CONNECTIVE BIEBERBACH GROUPS

MARIUS DADARLAT AND ELLEN WELD

ABSTRACT. We prove that a Bieberbach group with trivial center is not connective and use this
property to show that a Bieberbach group is connective if and only if it is poly-Z.

1. INTRODUCTION

Connectivity [6] is a homotopy invariant property of a separable C*-algebra A that has
three interesting consequences: absence of nonzero projections, quasidiagonality, and realization
of the Kasparov groups as homotopy classes of asymptotic morphisms from A to B ® K without
suspensions, that is KK (A, B) = [[A, BQK]], if A is nuclear. A separable amenable (nuclear) C*-
algebra is connective if it embeds in the C*-algebra [[,, B,/ ,, Bn where B,, = Cy((0,1], M, (C))
is the C*-algebra of continuous functions from [0, 1] to n X n complex matrices vanishing at 0.
A countable discrete group G is called connective if the kernel I(G) of the trivial representation
L : C*(G) — C is a connective C*-algebra. If G is connective and amenable, then K°(C*(Q)) =
Z[) @ [[I(G),K]]. This implies that the nontrivial part of the K-homology of C*(G) can be
realized as homotopy classes of asymptotic representations {m; : G — U(00) }4e[1,00) With t —
m¢(g) continuous, g € G, and limy_, ||7:(9192) — T (91)me(g2)]] = 0, 91,92 € G. Large classes of
amenable connective groups were exhibited in [6], [7], [8].

Connectivity of a separable nuclear C*-algebra A can be characterized solely in terms of
its primitive spectrum Prim(A). It was shown in [6] that the existence of a nonempty compact
open subset of Prim(A) is an obstruction to connectivity. By a remarkable result of J. Gabe
[11] this is the only obstruction.

A crystallographic group of dimension k > 1 is a discrete co-compact subgroup of the
isometry group Iso(R¥) = R¥ x O(k) of the Euclidean space R¥. In his renowned work on
Hilbert’s 18th Problem, Bieberbach proved that any crystallographic group G of dimension k
fits into an exact sequence

(1) 1 N G D 1

where N 2 Z* is a maximally abelian subgroup of G, called the lattice of G, and D is a finite
group called the holonomy group. Moreover, for each fixed k, there are only finitely many
isomorphism classes of crystallographic groups of dimension k& and two crystallographic groups
are isomorphic if and only if they are conjugate in the group R¥ x GLi(R), [5]. A torsion free
crystallographic group is called a Bieberbach group. The orbit space R*/G of a Bieberbach
group is a k-dimensional closed flat Riemannian manifold M with holonomy group isomorphic
to D.
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Which Bieberbach groups are connective? It was shown in [6] that while any Bieberbach
group with cyclic holonomy is connective [6, Thm. 3.8], the celebrated Hantzsche-Wendt group
[13] (denoted here by I') is not connective [6, Cor. 3.2]. T"is generated by two elements z and y
subject to two relations: :U2ya:2 =1, y2$y2 = z, and fits into an exact sequence

1 73 r Z]2®7)2 — 1.

The non-connectivity of I' was proved by showing that r \ {¢} is a compact-open subset of the
unitary spectrum [. There are exactly 10 non-isomorphic 3-dimensional Bieberbach groups.
The Hantzsche-Wendt group I' is singled out among these groups by the property that it has
finite first homology group, in fact, isomorphic to Z/4 @ Z/4 [24]. The first homology group
H,(G,Z) of a group G can be computed as H,(G,Z) = G/[G, G| where |G, G] is the commutator
subgroup of G. In view of the lack of connectivity of the Hantzsche-Wendt group, it is natural
to ask to what extent connectivity of a Bieberbach group relates to its homology. Independently
of us, Szczepanski asks the same question at the end of his paper [22]. As a key step in our
study of connectivity of Bieberbach groups we prove the following:

Theorem 1.1. A Bieberbach group with finite first homology group is not connective.

