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Abstract
In mountain, snow driven catchments, snowmelt is supposed to be the primary contribution to river streamflows during spring.

In these catchments the contribution of groundwater is not well documented because of the difficulty to monitor groundwater in
such complex environment with deep aquifers. In this study we use an integrated hydrologic model to conduct numerical experiments
that help quantify the effect of lateral groundwater flow on total annual and peak streamflow in predevelopment conditions. Our
simulations focus on the Upper Colorado River Basin (UCRB; 2.8 × 105 km2) a well-documented mountain catchment for which
both streamflow and water table measurements are available for several important sub-basins. For the simulated water year, our
results suggest an increase in peak flow of up to 57% when lateral groundwater flow processes are included—an unexpected result
for flood conditions generally assumed independent of groundwater. Additionally, inclusion of lateral groundwater flow moderately
improved the model match to observations. The correlation coefficient for mean annual flows improved from 0.84 for the no lateral
groundwater flow simulation to 0.98 for the lateral groundwater flow one. Spatially we see more pronounced differences between
lateral and no lateral groundwater flow cases in areas of the domain with steeper topography. We also found distinct differences in
the magnitude and spatial distribution of streamflow changes with and without lateral groundwater flow between Upper Colorado
River Sub-basins. A sensitivity test that scaled hydraulic conductivity over two orders of magnitude was conducted for the lateral
groundwater flow simulations. These results show that the impact of lateral groundwater flow is as large or larger than an order of
magnitude change in hydraulic conductivity. While our results focus on the UCRB, we feel that these simulations have relevance to
other headwaters systems worldwide.

Introduction
Mountain headwater basins can greatly affect down-

stream water deliveries (Alexander et al. 2007) controlling
the flow of water to larger streams (Environmental Pro-
tection Agency 2015). Many headwater basins are located
at high elevation and are snow-dominated which shifts
water availability in time and then provides surface water
during dry periods. Snow provides water for about one-
sixth of the world’s population and 70% of the Western
United States’ water supply (Chang et al. 1987; Barnett
et al. 2005; Bales et al. 2006). The Upper Colorado River
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Basin (UCRB) system (2.8 × 105 km2), one of the princi-
pal headwater basins in the United States, supplies water
for over 40 million people, has several major dams, and
also is the most overallocated river system in the world
(Christensen et al. 2004).

Interannual variability in the Colorado River’s flow
can affect the water supply for millions of people.
For example, the 15-year drought from 2000 to 2014,
when streamflow reduced by around 30% (Woodhouse
and Pederson 2018), caused serious shortages for water
supplies in Arizona and Nevada. On the contrary,
snowmelt following an anomalously wet winter in 1983
created the highest flows into Lake Powell on record,
overwhelming the Glen Canyon Dam resulting in damage
to the spillways (Vandivere and Vorster 1984).

Along with in situ observations and remote sens-
ing data products, models are an important tool for
understanding the dynamics of large complex, man-
aged systems such as the UCRB and are the only tool
for water forecasting. The Colorado river system has
been modeled extensively using approaches that range
in complexity (Tillman 2015). Examples include the
SACramento soil moisture accounting model (SAC-SMA)
(e.g., Nash and Gleick 1991; Franz et al. 2003), and
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the variable infiltration capacity (VIC) model (Chris-
tensen et al. 2004; Christensen and Lettenmaier 2007;
Painter et al. 2010). While both SAC-SMA and VIC
are well established modeling platforms they simplify
groundwater flow.

The role of lateral groundwater flow in watershed
dynamics has been demonstrated in prior studies (e.g.,
Sear et al. 1999; Brouyère et al. 2004; Kollet and Maxwell
2008; Decharme et al. 2010; Flessa et al. 2013; Miller
et al. 2016; Fang and Pomeroy 2016; Buto et al. 2017).
On a large-scale, Condon and Maxwell (2019) and Con-
don et al. (2020) demonstrated the close connections
between lateral groundwater flow streamflow and evapo-
transpiration (ET) using an integrated groundwater surface
water model. However, few have investigated the role of
lateral groundwater flow specifically in mountain headwa-
ter domains.

Here, we use an integrated hydrologic model,
ParFlow-CLM (PF-CLM; Maxwell et al. 2015; Kollet
et al. 2017), simulating the UCRB for predevelopment
(i.e., no anthropogenic impacts such as reservoirs) in a
historic flood year, a simulation time when groundwa-
ter is commonly assumed to play a more minor role
in streamflow, to study the impact of including lateral
groundwater flow on simulated streamflow and ET. Com-
mon to all integrated models is that they solve partial
differential equations for surface (shallow water) and sub-
surface (Richards) flow in a globally implicit manner
in three spatial dimensions. As such, these models are
often more computationally expensive but represent many
process connections, such as stream-aquifer interactions,
implicitly and allow numerical experiments to be con-
ducted with a range of physical parameterization to test
model sensitivity.

In this study, we hypothesize that lateral ground-
water flow has a significant effect on streamflow in a
headwaters system even during wet years. We chose a
high flow year when groundwater is generally thought
to have a minor impact on streamflow. We perform a
series of hypothetical numerical experiments with and
without lateral groundwater flow to isolate the role of lat-
eral groundwater flow under predevelopment conditions.
These simulations use real topography, our best estimates
of reconstructed hourly meteorology, land cover, soil and
hydrostratigraphy with a-priori estimates of parameter val-
ues. Because saturated hydraulic conductivity is a sensi-
tive, uncertain and important parameter that moderates
groundwater flow, we conducted a sensitivity test, scal-
ing these values over two orders of magnitude to help
quantify the impact of this parameter on our conclu-
sions. This paper is organized as follows: (1) we present
the methods and the site; (2) we describe the numer-
ical experiments performed; (3) we present our results
focusing on differences between lateral groundwater flow
and hydraulic conductivity scenarios; (4) we compare our
model simulation results to observations to discuss sources
of bias; and (5) we discuss potential impacts of lateral
groundwater flow on water balance of sub regions within
the UCRB.

