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ABSTRACT: Environmentalfootprinting methodsprovide a meansto
relate the environmental externalities of electricity production to electricity
consumers. Although several methods have been developed to connect the
environmentalfootprint of electricity generation to end users,estimates
produced by these methods are inherently uncertain due to the
impossibility ofactually tracing electricity from the pointof generation
to utilization. Previous studies rarely quantify this uncertainty, even though
it may fundamentally alter their findings and recommendations.Here,we
evaluate the sensitivity ofwater and carbon footprints estimates among
seven commonly used methods to attribute electricity production to end
users.We assesshow sensitive waterand carbon electricity footprint
estimates are to attribution methods,how these estimates change over
time,and the main factors contributing to the variability between methods.We evaluate and make available the water and carbon
footprints of electricity consumption for every city across the contiguous United States for all assessed methods.We find significant
but spatially heterogeneous variability in water and carbon footprint estimates across attribution methods.No method consistently
overestimated or underestimated water and carbon footprints for every city. The variation between attribution methods suggests that
future studies need to consider how the method selected to attribute environmentalimpacts through the electricalgrid may affect
their findings.

■INTRODUCTION
Electricity production is the largest emitter of greenhouse gases
(GHGs)1 and the second largest water consumer,2,3 globally.
Environmentalfootprinting methods,as defined by Hoekstra
and Wiedmann,4 offer one way of understandingand
quantifying the directand indirect pressuresof electricity.5
However,data uncertainty,incongruentscale ofproduction
and consumption,and traceabilitywithin the electric grid
challengerobust attribution of environmentalfootprint of
electricity production to the finalconsumer.Researchers have
developednumerous environmental footprint attribution
methods to overcome some ofthese challenges within both
the water footprint6−8 and carbon footprint9−11 communities.
Yet, there remainsa great deal of uncertainty asto how
sensitiveresultsare to attribution methods and how this
sensitivity differs between different footprint indicators.

Here, we conduct a comparative study of common
approachesto estimate the environmental footprint of
electricity consumption to test how sensitive water and carbon
footprints of electricity consumptionare to geographical
attribution methods.While previousstudiesoften focuson
the uncertaintyof the underlyingdata used to calculate
environmentalfootprints,12,13we demonstrate the importance
of also considering the impactof the method selected to
attribute environmentalfootprints ofelectricity production to
consumers. We focus on commonly used bottom-up

approaches to estimating differentfootprints (as opposed to
top-down approaches,such as environmentallyextended
multiregionalinput−output models,e.g., Mo et al.14 and
Tian et al.15). Environmentalfootprints associatedwith
electricity production are assigned to end consumerswith
the same or connected geopolitical,infrastructure,or natural
boundaries (e.g.,state,electricity grid,or watershed).Hence-
forth, we refer to geographical attribution boundaries simply as
“attribution boundaries”.We ask and answerthe following
three questions:(i) how sensitiveare water and carbon
footprints ofelectricity estimates to attribution method? (ii)
does variancebetween attribution methodsdiffer between
areasand within an area overtime?and (iii) what factors
contribute to variability between attribution methods and do
these factors differ by environmentalfootprint type?

Attribution methods can be classified into two general types:
(i) empiricaldata models and (ii) power system optimization
models.16 Empirical models use historical observationsto
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calculate emission factors, trading models, or statistical
relationships to connect environmental footprints of electricity
production to electricity consumption. Trading models
incorporate additional data to account for imports and exports
of electricity across specified boundaries.10,17,18Power system
optimization models determine embedded resources based on
powerdistribution networksand economic optimization.In
this study, we compare empirical methods that use both simple
emission factorsand trading modelsas these are the most
commonly used environmentalfootprint attribution methods.
Moreover, many power system optimizationmodels are
proprietary,making comparison ofthese methods infeasible.
The empirical methods evaluatedrely on different geo-
graphical,infrastructure,and political boundaries,including
interconnections,balancing authorities,Environmental Protec-
tion Agency (EPA) eGRID,river basins,state, and radius from
cities (see Table 1).Regardless of the attribution boundary,all
methods utilize the same underlying data.

