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ABSTRACT: Environmentafootprinting methodsprovide a meando
relate the environmental externalities of electricity production to elecutric'
consumers. Although several methods have been developed to conr ecl g
environmentafootprint of electricity generation to end useestimates \%
produced by these methods are inherently uncertain due to the
impossibility ofactually tracing electricity from the poirdf generation
to utilization. Previous studies rarely quantify this uncertainty, even though
it may fundamentally alter their findings and recommendatierswe %

\
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evaluate the sensitivity avater and carbon footprints estimates among
seven commonly used methods to attribute electricity production to end
users.We assessow sensitive waterand carbon electricity footprint
estimates are to attribution methodepw these estimates change over
time,and the main factors contributing to the variability between methedsvaluate and make available the water and carbon
footprints of electricity consumption for every city across the contiguous United States for all asses¥éel findtbagtsficant

but spatially heterogeneous variability in water and carbon footprint estimates across attributiddonmattbds. consistently
overestimated or underestimated water and carbon footprints for every city. The variation between attribution methods suggests
future studies need to consider how the method selected to attribute enviroimpearttsl through the electrigmid may affect

their findings.
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.INTRODUCTION

Electricity production is the largest emitter of greenhouse ga
(GHGs)' and the second largest water consummiagiobally.
Environmentalootprinting methodsas defined by Hoekstra
and Wiedmanri offer one way of understandingand
quantifying the directand indirect pressuresf electricity’
However,data uncertaintyincongruentscale of production
and consumption,and traceabilitywithin the electricgrid
challengerobust attribution of environmentafootprint of
electricity production to the finabnsumerfResearchers have
developed numerous environmentalfootprint attribution
methods to overcome some difiese challenges within both
the water footprifif® and carbon footprifit' ' communities.
Yet, there remainsa greatdeal of uncertainty asto how
sensitiveresultsare to attribution methods and how this
sensitivity differs between different footprint indicators.
Here, we conduct a comparative study of common
approachesto estimate the environmentalfootprint of

approaches to estimating differdobtprints (as opposed to
top-down approachessuch as environmentallyextended
multiregionalinput-output models,e.g.,Mo et al'* and
Tian et al.'®). Environmentalfootprints associatedwith
electricity production are assigned to end consumevsgth
the same or connected geopolitidafrastructureor natural
boundaries (e.gstate electricity gridpr watershed)Hence-
forth, we refer to geographical attribution boundaries simply as
“attribution boundaries”We ask and answetthe following
three questions:(i) how sensitive are water and carbon
footprints ofelectricity estimates to attribution method? (ii)
does variancebetween attribution methodsliffer between
areasand within an area overtime? and (iii) what factors
contribute to variability between attribution methods and do
these factors differ by environmembaitprint type?

Attribution methods can be classified into two general types:
(i) empiricaldata models and (ii) power system optimization
models’® Empirical models use historical observationgo

electricity consumption to test how sensitive water and carbon

footprints of electricity consumptionare to geographical
attribution methodsWhile previousstudiesoften focuson
the uncertaintyof the underlyingdata used to calculate
environmentdbotprints'? *we demonstrate the importance
of also considering the impacbf the method selected to
attribute environmenté&botprints ofelectricity production to

consumers. We focus on commonly used bottom-up
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Table 1. Evaluation of Seven Common Empirically Based Methods to Attribute the Environmental Footprint of Electricity to
End Users. Advantages and Disadvantages of Each Method, as well as Studies that Have Employed Each Method, Are Shown
below

Method Advantage Disadvantage Employed by
Interconnections Conforms to electricity infrastructure; Large area; does not prioritize ldcglacts Ruddellet al®
minimum data requirements and
calculations
Balancing Geographically smaller than interconnect Pass-through nodes; nonspecific geographi€hen and Ramaswami
authority areas
Balancing Conforms to electricity infrastructure; Time-consuming; disparate datasets Chini et al.” Kodra et al’? and Djehdian et &f.
authority with illustrates burden shift of resources
transfers
EPA eGRID Conforms to data used for emission Data only available every two years; requireBeer et al®
boundaries assessments and electricity infrastructure integration with EIA data for water resources
Basin scale Conforms to naturdlydrology Does not consider infrastructure Tidwellet al® Kelley and Pasqualétti
Radius from city Accounts for locanpacts Does not consider infrastructure Chiniet al’”
State Policy and regulations often set at the stat€ities in some states are supplied by differehini et al 2" Bartos and Chest&rDeNooyer et
level; EIA aggregates data at the state levefoviders (e.gChicagolL) al.?° Grubert and Webbétand Stillwelét al?’

