-1)$$

$$-1 = 1^{1 \times 2 \times ... \times (b-1)}$$

$$-1 = 1^{12 ... (b-1)}$$

$$-b - 1 = \frac{1}{2}^{2 \times ... \times (b-2)} \times (b-1)$$

$$-b - 1 = \frac{1}{2}^{2 ... \times (b-2)} \times (b-1)$$

$$-b = 1^{12 ... \times (b-2)} + (b-1)$$

$$-b = 1^{12 ... \times (b-2)} + (b-1)$$

If b is odd, then $0 = (b-1) - (b-2) - (b-3) + (b-4) - \cdots + 4 - 3 - 2 + 1$, and similar if b is even.

Taneja Primes. Based on his work related to these numbers define a Taneja prime to be any prime expressible in crazy sequential representation for a base bHere, we investigate some interesting questions.

- What is the smallest prime not expressible in a given base?
- What is the largest prime expressible in a given base?
- What is the sequence of primes not expressible (or expressible) in a given base?
- What is the characteristic function for the expressible or non-expressible primes for a base?
- What is the sequence ofintegers(or primes) not expressible by eithean increasing or decreasing representation.
- What is the smallest base a given prime (or integer) can be expressed in for increasing and decreasing?

Table 11 lists the first prime not expressible in a given base for increasing and decreasing representations as a settle first prime not expressible by either. For an increasing representationable 12 is the smallest base a prime can be sequentially represented in as well as an expression giving the value.

Base	Increasing Prime	Decreasing Prime	Both Prime
3	7	5	11
4	13	11	17
5	27	17	27
6	67	83	97
7	281	379	499
8	1153	809	1579
9	4597	5417	7027
10	15971	18493	25763

Table 11:A brief overview ofhe first primes not expressible in a given base for increasing and decreasing representations ell as the first prime not expressible by either.

B 10	Base	Increasing	B 10	Base	Increasing
210	3	1 × 2	7310	6	$1 + 2^3 \times (4 + 5)$
310	3	1 + 2	79 ₁₀	5	$-1 \times 2 + 3^4$
5 ₁₀	3	12	8310	5	$1 \times 2 + 3^4$
710	4	$1 + 2 \times 3$	8910	6	$1 + 2 + 3^4 + 5$
11_{10}	4	1 + 23	9710	7	$12 \times 3 \times 4 - 5 - 6$
13_{10}	5	$-1 + 2 + 3 \times 4$	10110	6	$12 \times 3 \times 4 + 5$
17 ₁₀	5 5 5	1 + 2	10310	6	$(1+2)^3 \times 4 - 5$
19_{10}		$-1 + (2 + 3) \times 4$	10710	6	$-1 - 2 + 34 \times 5$
23_{10}	5	$-1 + 2 \times 3 \times 4$	109_{10}^{10}	6	$1 - 2 + 34 \times 5$
29_{10}	5 , 6	$(1 \times 2 + 3) \oplus 4, 1 + 2 - 3 + 45$	11310	6	$1 + 2 + 34 \times 5$
31_{10}	5	$-1 + 2^3 \times 4$	12710	5	$-1+2^{3+4}$
37 ₁₀	5	$-1 + 2 \times 34$	13110	7	12 + 3 ⁴ + 56
41_{10}	6	$(1 + 2) \times 3 \times 4 + 5$	13710	6	$1^2 \times 345$
4310	6	$12 + (3 + 4) \times 5$	13910	6	1 × 2 + 345
47 ₁₀	6	$1 + 2 \times (3 + 4 \times 5)$	149_{10}	7	$12 \times 3 \times 4 + 56$
53 ₁₀	5	$1 + 23 \times 4$	151_{10}	6	$-1 + 2 \times (3^4 - 5)$
59_{10}	6	$1 - 2 + 3 \times 4 \times 5$	157 ₁₀	6	$1 \times 2 \times 3^4 - 5$
61_{10}	6	$12 \times (3 + 4) + 5$		5	$1 + 2 \times 3^4$
67 ₁₀	6 , 7	$1 \oplus (2 + 3) \oplus (-4 + 5), 123 + (4 -$	5) 10310		The state of the s
71_{10}	6	$1 + 2 \times (3 + 4) \times 5$	16/10	6	$1 \times 2 \times 3^{4} + 5$
			173_{10}	6	$1 + 2 \times (3^4 + 5)$

Table 12Smallest base a prime is sequentially representable in for an increasing representation.

Limited Operations. The flexibility gained in sequential representations as the base gets larger is evideat,d will continue for larger baseEach new number exponentially increases the number of combinations.

Of interestwould be to prove some estimated out the first numbernot expressible for a given base under certain operations such as just addition/subtraction, just addition/multiplication, just concatenation/exponentiation, etc.

- How many unique numbers, given the operations bove, can a given base generate?
- How many integers, given the operations above, can a given base generate?
- How many ways given the operations aboven a given number be uniquely represented sequentially (ignoring parenthetical differences)?

- For n > 6, is the first missing decreasing number always greater than the first missing increasing number?ls there a way to determine if increasing or decreasing will not express a number first?
- Does a sequential representation exist with a set of operations O in base b?
- For a given number, what bases can represent it?

Continuing Problems. All of the listed problems so far are also open to questions about the complexity at is the complexity of finding the smallest base that a number N can be sequentially represented in? To slightly extend the questiongiven an N what bases can it be represented in? Furtheren the computational omain, what is the solution to some these questions if limited strictly to integer arithmetic?

There are many more open questions related to this problem in recreational mathematic such as noting that we, along with the original authors, focused solely on positive integents of these questions are open for rational, real, or other sets of numbers.