Methods

Site
Our study focuses on the UCRB (Figure 1), an impor-

tant headwater domain that encompasses 2.8× 105 km2

in the Rocky Mountains, including the headwaters of
the Green, Yampa, Gunnison, Colorado and San Juan
Rivers. Elevations in the UCRB ranges from peaks higher
than 3300 m at the Rocky Mountains to around 900 m
at Lee’s Ferry (AZ), the outlet of the simulated hydro-
logical domain (Figure 1). The basin is characterized by
two different types of terrain. The Eastern parts of the
basin are characterized by steep slopes and form the ori-
gins of the Gunnison, Colorado, and San Juan Rivers
(Figure 1a). The Green River plateau has less topographic
relief, with elevation ranging from 2000 to 2500 m.
Rivers in this plateau, namely the Green and Yampa, are
also generally flatter. The annual average temperature is
+6 ◦C with average daily maximum temperatures ranging
from −10 ◦C to +14 ◦C at low elevations (Kopytkovskiy
et al. 2015), the UCRB is a snowmelt dominated system.
Annual average precipitation for the Eastern part of the
basin (the Rockies area) and the whole basin are 1000
and 164 mm, respectively. The annual average discharge
at the outlet, Lee’s Ferry, is approximately 420 m3/s.

The UCRB has a dense stream and snow station
network with over 300 U.S. Geological Survey (USGS)
stream stations and around 45 U.S. Department of
Agriculture SNOTEL snow stations displayed in Figure 1.
For the period of this study, WY 1983, daily observations
are available for both stream and snow stations.

Integrated Hydrologic Model
We use the integrated hydrologic model PF-CLM

(Maxwell and Miller 2005; Kollet and Maxwell 2006;
Maxwell 2013) for all simulations. ParFlow integrates
groundwater flow with overland flow and is coupled
to a land surface model (CLM) to resolve the energy
balance and water balance from the canopy to the ground
surface. Together, PF-CLM captures water storage zones
and fluxes from the bedrock to the top of the canopy,
including overland flow, soil moisture, ET, groundwater
flow, and snow processes.

Details about connections between groundwater,
surface water and land energy fluxes in ParFlow-CLM
have been documented extensively in Maxwell and Miller
(2005), Kollet and Maxwell (2006), Kollet and Maxwell
(2008), Kollet et al. (2009), Maxwell et al. (2014),
Jefferson and Maxwell (2015), Maxwell and Condon
(2016), Jefferson et al. (2017). This is a three-dimensional
(3D) distributed surface and subsurface water model
which solves the saturated and unsaturated Richard’s
equation together with the kinematic wave equation for
surface water transfers over a terrain following grid.
This nonlinear system is solved using a globally implicit
approach and high parallel efficiency. ParFlow uses a
free surface overland flow boundary condition to connect
the groundwater and surface water systems. Complete
details and testing of this approach are provided by
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Figure 1. (A) Main rivers and subwatersheds of the Upper Colorado River Basin. (B) The Upper Colorado River Basin and
the USGS and SNOTEL stations network. The basin is presented by a stream mask overlain on an elevation map. USGS
stations are represented by red circles which their size corresponds to the station’s drainage areas. SNOTEL stations are
represented by blue triangles which their size corresponds to the station’s elevations.

Kollet and Maxwell (2006). Within this framework,
continuity of pressure is maintained between subsurface
and surface of the domain. This makes it possible to
calculate the associated water fluxes at each grid cell
using hydrodynamic parameters regardless of the pressure
gradient direction (i.e., saturated surface cells can drive
infiltration or saturated subsurface pixels exfiltrate water
to the surface). With this approach we do not designate
stream cells a priori, rather hydrodynamic principles
govern where streams/rivers formed via either Hortonian
or Dunne runoff (i.e., excess infiltration [Horton 1933] or
excess saturation [Dunne 1983]). With this setup, rivers
do not incise the subsurface layers. Rather, they form (or
disappear) when there is ponding at the surface of the
model. Rivers are resolved at the same spatial resolution
as the rest of the domain.

Land surface interaction processes are simulated
using the CLM which solves ground and vegetation
temperature fields with respect of the energy balance at
the land surface (Equation 1).

Rnet = H + LE + G (1)

where Rnet is net radiation (W/m2), H is sensible heat
(W/m2), LE is latent heat (W/m2) and G is ground heat
(W/m2). The ground heat flux term is solved by the

one-dimensional heat conduction equation (Kollet et al.
2009). Rnet is calculated through a two-sources radiative
scheme (soil surface & vegetation temperatures). H and
LE are calculated through a resistance scheme including
soil, vegetation, and atmospheric resistances (Dai et al.
2003) All of the energy flux terms (H , LE , G) depend
directly or indirectly on the water content at or close to the
ground surface (Kollet and Maxwell 2008). As such, the
available soil moisture calculated by ParFlow is provided
to CLM at every timestep to simulate these limitations.
ParFlow-CLM couples the subsurface and land-surface
system mainly through the general sink/source term
and the water availability-controlled energy (Kollet and
Maxwell 2008). Please note that plant water availability
is controlled by both water at the land surface and soil
moisture which depends on lateral groundwater flow and
infiltration processes (Maxwell and Condon 2016). For
additional technical details on the model please refer to
the Supporting Information.