calculate emission factors, trading models, or statistical they have on future researab,wellas citiescompaniesgnd
relationships to connect environmental footprints of electricitpther groups thatvantto determine their water and carbon
production to electricity consumption. Trading models footprints of electricity consumptionimportantly,all water
incorporate additional data to account for imports and expori@nd carbon footprint estimatesfor every US MSA are
of electricity across specified boundafiés!Power system  published with this study to suppoftiture research and aid
optimization models determine embedded resources based efectricity consumers determining the waterand carbon
power distribution networksand economic optimizatiorin footprints of their electricity use.

this study, we compare empirical methods that use both sim;ﬁ

emission factorand trading modelsas these are the most BACKGROUND

commonly used environmenfabtprint attribution methods.
Moreover, many power system optimizationmodels are
proprietarymaking comparison dhese methods infeasible.
The empirical methods evaluatedrely on different geo-
graphicaljnfrastructureand political boundariesjncluding
interconnectiondalancing authoritinvironmental Protec-

tion Agency (EPA) eGRIEyer basinstate, and radius from balances electricity supply and demand in real-time to ensure

cities (see Table 1iRegardless of the attribution boundaity, gy ctem reliabilityPower plants are distributed across each of

methods utilize the same underlying data. . - . o ;
We calculate the water and carbon footprints associated mﬁﬂslgsgr:g%%%n{\heectﬁrjZt:)%pr)ggr;%glfg gﬂﬁg)llog)y ;&%Ig;}ga

electricity consumption in each metropolitan statistieaéa power plants emit significantamountsof GHGs. Further,

(MSA; as defm_ed by the US CensusBureau) within the_ . ower plants impact localater resources through their large
contiguous United States using the most common empirically ater withdrawals. A portion of water withdrawals are
based attribution method&lthough any electricity consumer evaporated and removed from the loagtersystemwhile
could be used in this study, MSAs provide a clearly defined @\ rest are returned to the water body at elevated
diverse set of electricity end users. Further, cities are i”tegra(biﬁperaturedeading to thermal pollution and ecological
achievingenvironmentalsustainabilityand climate change  gamagé?2° Attributing these local impactsto end con-

mitigation targets as they are centgadints of consumption  gymption showsthe burden shift of electricity demand to
and accountfor a significantportion of energyuse and production locations.

emissions”“° Urban areas consume around three-fourths of * The transmission ofelectricity through the electric grid
globalenergywith electricity being the second largest energy creates difficulties associated with attributing water and carbon
sourceas wellas the fastesgrowing energy usé:**Nearly  footprints of electricity generation to end users. Previous
two-thirds of the 43 cities evaluated by Cohen and works®3"have explored how these inherasttallenges may

The electric grid in the United States is divided into three main
interconnects: Western Interconnectisastern Interconnec-
tion, and the Electric Reliability Counoil Texas (ERCOT).

The Eastern and Western Interconnect composed 081

and 37 balancing authoritiegspectiveR? ERCOT consists

of a single balancingauthority. Each balancingauthority

Ramaswarif imported over half of their electricity,  impact the attribution of carbon footprints to different
demonstrating how metropolitan areasource consumption  electricity usershut no study hasevaluated the impacbn
and environmentalimpact stretch well beyond their geo-  water footprint estimates.Further, no studies, to our

political boundariesWhile some studies have evaluated the knowledge,have evaluatedcarbon and water footprints
carbon footprintof a city’s electricity consumpticfi;*° we togetherto understand the resource demands all urban
have a more limited understanding of how cities draw on locakeas across an entire natiggan et al® and Weber et 4’

and nonlocal water resourcesto fulfill their electricity highlight the variation and assumption of multiple attribution
demand’ methods with respect to emissioosncluding that the study

The following section providesbackground on environ-  objective often motivatesthe method choice. Within the

mental footprints of electricity production and how these United Statesall empirically based methodsly on power
footprints are assigned to end consumétext, we describe  plant level data reported by the Energy Information

the methodology employed in thisstudy, followed by our Administration (EIA). Each powerplant is mapped to the
results.Lastly,we discussour findingsand the implications particular attribution boundary of interése data within the
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EIA are self-reported via Form 923 and come with their own on the first step and the various methods to estimate water and
sets of uncertainty (although data quality has improved carbon footprints per unit of electricity generation.The
markedly in recentyears?). Quantifying the uncertainty of  following sections describe the methods and data needed to
the underlying reported data has been evaluated b)?%?ﬁers replicate each of the sevenattribution approachesmost

and is outside the scope of this study. commonly employed in the literature.