By work of Calabi [4] (see the discussion in [21], [24]) any Bieberbach group G with infinite
first homology group can be written as an iterated semidirect product
(2) GE(HXZ)x---)XZ

where either H is a Bieberbach group such that H;(H,Z) is finite, or H = {1}, in which case G
is a poly-Z group. We use the Calabi decomposition of G in conjunction with Theorem 1.1 to
prove the following;:

Theorem 1.2. Let G be a Bieberbach group. The following assertions are equivalent.

(i) G is connective.
(i)
(iii) G is a poly-Z group.

(iv) CA;'\ {t} has no nonempty compact open subsets.

Every nontrivial subgroup of G has a nontrivial center.

Auslander and Kuranishi [1] showed that any finite group is the holonomy group of some
torsion free Bieberbach group. In general one cannot determine if a Bieberbach group is con-
nective by just looking at its holonomy group. Nevertheless, by using results of [14] and [17] one
can derive the following:

Corollary 1.3. Let D be a finite group.

(a) If D is not solvable, then any Bieberbach group with holonomy D is not connective.

(b) If D is solvable with all Sylow subgroups cyclic (solvability is automatic in this case),
then any Bieberbach group with holonomy D is connective.

(¢) If D is solvable and has a non-cyclic Sylow subgroup, then there are Bieberbach groups
G1 connective and Go not connective both with holonomy group D.
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A discrete group G is called locally indicable if every finitely generated non-trivial subgroup
L of G has a quotient isomorphic to Z or equivalently H;(L,Z) is infinite. The group G is called
diffuse if every non-empty finite subset A of G has an element a € A such that for any g € G,
either ga or g~ta is not in A, [2]. Linnell and Witte Morris [18] proved that an amenable group
is diffuse if and only if is locally indicable. It follows then by Theorem 1.2 that a Bieberbach
group G is connective < G is locally indicable < G is diffuse.

2. BIEBERBACH GROUPS WITH TRIVIAL CENTER

The purpose of this section is to prove Theorem 1.1.

Hiller and Sah [14] showed that a finite group D is primitive, meaning that it can be
realized as the holonomy group of a Bieberbach group with finite first homology group if and
only if no cyclic Sylow subgroup of D admits a normal complement. For instance cyclic groups
(including the trivial group) are not primitive but (Z/p)™ is primitive if m > 2 and p is prime.
Recall that as a consequence of Burnside’s normal p-complement theorem, if p is the smallest
prime that divides the order of a finite group, then any cyclic p-Sylow subgroup admits a normal
complement [20, p.138, 6.2.12]. Therefore, if all Sylow subgroups of a finite group D are cyclic,
then D is not primitive.

For a Bieberbach group G the following conditions are equivalent, see [14, Prop. 1.4]:

(i) H1(G,Z) is a finite group.
(ii) G has trivial center, Z(G) = {0}.
(iii) The action of G by conjugation on its lattice subgroup N has exactly one fixed point,
N = {0}.
For the sake of completeness we revisit the proof of these equivalences [cf. [14]]. The rank of a
discrete abelian group L, denoted rank(L), is the dimension of the R-vector space L ®y R.

Proposition 2.1. If G is a Bieberbach group, then rank(H;(G,Z)) = rank(Z(G)) = rank(N%).

Proof. One observes that Z(G) = N© since N is maximal abelian and G acts on N by conjuga-
tion. By[3, Cor. 6.4] the exact sequence (1) induces an exact sequence

Ho(D,Z) — Hy(N,2)P —— H{(G,Z) — Hy(D,Z) — 0.

The action of D on Hi(N,Z) = N/[N,N] = N is induced by the conjugation action of G on N
so that Hy(N,Z)P = NY. Since D is a finite group, so are the groups Hy(D,Z) and Ho(D,Z).
It follows that rank(H;(G,Z)) = rank(N%). O

G acts on N by conjugation: h + ghg™', h € N. Since N is abelian, this action descends
to an action of D on N = ZF by automorphisms. We denote the corresponding representation
by 0 : D — GLi(Z) = Aut(Z*). The map @ is injective since N is maximal abelian.