Simulation Domain
Simulation domain for the UCRB is based on

the CONUS-ParFlow model (Maxwell et al. 2015) with
some additional improvements that are described here.
The domain has a spatial resolution of 1 km and five
subsurface layers with thicknesses of 0.1, 0.3, 0.6, 1.0,
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and 100 m, respectively, from the surface to the bottom.
The domain dimensions are 608 km width, 896 km length
and 102 m depth, which is equivalent to more than 2.7
million computation cells. We specified no-flow boundary
conditions for the bottom and sides of the domain so
there are no lateral inflows across the boundaries. The
inflows and outflows come from land-surface processes at
the top of the domain. Pressures in any cell are calculated
at the cell center and can be positive or negative. If the
water table falls below the center of the deepest layer this
cell would have a negative pressure, but we still have the
hydraulic gradients to drive flow.

Subsurface inputs (e.g., soil, geology and bedrock
hydraulic characteristics) are selected from the original
dataset from Maxwell et al. (2015). Maxwell et al. (2015)
assembled the soil dataset from Schaap and Leij (1998) for
the top 2 m and from a global permeability map developed
by Gleeson et al. (2011) for the deeper subsurface.
Then, they extracted hydraulic properties of soil texture
information from the soil survey geographic database
(SSURGO).

Topographic inputs were developed using a 1-km res-
olution elevation data upscaled from 30 m National Ele-
vation Dataset (https://ned.usgs.gov) and the stream net-
work raster is developed from the National Hydrography
Dataset (NHDPlus). The PriorityFlow toolbox (Condon
and Maxwell 2019) was used to process the Digital Eleva-
tion Model ensuring a hydrologically consistent drainage
network and providing some smoothing along the river
network.

Numerical Experiments
Two main numerical experiments are conducted in

order to isolate the impact of lateral groundwater flow
to surface water in the UCRB: a baseline simulation
with no lateral groundwater flow (termed no lateral from
here on) and a simulation with lateral groundwater flow
(termed lateral ). The no lateral simulation is created
by: (1) removing topographically driven lateral flow by
setting sin θ to 0 in Equation S4 and (2) removing the
pressure gradient driven lateral flow by decreasing the
horizonal hydraulic conductivity in the x - and y-directions
(K s = 1e-5 in x - and y-directions in Equation S4). Both
simulations still include groundwater storage, vertical
exchanges with the land surface, and lateral surface flow.

Streamflow, lateral groundwater flow and ET are
all sensitive to K parameters (Srivastava et al. 2014).
Therefore, in addition to the lateral and no lateral
simulations we also evaluate the sensitivity of our findings
to the K value used. Foster and Maxwell (2019) scaled
K over two orders of magnitude for three respective
layers of a ParFlow-CLM model of the East River in
Colorado, namely soils, geology and basement layers.
They concluded that model outflows are most sensitive
to K changes in the geology. Here we repeated our lateral
simulations using two uniform K values of 0.1K and 10K
(m/h) comparing to the baseline case of 1K in lateral
configuration setting. While we recognize that perturbing
K uniformly is a simplistic sensitivity analysis, our goal

with this approach is to understand how important the
uncertainty in K was compared to the inclusion and
exclusion of lateral groundwater flow.

All simulations are initialized with a completely
dry domain and a spinup simulation period is first
conducted where we apply constant recharge flux at the
land surface until the model reaches steady state. This
constant recharge flux was calculated as the long-term
average (1950 to 2000) residual of precipitation and
evaporation based on datasets developed by Maurer et al.
(2002). Once equilibrium is achieved with the long-term
average forcing, we then simulate three water years of
transient simulation with hourly NLDAS-2 historical data,
including incoming short wave and long wave radiations,
precipitations, temperature, moisture and pressure of the
atmosphere at the surface and wind velocity, to bring the
model into a dynamic equilibrium.

We use several metrics to evaluate model perfor-
mance. Nash-Sutcliffe efficiency (NSE) is a popular met-
ric used to evaluate hydrologic model performance (Nash
and Sutcliffe 1970). However, we chose not to use this
metric here because it has been shown to be overly
sensitive to extreme values (Legates and McCabe Jr.
1999; Krause et al. 2005). NSE can exhibit biases in
both time and magnitude (e.g., time-offset or magnitude
bias; McCuen et al. 2006). Furthermore, any single met-
ric of model evaluation creates difficultly when diagnosing
different sources of bias across a model simulation work-
flow. Therefore, we use two evaluation metrics to evaluate
model performance, namely, Spearman’s rank correlation
coefficient (Spearman’s rho) and total annual flow bias,
the combined plotting of these two metrics is known as
the Condon diagram (Maxwell and Condon 2016). Spear-
man’s rho is used to evaluate differences in streamflow
timing while total bias measures differences in streamflow
volumes. Spearman’s rho assesses monotonic relation-
ships between two variables without assuming a linear
relationship. It is computed as:

srho = 1 − 6
∑n

i=1 d2
i

n(n2 − 1)
(2)

where di is the difference in the independent ranking for
the simulated and observed values on a given day, and n
is the number of values in each time series. Total annual
flow is calculated as:

bias =
∣
∣∑n

i=1 Si − ∑n
i=1 Oi

∣
∣

∑n
i=1 Oi

(3)

where S i and Oi are simulated and observed daily flow
on day i and n is the number of days in the WY 1983
(i.e., 365 for this simulation).

Results and Discussion
Our results focus on simulated average annual flows

between the lateral and no lateral simulations to under-
stand spatial differences over the WY1983. We compare
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Figure 2. The relative difference between flows from no lateral and lateral simulations. The red circles on the map represent
selected stations for time series of flow comparison shown in Figure 3.

these two simulations with observations. Next, we com-
pare model outputs from different hydraulic conductivities
to evaluate the sensitivity of lateral groundwater flow to
simulations. We then discuss sources of bias in the model
outputs. Finally, we evaluate the importance of lateral
groundwater flows in peak, total flow and ET by major
sub-basins.

