AlP

Publishing

Recent Developments in the General Atomic and Molecular Electronic Structure System

Giuseppe M. J. Barca!, Colleen Bertoni?, Laura Carrington?, Dipayan Datta?, Nuwan
DeSilva¥, J. Emiliano Deustua®, Dmitri G. Fedorov’, Jeffrey R. Gour®, Anastasia O. Gunina*,
Emilie Guidez®, Taylor Harville*, Stephan Irle!®, Joe Ivanic!!, Karol Kowalski'?, Sarom S.
Leang?, Hui Li'3, Wei Li'4, Jesse J. Lutz!5, Ilias Magoulas®, Joani Mato?, Vladimir
Mironov', Hiroya Nakata!’, Buu Q. Pham*, Piotr Piecuch®, David Poole*, Spencer R. Pruitt?,
Alistair P. Rendell!, Luke B. Roskop!3, Klaus Ruedenberg?, Tosaporn Sattasathuchana®,
Michael W. Schmidt4, Jun Shen®, Lyudmila Slipchenko!®, Masha Sosonkina?’, Vaibhav
Sundriyal?, Ananta Tiwari®, Jorge L. Galvez Vallejo*, Bryce Westheimer*, Marta Wtoch?!,
Peng Xu?, Federico Zahariev4, and Mark S. Gordon*

1. Research School of Computer Science, Australian National University, Canberra, ACT 2601,
Australia

2. Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439,
USA

3. 12121 Scripps Summit Dr. Ste. 130, San Diego, CA 92131, USA

4. Department of Chemistry and Ames Laboratory, lowa State University, Ames, 1A 50011
USA

5. Department of Physical and Biological Sciences, Western New England University,
Springfield, Massachusetts 01119 USA

6. Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
7. Research Center for Computational Design of Advanced Functional Materials (CD-FMat),
National Institute of Advanced Industrial Science and Technology (AIST)
Umezono 1-1-1, Tsukuba, 305-8568, Japan

8. Microsoft, 15590 NE 31st St, Redmond, WA 98052, USA

9. Department of Chemistry, University of Colorado Denver, Denver, Colorado, 80217, USA

10. Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37830 USA

11. Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer
Research, Frederick, Maryland 21702, USA

12. William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific
Northwest National Laboratory,K8-91, P.O. Box 999, Richland, Washington 99352, USA

13. Department of Chemistry, University of Nebraska, Lincoln, NE 68588

14. School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry
of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing
University, Nanjing, 210023, P. R. China

15. Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico

1

AlP

Publishing

87185, USA

16. Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1/3,
Moscow, 119991, Russian Federation

17. Kyocera Corporation, Research Institute for Advanced Materials and Devices, 3-5-3
Hikaridai Seika-cho Souraku-gun Kyoto 619-0237, Japan

18. Cray Inc. a Hewlett Packard Enterprise Company, 2131 Lindau Ln #1000, Bloomington,
MN 55425 USA

19. Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA

20. Department of Computational Modeling and Simulation Engineering, Old Dominion
University, Norfolk, VA 23529 USA

21. 530 Charlesina Dr, Rochester, Michigan 48306, USA

Corresponding Author: Mark S. Gordon: mark@si.msg.chem.iastate.edu

Abstract.

A discussion of many of the recently implemented features of GAMESS (General Atomic and
Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library
associated with GAMESS) is presented. These features include fragmentation methods like
the fragment molecular orbital, effective fragment potential and effective fragment molecular
orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock and resolution of the
identity second order perturbation theory. Many new coupled cluster theory methods have
been implemented in GAMESS, as have multiple levels of density functional/tight binding
theory. The role of accelerators, especially graphical processing units, is discussed in the
context of the new features of LibCChem, as is the associated problem of power consumption
as the power of computers increases dramatically. The process by which a complex program
suite like GAMESS is maintained and developed is considered. Future developments are

briefly summarized.