We calculate the water and carbon footprints associated with
electricity consumption in each metropolitan statisticalarea
(MSA; as defined by the U.S.CensusBureau) within the
contiguous United States using the most common empirically
based attribution methods.Although any electricity consumer
could be used in this study, MSAs provide a clearly defined and
diverse set of electricity end users. Further, cities are integral in
achievingenvironmentalsustainabilityand climate change
mitigation targets as they are centralpoints of consumption
and account for a significantportion of energyuse and
emissions.19,20Urban areas consume around three-fourths of
globalenergy,with electricity being the second largest energy
source,as wellas the fastestgrowing energy use.21,22Nearly
two-thirds of the 43 cities evaluated by Cohen and
Ramaswami23 imported over half of their electricity,
demonstrating how metropolitan areas’resource consumption
and environmentalimpact stretch well beyond their geo-
political boundaries.While some studies have evaluated the
carbon footprintof a city’s electricity consumption,24−26 we
have a more limited understanding of how cities draw on local
and nonlocal water resourcesto fulfill their electricity
demand.27

The following section providesbackground on environ-
mental footprints of electricityproduction and how these
footprints are assigned to end consumers.Next,we describe
the methodology employed in thisstudy, followed by our
results.Lastly,we discussour findingsand the implications

they have on future research,as wellas cities,companies,and
other groups thatwant to determine their water and carbon
footprintsof electricity consumption.Importantly,all water
and carbon footprint estimatesfor every US MSA are
published with this study to supportfuture research and aid
electricity consumersin determining the waterand carbon
footprints of their electricity use.

■BACKGROUND
The electric grid in the United States is divided into three main
interconnects: Western Interconnection,Eastern Interconnec-
tion, and the Electric Reliability Councilof Texas (ERCOT).
The Eastern and Western Interconnectare composed of31
and 37 balancing authorities,respectively.28 ERCOT consists
of a single balancingauthority. Each balancingauthority
balances electricity supply and demand in real-time to ensure
system reliability.Power plants are distributed across each of
these interconnections,supplying electricity to the grid.
Dependingon the fuel sourceand technologyemployed,
power plants emit significantamountsof GHGs. Further,
power plants impact localwater resources through their large
water withdrawals.A portion of water withdrawalsare
evaporated and removed from the localwatersystem,while
the rest are returned to the water body at elevated
temperaturesleading to thermal pollution and ecological
damage.29,30 Attributing these local impacts to end con-
sumption showsthe burden shift of electricity demand to
production locations.

The transmission ofelectricity through theelectricgrid
creates difficulties associated with attributing water and carbon
footprints of electricity generation to end users.Previous
works16,31have explored how these inherentchallenges may
impact the attribution of carbon footprints to different
electricity users,but no study hasevaluated the impacton
water footprint estimates.Further, no studies, to our
knowledge,have evaluatedcarbon and water footprints
togetherto understand the resource demandsof all urban
areas across an entire nation.Ryan et al.16 and Weber et al.31

highlight the variation and assumption of multiple attribution
methods with respect to emissions,concluding that the study
objectiveoften motivatesthe method choice.Within the
United States,all empirically based methodsrely on power
plant level data reported by the Energy Information
Administration (EIA).Each powerplant is mapped to the
particular attribution boundary of interest.The data within the

Table 1. Evaluation of Seven Common Empirically Based Methods to Attribute the Environmental Footprint of Electricity to
End Users. Advantages and Disadvantages of Each Method, as well as Studies that Have Employed Each Method, Are Shown
below

Method Advantage Disadvantage Employed by

Interconnections Conforms to electricity infrastructure;
minimum data requirements and
calculations