Impact of Lateral Groundwater Flow on Streamflow
Figure 2 shows a map of the relative difference

in the average annual flows from the no lateral and
lateral simulations. In this figure, we see large differences
between simulations in headwater streams. In these
headwater streams, flows from the no lateral simulation
are 20% to 40% greater than flow in the lateral
simulation. Conversely, in most of the larger rivers, the
lateral simulations produce 25% to 50% more flow than
the no lateral simulation. Sensitivity to lateral flow also
varies as a function of topographic relief, and most rivers
exhibit a point where the flows from the two simulations
cross (i.e., the net impact of including lateral groundwater
flow swaps between increasing and decreasing flows).

Increased streamflow in the lateral case is caused
by hydraulic gradients in the subsurface which drive
flow from higher elevation recharge locations to areas
of groundwater convergence along the stream. However,
streamflow increases resulting from lateral convergence

can also be counteracted by differences in groundwater
configuration between the two cases. The water table tends
to be deeper in the higher elevation steep portions of the
domain for the lateral case relative to the no lateral case.
These results in higher infiltration and less runoff relative
to the no lateral case.

Figure 3 plots both the no lateral and lateral
simulated hydrographs and observed flow for eight
gauges. We see some trends in this figure. In rivers
originating from the Green River plateau, the Duchesne,
the Yampa and the Green River, the timing of the lateral
and no lateral results agree.

The effect of lateral groundwater flow is more
obvious in rivers originating from the Eastern part of the
basin. In the Gunnison River, increases in baseflow and
peak flow are 150% and 16%, respectively, from the no
lateral case to the lateral case. In the Colorado River,
the corresponding increases are 400% and 38% for the
station near Cisco, UT and 430% and 50% for the station
at Lee’s Ferry, AZ. Streamflow timeseries for two stations
in San Juan River show the clearest differences between
cases. Here, increases in baseflow and peak flows are
around 900% and 57%, respectively, from the no lateral
simulation to the lateral simulation (Figure 3).

Differences in the headwaters of the domain are also
translated to downstream streamflow with some timing
lags. At the outlet of the UCRB at Lee’s Ferry, the peak

396 H. Tran et al. Groundwater 58, no. 3: 392–405 NGWA.org



Figure 3. Stream flow time series for the eight representative stations shown in Figure 2. Blue lines are observed daily flow,
red and green lines are simulated flows from lateral and no lateral simulation, respectively.

is lagged by 3 days from the no lateral case to the lateral
case. While lateral flow peaks at around 2200 m3/s on
May 9, no lateral flow peaks at 1480 m3/s on May 12.
The delay continues for the later peaks on May 25 and
June 10 for lateral flow and on May 28 and June 13 for no
lateral flow. Indeed, including lateral groundwater flows
not only increases base flows but also leads to faster peaks.

In addition to increasing streamflow through exfiltra-
tion, the lateral simulation also has faster peak times. This
is because lateral groundwater flow makes layers close to
the surface more saturated than in the no lateral case thus
resulting in faster flood peaks. However, in complex sys-
tem like the UCRB, outlet flows are composed from rivers
with different characteristics.

At Lee’s Ferry flows from the no lateral case are
lower than from the lateral case before June 23 but
surpass them after. In the Green River, flows from the
two case are quite similar in peak time and magnitude.
However, during a recession period starting June 21,
the no lateral simulation produces more flows than the
lateral simulation.

Streamflow Comparisons to Observations
All of the simulations presented here are predevelop-

ment simulations, thus, dam and reservoir operations are
not incorporated in the modeling process. We therefore
focus on USGS stations that are minimally affected by
resources management process. However, we still include
the Lee’s Ferry station in this analysis because it is geo-
graphically important as the outlet of our domain. We do
not compare to observations for this site as it is situated
downstream of Glen Canyon Dam and we are not simu-
lating dam operations. For this station, we only compare
simulated results.

Figure 4. Scatter plots for average annual flows between
observations and simulations for all USGS stations in the
domain. Blue dots symbolize comparison of flows from
lateral simulation with observed ones. Red dots indicate
comparison of flows from no lateral simulation with observed
flows. Note the log scale used for the axes in this figure.

Figure 4 plots the predicted and observed total flow
for all gaging stations in the domain for the lateral and
no lateral cases in log scale. Overall, both simulations
demonstrate good model fitness with residual values of
0.839 for the no lateral simulation and 0.984 for the
lateral simulation, respectively. We also see that the no
lateral flow case produces less streamflow than the lateral
cases.

The no lateral case (red dots) shows much greater
underestimation than the lateral simulation (blue dots) for
stations that have a mean annual flow greater than 50 m3/s
(namely USGS stations along the Colorado River, namely,
near Dotsero, CO; Glenwood Spring, CO; near De Beque,
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Figure 5. Water table depth time series for the 10 observation wells. Blue dots are observed daily water table depth, red line
is simulated water table depth.

CO; near Cameo, CO; near Colorado-Utah state line; near
Cisco, UT). This suggests that including lateral flow in the
simulation helps to reduce bias between 10% and 50% for
stations with mean annual flow greater than 50 m3/s. It is
important to note that this analysis only evaluates total
flow, not streamflow timing.

Water table depths from 10 groundwater wells
within the domain were compared to the lateral model
simulations (Figures 5 and 6). These wells all contained
transient observations over the simulation period and
range in depth from 0.5 to over 50 m. Only 10 wells
were available for comparison, but a good agreement is
demonstrated between model and observations temporally
(Figure 5) and spatially (Figure 6).