Here, we highlight seven different methodologiesfor Electricity Generation and Environmental Footprint
attributing electricity-related watepnsumption and carbon  Data. Electricity generation and water consumption data were
emissions to electricity consumers within each US MIBA.  taken from self-reported generataybservationswhich are
complexity of the electrical grid and the impossibility of tracingllected and tabulated by the Department of Energy§'EIA.
an electron through it means there is no “correct” attribution While the quality of EIA data has been questidnedhvides
method,and it is impracticato consider one estimate better detailed data at a fine spatial resolution and is the data set most
than othersinsteadgach environment&otprint attribution commonly used in studiemiming to estimate the environ-
method of electricity has distinct advantages and disadvantagestalfootprint of electricity production and consumption.
(Table 1). Each empiricalmethod employsdifferent geo- Besidesthe purpose of this study is to compare different
graphic boundariesyhich draw on a differentcollection of attribution methodsneaning it is ofgreater importance that
power plants (Figure S pproaches using interconnections, each attribution method utilizesthe samedata acrossall
balancingauthorities,or eGRID boundaries consider, to methodsPower plants with generation capacity greater than
varying degreeghe physicalinfrastructure ofthe electrical 100 MW are required to reportheir water consumption to
grid. The interconnect boundary representsthe largest EIA“® These large power plants contribute almost 75% of the
geographicscale and is the simplestto calculate,while United Statestotal electricity generatiofi/ Smallerpower
methods utilizing the balancingauthority scaleare more plants (generation capacity less than 100 MW) are required to
computationallyintensive and require integration across report their energy production but not their water con-
multiple databasegEIA, EPA, and the FederalEnergy  sumption to the EIAThese smaller power plants are included
RegulatoryCommission (FERC)). The eGRID scalealso within our study by assigning themedian valueof water
offers some smaller scale regional attribution and varies sligbtiy)sumption calculated from the reporting power plants to all
from the boundariesof balancing authoritiesThe eGRID small power plants with similar fuel type and generation
boundary was designed to promote consumer-scale or regiop@bacity less than 100 MW. EIA does not have water
decision-making capabilifyhe basin scale and geographical consumption datafor renewableenergy sources such as
radiusboundariesattempt to localize impactsof the water wind,solaror hydropowerverage water consumption values
footprint of electricity production by evaluating the removal opased on detailed engineering studies were used for solar and
water resources from the immediate environméhe state wind operated renewable power piafité/ater consumption
scale method has advantagesn that it follows policy attributed to hydroelectricpower is related to reservoir
boundaries for water discharge permits and theofiation.  evaporation and is often many times the magnitudetbér
However, basin, radius, and state boundarymethodscan types of power planit§Vater footprints of hydroelectric power
overlook some of physical constraints of electricity distributigslants are taken fréfhwhich considers the multiple users of a
through the grid. reservoir(e.g., irrigation, flood control, hydropower)and

In this study,we consider the water consumed and carbon gllocates the evaporative losses across these users so to avoid
and carbon equivalents emitted (henceforth, denoted simplytgg overestimation of hydropower water consumption.
“carbon”) during the operational stage of electricity generation\we utilize the mostrecentversions othe EIA Form 923
Roughly two-thirds ofvater consumption in the life cycle of  (annual valuesfrom 2014-2017) and the EPA tabulated
electricity production occurs during the operatiostdge of  emissiondrom power generating facilitié$ to analyze the
electricity generatioh®® Similarly,the operationalstage of  temporal variability of water consumption and carbon

electricity generation constitutes 83-99%tbé total GHG  emissions within each metropolitan area for a given attribution
emissions associated with fossél-based electricity produc-  method.We utilize EPA’s Clean Air Markets Division déta

tion* Environmentafootprint assessmentse phyS|cabr on observed emissions from stack monitora'ng)pposed to
monetary units to normalizethe footprint in terms of  E|A’s modeled emissionestimates! to estimate carbon

production (e.g.,Marston et al*® use both units). When  footprints.Carbon footprints are calculated using equivalent
determining the water or carbon footprint of electriwititer carbon dioxide weight§0,,

consumption or GHG emissions are most often normalized by with respect to water resources, we take a water footprinting
energyunits, which we adopt in this study. Our analysis  approach to assessvater intensity of electricity based on
evaluates how sensitive our results are to temporal dynamicgtfibution methods. We recognizethat there are other

using available water consumption data (years 2014 to 20173pproacheso assessthe environmentaimpactsof water

and GHG emission data (years 2014 and 2016). resourcesspecificallywith respect to water scarcity(e.g.,