By duality G acts on N Tk by automorphisms: g-x = x(¢~'-g). This action descends
to an action of D = G/N which is the dual of the action 6 discussed above and is denoted by
0* : D — Aut(T*). Let us consider the fixed points of these actions and observe that (Z*)? is a
subgroup of Z* and that (T*)” is a closed subgroup of T and hence it must a be Lie subgroup

by Cartan’s theorem. If I' is the Hantzsche-Wendt group, the corresponding representation
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0:D=7/2®7/2 — GL3(Z) has the property that (Z3)? = {0} while (T®)” consists of eight
points (£1,+1,+1), see for example [6]. The finiteness of (T?)” is not coincidental. In fact
we are going to see as a consequence of Proposition 2.2 that the conditions (i), (i7), (¢i7) from
above are equivalent to the following condition which plays a crucial role in the proof of our
main result.

(iv) The dual action of G on N has finitely many fixed points i.e. N€ is a finite group.

The rank of a Lie group K, denoted rank(K), is the dimension of any one of its Cartan
subgroups. If K is abelian, then rank(K) coincides with the dimension of K.

Proposition 2.2. If D C GLi(Z) is a finite group, then rank(ZF)P = rank(T*)P. Therefore,
if G is a Bieberbach group, then rank(H1(G,Z)) = rank(Z(G)) = rank(N%) = rank(N®).

Proof. Write 6 : D — GLy(Z) for the representation defined by the inclusion map from the
statement. For s € D, 6(s) is given by an k x k matrix A(s) with integer coefficients. Thus D
acts on Z* by v A(s)v. The dual action maps a character y : Z*¥ — T to y(A(s™!) ).

By definition H := (Z¥)P = {v € ZF : A(s)v = v, s € D}. Since H is a subgroup of Z¥, it
follows that H = Z™ for some 0 < n < /k\

Similarly, K := (T*)P? = {x € ZF : x(A(s7')v) = x(v), s € D,v € Z*} is a compact
abelian Lie subgroup of T*. This implies that there exist a finite subgroup F of T and a
connected closed subgroup T of T* isomorphic to T™ for some 0 < m < k, such that FN'T = {1}
and K = F'T. Since rank(K) = rank(T) = m and rank(H) = n, our task is to prove that n = m.
Let W = {a ¢ R¥ : ¥ ¢ T t € R}. In other words, W is the Lie algebra of T and its rank
is m as well. If y is the character of Z* corresponding to €*™2, with a € W and t € R, the
condition x(A(s7!)v) = x(v) is equivalent to

(3) 627ri(ta,v> _ 627rz'<1Ea,A(s_1)v> _ 62m’<A(s_1)Tta,v>’ v e Zk,

and therefore to A(s™1)Tta —ta € Z*, for all s € D. Since ZF is a discrete space, it follows that
(4) AsHTa—a=0

for all s € D and a € W. Conversely, if a € R¥ satisfies (4) for all s € D, then equation (3)
shows that a € W. This allows us to conclude that

W={acR: A(sHTa=a, se D} ={acR": A(s)Ta=a, s € D}.

On the other hand, since A(s) are integral matrices acting on free abelian groups, one verifies
immediately using Gaussian elimination (or the exact sequence for Tory(-,R)) that

RP=2H@zR={veR: As)v—v=0,s€c D}

In view of the previous discussion, we reduced the proof to showing that the vector spaces W
and H ®7 R have the same dimension.