I. Overview/Background

GAMESS (General Atomic and Molecular Electronic Structure System) was originally
developed by Dupuis and co-workers in the late 1970s under the auspices of the National
Resource for Computational Chemistry (NRCC), an organization that was sponsored by the
National Science Foundation. GAMESS is a multi-functional electronic structure program
with users in more than 100 countries and is run on nearly every available architecture,
ranging from MacOS and Windows to the pre-exascale system Summit at Oak Ridge
National Laboratory. GAMESS is a “cousin” of the HONDO program which continues to be

AlP

Publishing

developed by Dupuis. GAMESS is distributed at no cost with a very simple license to prevent
unauthorized redistribution. GAMESS itself is primarily written in Fortran77, with an
increasing number of functionalities written in Fortran90. Associated with GAMESS is an
object-oriented C++ library called LibCChem, initiated in 2010, that contains an increasing
number of quantum chemistry functionalities and that is written for both CPU and GPU

(graphical processing unit) architectures.

As discussed in two previous reviews in 1993! and 2005> GAMESS has essentially all of the
commonly used electronic structure methods, including Hartree-Fock (HF) self-consistent
field (SCF), density functional theory (DFT) with many of the popular functionals, second
order perturbation theory (MP2), coupled cluster (CC) theory, including CCSD(T) and novel
methods such as CR-CC(2,3) that are capable of correctly breaking single bonds, equations-
of-motion (EOM) coupled cluster theory, time-dependent density functional theory (TDDFT),
configuration interaction (CI) up to and including Full CI, complete active space (CAS) SCF,
multi-reference (MR) MP2, and multi-reference CI (MRCI). Also available in GAMESS is
the effective fragment potential (EFP) method, a sophisticated model potential with no fitted
parameters that is applicable to any molecular system. Other functionalities include fully
analytic second energy derivatives (Hessians) for closed shell HF and CASSCEF, fully analytic
energy first derivatives (gradients), and therefore semi-numeric Hessians, for HF, DFT, MP2,
CI, and EFP, thereby enabling the prediction of vibrational frequencies and IR and Raman
spectra. Related to vibrational spectroscopy is the vibrational SCF suite of methods
developed by Gerber and co-workers®. GAMESS also has several options for reaction path
following and for performing classical trajectories using any of the available electronic
structure methods. Solvent effects can be incorporated explicitly using the EFP method or
implicitly using the polarizable continuum model (PCM?), COSMO?, or the surface volume
polarization model (SVP)®. Surface science can be studied using the surface integrated

molecular orbital molecular mechanics (SIMOMM)’ method.

If one desires very high accuracy in electronic structure calculations, there is the CEEIS
(correlation energy extrapolation by intrinsic scaling)® method developed by Ruedenberg and

Bytautas that provides essentially the exact Full CI energy at a fraction of the cost.

The ability of GAMESS to treat excited electronic states, photochemistry, and related
phenomena such as surface crossings and conical intersections has made significant advances
with the introduction of spin-flip methods’ for the energy and the analytic gradient!®,

including the development of a general approach to spin-correct spin-flip'!.

An exciting new feature of GAMESS is the quasiatomic orbital (QUAO) analysis developed

AlP

Publishing

by Ruedenberg and colleagues'?. This analysis, which continues to be developed, has been

applied to several interesting problems in chemistry.

Since the early 1990s, a major effort related to the development of GAMESS has been to
maximize the scalability (parallelism) of the code. The ability of GAMESS to explore
potential energy surfaces accurately and efficiently is much improved with the development
of several GAMESS functionalities that can take advantage of combining MPI (message
passing interface) and OpenMP into a hybrid approach that takes optimal advantage of both
distributed computing (MPI) and shared memory computing (OpenMP). This combination
has now been applied to HF, DFT and the resolution of the identity (RI) version of MP2.

In the past several years, this stride toward high performance computational chemistry has
increasingly taken center stage'*!8. An important component of this endeavor has been to
make optimal use of accelerators. In the remainder of this review, the primary focus is on new
features that have been implemented since 2005 and, in particular the advances in the
development of highly scalable code, with the aim of achieving the ability to make use of the

anticipated exascale computers, where exascale may be defined as 10'® flops or a

gigagigaflop.