Large area; does not prioritize localimpacts Ruddellet al.6

Balancing
authority

Geographically smaller than interconnect Pass-through nodes; nonspecific geographical
areas

Cohen and Ramaswami23

Balancing
authority with
transfers

Conforms to electricity infrastructure;
illustrates burden shift of resources

Time-consuming; disparate datasets Chini et al.,7 Kodra et al.,33 and Djehdian et al.34

EPA eGRID
boundaries

Conforms to data used for emission
assessments and electricity infrastructure

Data only available every two years; requires
integration with EIA data for water resources

Peer et al.35

Basin scale Conforms to naturalhydrology Does not consider infrastructure Tidwellet al.,8 Kelley and Pasqualetti36

Radius from city Accounts for localimpacts Does not consider infrastructure Chini et al.37

State Policy and regulations often set at the state
level; EIA aggregates data at the state level

Cities in some states are supplied by different
providers (e.g.,Chicago,IL)

Chini et al.,27 Bartos and Chester,38 DeNooyer et
al.,39 Grubert and Webber,40 and Stillwellet al.41
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EIA are self-reported via Form 923 and come with their own
sets of uncertainty(although data quality has improved
markedly in recentyears32). Quantifying the uncertainty of
the underlying reported data has been evaluated by others12,32

and is outside the scope of this study.
Here, we highlight seven different methodologiesfor

attributing electricity-related waterconsumption and carbon
emissions to electricity consumers within each US MSA.The
complexity of the electrical grid and the impossibility of tracing
an electron through it means there is no “correct” attribution
method,and it is impracticalto consider one estimate better
than others.Instead,each environmentalfootprint attribution
method of electricity has distinct advantages and disadvantages
(Table 1). Each empiricalmethod employsdifferent geo-
graphic boundaries,which draw on a differentcollection of
power plants (Figure S1).Approaches using interconnections,
balancingauthorities,or eGRID boundariesconsider,to
varying degrees,the physicalinfrastructure ofthe electrical
grid. The interconnect boundary representsthe largest
geographicscale and is the simplest to calculate,while
methodsutilizing the balancingauthority scaleare more
computationallyintensive and require integration across
multiple databases(EIA, EPA, and the Federal Energy
RegulatoryCommission (FERC)).The eGRID scalealso
offers some smaller scale regional attribution and varies slightly
from the boundariesof balancing authorities.The eGRID
boundary was designed to promote consumer-scale or regional
decision-making capability.The basin scale and geographical
radiusboundariesattempt to localize impactsof the water
footprint of electricity production by evaluating the removal of
water resources from the immediate environment.The state
scale method has advantagesin that it follows policy
boundaries for water discharge permits and thermalpollution.
However,basin, radius,and state boundarymethodscan
overlook some of physical constraints of electricity distribution
through the grid.

In this study,we consider the water consumed and carbon
and carbon equivalents emitted (henceforth, denoted simply as
“carbon”) during the operational stage of electricity generation.
Roughly two-thirds ofwater consumption in the life cycle of
electricity production occurs during the operationalstage of
electricity generation.3,35 Similarly,the operationalstage of
electricity generation constitutes 83−99% ofthe total GHG
emissions associated with fossilfuel-based electricity produc-
tion.42 Environmentalfootprint assessmentsuse physicalor
monetary units to normalize the footprint in terms of
production (e.g.,Marston et al.43 use both units). When
determining the water or carbon footprint of electricity,water
consumption or GHG emissions are most often normalized by
energyunits, which we adopt in this study. Our analysis
evaluates how sensitive our results are to temporal dynamics by
using available water consumption data (years 2014 to 2017)
and GHG emission data (years 2014 and 2016).