. Internationalrganization of Standards ISO 1404®js life
MATERIALS AND METHODS cycle assessmgiCA) method is outside the scope dhe

Attributing water and carbon footprints electricity requires  current study.

two steps.First, it is necessary to determine the water Attribution of ~ Electricity Source to Consumers.

carbon footprint per kWh of delivered electridity,,volume Following Kodra et al.>®* we aggregate poweflow among
of water per kWh and mass of carbon per kWh (intensity). Thige electricity-generating units within the attribution bounda-
wateror carbon footprintper unit of delivered electricity is  ries under analysls. generalthere are two different types of
largely a function ofhe power plants assumed to service the data-driven attribution methods(1) those based on grid

area ofinterest.Secondpne mustdetermine the electricity  infrastructure and (2) those based on geographical boundaries.
demand of the city or entity of interdistthis studywe focus  Attribution methods basedon grid infrastructurebetter
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constrain the production, transfer, and consumption of
electricity to the underlying grid infrastructureand the
companies thabperate thembut these methods are limited
by data and require a higher order of computation.Grid
infrastructure boundarigscluding interconnectionbalanc-
ing authoritiesand eGRIDare defined by the Department of
Homeland Security, North American Electric Reliability
Corporationand EPA.

Geopoliticalor geophysicaboundariesio not match the
actualflow of electricity along the gridut nationaland state

Finally, the embedded environmental resources or emissions
of electricity consumption of MSA m (RI& determined by
summing the product of each overlapping attribution
boundary’s EIP and the proportion oMSA m geographical
area (A) covered by the area of the attribution boundary

(A, -
S (EIR % Aj )

EIG, =
Anm )

regulations and policies concerning water and GHG emissionsWWe used this generapproach to estimate both water and

are often mandated based on these boundarigss makes
geopoliticabnd geophysichbundaries particularly important

carbon footprints and intensities of each MSA for all
attribution methods. Further discussion on the individual

when analyzing the burden they exert on the environment. Feyethods and theirunderlying assumptions and data can be

geopolitical and geophysicalboundary-basedattribution

methodsan attribution boundary may have few or no power

plants within its border.The electricity demand within that
attribution boundarymay well exceed thegeneration.To

overcome this issuge used an energy balance approach to

match excesselectricity generationto unmet electricity
demand following the approachRfiddellet al® Areas with
electricity generation exceeding the demand wilike their
exces=lectricity available to a “collective pooldf surplus
electricity that deficit areas can gudim the grid.

Both the grid-based and geographidabundary methods
utilize the same generalizableequationsto estimatethe
environmentatesource®r emissionsntensity of electricity
production (EIP).

_2E

Elp= =2
N

(1)

)
Here, EIR is the weighted averaged embedded environ-

EIR. = (EIR x o) + EIR- interconnect™ (1- )

mental resources or emissions (E) of electricity production (

of the power plants (x) within attribution boundary EIP-
recalculatesthe embedded environmental resource or
emissiondntensity of electricity production within a geo-
graphicahttribution boundary (e.gstate boundaries) when
electricity transfers between attribution boundaries are
consideredSince it is infeasible to consider actedctricity
transfers across the grid with geographicalattribution
boundariesglectricity demand thatcannotbe supplied by
power plantswithin the specified boundary wilbe fulfilled
from excesselectricity produced within the interconned¢b
which the attribution boundaryi is nested within (i -
interconnect).q; is the ratio of electricity generation and
consumption within attribution boundaryaj.is capped at 1,
which signifiesthat power plants within the attribution
boundary are capable fufly meeting the electricity demand
within the attribution boundary (i.e.no electricity transfers
occur). If electricity transfersacrossgrid-based attribution
boundariesare consideredthe previousequation can be
updated as follows:

EIR. = (EIRx ) + X EIR x (1- 4))
j 3)
where B, is the fraction of electricity produced within

attribution boundary ito total production plusnet imports
of attribution boundary i.B; ; is the fraction of electricity

found in the Supporting Information.