Acknowledgements

The author would like to thank those that have already given feedback on the paper, which helped improve the quality substantially Most notably the dynamic programming improveme Tibe original version was optimized for limited memory systems, but took significantly longer.

References

[1] Ben Tilly. How to print all possible balanced parentheses for an expression? - stack overflow.

- [2] H. E. Dudeney Amusements in Mathematids omas Nelson and Sons, Ltd., New York, NY, USA, 1917.
- [3] R. L. Graham, B. L. Rothschild, J. H. Spenceramsey Theory A. Wiley-Interscience publication, John Wiley & Sons, 1990.
- [4] R. K. Guy, J. L. Selfridge. "The nesting and roosting habits of the laddered parenthesis", The American Mathematic Monthly, 80(8):868–876, 1973.
- [5]T. Hales. "Historicaloverview of the Kepler conjecture". Discrete & Computation & Geometry, 36:5–20, July 2006.
- [6]T. Hales. *The flyspeck project*ttps://code.google.com/p/flyspeck/, 2014 (accesse2014-10-10).
- [7]T. Hales, S. McLaughlin. "The dodecahedratonjecture", *CoRR*, abs/math/9811079:1–49, 2008.

- [8] M. Heule, O. Kullmann, V. Marek. "Solving and verifying the boolean pythagorean triples problem via cube-and-conquert adia Creignou and Daniel Berre (editors), Theory and Applications & Testing SAT 2016, 228–245, Springer International Publishing, 2016.
- [9]L. Kari, S. Kopecki, P. Meunier, M. Patitz, S. Seki. "Binary pattern tile set synthesis is NP-hard Algorithmica, 78(1):1–46, 2017.
- [10]J. Madachy. Mathematics on vacation homas Nelson and Sonktd., New York, NY, USA, 1966.
- [11]W. Morris, V. Soltan. "The Erdős-Szekeres problem on points in convex position-a survey *Bulletin of the American Mathematical ciety (N.S.*, 37(4):437–458, 2000.
- [12]NumberphileThe 10,958 problem numberphile, April 2017. Youtube:https://www.youtube.com/watch?v=-ruC5A9EzzE
- [13]NumberphileA 10,958 solution numberphile, April 2017. Youtube:https://www.youtube.com/watch?v=pasyRUj7UwM
- [14]S. Radziszowski. "Small Ramsey numbers" *The Electronic Journal of Combinatorics*, DS1:1–94, 2014.
- [15]S. RadziszowskiB. McKay. "R(4,5) = 25", Journal of Graph Theory, (19):309–322, 1995.
- [16]C. Rivera.Puzzle 86410958, the only hole. . . , January 2017. http://primepuzzles.net/puzzles/puzz 864.htm
- [17]G. Szekeres L. Peters. "Computersolution to the 17-pointErd" os-Szekeres problem The Australian & New Zealand Industaiad Applied Mathematics Journal, 48:151–164, 10, 2006.
- [18]I. J. Taneja. "Crazy Sequential Representat Numbers from 0 to 11111 in terms of Increasing and Decreasing Orders of 1 tank" e-prints, Jun 2013.http://arxiv.org/abs/1302.1479v3
- [20]I. J. Taneja. "Crazy Sequential Representation bers from 44 to 4444 in terms of Increasing and Decreasing Orders of 1 tankin e-prints, Mar 2013 http://arxiv.org/abs/1302.1479v2
- [21]I. J. Taneja. "More on Crazy SequentialRepresentation of Natural Numbers with Subtraction ArXiv e-prints, Aug 2013. http://arxiv.org/abs/1302.1479v4
- [22]I. J. Taneja. "Crazy Sequential Representation bers from 0 to 11111 in terms of Increasing and Decreasing Orders of 1 take e-prints, Jan 2014.http://arxiv.org/abs/1302.1479v5

A Minimal Source Code

The source code listed here has been shortened for clarity (with acknowledgements others). For base 10, it takes hours to compute the dictionary and over 50 Gigabytes of memory to run, so saving to a file may be more efficient norder to not recompute the dictionary everytime rute forcing using limited memory takes longer, but can be diented with a single representation for every value is about 20 Gigabytes for base 10.

```
def FindExpression$(ibase=10):
   #createdictionary
   D=\{\}
   #concatenartumenbers i to j in the givenbase
    nt = int("".join([str(fxq)rx in range(i, j+1)]),base)
   #key is number between i, j in baseand the value is the string
   D[float(nt) + str(nt)
   #storenegativveersion
   D[-float(nt)="-"+str(nt)]
   \#basecaseis i==j or i>j
    if (i != j):
        fork in range (i, j):
            #getoptimadictionarlyeft of k from i thruk
            DL = FindExpression, sk; base)
            #getoptimadictionarryightofk from k+1 to j
            DR = FindExpressions(kj+,1,base)
            #all ways to combine optimalleft/right
            forx in DL:
                fory in DR:
                   D[x+y] = "("+DL[x] +"+"+DR[y] +")"
D[x-y] = "("+DL[x] +"-"+DR[y] +")"
                    D[x*y] = "(" + DL[x] + " * " + DR[y] + ")"
                    if y!= 0:
                        D[x/y] = "(" + DL[x] + "/" + DR[y] + ")"
                        D[pow( x , y ) ]= " ( " + DL[ x ] + "^" + DR[ y ] + " ) "
                    except:
                        pass
    return D
if __name__ == " __m a i n_" :
   #for each base3−10
    for b a s ein range (2,11):
       D = Find E \bar{x} pressions (balse -1, base)
        #findthefirstk numbers notin thedictionary
       k = 10
        i = 0.
        while k > 0:
            while i in D:
                i = i + 1.
            #printthenumber it couldn'find
            print(i)
            i = i + 1.
            k = k - 1
```