An important component of the development of highly scalable electronic structure software
is the innovation of reliable fragmentation methods. In GAMESS this specifically means the
fragment molecular orbital (FMO)'", the effective fragment potential (EFP)?, and the
effective fragment molecular orbital (EFMO)?! methods. Together, these methods facilitate
the capability to address problems that contain tens of thousands of atoms with an accuracy
that is equivalent to that of correlated electronic structure methods. Another type of
fragmentation subdivides wave functions, rather than physical atoms or groups of atoms. Two
such methods are ORMAS?? (occupation restricted multiple active spaces) and CIM (cluster
in molecule)?’. THE ORMAS method has been enhanced by the addition of dynamic
correlation via second order perturbation theory (ORMAS-PT2)?*, thereby enabling accurate
studies of excited electronic states. The ORMAS method also enabled the development,
mentioned above, of a general spin-correct spin flip method. The CIM method, developed by
the Piecuch group, has been combined with the FMO method? to enable fast and accurate

coupled cluster calculations.

A second key component of the stride toward exascale computing is the recognition that
accelerators/co-processors, such as GPUs will play an important role in the future of high
performance computational chemistry. In the last decade, this recognition led to the
development of the C++ CPU/GPU library LibCChem that is attached to GAMESS and has

AlP

Publishing

an expanding array of functionalities. These and other new GAMESS developments will be

discussed in the following pages.

II. Fragmentation Methods.

The development of fragmentation methods in GAMESS has played a central role in the
advance toward massively parallel computing capability, since each fragment can be
computed essentially independently of every other fragment. This means that the
computational bottleneck reduces from that of the entire molecular system to that of the
largest fragment. In the following, several fragmentation methods that are available in
GAMESS are discussed.

II.A Fragment Molecular Orbital Theory

The FMO method?® was first released in GAMESS in 2004%’. FMO is a QM approach
capable of evaluating properties of large molecular systems2®-; the largest system computed
with FMO2/DFTB in GAMESS has about 1.2 million atoms®'. To enable this large-scale
molecular dynamics (MD) simulation, considerable efforts were invested in improving the
MD engine in GAMESS.

FMO in GAMESS is efficiently parallelized using the multi-layer hierarchical parallelization
scheme, generalized distributed group interface (GDDI)?’ possibly in combination with
OpenMP?2. Good parallel efficiency was reported for FMO simulations on supercomputers
using GDDI**. GDDI can also be used for parallelization of non-FMO simulations provided
that they have some granularity in terms of tasks, for instance, different replicas in replica
exchange MD**%_ Various properties can be computed with FMO in GAMESS, summarized
in Table 1.

FMO can be combined with many but not all QM methods available in GAMESS. The QM
methods interfaced with FMO are listed in Table 2. In order to compute the analytic gradient
for FMO accurately, it is necessary to evaluate orbital responses (derivatives of molecular
orbital coefficients with respect to nuclear coordinates) by solving coupled-perturbed
Hartree-Fock (CPHF) equations. This can be done efficiently using the self-consistent Z-
vector method (SCZV)*¢, which has to be formulated for each wave function separately, and
not all QM methods can be used with SCZV at present. Analytic second derivatives can be
evaluated in FMO by solving a different set of CPHF equations. Among all methods, HF and

DFT have been most extensively extended to treat open-shell systems.

The FMO method has also been interfaced with the cluster-in-molecule (CIM) method

AlP

Publishing

developed by Piecuch and co-workers, discussed in Section IIIB. CIM is based on an orbital
partitioning, rather than a physical partitioning of atoms, using localized molecular orbitals.
The main CIM bottleneck is the need to localize the orbitals of the entire system, no matter
how large. In analogy with the FMO method itself, the FMO/CIM method?®’ reduces the

bottleneck to localization of the orbitals of the largest fragment.

Table 1. Properties that can be computed with FMO in GAMESS

Property Reference
harmonic frequencies, IR and Raman spectra 37
electronic excitations 38
electron density and molecular electrostatic potential on a grid 39
MOs, their energies, and density of states 40
minimum energy crossing point of energy surfaces 4
interaction energy analysis for explicit solvent 42
pair interaction energy decomposition analysis for implicit solvent | +*
fluctuation analysis of pair interactions in MD M

Table T2. The highest analytic derivative of the energy with respect to nuclear coordinates
for each QM method interfaced with FMO in GAMESS (0 = energy, 1 = gradient,

2=Hessian).?

restricted restricted | unrestricted | multi-reference
closed shell | open shell

DFTB 24

HF 2 46 2 47 2 48 1 49

CIS 00

MP2 1 51 1 47 0 52

CC 0 53 0 54

DFT 2 2

TDDFT |17 038

PCMb 2 37 1 52 1 52

@It is possible to combine several methods in the multilayer approach. >” DFTB=density
functional tight binding; CIS=CI singles; CC=coupled cluster.