■MATERIALS AND METHODS
Attributing water and carbon footprints ofelectricity requires
two steps.First, it is necessary to determine the wateror
carbon footprint per kWh of delivered electricity,i.e.,volume
of water per kWh and mass of carbon per kWh (intensity). The
wateror carbon footprintper unit of delivered electricity is
largely a function ofthe power plants assumed to service the
area of interest.Second,one mustdetermine the electricity
demand of the city or entity of interest.In this study,we focus

on the first step and the various methods to estimate water and
carbon footprints per unit of electricity generation.The
following sections describe the methods and data needed to
replicate each of the sevenattribution approachesmost
commonly employed in the literature.

Electricity Generation and Environmental Footprint
Data. Electricity generation and water consumption data were
taken from self-reported generatorobservations,which are
collected and tabulated by the Department of Energy’s EIA.44

While the quality of EIA data has been questioned,it provides
detailed data at a fine spatial resolution and is the data set most
commonly used in studiesaiming to estimate the environ-
mentalfootprint of electricity production and consumption.
Besides,the purpose of this study is to compare different
attribution methods,meaning it is ofgreater importance that
each attribution method utilizesthe samedata acrossall
methods.Power plants with generation capacity greater than
100 MW are required to reporttheir water consumption to
EIA.46 These large power plants contribute almost 75% of the
United States total electricitygeneration.47 Smallerpower
plants (generation capacity less than 100 MW) are required to
report their energyproduction but not their water con-
sumption to the EIA.These smaller power plants are included
within our study by assigning themedian valueof water
consumption calculated from the reporting power plants to all
small power plants with similar fuel type and generation
capacity less than 100 MW. EIA does not have water
consumption datafor renewableenergysources,such as
wind,solar,or hydropower.Average water consumption values
based on detailed engineering studies were used for solar and
wind operated renewable power plants.3,48Water consumption
attributed to hydroelectricpower is related to reservoir
evaporation and is often many times the magnitude ofother
types of power plants.3 Water footprints of hydroelectric power
plants are taken from,49 which considers the multiple users of a
reservoir(e.g., irrigation, flood control, hydropower)and
allocates the evaporative losses across these users so to avoid
the overestimation of hydropower water consumption.

We utilize the mostrecentversions ofthe EIA Form 923
(annual valuesfrom 2014−2017) and the EPA tabulated
emissionsfrom power generating facilities50 to analyze the
temporal variability of water consumption and carbon
emissions within each metropolitan area for a given attribution
method.We utilize EPA’s Clean Air Markets Division data50

on observed emissions from stack monitoring,as opposed to
EIA’s modeled emissionestimates,51 to estimatecarbon
footprints.Carbon footprints are calculated using equivalent
carbon dioxide weights,CO2e.

With respect to water resources, we take a water footprinting
approach to assesswater intensity of electricitybased on
attribution methods.We recognizethat there are other
approachesto assessthe environmentalimpactsof water
resources,specificallywith respect to water scarcity(e.g.,
InternationalOrganization of Standards ISO 14046).This life
cycle assessment(LCA) method is outside the scope ofthe
current study.

Attribution of Electricity Source to Consumers.
Following Kodra et al.,33 we aggregate powerflow among
the electricity-generating units within the attribution bounda-
ries under analysis.In general,there are two different types of
data-driven attribution methods:(1) those based on grid
infrastructure and (2) those based on geographical boundaries.
Attribution methods based on grid infrastructurebetter
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constrain the production, transfer, and consumption of
electricity to the underlying grid infrastructureand the
companies thatoperate them,but these methods are limited
by data and require a higher order of computation.Grid
infrastructure boundaries,including interconnections,balanc-
ing authorities,and eGRID,are defined by the Department of
Homeland Security, North American Electric Reliability
Corporation,and EPA.