We evaluate streamflow performance from lateral
simulation with observations for all stations inside the
domain using two metrics in tandem: Spearman’s rho
and total annual flow bias. Follow the Condon-Diagram
approach, we scatter-plot the performance results with
total annual flow bias and Spearman’s rho as horizontal
and vertical axes, respectively (Maxwell and Condon
2016). We use the rho value of 0.5 to divide results
into good shape (rho greater or equal than 0.5) or bad
shape (rho smaller than 0.5). We classify results with bias
smaller or equal than 1 as low bias and ones with bias
greater than 1 as high bias. Hence, results of this analysis
fall into four types: (1) stations with good shape and low
bias—green stations; (2) stations with good shape and
high bias—blue stations; (3) stations with bad shape and
low bias—orange stations; (4) stations with bad shape
and high bias—red stations.

Figure 7a shows streamflow observations compared
to the lateral simulation. Overall, most of the stations
are classified as green (50%), the next largest group is
low rho and low bias (orange) stations (48%). Figure 7b
maps these four performance categories spatially over the

domain. The lateral simulation performs well for the
Green, Gunnison, and San Juan River. For most of the
stream origins, the lateral simulation reduces the total
flows and thus improves correlation with observations
from stations in these areas. In addition to the large water
projects along the UCRB, many smaller impoundments
exist upstream in the system that may also impact
the timing of downstream flows. For the representative
stations in Figure 2, stations at Green, Yampa, San Juan,
and Duchesne Rivers have good shape and low bias.
Stations at the Colorado River have poor shape and
low bias.

The validation result is consistent with a similar
validation of ParFlow outputs over the CONUS domain
for the water year 1985 conducted by Maxwell and
Condon (2016). Their validation results generally showed
agreement between simulated and observed streamflow
for the majority of stations (Figure S8). Over the UCRB,
Maxwell and Condon (2016) also found a similar
distribution at locations with “poor shape, low bias”
(Figure S11). They argued that the “poor shape” is due
to biases of temperature and precipitation in complex
topography regions.

Sensitivity of Simulated Flows to Saturated Hydraulic
Conductivity

Figure 8 plots simulated streamflow for the lateral
(as a baseline), 10K and 0.1K scenarios. While changing
K by two orders of magnitude, simulated flows from two
scaled cases are marginally different in magnitude from
the original case. Indeed, flows in the two cases behave
similarly as observed by Foster and Maxwell (2019).
When K was decreased by one order of magnitude, we
see lower baseflow and higher peak flow compared to the
baseline simulation. When K was increased by an order of
magnitude, we see increased baseflow and decreased peak
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Figure 6. (A) Map of annual average water table depth (m) and (B) scatter plots for average annual water table depth
between observations and simulations for all observation wells in the domain.

Figure 7. (A) Scatter plot of Spearman’s rho and total annual flow bias for every USGS station in the domain. Cutoffs for
“good” rho value and “low” bias are indicated with horizontal and vertical lines respectively. Using these thresholds green
points are designated as “good shape, low bias,” blue are “good shape, high bias,” orange are “poor shape, low bias,” and
red are “poor shape high bias.” (B) Map of the corresponding performance categories.

flow. In comparison with the baseline simulation, average
changes over the eight stations in peak magnitude are
−8% and 3% for 10K and 0.1K scenarios, respectively.
No shift in peak time is observed with changes in K .

Please note that we acknowledge that hydraulic
conductivity is an important hydrologic parameter, thus
can be a great source of uncertainty. A greater impact
by including lateral groundwater flow does not hinder the
role of the hydrologic parameters.

Sources of Bias
The performance of large-scale model simulation

results may be affected by a number of factors (Maxwell

and Condon 2016). Sources of bias include model
physics, meteorological forcings, grid resolution and water
management operations. Here we discuss some of the
major sources of bias and the reasoning behind our model
design:

1. Grid resolution: While 1 km may be considered
coarse resolution in some contexts we chose this
resolution here to balance physical complexity with
computational demand and available inputs. ParFlow
is a computationally efficient model designed to run
in parallel, however, solving 3D variability saturated
flow in the subsurface is computationally expensive.
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Figure 8. Stream flow time series for the eight representative stations shown in Figure 3. Blue lines are observed daily flow,
red lines are simulated flows from lateral simulation, green and orange lines are simulated flows with hydraulic conductivity
scaled by 0.1 and 10, respectively.

Figure 9. (A) Scatter plots of lateral simulation (blue) and no lateral simulation (red) versus observed (SNOTEL) average
and annual max SWE in water year 1983. (B) Map of the bias performance for average annual SWE. Red points/stations
have bias smaller than −1000 mm, orange points have bias between −1000 and −500 mm, dark brown points have bias
between −500 and −250 mm, light brown points have bias between −250 and 0 mm, light green points have bias between 0
and 100 mm, and green points have bias greater than 100 mm.

Additionally, our spatial resolution is also dictated by
available model inputs. High resolution datasets are
available for topography and land cover) but geology
and forcing data is much more limited. We also
acknowledge that appropriate resolutions over which
Richards’ equation should be applied. Notably, the use
of the van Genuchten parameterization requires fine
vertical resolution (e.g., Ippisch et al. 2006; Or et al.
2015) which is provided in our simulations. However,
much of the lateral flow is saturated, not unsaturated,
and this is represented by our approach.

2. Water management operations : Our simulations repre-
sent predevelopment conditions and therefore do not
include surface reservoirs, groundwater pumping, and
irrigation. Because we are focusing on peak flows in
a record wet year the effect of groundwater pump-
ing and irrigation are less important. However, surface
reservoirs would alter peak flow timing and magni-
tude. We see this bias in our validation results where
model performance with respect to both the magnitude
and timing of peak flows is better at headwater gauges
(less likely to be disturbed) as compared to downstream
gauges.
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3. Meteorological forcing data: NLDAS-2 forcing data
applied here is the most comprehensive nationally
consistent forcing dataset. However, multiple studies
have documented its biases in this dataset (Pan et al.
2003; Sheffield et al. 2003). In order to explore the
impact of forcing bias, we compare the simulated
Snow water equivalent (SWE) with observations from
SNOTEL. Figure 9 shows the comparison between
simulated and observed SWE. In this figure we see
a systematic underestimation of SWE.