® Polarizable continuum model (PCM) can be combined with other QM methods; it comes
with its own limitations in the current implementation as shown in the Table; for example, the
highest derivative for RMP2/PCM is min (1,2)=1.

I1.B Effective Fragment Potential

The effective fragment potential (EFP) method is an ab initio force field designed to model

intermolecular interactions accurately and efficiently. In EFP, parameters for each individual
6

AlP

Publishing

fragment (monomer) are generated from a single point ab initio calculation, typically at the
HF level, for a chosen geometry (the MAKEFP run described below). In an EFP calculation,
all fragments are internally rigid, i.e., have a fixed geometry. The interaction energy between
EFP fragments (EFP-EFP) and the interaction energy between EFP fragments and a molecule
described by a quantum mechanical (QM) wave function, if one is present, (QM-EFP) are
computed. The QM-EFP approach was implemented in order to handle the situation in which
significant changes occur in the geometry or electronic structure of the QM region while the
“spectator” molecules (EFP fragments) remain internally intact. It is worth noting that there
are differences in the formulation of EFP-EFP and QM-EFP interaction components though

they arise from the same theory.

The original EFP method (called EFP1) was designed to model aqueous solvation only. All
parameters in EFP1 are stored within GAMESS and do not need to be generated from a
MAKEFP calculation. The EFP1-EFP1 and QM-EFP1 interaction energies are composed of
three terms:

E= ECoulomb + Epolarization + Eremainder (1)

The first term, E¢yy10mp-» 1S the Coulomb interaction energy between distributed multipoles of
different fragments located at atom centers and bond midpoints, generated using the
distributed multipole analysis by Stone>®. Epotarization 18 the polarization energy computed
by iteratively converging the induced dipole moments of the localized molecular orbitals
(LMOs) to self-consistency. Eyemainder 18 the remainder interaction energy. This term is fitted
to reproduce the HF* or DFT (B3LYP) interaction energy®® of the water dimer at various
points of the potential energy surface. For the HF derived parameters, the remainder term
includes exchange-repulsion and charge transfer. For the DFT derived remainder term,
electron correlation from the B3LYP functional is also included in the interaction energy.

For QM-EFP1, the Coulombic effect from the distributed multipoles of EFP fragments is
included as a perturbation to the QM one-electron Hamiltonian®. Also contributing to the
QM one-electron Hamiltonian is the polarization between the charge density of the ab initio
region and the induced dipoles of EFP fragments, both of which are converged to self-
consistency>’. The QM-EFP and EFP-EFP polarization are non-separable, because the
induced dipoles of one fragment depend on the static multipoles and induced dipoles of all
other EFP fragments, as well as the charge density of the ab initio region. The remainder term

also affects the one-electron Hamiltonian of the QM part.

QM-EFP1 has been shown to successfully describe aqueous solvent effects for both ground

and excited electronic state properties and processes®>®! 6%, Several types of methods can be

AlP

Publishing

used to describe the QM region, including Hartree-Fock>®, DFT, time-dependent DFT®!,
CIS®2, MCSCF%, MP2, multi-reference MP2%, coupled cluster (CC), and the equation-of-
motion CC (EOM-CC) suite®. QM-EFP1 has been interfaced with the polarizable continuum
model (PCM)*. A recent development for the EFP1 method is the addition of a dispersion
energy term. Both an empirical dispersion term® and the first principles derived dispersion
term’® were implemented, as described below. All EFP1-EFP1 and QM-EFP1 analytic
gradients have been derived and implemented™. Therefore, one can perform geometry

optimizations and molecular dynamics simulations.