Geopoliticalor geophysicalboundariesdo not match the
actualflow of electricity along the grid,but nationaland state
regulations and policies concerning water and GHG emissions
are often mandated based on these boundaries.This makes
geopoliticaland geophysicalboundaries particularly important
when analyzing the burden they exert on the environment. For
geopolitical and geophysicalboundary-basedattribution
methods,an attribution boundary may have few or no power
plants within its border.The electricity demand within that
attribution boundarymay well exceed thegeneration.To
overcome this issue,we used an energy balance approach to
match excesselectricity generation to unmet electricity
demand following the approach ofRuddellet al.6 Areas with
electricity generation exceeding the demand willmake their
excesselectricity available to a “collective pool”of surplus
electricity that deficit areas can pullfrom the grid.

Both the grid-based and geographicalboundary methods
utilize the same generalizableequationsto estimatethe
environmentalresourcesor emissionsintensity of electricity
production (EIP).

=
∑
∑

E

P
EIPi

x x

x x (1)

α α= × + × −* −EIP (EIP ) EIP (1 )i i i i iinterconnect (2)

Here, EIPi is the weighted averaged embedded environ-
mental resources or emissions (E) of electricity production (P)
of the power plants (x) within attribution boundary i.EIPi*
recalculates the embedded environmental resource or
emissionsintensity of electricityproduction within a geo-
graphicalattribution boundary (e.g.,state boundaries) when
electricity transfers between attribution boundaries are
considered.Since it is infeasible to consider actualelectricity
transfers across the grid with geographicalattribution
boundaries,electricity demand thatcannotbe supplied by
powerplantswithin the specified boundary willbe fulfilled
from excesselectricity produced within the interconnectto
which the attribution boundary i is nested within (i −
interconnect).αi is the ratio of electricity generation and
consumption within attribution boundary i.αi is capped at 1,
which signifies that power plants within the attribution
boundary are capable offully meeting the electricity demand
within the attribution boundary (i.e.,no electricity transfers
occur). If electricity transfersacrossgrid-based attribution
boundariesare considered,the previousequation can be
updated as follows:

∑β β= × + × −*EIP (EIP ) EIP (1 )i i i
j

j i j,
(3)

where βi is the fraction of electricity produced within
attribution boundary ito total production plusnet imports
of attribution boundary i. βi, j is the fraction of electricity
imported into attribution boundary i from j to total production
and net imports of attribution boundary i.

Finally, the embedded environmental resources or emissions
of electricity consumption of MSA m (EICm) is determined by
summing the product of each overlapping attribution
boundary’s EIPi* and the proportion ofMSA m geographical
area (Ai) covered by the area of the attribution boundary
(Ai, m).

=
∑ × A

A
EIC

(EIP )
m

i i i m

m

,

(4)

We used this generalapproach to estimate both water and
carbon footprints and intensities of each MSA for all
attribution methods.Further discussion on the individual
methods and theirunderlying assumptions and data can be
found in the Supporting Information.

Due to data limitations,our study focuses on the annual
scale to assess both carbon and water footprints. While the EIA
providesdata at a monthly scale forseveralenvironmental
impacts,we are limited in our study by datasets from the EPA
(eGRID) and FERC.These datasets are only atthe annual
scale.We recognize thatthere are variationsin renewables
intra-annually,which might affectthe results,to an extent;
however, for uniform comparison across methods, we
aggregate EIA data and conduct the study on the annual scale.

■RESULTS
Sensitivity of Carbon and Water Intensities to

Attribution Method. Each metropolitan area demonstrates
different levelsof sensitivity to the attribution method for
waterand carbon footprints ofelectricity.The sensitivity of
each metropolitan area to water and carbon attribution
methodsis quantified by the coefficientof variation (CV)
and presented in Figure 1a,b, respectively.For water
intensities,higher CV in urban areas of the Southwestern
United States suggestthat water intensity of delivered
electricity is highly sensitiveto the attribution method
(denoted by an orange or red color in Figure 1). This
variation indicates diverse electricity production technologies
(e.g.presence of large number of hydro and solar power plants
in the same region) in the surrounding areas.Although water
consumption of nuclear power generation is higher than those
of other thermoelectric generations, the difference is
insignificant when compared with hydroelectricity. The
amountof waterconsumed in the production ofelectricity
can vary based on severalfactors, including fuel type,
combustion method, and type of cooling technology. Macknick
et al.,45 Peer and Sanders,52 and others provide breakdowns of
the water intensity based on these factors.Variability arises
from changes in energy generation mix portfolios ofan MSA
for different geographicattribution boundaries(shown in
Table S4 of the SupportingInformation) basedon the
geographic location of the generating units.