4. As seen from Figure 9a, simulated snowpack for both
the no lateral and lateral simulations is systematically
lower than observed. Out of 44 SNOTEL model
observation comparisons, only three stations have
positive bias; the remaining stations underestimate
SWE by 250 to 1000 mm. This is likely due to the
coarse NLDAS-2 resolution which has a knows dry
warm bias for high elevations. This leads to (1) lower
flow volume in Colorado, Green and San Juan Rivers;
and (2) earlier snow melt results in earlier simulated
flood peaks as is illustrate din the Yampa River at
Deerlodge Park, CO and in Green River at Green
River streamflow plotted in Figure 3. We acknowledge
that there is a scale inconsistency when comparing
simulated SWE with 1 km resolution to SNOTEL
measurements on a much smaller scale. Nevertheless,
SNOTEL is one of the few complete snow observations
for the year 1983. Each of the SNOTEL station is
mapped to the closest grid cell center of the UCRB
domain. The scale inconsistency could be a reason
for the bias in validation; however, as can be seen
from Figures 1 and 9b, most of the stations that show
bias often located at high altitude from 2400 m to over
3300 m. During the record wet year of 1983, snow
distribution for 1-km2 model grids that contain these
stations could be considered as uniform in order to
compare with simulation results.

5. Subsurface properties: Spatially distributed subsurface
properties are difficult to obtain. As such, hydraulic
conductivity is generally obtained using formal or
informal parameter estimation techniques. In the pre-
vious section we explore the sensitivity of our results
to our choice of hydraulic conductivity values. This
demonstrates the uncertainty in our results caused by
uncertainty in K as well as the ways in which high or
low K may bias our findings.

Differences Between Subwatersheds
The UCRB encompasses many subwatersheds with

different relief and other hydrologic characteristics. We
explore spatial differences in model performance by con-
sidering two different behavior for steeper and flatter por-
tions of the domain. Figure 10 shows relative differences
in outputs from the no lateral and lateral simulations for
four subwatersheds delineated in Figure 1. We select in
each subwatershed the USGS station, which has the great-
est drainage area within the subwatershed as our point of
comparison. Simulated flows and ET obtained from these
stations’ locations are plotted here as the subwatershed

value. In the lateral simulation, flows are higher across
all the subwatershed by 25% to 50%. Differences in peak
flow vary more with relief. In flatter subwatersheds (e.g.,
the Green River), peak flow from the no lateral simulation
is higher by 18% than peak relative to the lateral simu-
lation. In contrast, for regions with steep slopes the peak
flows from the lateral simulation are considerably higher
than the no lateral simulation (15% to 30%). However,
differences largely diminish at the outlet. The simulated
flood peaks between the no lateral and lateral cases are
around 5% at the outlet of the UCRB.

Figure 10d shows the relative difference in distributed
average annual ET for the simulations. The lateral case
has shallower water tables along the river corridor than
the no lateral case. This shallow groundwater can support
ET. In the no lateral case, water tables are deeper in these
locations because there is no lateral groundwater flow to
support convergent zones and as a result ET is lower.
Averaging ET differences across subwatersheds the no
lateral case is 10% to 15% lower than the lateral case
(Figure 10c). These differences in ET are not as large as
the differences in total flow. This suggests a combination
of physical routing and soil moisture-ET feedbacks are
responsible for the annual flow differences. While average
annual flows change from 25% to 50% between two
simulations, ET from the no lateral simulation is only
lower by 8% to 15% than ET from the lateral simulation.

Conclusions
Here we study the impact of lateral groundwater

flow on simulated peak and annual streamflow in the
UCRB using an integrated hydrologic model. For a
flood year driven by a very large snowpack, our model
simulations suggest that peak flows increase up to 57%
when lateral groundwater flow processes are included.
Moreover, when compared to a sensitivity analysis where
hydraulic conductivity was varied over two orders of
magnitude the role of lateral groundwater flow still
remains important. Lastly, we see distinct differences
in the magnitude and spatial distribution of simulated
streamflow with and without lateral groundwater flow
between sub-basins of the UCRB.

In flatter rivers such as the Duchesne, the Yampa and
the Green, we see the no lateral case producing between
10% and 20% less peak flow compared to the lateral
case. In the steeper river systems, such as the Gunnison,
the Colorado and the San Juan, these corresponding
differences in peak flows is between 20% and 60%. For
the Green River, the differences between lateral and no
lateral cases are smaller than for other sub-basins. This
variation between sub-basins highlights the complexity
and importance of groundwater lateral flow.

A sensitivity test is carried out to compare the
role of lateral groundwater flow changes in hydraulic
conductivity. Changes in baseflow and peak flow for both
for this sensitivity analysis were small compared to the
lateral simulation. The differences in the ET between
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Figure 10. Relative difference between no lateral and lateral simulations for (A) average annual flow, (B) peak flow of each
station represents for a subwatershed, (C) average annual ET for each subwatershed, and (D) distributed average annual ET
for the domain. The Upper Colorado River Basin is divided into five smaller subwatersheds. In each subwatershed we select
the USGS station which has the greatest drainage area and compare simulated flows at these stations’ location.

cases averaged across the basin and even across sub-
basins cases were small. We see large differences in
ET in the river corridors but attribute the difference in
streamflow behavior between the lateral and no lateral
cases to physical flow processes, rather than land surface
processes.