Due to data limitations,our study focuses on the annual
scale to assess both carbon and water footprints. While the EIA
providesdata at a monthly scale forseverakenvironmental
impactsye are limited in our study by datasets from the EPA
(eGRID) and FERC.These datasets are only #te annual
scale.We recognize thathere are variationsn renewables
intra-annuallywhich might affectthe results,to an extent;
however, for uniform comparison across methods, we
aggregate EIA data and conduct the study on the annual scale.

.RESULTS

Sensitivity of Carbon and Water  Intensities to
Attribution Method. Each metropolitan area demonstrates
differentlevelsof sensitivity to the attribution method for
waterand carbon footprints o€lectricity. The sensitivity of
each metropolitan area to water and carbon attribution
methodsis quantified by the coefficienbf variation (CV)
and presentedin Figure 1a,b, respectively.For water
intensities higher CV in urban areas of the Southwestern

nited States suggestthat water intensity of delivered

ectricity is highly sensitiveto the attribution method
(denoted by an orange or red color in Figure 1). This
variation indicates diverse electricity production technologies
(e.g.presence of large number of hydro and solar power plants
in the same region) in the surrounding arédthough water
consumption of nuclear power generation is higher than those
of other thermoelectric generations, the difference is
insignificant when compared with hydroelectricity. The
amountof waterconsumed in the production oglectricity
can vary basedon severalfactors, including fuel type,
combustion method, and type of cooling technology. Macknick
et al** Peer and Sandérsand others provide breakdowns of
the waterintensity based on these factorgariability arises
from changes in energy generation mix portfolicandf1SA
for different geographiaattribution boundaries(shown in
Table S4 of the SupportingInformation) basedon the
geographic location of the generating units.

The mid-Atlantic and northwestern regions thie United
Stateshave smallerCV, indicating thatthe water intensity
valuesare not as sensitive to the attribution methodThe
relative consistency between estimates produced by different
methodsin these regionsis due to a largely homogeneous
electricity generationportfolio acrossall the attribution
boundaried-ydroelectric power plants are ubiquitous in the
northwestern USyesulting in a high but consistentwater
intensity for MSAs in the regidrarge amounts of electricity,

imported into attribution boundary i from j to total production and therefore embedded wateare transferred between the

and net imports of attribution boundary i.
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a) Coefficient of Variation for Water Intensity Attribution Method HUC-4, PCA/balancing authoritgnd state scaleBalancing

: the electricitydemand from the surroundinginterconnect
changeghe embedded resource intensity. general,water
intensity remained constant or increased for each of the three
methods when including energy balancing (Figure S3).
Converselythe carbon intensity of MSA'’s electricity use
demonstrated a much wideange ofchangewith no clear
increasing or decreasing trend when electricity transfers were
consideredCarbon intensities vary more widely across power
plants and attribution boundaries than water intensites

this greatervariation is the primary reasonwhy carbon
intensities exhibit greater heterogeneityin responseto
electricity transfersthan water intensities (Figure S3).
Moreoverwe found thatthe carbon footprints o&lectricity
consumption are more sensitive to the attribution method
selected compared to the watantensities (95% confidence
level).In generalthe CV of carbon intensities are larger than
that of water intensitiebhe CV of water and carbon follow a
gamma distributionyith a long right taisignifying that some
MSAs exhibit much greatersensitivityto the attribution
method than their peers (Figure S2).

Trends across Attribution Methods.  Analysisof the
waterintensity for the top 50 most populousMSAs shows
significantvariation acrossdifferent MSAs for the same
attribution method and within the same MSA with different
attribution methods (Figure 2)Table S3 ofthe Supporting
Information provides a list of the top 50 MSAs by population.
For many of the most populouscities, the majority of the