The mid-Atlantic and northwestern regions ofthe United
Stateshave smallerCV, indicating that the water intensity
valuesare not as sensitive to the attribution method.The
relative consistency between estimates produced by different
methodsin these regionsis due to a largely homogeneous
electricity generationportfolio acrossall the attribution
boundaries.Hydroelectric power plants are ubiquitous in the
northwestern US,resulting in a high but consistentwater
intensity for MSAs in the region.Large amounts of electricity,
and therefore embedded water,are transferred between the
states of California, Arizona, Colorado,Utah, and New Mexico
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within the Western Interconnect creating geographical
dispersed dependencies on water resources.6,7

Using the same attribution methods,we substitute water
consumption forgreenhouse gasemissions,represented by
CO2 equivalents (Figure 1b). These carbon intensity
equivalents provide another way to evaluate these attribution
methods.When evaluating the coefficient of variation of each
attribution method across the country, there are localized areas
of high variation between methods in the southwestern and
northwestern United States. The mid-Atlantic region’s
sensitivity of emission intensity,like water intensity calcu-
lations, has a relatively low coefficient of variation. However, in
general,there was no correlation between the coefficientof
variation of water intensities and emission intensities.Further
comparison of the coefficients of variation between water and
carbon intensities can be found in the Supporting Information
(Figure S2).

To further comparethe attribution methodsand their
impact on water and carbon intensity calculations,we
investigate the effect of electricity transfers between attribution
boundarieson environmentalfootprints.We evaluated the
impactof electricity transfers forthree attribution methods:

HUC-4,PCA/balancing authority,and state scales.Balancing
the electricitydemand from the surroundinginterconnect
changesthe embedded resource intensity.In general,water
intensity remained constant or increased for each of the three
methods when including energy balancing (Figure S3).
Conversely,the carbon intensityof MSA’s electricity use
demonstrated a much widerrange ofchange,with no clear
increasing or decreasing trend when electricity transfers were
considered.Carbon intensities vary more widely across power
plants and attribution boundaries than water intensities,and
this greatervariation is the primary reasonwhy carbon
intensities exhibit greater heterogeneityin responseto
electricity transfers than water intensities (Figure S3).
Moreover,we found thatthe carbon footprints ofelectricity
consumption are more sensitive to the attribution method
selected compared to the waterintensities (95% confidence
level).In general,the CV of carbon intensities are larger than
that of water intensities.The CV of water and carbon follow a
gamma distribution,with a long right tailsignifying that some
MSAs exhibit much greatersensitivityto the attribution
method than their peers (Figure S2).

Trends across Attribution Methods. Analysisof the
water intensity for the top 50 most populousMSAsshows
significantvariation acrossdifferent MSAs for the same
attribution method and within the same MSA with different
attribution methods (Figure 2).Table S3 ofthe Supporting
Information provides a list of the top 50 MSAs by population.
For many of the most populouscities,the majority of the
attribution methodsproducesimilar results.However,for
some of these cities,there is a much wider spread ofthe
estimatedwater intensity values.For example,the mean
estimated water intensity ofBuffalo,NY is approximately 40
m3/MWh, nearly 7 times the average US city, and ranged from
approximately 5−80 m3/MWh, which is the second largest
spread ofwater intensities across allMSAs.Numerous MSAs
have one or more attribution methods that produce water or
carbon intesnityestimatesthat are much higher than the
average,although there is no singular method or set of
methods that consistently results in larger or smaller water or
carbon intensity estimations.The 50 km radius attribution
method has the smallest water footprint for about one-third of
MSAs, while one-third of MSAs had the interconnection as the
largestwater footprint. Interestingly,the HUC-4 boundary
method produced the largest carbon intensity value for nearly
half (48.7%) of allMSAs.