In large, complex integrated hydrologic simulations
there are many sources of bias. These include the
meteorological forcing data, model resolution, model
equations and formulation, input data and anthropogenic
impacts. Precipitation and temperature are likely the most
significant among the forcing variables. Snow represents
a combined temperature and precipitation signal. As
the quantity and timing of snowmelt was particularly

important in the water year studied, this forcing bias may
have a larger impact on our simulations than other years or
other domains. Another source of bias is model resolution,
which impacts both the simulated stream network and the
magnitude and direction of surface and subsurface lateral
flow. While the physics of any model are never perfect,
an advantage of the integrated simulation platform used
here is the ability to simplify some of the assumptions. In
this model (ParFlow) lateral groundwater flow is driven
by both pressure and topographic gradients and our work
represents an important sensitivity study. While regions
of steeper topography influenced our results, other factors
were also important. It is important to keep in mind that
groundwater flow is driven by gradients in total head
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and not just topography. Lateral flow along topographic
gradients with shallower water table depths near rivers is
an important physical process that increases streamflow.
Also, like any model, the input parameters are uncertain
and estimated from a range of sources. Saturated hydraulic
conductivity is one of the hardest input parameters to
quantify and is often estimated in a formal or informal
manner. While our simulations may have benefited
from a parameter estimation of hydraulic conductivity,
the sensitivity analysis does allow us to explore the
role this important variable plays on our results. Our
simulations are for predevelopment scenarios (i.e., they
do not include reservoir operations or pumping). We also
attribute some of the differences between simulated and
observed streamflow to human activities. Nevertheless,
we see a clear improvement in model performance with
the inclusion of lateral groundwater flow, for total water
(important for water resources) and for peak streamflow
(important for flood and reservoir forecasting) and expect
this to carry over to integrated simulations that include
water management.

As the Colorado River is heavily regulated, it is
important to accurately simulate reservoir inflows for
exceptional years (drought and flood). Our simulation
results suggest that an integrated model of this system
may help inform dam operators under conditions such
as the winter of 1983 when the Colorado River peaked
twice during snowmelt resulting in critical conditions at
the Glen Canyon Dam. As we may see more extreme
precipitation events combined with more rapid snowmelt
under a changing climate (Musselman et al. 2017) these
types of integrated model simulations may prove to be
a useful tool for water management on the UCRB and
including lateral groundwater flow may aid in improving
the fidelity of these model projections. In this work and
with this model we can better quantify the importance of
lateral groundwater flow to surface water.
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zon, E. Mouche, C. Mügler, Y.-J. Park, J.C. Refsgaard, S.
Stisen, and E. Sudicky. 2017. The integrated hydrologic
model intercomparison project, IH-MIP2: A second set of
benchmark results to diagnose integrated hydrology and-
feedbacks. Water Resources Research 53, no. 1: 867–890.
https://doi.org/10.1002/2016wr019191

Kopytkovskiy, M., M. Geza, et al. 2015. Climate-change
impacts on water resources and hydropower potential in
the Upper Colorado River Basin. Journal of Hydrology:
Regional Studies 3: 473–493.

Krause, P., D.P. Boyle, and F. Base. 2005. Comparison
of different efficiency criteria for hydrological model
assessment. Advances in Geosciences 5: 89–97. SRef-ID:
1680-7359/adgeo/2005-5-89.

Legates, D.R., and G.J. McCabe. 1999. Evaluating the use of
‘goodness-of-fit’ Measures in hydrologic and hydroclimatic
model validation. Water Resources Research 35, no. 1:
233–241. https://doi.org/10.1029/1998wr900018

Maurer, E.P., A.W. Wood, J.C. Adam, D.P. Lettenmaier, and
B. Nijssen. 2002. Long-term hydrologically based dataset
of land surface fluxes and states for the conterminous
United States. Journal of Climate 15: 3237–3251. https://
doi.org/10.1175/1520-0442(2002)015%3C3237:ALTHBD
%3E2.0.CO;2

Maxwell, R.M., and L.E. Condon. 2016. Connections between
groundwater flow and transpiration partitioning. Science
353, no. 6297: 377–380. https://doi.org/10.1126/science
.aaf7891

Maxwell, R.M., L.E. Condon, and S.J. Kollet. 2015. A high-
resolution simulation of groundwater and surface water over
most of the continental US with the integrated hydrologic
model ParFlow v3. Geoscientific Model Development 8, no.
3: 923–937. https://doi.org/10.5194/gmd-8-923-2015

Maxwell, R.M. 2013. A terrain-following grid transform and
preconditioner for parallel, large-scale, integrated hydro-
logic modeling. Advances in Water Resources 53: 109–117.
https://doi.org/10.1016/j.advwatres.2012.10.001

Maxwell, R.M., and N.L. Miller. 2005. Development of a
coupled land surface and groundwater model. Journal of
Hydrometeorology 6, no. 2: 33–47. https://doi.org/10.1175/
JHM422.1

Maxwell, R.M., M. Putti, S. Meyerhoff, J.-O. Delfs, I.M. Fergu-
son, V. Ivanov, J. Kim, O. Kolditz, S.J. Kollet, M. Kumar,
S. Lopez, J. Niu, C. Paniconi, Y.-J. Park, M.S. Phaniku-
mar, C. Shen, E.A. Sudicky, and M. Sulis. 2014. Surface-
subsurface model intercomparison: A first setofbenchmark
results to diagnose integrated hydrology and feedbacks.
WaterResources Research 50, no. 2: 1531–1549. https://
doi.org/10.1002/2013wr013725

McCuen, R.H., Z. Knight, and A.G. Cutter. 2006. Evaluation of
the Nash-Sutcliffe efficiency index. Journal of Hydrologic
Engineering 11, no. 6: 597–602. https://doi.org/10.1061/
(ASCE)1084-0699(2006)11:6(597)