Recently, DeSilva, Andreance and Gordon have implemented the Grimme —D3 semi-
empirical dispersion energy correction (including the “Es term”) for EFP1, and for QM-EFP1
systems®’. The resulting method is called EFP1-D3, or QM-EFP1-D3 if there is a QM
component. Since the —D3 correction can be computed with force field speed, the
computational cost of this method is trivial. In addition, the EFP1 and QM-EFP1 analytic
gradients with the —D3 correction have been developed and are available in GAMESS,
thereby enabling geometry optimizations of water clusters and solute-water complexes, with
the dispersion effect included. This method has been applied to a broad range of test
molecules: neutral water clusters, protonated and deprotonated water clusters, and auto-
ionized water clusters (water27’! test set), as well as solute-water binary complexes (all of the
water-containing complexes in the S667? test set). The EFP1-D3 and QM-EFP1-D3 binding
energies of the above test molecules are in good agreement with those obtained using MP2
and CCSD(T) at the complete basis set (CBS) limit. The binding energies are considerably
improved (errors are reduced by roughly half) compared to EFP1 and QM-EFP1 without the
dispersion correction. The EFP1-D3 and QM-EFP1-D3 methods are important for evaluating
molecular properties of large water and water-solute molecular systems, for which the

computational cost can be significant otherwise.

Another dispersion correction to EFP1, derived from first principles, was implemented’’. This
dispersion energy term is identical to the one used in the EFP2 method and is currently
implemented only for EFP-EFP interactions. The parameters needed to compute this energy
term are generated at the RHF/DH(d,p) level of theory, similar to the other parameters in
EFPI1.

Fitting to ab initio potentials for every species of interest is neither desirable nor practical.
The EFP1 method was later extended to EFP2, to model any (closed shell) molecule. In

EFP2, the intermolecular interaction energy is given by:

E= ECoulomb + Epolarization + Edispersion + Eexchange—repulsion + Echarge transfer (2)

AlP

Publishing

Ecoutomp a0d Eppiarization are defined in the same manner as in EFP1. The dispersion
energy Egispersion 18 computed with LMO polarizability tensors. The exchange-repulsion
energy, Eexchange—repulsion» arising from the Pauli repulsion, is derived from a power
expansion of the intermolecular overlap”. The charge transfer energy, Echarge transfer» 1 the
stabilizing interaction between occupied MOs of one fragment and unoccupied MOs of
another’*. Contrary to EFP1, the EFP2 parameters are all generated from first principles
without any empirical fitting. A recent addition to the EFP2-EFP2 interaction energy is the R

7 dispersion interaction.

For QM-EFP2, the Coulomb and polarization terms are the same as in QM-EFP1. The
remainder term of QM-EFP1 is replaced by explicit formulations of the dispersion and
exchange-repulsion terms in QM-EFP2. The effect of exchange-repulsion is accounted for via
the exchange-repulsion Fock contribution to the one-electron part of QM Hamiltonian,
whereas the dispersion energy is added as a post-SCF energy correction. Unlike the Coulomb
and polarization terms, the QM-EFP2 exchange-repulsion term” contains explicit electron
repulsion integrals (ERIs), making it the most expensive term in the QM-EFP2 method. The
QM-EFP2 R dispersion coefficients are computed using EFP LMO dynamic dipole
polarizabilities and the dipole integrals as well as the orbital energies of the QM part’®.
Currently, the QM-EFP2 R’ dispersion component and the charge transfer term are not yet
implemented. Recent developments for QM-EFP2 will be described below.

When two molecules are sufficiently close and their electron density overlap is large, the
multipole approximation becomes inadequate due to its classical nature. Damping/Screening
functions must be introduced for the Coulomb interaction to ensure the correct asymptotic
behavior. Similarly, polarization and dispersion, which are developed from intermolecular
perturbation theory based on the negligible overlap assumption, also demand proper
screening at short-range. For the EFP-EFP interactions, several damping functions for the
Coulomb, polarization, and dispersion interactions are implemented’’. After the development
of the R”7 dispersion interaction, the overlap-based dispersion damping function was
reformulated to incorporate odd-power terms’®. For QM-EFP2, currently, the Coulomb
interaction employs Gaussian damping and the dispersion interaction can be screened using
either Tang-Toennies or overlap-based damping functions’®”". The recent developments for

damping functions of different interaction terms will be mentioned in the relevant sections.

Since EFP2 is an ab initio force field, the MAKEFP run is employed to generate all
parameters from first principles. These parameters essentially comprise various properties of

a fragment, computed at the HF level of theory. The computed EFP2 parameters can be either

AlP

Publishing

printed out to a file (with .efp extension) and subsequently inserted into an EFP2-EFP2 or
QM-EFP2 job input, possibly through a library of standard fragments, or computed on-the-fly
for the Effective Fragment Molecular Orbital (EFMO) calculations (discussed in the next

section).