0 075 >15 attribution methods produce similar results.However,for
Figure 1.Variability between attribution methods (represented hereSome of these cities there is a much wider spread ofthe
as the coefficiendf variationcomputed based on the results from estimatedwater intensity values.For examplethe mean
each of the methods) for water intensity (a) apgi@énsity (b) is estimated water intensity &uffalo,NY is approximately 40
not constantacrossthe country. A lower coefficientof variation mMWh, nearly 7 times the average US city, and ranged from
(represented by blue) signifiexgreemenin estimatesamong the  gpproximately 5-80 fIMWh, which is the second largest
attribution methods, while a hlghe.r.coefflcl:lent of variation spread ofvater intensities across BIBAs Numerous MSAs
oot by aach meehe e A o veet  have one or more attribution methods that produce water or
western regionshow greaterhomogeneityin water and carbon carbon mtesmtyestlmat_esihat are much higher than the
footprints and are not as sensitive to the attribution method as othgveragealthough there IS no S'ngl_"ar method or set of
regions of the country. methods that consistently results in larger or smaller water or
carbon intensity estimationd.he 50 km radius attribution
method has the smallest water footprint for about one-third of
within the Western Interconnect creating geographical ~ MSAs, while one-third of MSAs had the interconnection as the
dispersed dependencies on water resdufces. largestwater footprint. Interestinglythe HUC-4 boundary

Using the same attribution methodsye substitute water ~ method produced the largest carbon intensity value for nearly
consumption forgreenhouse gasmissionsrepresented by  half (48.7%) of alMSAs.

CO, equivalents (Figure 1b). These carbon intensity Although the selected urban areas show high sensitivity to
equivalents provide another way to evaluate these attributiorthe attribution method selectedthe temporalvariation of
methodsWhen evaluating the coefficient of variation of eachwater intensity of delivered electricity iselatively constant
attribution method across the country, there are localized aremsoss alirban areas (Figure 3 shows the 50 most populous
of high variation between methods in the southwestern and US cities). In general, there is no significant difference between
northwestern United States. The mid-Atlantic region’s the four years within each MSA. This finding supports previous
sensitivity of emission intensitylike water intensity calcu- researcht showing that temporafariability ofregionalwater
lations, has a relatively low coefficient of variation. However iitensity is minimal comparedto changesin fuel and
generalthere was no correlation between the coefficierfit technology mixe$hereforeany changes seen are most likely
variation of water intensities and emission intendftiether due to an addition or retirement of a power plant included in
comparison of the coefficients of variation between water anthe spatiaboundary.

carbon intensities can be found in the Supporting Information Factors Contributing to Variability between Attribu-

(Figure S2). tion Methods. To further illustrate why different attribution

To further comparethe attribution methods and their methodsmay produce variation in environmentdbotprint
impact on water and carbon intensity calculations,we estimatesye re-examine Buffaldy, which has a large spread
investigate the effect of electricity transfers between attributionwater intensity estimates by differeattribution methods
boundarieson environmentalfootprints. We evaluated the ~ (approximately 5-80 #MWh). We also investigate Chicago,
impactof electricity transfers fothree attribution methods:  IL, which hasa relatively smallspread ofwater intensities

E— km
0 500 1,000

Coefficient of Variat?’h\//
[ i |

7
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Average Water Intensity 50 Largest Cities (2014-2017)
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Figure 2. Comparing the average valuek (A) water and (B) carbon intensity acrosthe 50 largestmetropolitan statisticareasshows

nonstandard variation between the attribution methadany of these citidbg attribution method does not significantly change the value of
water intensity (i.dallasTX; Philadelphi&A; and Norfolk/A). Other citiessuch as SeattlWA and BuffaldyY,have a much larger spread

of water intensities based on attribution methdde emission intensities for the 50 largeisies vary widely depending on the attribution

method Additionallymethods that utilize HUCRBCA ,and state boundaries generally produce larger estimates than other attribution methods.
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Figure 3.Water intensities for the largest 50 metropolitan areas in the United States show little variation between years.
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Figure 4.(a) Buffalo,NY and (b) Chicago)L demonstrate among the greatest and leasaince in water intensitiesealéctricity deliveries
between attribution methodsespectivel\WVaterintensity estimatefor Buffalo are more sensitive to the attribution method due to the
misalignment of attribution boundaries and the clustering of certain power plant typdsy@irap@ler) within some attribution boundaries
but not othersConverselattribution boundaries used to determine Chicago’s water intensity have largely the same cpbactioplarfit
typesall producing similar water intensity estimates.

acrossattribution methods(approximately 1-5 fYMWh). research problem posetf. the study,for exampleaimsto
Each of these MSAs is located on the bordersof their assess the impacts of state regulations or grid operation, a state
respective state and at the intersectiomoftiple hydrologic  or grid-based attribution boundary may be most appropriate.
boundariesBuffalo islocated on Lake Erie on the western  However, if the study is focused on local hydrologic impacts of
edge of New Yorkyhile Chicago is on Lake Michigan at the electricity consumption or the opportunity cost of locater
northeast edge of lllinois. withdrawalthen the radius or HUC-4 attribution boundaries