Let V be a finite dimensional vector space over a field whose characteristic does not divide
|D| and let 8 : D — GL(V') be a finite group representation. The subspace of invariant vectors
is denoted by VP = {v e V :0(s)v =v,s € D}. If T : V — V is a linear map, we denote
by T% : V* — V* its dual map. Since the second dual T** identifies naturally with 7', we can
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identify V' with (V**)P. We claim that V? and (V*)P have the same dimension. In view of the
remark above it suffices to show that dim(V?) < dim((V*)?). Choose a linear map F : V — V
such that E(V) = VP and E? = E. Then P : V — V defined by

1 _
(5) P = 0] > ot E6(t)

teD
satisfies P(V) = E(V) = VP and
0(s)P = PO(s) = P = P?, s € D.

Indeed, 6(s)P = PO(s) is immediate from (5). To check that P is a projection onto V" one
notes that Pw = w for w € VP since Fw = w, and that P(V) C VP since E(V) C VP and
0(t)w = w for w € VL. This last equality also explains why 6(s)P = P.

Passing to duals we obtain

0(s)*P* = P*0(s)* = P* = (P*)%, s € D.

This shows that P*(V*) C (V*)P. By elementary linear algebra, rank(P) = rank(P*) and hence
dim(VP) < dim((V*)P) < dim((V**)P) = dim(VP).
Applying all this to 6 : D — GLg(R), we see that the vector spaces

HozR={veR:A(s)v=v,se D} and W={acR': A(s)Ta=a, se D}

have the same dimension. For the second part of the statement, we invoke Proposition 2.1. [

We need some elements of representation theory and use the book of Kaniuth and Taylor
[15] as a basic reference. Let G be a Bieberbach group as in (1). The unitary dual of G consists
of equivalence classes of irreducible unitary representations of G and is denoted by G. The
term character is reserved for one dimensional representations of a group. The stabilizer of a
character y of N is the subgroup of G defined by Gy, = {g € G: x(¢7' - g) = x(-)}. It is clear
that N C G, and that there is a bijection from G/Gy onto the orbit of x. Mackey’s theory
shows that each irreducible representation m € G is supported by the orbit of some character
X € N , in the sense that the restriction of 7 to N is unitarily equivalent to some multiple of the
direct sum of the characters in the orbit of x.

mly ~me- P xlg7'-9)
9€G/Gx

where g runs through a set of coset representatives.

For each x € N , denote by é;(X) the subset of C/}; consisting of classes of irreducible

representations o of G, such that the restriction of o to N is unitarily equivalent to a multiple
of x. Let  C N be a subset which intersects each orbit of G exactly once. We need the following
basic result due to Mackey, see [15, Thm. 4.28]

Theorem 2.3. G = {indgx(a): o€ @(X), X € Q} .
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The characters of G factor uniquely through G/[G,G] and hence they can be identified
with the characters of Hy(G,Z). Thus, a Bieberbach group with trivial center has finitely many
characters.

Theorem 2.4. Let G be a Bieberbach group with trivial center. If w is a character of G, then
G\ {w} is a compact open subset of G.

Proof. The proof for the Hantzsche-Wendt group T' from [6], with w the trivial representation,
uses an explicit calculation of the irreducible representations of I' which is not available for an
abstract Bieberbach group. Nevertheless, we can borrow some ideas from there and adapt them
to the general situation.

Points are closed in G so that G \ {w} is open [9]. Since G is compact and satisfies the
second axiom of countability [9], we only need to show that G \ {w} is sequentially compact, [16,
p. 138]. Thus it suffices to show that any sequence (m,), of points in G \ {w} which converges
to w has a subsequence which is convergent to a point in G\ {w}. In the terminology of [6] this
means that w is a shielded point in G.