Although the selected urban areas show high sensitivity to
the attribution method selected,the temporalvariation of
water intensity of delivered electricity isrelatively constant
across allurban areas (Figure 3 shows the 50 most populous
US cities). In general, there is no significant difference between
the four years within each MSA. This finding supports previous
research35 showing that temporalvariability ofregionalwater
intensity is minimal compared to changesin fuel and
technology mixes.Therefore,any changes seen are most likely
due to an addition or retirement of a power plant included in
the spatialboundary.

Factors Contributing to Variability between Attribu-
tion Methods. To further illustrate why different attribution
methodsmay produce variation in environmentalfootprint
estimates,we re-examine Buffalo,NY,which has a large spread
in water intensity estimates by differentattribution methods
(approximately 5−80 m3/MWh). We also investigate Chicago,
IL, which hasa relatively smallspread ofwater intensities

Figure 1.Variability between attribution methods (represented here
as the coefficientof variation,computed based on the results from
each of the methods) for water intensity (a) and CO2e intensity (b) is
not constantacrossthe country. A lower coefficientof variation
(represented by blue) signifiesagreementin estimatesamong the
attribution methods, while a higher coefficient of variation
(representedby orangeor red) signifiesa divergencebetween
estimatesproduced by each method.The mid-Atlantic and north-
western regionsshow greaterhomogeneityin water and carbon
footprints and are not as sensitive to the attribution method as other
regions of the country.
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Figure 2. Comparing the average valuesof (A) water and (B) carbon intensity acrossthe 50 largestmetropolitan statisticalareasshows
nonstandard variation between the attribution methods.In many of these cities,the attribution method does not significantly change the value of
water intensity (i.e.,Dallas,TX; Philadelphia,PA; and Norfolk,VA). Other cities,such as Seattle,WA and Buffalo,NY,have a much larger spread
of water intensities based on attribution methods.The emission intensities for the 50 largestcities vary widely depending on the attribution
method.Additionally,methods that utilize HUC-4,PCA,and state boundaries generally produce larger estimates than other attribution methods.

Figure 3.Water intensities for the largest 50 metropolitan areas in the United States show little variation between years.
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acrossattribution methods(approximately 1−5 m3/MWh).
Each of these MSAs is located on the bordersof their
respective state and at the intersection ofmultiple hydrologic
boundaries.Buffalo is located on Lake Erie on the western
edge of New York,while Chicago is on Lake Michigan at the
northeast edge of Illinois.

The large variance in water intensity for Buffalo comes from
the diverging attribution boundaries and the diverse forms of
power generation types clustered throughout the state (Figure
4a). In more generalterms,when attribution boundaries do
not significantly overlap,it meansa different set of power
plants is assumedto supply an MSA’s electricity. This
assumption is particularly consequentialin places like western
New York, where a clustering of electricity generation
technologies can dramatically shift estimates of water
intensities depending on the setof powerplants within the
respective attribution boundary. For example, Figure 4a depicts
solar/wind (low water intensity) and hydroelectric (very high
water intensity) power facilities in northern New York,which
are excluded in the HUC-4 boundary and the radii attribution
methodsbut captured by otherboundaries.Chicago shares
many similarities to Buffalo (it also lies on the boundary of its
state atthe edge ofthe GreatLakes,with greatly diverging
attribution boundaries);yet, Chicago hasa much smaller
variation in estimated waterintensities across allattribution
methods.Chicago’s small variation can largely be explained by
the relatively uniform distribution ofdifferent power plant
typesthroughoutthe surrounding area (Figure 4b).Unlike
Buffalo,there is not a clustering ofparticular types ofpower
production that might sharply skew water intensity estimates
upon inclusion of this area within an attribution method.