The five terms in the EFP2-EFP2 energy expression, Eq. (2), need the following input, for
each type of fragments: The Coulomb term requires multipole moments, distributed over
atomic centers and bond midpoints. The polarization term requires polarizability tensors,
distributed over LMO centroids. The dispersion term needs distributed dynamic polarizability
tensors, again, over LMO centroids. The exchange-repulsion term utilizes data on fragment
LMOs, while the charge transfer contribution uses either canonical molecular orbitals
(CMOs), already computed within the HF calculation, or the valence virtual orbitals
(VVOs)® for a more computationally efficient truncated virtual space. The screening
parameters for the Coulomb term are computed by fitting on a grid the damped classical
multipolar electrostatic potential to the quantum potential of the fragment, with damping

functions having either a Gaussian or an exponential form’”8!,

Like much of GAMESS, the EFP method and the MAKEFP module evolve over time.
Because the MAKEFP calculation to establish the EFP parameters is a significant bottleneck,
considerable effort has been expended to make EFP more computationally efficient and
scalable. The parallelization approach for MAKEFP is shared memory, motivated by the
opportunity to use a hybrid MPI/OpenMP parallel approach for the EFMO method. The
parallelization is done using OpenMP pragmas. The distributed nature of the EFP2 potential,
as well as the manner in which some of the EFP parameters are structured, provide
parallelization opportunities. For instance, in addition to being distributed, the parameters for
the Coulomb term have independent orders of multipole moments, and the dispersion term
requires 12 independent frequencies. The screening parameters for the Coulomb term are
computed on a grid, which is inherently parallelizable. There are other points of
parallelization within the MAKEFP code as well. An additional level of performance
improvement for the code is achieved via minimizing I/O within the MAKEFP workflow,
except printing to the .efp file (EFMO uses in-memory data transfer for the EFP parameters).
The dispersion interaction is often expressed as an expansion of inverse powers of distances

between relevant molecular moieties.

. Cn
EUP = 3, ¢ 3)

where R represents the distances between molecular moieties and # starts at 6, which

10

AlP

Publishing

represents the induced dipole-induced dipole part of the dispersion interaction. Most
methodologies that treat dispersion do not include the odd-power terms and simply fit the Ce
coefficient to experimental or to high-level ab initio values. Such an approach can work
because the fitted parameters can cover up deficiencies in the underlying potential. To better
understand the effect of the odd-power dispersion terms, the leading odd-power term, R”’
dispersion (Disp7), was implemented for the EFP2-EFP2 dispersion interaction, utilizing the
frequency-dependent anisotropic Cartesian polarizabilities located at the centroids of the
LMOs of the EFP fragments. It was shown that Disp7, although it can rotationally average to
zero in some situations, can be either attractive or repulsive, with substantial magnitudes
relative to the R dispersion, and is highly dependent on the orientation of the molecules®?.
Furthermore, a benchmarking study based on the S22 data set has demonstrated that in
hydrogen-bonded systems, Disp7 almost always is repulsive and has a substantial magnitude
(as large as 50% of the R™® term in some cases), whereas it makes an insignificant
contribution for other types of complexes®. The analytic gradient for Disp7 has been derived
and implemented, which allows one to take Disp7 effect into account for geometry
optimizations and molecular dynamics simulations’®. In addition, the overlap-based damping
function, which was originally developed only for the even-power terms, now has been

reformulated to incorporate the odd-power terms’®.

Recently, the QM-EFP2 method has been reassessed and several improvements were made to
the Coulomb, exchange-repulsion, and dispersion terms. It was realized that, unlike QM-
EFP1 where both the nuclear and electronic charges of EFP fragments were damped, the
Gaussian damping function in the Coulomb term was only applied to the EFP electronic
charges in QM-EFP2. This seemingly insubstantial difference led to large discrepancies of
the QM-EFP2 Coulomb energy compared to either EFP2-EFP2 or symmetry adapted
perturbation theory (SAPT)®#. Now, both QM-EFP1 and QM-EFP2 Gaussian damping

functions screen all of the EFP effective charges (nuclear + electronic).?!