Let () be a sequence in G\ {w} which converges to w. Since dim(m,) < |D|, after passing
to a subsequence, we may arrange that all the representations m, are of the same dimension

m. By Theorem 2.3 there is a sequence (xn), in € such that, up to unitary equivalence,

Ty = indgx (on) with oy, € Gy, G ) . For each character x of N, its stabilizer G is a subgroup

of G that contains N. Since D = G/N is a finite group, it follows that the set of stabilizers
{Gy : x € Q} is finite. Thus, after passing to a subsequence of (7,),, we may further assume
that all stabilizers groups G,,, are equal to the same subgroup L with N C L C G.
We are going to show that if L = G, then (), cannot converge to w. Indeed, suppose for
a moment that L = G. Then each x,, is left invariant by the action of G on N so that Xn € NG,
Since N¢ = Z(G) = {0} by assumption, it follows by Proposition 2.2 that the group N¢
is finite. Therefore, after passing to a subsequence of (), we may further assume that all y,,

are equal to the same character x € NC. Then Ty =0y € é;(X)

— GO and hence Tn|lN =m-x
for all n > 1 (recall that dim(7,) = m). Since m, converges to w and m,|xy = m - x, it follows
that wl, is weakly contained in x. This can happen only if x = w|n.

One can also argue that y = w|y as follows. Suppose x # w|y so that x(h) —w(h) # 0 for
some h € N. Then a = x(h)e—h is an element of C*(G) with a € (,,~; Ker(m,) but a ¢ Ker(w)
since w(a) = x(h) —w(h) # 0. This contradicts the assumption that (7, ), converges to w.

Every character of G factors through the finite group G/[G, G]. Thus there are only finitely
many characters and their images are finite groups. Therefore there is a finite index subgroup
K of G contained in N on which every character of G is trivial. Since 7|y =m-x =m - w|y,
it follows that m,|x = m - ¢|x and hence each m,, factors through the homomorphism G — G/K
whose image is finite. Since the unitary dual of G/K is finite, there are only ﬁmtely many
distinct terms in the sequence (7,), (when viewed as elements of G) The points of G are closed
and therefore (m,), can converge to w only if the sequence is eventually constant and equal to
w. This contradicts the assumption that m, € G \ {w} for all n > 1.
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Thus it suffices to deal with the case when all the stabilizers G, are equal to a fixed
subgroup L # G. Let r = [G : L] > 1 and choose elements ey, ...,e, in G such that e; is the
neutral element and G is the disjoint union of the cosets e;L. Since all of (m,), and hence all
of (o), are of equal dimension, each o, can be realized on a fixed Hilbert space H, = C,
independently of n. Then 7, =ind%(0,) : G — L(H,, ) acts on

Hy, ={€:G — H,: &(gh) = on(h)"'¢(g), g€ G, h € L},

by m.(9)¢ = &£(g7!-). Each element ¢ € H,, is completely determined on the coset e;L by its
value &(e;) since &(e;h) = o, (h)~1¢(e;) for h € L. Consider the Hilbert space H, = H®". For
each n, let V,, : H; — H, be the unitary operator defined by

Va(§) = (&(en), -&(er))-

Its adjoint V,* maps a vector (&1, ...,&,) € HP" to a function € : G — H, such that the restriction
of £ to the coset e; L is given by &(e;h) = o, (h)~1&; for h € L. We will replace m,, by the unitary
representation p, = V,m,(-)V,F. Let us observe that p,(e,) maps (£1,0,...,0) to (0,...,0,&;) for
& € H,. Indeed, V,*(£1,0,...,0) = & where ¢ is supported on L and £(h) = o,(h)"*&. Then
mn(er)€ = &(e 1) is supported entirely on the coset e,.L and hence V,m,(e,)¢ = (0,...,0,&1).
Let E: HP™ — HZ®" be the orthogonal projection of H, onto its first summand, E(1,...&.) =
(&1,0,...,0). Since py(er)(&1,0,...,0) = (0, ...,0,&1), it follows that Ep,(e,)E =0 for all n > 1.
Since U(H) is compact and the group G is finitely presented (as an extension of finitely
presented groups), it follows that (p,), has a subsequence (py,); which converges in the point-
norm topology to a unitary representation p : G — U(H;). Thus lim;_ ||pn,(9) — p(g9)]| = 0
for all g € G. It follows that Ep(e,)E = 0. This implies that p cannot be a multiple of w since
in that case p would commute with F and we would have ||Ep(e,)E| = |w(er)E| = |w(e,)| = 1.
Decompose p into irreducible representations of G. At least one of those, denoted by , must
be different from w. Since lim;_so [|pn,(9) — p(g)]| = 0 for all g € G, it follows that (py,); and
hence (7, ); converges to v € G \ {w}. O

Proof of Theorem 1.1. We have seen in the proof of Theorem 2.4 (applied for the
trivial representation ¢) that ¢ is a shielded point in G. By [6, Cor. 2.11] if G is any countable
amenable group such that ¢ is a shielded point in @, then G is not connective.