■DISCUSSION
We do not suggest a “best” or “correct” attribution method for
environmentalfootprints of electricity.Instead,we contend
that it is important to understand the inherentassumptions
associated with each attribution method and the degree that
these methods produce different estimates. We suggest that the
chosen method forattributing environmentalfootprints of
electricity production to end users be selected based on the

research problem posed.If the study,for example,aimsto
assess the impacts of state regulations or grid operation, a state
or grid-based attribution boundary may be most appropriate.
However, if the study is focused on local hydrologic impacts of
electricity consumption or the opportunity cost of localwater
withdrawal,then the radius or HUC-4 attribution boundaries
provide a better localized context ofanalysis.With that said,
the methodsmost commonly employed in the literature to
relate environmentalfootprints of electricity production to
consumersdo not explicitly consider the environmental
impacts offreshwater appropriations (i.e.,they do not follow
the LCA approach setforth by ISO 14046).Future studies
would benefit from assessing the environmentalconsequences
of waterconsumption and GHG emissions,including water
scarcity.53−55

Regardless ofwhat attribution method is deemed the most
appropriate for a particular study,the potential large variations
in environmentalfootprint estimates (as demonstrated in this
study) highlight the need to use multiple attribution methods
to quantify the sensitivity associatedwith the primary
attribution method selected.In areas that have a high
sensitivity to attribution methods,it is particularly important
to characterize this variability and the assumptions associated
with the chosen attribution method.Data uncertainty and
sensitivity have previously been shown to have a nontrivial
impacton estimates ofenvironmentalfootprints.43 Here,we
demonstrate that the method selected to attribute the footprint
of electricity generation to end userscan also significantly
shape estimates ofa consumer’s water and carbon footprints.
Therefore,future studies relating the environmental impacts of
electricity production to end users should incorporate some
measure ofvariability associated with the selected attribution
method. The differencesin water and carbon intensity
calculationsproduced by each method demonstratethe
difficulty in formulating sound policy and decision-making
based on one attribution method,as each can yield very
different conclusions.An ensembleapproach thatbalances
these tradeoffs presents an opportunity to avoid bias associated
with a selection of one methodology over another.

Figure 4.(a) Buffalo,NY and (b) Chicago,IL demonstrate among the greatest and leastvariance in water intensities ofelectricity deliveries
between attribution methods,respectively.Water intensity estimatesfor Buffalo are more sensitive to the attribution method due to the
misalignment of attribution boundaries and the clustering of certain power plant types (namely,hydropower) within some attribution boundaries
but not others.Conversely,attribution boundaries used to determine Chicago’s water intensity have largely the same collection ofpower plant
types,all producing similar water intensity estimates.
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As urbanization and overexploitation ofnaturalresources
intensify in the future,assessing and attributing the environ-
mental footprint of electricitygeneration to citieswill be
critical to understand the telecoupling between production and
consumption ofelectricity within the water−energy−carbon
nexus.However,it is important that the scientific community
converges on a means to attribute the environmentalimpacts
of electricity production to end users so comparisons can be
made across different studies and decision-making is based on
robust findings.For example,a standardized approach for
determining the carbon footprint of electricity use that
quantifiesuncertainty orvariability of the estimateswill be
important as voluntary and mandatory carbon offsetmarkets
become more common.Cities,corporations,and other groups
aiming to determine the environmentalfootprint of their
electricity consumption should present sound reasoning for the
attribution method they select and this methodology should be
consistently applied across allenvironmentalfootprint types,
regions, and industries that the entity operates so that different
attribution methods are notselected merely to produce the
most favorable results.While we do not settle the debate on
which method is “best”,we do make it clear that future studies
should assess the sensitivity oftheir key conclusions to their
selection of attribution methodology.
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