Miller, M.P., S.G. Buto, D.D. Susong, and C.A. Rumsey. 2016.
The importance of base flow in sustaining surface water
flow in the Upper Colorado River Basin. Water Resources
Research 52, no. 5: 3547–3562. https://doi.org/10.1002/
2015WR017963

Musselman, K.N., M.P. Clark, C. Liu, K. Ikeda, and R. Ras-
mussen. 2017. Slower snowmelt in a warmer world. Nature
Climate Change 7, no. 3: 214–219. https://doi.org/10.1038/
nclimate3225

Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting
through conceptual models part I — A discussion of
principles. Journal of Hydrology 10, no. 3: 282–290.
https://doi.org/10.1016/0022-1694(70)90255-6

Nash, L.L., and P.H. Gleick. 1991. The sensitivity of streamflow
in the Colorado Basin to climatic changes. Journal of
Hydrology 125, no. 3–4: 221–241. https://doi.org/10.1016/
0022-1694(91)90030-L

Or, D., P. Lehmann, and S. Assouline. 2015. Natural length
scales define the range of applicability of the Richards
equation for capillary flows. Water Resources Research 51:
7130–7144. https://doi.org/10.1002/2015WR017034

Painter, T.H., J.S. Deems, J. Belnap, A.F. Hamlet, C.C. Landry,
and B. Udall. 2010. Response of Colorado River runoff to
dust radiative forcing in snow. Proceedings of the National

404 H. Tran et al. Groundwater 58, no. 3: 392–405 NGWA.org

http://epa.ohio.gov
https://www.epa.ohio.gov/portals/35/wqs/headwaters/HWH_import.pdf
https://www.epa.ohio.gov/portals/35/wqs/headwaters/HWH_import.pdf
https://doi.org/10.1002/hyp.10910
https://doi.org/10.1002/2013EO500001
https://doi.org/10.1002/2013EO500001
https://doi.org/10.1002/hyp.13327
https://doi.org/10.1175/1525-7541(2003)004%3C1105:VONWSE%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004%3C1105:VONWSE%3E2.0.CO;2
https://doi.org/10.1029/2010GL045565
https://doi.org/10.1029/2010GL045565
https://doi.org/10.1029/tr014i001p00446
https://doi.org/10.1016/j.advwatres.2005.12.011
https://doi.org/10.1016/j.advwatres.2005.12.011
https://doi.org/10.1002/2014ms000398
https://doi.org/10.1175/jhm-d-16-0053.1
https://doi.org/10.1175/jhm-d-16-0053.1
https://doi.org/10.2136/vzj2009.0005
https://doi.org/10.1029/2007WR006004
https://doi.org/10.1029/2007WR006004
https://doi.org/10.1016/j.advwatres.2005.08.006
https://doi.org/10.1002/2016wr019191
https://doi.org/10.1029/1998wr900018
https://doi.org/10.1175/1520-0442(2002)015%3C3237:ALTHBD%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015%3C3237:ALTHBD%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015%3C3237:ALTHBD%3E2.0.CO;2
https://doi.org/10.1126/science.aaf7891
https://doi.org/10.1126/science.aaf7891
https://doi.org/10.5194/gmd-8-923-2015
https://doi.org/10.1016/j.advwatres.2012.10.001
https://doi.org/10.1175/JHM422.1
https://doi.org/10.1175/JHM422.1
https://doi.org/10.1002/2013wr013725
https://doi.org/10.1002/2013wr013725
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)
https://doi.org/10.1002/2015WR017963
https://doi.org/10.1002/2015WR017963
https://doi.org/10.1038/nclimate3225
https://doi.org/10.1038/nclimate3225
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(91)90030-L
https://doi.org/10.1016/0022-1694(91)90030-L
https://doi.org/10.1002/2015WR017034


Academy of Sciences of the United States of America
107, no. 40: 17125–17130. https://doi.org/10.1073/pnas
.0913139107

Pan, M., J. Sheffield, E.F. Wood, K.E. Mitchell, P.R. Houser,
J.C. Schaake, A. Robock, D. Lohmann, B. Cosgrove, Q.Y.
Duan, L. Luo, R.W. Higgins, R.T. Pinker, and J.D. Tarpley.
2003. Snow process modeling in the north American land
data assimilation system (NLDAS): 2. Evaluation of model
simulated snow water equivalent. Journal of Geophysical
Research: Atmospheres 108, no. D22: 8850. https://doi.org/
10.1029/2003JD003994

Schaap, M.G., and F.J. Leij. 1998. Database related accu-
racy and uncertainty of pedotransfer functions. Soil
Science 163: 765–779. https://doi.org/10.1097/00010694-
199810000-0000

Sear, D.A., P.D. Armitage, and F.H. Dawson. 1999. Ground-
water dominated rivers. Hydrological Processes 13: 3.
https://doi.org/10.1002/(SICI)1099-1085(19990228)13:3<
255::AID-HYP737>3.0.CO;2-Y

Sheffield, J., M. Pan, E.F. Wood, K.E. Mitchell, P.R. Houser,
J.C. Schaake, A. Robock, D. Lohmann, B. Cosgrove,
Q.Y. Duan, L.F. Luo, R.W. Higgins, R.T. Pinker, J.D.
Tarpley, and B.H. Ramsay. 2003. Snow process modeling

in the north American land data assimilation system
(NLDAS): 1. Evaluation of model-simulated snow cover
extent. Journal of Geophysical Research: Atmospheres 108,
no. D22: 8849. https://doi.org/10.1029/2002JD003274

Srivastava, V., W. Graham, R. Muñoz-Carpena, and R.M.
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