One may also observe that since virtually abelian groups are type I, the primitive spectrum
of I(G) identifies with G \ {+} and hence it is compact. Therefore I(G) is not connective by [6,
Prop. 2.7] as I(G) ® O2 contains a nonzero projection. Here Oy is the Cuntz algebra. O

3. CONNECTIVE BIEBERBACH GROUPS

In this section we characterize the connective Bieberbach groups. Recall that a poly-Z
(or strongly polycyclic) group G is a group which admits a finite increasing series of subgroups
1=GyC Gy C -+ C Gy = G such that G; is a normal subgroup of G;+1 and G;41/G; = Z for
all 0 < i <k — 1. For each 7 we have a split extension

l — G — Gip1 —> L —1,

so that G, is isomorphic to a semidirect product G; X, Z for some a € Aut(G;).
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Lemma 3.1 (Lemma 3.5, [6]). Let m > 1 and let G and G’ be countable discrete groups that fit
mnto a short exact sequence:

™

1 G G

Z/mZ ——-1 .
If G’ is connective and the homomorphism 7 factors through Z, then G is also connective.

Corollary 3.2. Let G be a discrete countable group. Let o € Aut(G) be such that o™ € Inn(G)
for some m > 1. If G is connective, then the semidirect product G X, Z is also connective.

Proof. Since B := o™ is a inner automorphism, G xg Z = G x Z. It follows that G xg Z is
connective since by [8, Cor. 3.3] direct products of discrete amenable connective groups are
connective. The group monomorphism G xg Z — G x4 Z, (x,k) — (z,mk), x € G, k € Z,
induces an exact sequence of groups

1—>GX5Z—>G>QQZ—W>Z/mZ—>1.

where 7 is the composition of the quotient map Z — Z/mZ with G %, Z — Z. We conclude
that G X4 Z is connective by applying Lemma 3.1. O

Proposition 3.3 (Thm. 3.2, [21]). Let G be a Bieberbach group and let o € Aut(G). Then
the semidirect product G X Z is a Bieberbach group if and only if there exists m > 1 such that
a™ e Inn(G).

Calabi (see [4], [21], [24]) introduced a reduction method in the study of flat manifolds
which highlights the central role of the manifolds with the first Betti number zero. In the context
of Bieberbach groups this translates as follows. If G is a k-dimensional Bieberbach group then
H,(G,Z) = G/|G,(] is a finitely generated abelian group. Thus if H;(G,Z) is not a finite
group, then there is a surjective map G — Z. Its kernel G’ is a (k — 1)-dimensional Bieberbach
group [21, Prop. 3.1] and hence G admits a semidirect product decomposition G = G’ x1, Z. If
H{(G',Z) is not finite, one can repeat the procedure and “peel off” another copy of Z, etc.

Proof of Theorem 1.2

(i) = (ii) Suppose that G is a connective Bieberbach group. Then all its subgroups are
connective, since connectivity passes to subgroups [6]. It follows then by Theorem 1.1 and
Proposition 2.1 that every nontrivial subgroup of G has a nontrivial center.

(ii) < (iii) A Bieberbach group G has the property that every nontrivial subgroup of G
has a nontrivial center if and only if it is poly-Z by [10, Thm. 23].