The large variance in water intensity for Buffalo comes fromyoyide a better localized context afialysisWith that said,
the diverging attribution boundaries and the diverse forms ofihe methodsmost commonly employed in the literature to
power generation types clustered throughout the state (Figuigate environmentatootprints of electricity production to
4a). In more generaterms,when attribution boundaries do consumersdo not explicitly consider the environmental

not significantly overlagt meansa different set of power im o ;

: ; g . pacts offreshwater appropriations (i.they do not follow
plants IS as_sumed_to supply an MS.A.S electr[mty. This the LCA approach seforth by ISO 14046). Future studies
assumption is particularly consequeintiplaces like western would benefit from assessing the environ EQUENCES
New York, where a clustering of electricity generation f wat " g GI%G issionscludi 9 t
technologies can dramatically shift estimates of water :C:r’iit%gqggsump lon an emissionsciuding water

intensities depending on the seff powerplants within the o .
respective attribution boundary. For example, Figure 4a depictedardiess ofhat attribution method is deemed the most

solar/wind (low water intensity) and hydroelectric (very high @PPropriate for a particular stuthg potential large variations
water intensity) power facilities in northern New Yuautich in enqunmgntabotprmt estimates (qs demonstrated in this
are excluded in the HUC-4 boundary and the radii attributionstudy) highlight the need to use multiple attribution methods
methodsbut captured by otherboundariesChicago shares  to quantify the sensitivity associatedwith the primary

many similarities to Buffalo (it also lies on the boundary of itsattribution method selected.In areasthat have a high

state atthe edge ofthe GreatLakeswith greatly diverging  sensitivity to attribution methodg, is particularly important
attribution boundaries);yet, Chicago hasa much smaller to characterize this variability and the assumptions associated
variation in estimated watentensities across afttribution with the chosen attribution method.Data uncertainty and
methodsChicago’s small variation can largely be explained tgensitivity have previously been shown to have a nontrivial
the relatively uniform distribution of different power plant impacton estimates o&nvironmentalootprints*® Here,we
typesthroughoutthe surrounding area (Figure 4b)Unlike  demonstrate that the method selected to attribute the footprint
Buffalothere is not a clustering gfarticular types opower  of electricity generation to end usersan also significantly
production that might sharply skew water intensity estimatesshape estimates afconsumer’s water and carbon footprints.

upon inclusion of this area within an attribution method. Thereforefuture studies relating the environmental impacts of
. electricity production to end users should incorporate some
DISCUSSION measure ofariability associated with the selected attribution

We do not suggest a “best” or “correct” attribution method fofethod. The differencesin water and carbon intensity
environmentafootprints of electricity.Instead,we contend  Calculationsproduced by each method demonstratethe

that it is importantto understand the inherendssumptions  difficulty in formulating sound policy and decision-making
associated with each attribution method and the degree thatbased on one attribution method, as each can yield very

these methods produce different estimates. We suggest thatdifferent conclusionsAn ensembleapproach thatbalances
chosen method forattributing environmentafootprints of these tradeoffs presents an opportunity to avoid bias associated
electricity production to end users be selected based on the with a selection of one methodology over another.
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As urbanization and overexploitation ofaturalresources
intensify in the futureassessing and attributing the environ-
mental footprint of electricity generation to citieswill be

Fusion to Map and Modethe US Food,Energyand Water
(FEW) system).Any opinions,findings,and conclusions or
recommendations expressed in this materalthose othe

critical to understand the telecoupling between production araithor(s) and do not necessarily refledhe views of the

consumption ofelectricity within the water—energy—carbon
nexusHoweverijt is important that the scientific community
converges on a means to attribute the environmengects

of electricity production to end users so comparisons can be
made across different studies and decision-making is based

robust findings.For examplea standardized approach for
determining the carbon footprint of electricity use that
quantifiesuncertainty orvariability of the estimateswill be
important as voluntary and mandatory carbon offsetkets
become more commdaities,corporationsand other groups
aiming to determine the environmentafootprint of their

National Science Foundatié.data used in this study come
from public sourceBata produced through this research can
be found in the Supporting Information.
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