Alternatively, to argue that (ii) = (iii), one can invoke Calabi’s method as explained above
and write G as an iterated semidirect product

G=Z(HXZ)x---)XZ

where either H is a Bieberbach group with finite first homology group (trivial center) or H = {1}.
By assumption (ii) we see that H must be trivial and hence G is poly-Z.

(iii) = (i) Assume that G is a poly-Z Bieberbach group of dimension &£ > 1. This means
that G is constructed iteratively by starting with Gy = Z, and then constructing Go, ..., G, = G,
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where Gi11 = G; X, Z for some «; € Aut(G;). One must have o € Inn(G;) for some m; > 1,
as a consequence of Proposition 3.3. Therefore if G; is connective, then G;1 is also connective.
This implication was previously pointed out in [22] under the stronger assumption that «; is a
finite order automorphism of G;. Since G; = Z is connective, we use Corollary 3.2 to prove by
induction that each G; is connective and hence so is G.

(i) & (iv) Since G is a virtually abelian group, C*(G) is a type I C*-algebra. Thus
Prim(I(G)) = I/(C?) = G\ {¢}, sce [9]. The desired equivalence follows now from the char-
acterization of separable nuclear connective C*-algebras in terms of their primitive spectra as
explained in the introduction, see [6] and [11]. O

Proof of Corollary 1.3

(a) A connective Bieberbach group is poly-Z by Theorem 1.2 and hence its quotient D
must be solvable.

(b) Let G be the class of all finite groups whose Sylow subgroups are all cyclic. If D is
in G, so are the normal subgroups and the quotients of D. We prove by induction on k that
a k-dimensional Bieberbach group with holonomy in G is poly-Z and then apply Theorem 1.2
to conclude that G is connective. If £k = 1 then G = Z and we are done. Suppose now that
k > 1. By assumption, D belongs to the class G, and hence it is not primitive, as explained
in Section 2. Therefore Hi(G,Z) is not finite and as seen earlier in the proof of Theorem 1.2,
G = G' x Z where G’ is a Bieberbach group of rank k — 1. The following diagram with exact
rows and columns

0 0 0
0——=NNG G’ Dy 0
0 N G D 0

0—>N/NNG —>7 —>D/Dy —=0

0 0 0

shows that the quotient of G’ by N NG’ = Z*~1, denoted by Dy, is isomorphic to a normal
subgroup of D. The finite group Dy is not necessarily the holonomy group of G’ since N N G’
is not always maximal abelian in G’. However, by [23, Thm. 3.1], the centralizer of N N G’ in
G’ is a maximal abelian normal subgroup N’ = ZF~1 of G'. Tt follows that the holonomy group
of G' is D' 2 G'/N’ and moreover D’ is isomorphic to a quotient of Dy because N NG’ C N'.
Since D is in G, it follows that D’ belongs to G, as explained at the beginning of the proof. By
the induction hypothesis, G’ is poly-Z and therefore so is G, since G = G’ x Z. O
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(c) We have seen, as a consequence of Theorem 1.2, that a Bieberbach group G is con-
nective < G is locally indicable < G is diffuse. By [17, Thm. 3.5 (iii)], if a finite group D is
solvable and has a non-cyclic Sylow group, then D can be realized as the holonomy of both a
diffuse group G1 and a non-diffuse group Go. O

Remark 3.4. In view of the previous discussion, one can also formally derive both parts (a)
and (b) of Corollary 1.3 from Theorem 1.2 and [17, Thm. 3.5 (i), (ii)]. Nevertheless, we included
a direct proof, as a mean to review Calabi’s method on which the main result of our paper is
based.

In [12], the authors find all Bieberbach groups up to dimension six that are non-diffuse
and hence not connective. There are 38,746 six-dimensional Bieberbach groups, out of which
19,256 (almost a half) are not connective.

There are no general classification results for Bieberbach groups. To give an idea of the
complexity of this question, let us mention that the number of non-isomorphic k-dimensional
Bieberbach groups with holonomy Z/2 @ Z/2 and finite first homology group grows as least as
fast as Ck® for some C' > 0, [19].
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