For the exchange-repulsion term, the spherical Gaussian overlap (SGO) approximation,
which provides accurate EFP2-EFP2 energies with high computational efficiency, was shown
to cause large errors in the QM-EFP2 exchange-repulsion energy. Hence, the recently revised
formulation completely removes the SGO approximation and computes the ERIs explicitly.
Moreover, the early QM-EFP2 exchange-repulsion implementation was limited to only one
EFP fragment. The current implementation has been successfully tested for water clusters
with hundreds to thousands of fragments. The new implementation is dramatically improved
by employing the direct (on-the-fly) approach for computing ERIs with either pure MPI or
hybrid MPI/OpenMP parallelization schemes, in contrast with the original disk-based serial

implementation”.

11

AlP

Publishing

As was done for the EFP2-EFP2 dispersion, the QM-EFP2 dispersion energy needs to be
screened to ensure the correct asymptotic behavior. Both the Tang-Toennies and the overlap-
based damping functions are available to account for exchange-dispersion and charge
penetration effects at short-range. Very recently, the overlap-based damping formula has been
updated to be of the same functional form as the EFP2-EFP2 overlap-based damping

function”®.

Currently, QM-EFP2 has been coupled with HF, DFT, MP2, and CC. The development of
QM-EFP2 gradients is in progress. All of these efforts will allow better prediction and
understanding of chemical properties in both ground and excited states in clusters and in the

condensed phase.
I1.C Effective Fragment Molecular Orbital Method

The EFMO?® method is a fragmentation method in a similar spirit to FMO. It combines the
fragmentation scheme from FMO with the ab initio force field EFP method to account for the
long-range and many-body terms. The method was developed to take advantage of the
computational efficiency of both methods so that computations on molecules that were
previously out of reach for chemists due to the computational cost would become feasible.
The initial version of EFMO was developed with only the Coulomb interaction and
polarization terms from EFP included, but in Ref. 2! the remaining three terms in EFP
(dispersion, exchange-repulsion, and charge transfer) were included. In Ref. ¥ the fully
analytic gradient for EFMO with the Coulomb, polarization, exchange-repulsion, and
dispersion terms was reported. The analytic gradient for the charge transfer term is under

development.

Similar to the FMO energy equation, the EFMO energy expression is a fragmentation-based
many-body expansion, where the system is first divided into fragments (monomers). In

EFMO, the energy is the sum of the monomer, dimer, and many-body polarization terms. The

EFMO energy equation can be written as (Eq. 3.22 from Ref.}"):

EFMo _ vy fragments o Ra,B<Rcut 0 pol RaoB>Rcut ~EFP pol
E = ES+ 3,50 ““(AEf — Exp) + 2,57 Ejg" +Efye (4

EJ is the gas phase energy of fragment A; ESp = EJy — E — EJ (the dimer 2-body

EFP

interaction energy); E " 1is the long-range EFP energy between fragments 4 and B

Efootl is the EFP polarization energy for the entire system; Eyp "is the EFP polarization energy

12

AlP

Publishing

; \r;—ry|
for fragments 4 and B; Ry p = Miney jep ——L js the relative interatomic distance between
’ ’ Vit+vy

fragments A and B, where atoms I (J) are on fragment A (B), and Vi and Vy are the Van der

Waals radii of atoms I and J, respectively.

To compute the EFMO energy, first an ab initio method is chosen for the gas phase energy
computations (e.g. RHF). Then the monomer energy is computed by summing the gas phase
energy for each monomer. Next the dimer interaction energy is computed, either using the
chosen ab initio method or using the long-range EFP interaction energy as an approximation
to the exact dimer interaction energy. To determine what is “long-range” and what is not, the
relative distance between the fragments (R4,5) is computed and compared to a user-supplied
cutoff value Rcu:. If the distance is larger than the cutoff, the fragment-fragment interactions
are considered “long-range”, and the EFP interaction energy is used. Finally, to account for
many-body polarization effects, the EFP polarization energy between all fragments in the

system is added to the energy.

The monomer and dimer terms in the EFMO method are different from those in the FMO
method. Specifically, in EFMO, the monomer and dimer terms do not include the monomer
Coulomb field. Instead, the EFMO method includes a many-body polarization term computed

from all of the fragments.

The EFMO gradient can be computed by considering each term in Eq. (4). Each term in Eq.
(4) is differentiated with respect to the x-coordinate of each atom K (xk). Note that here, EZLF
is expanded into Coulomb, exchange-repulsion, dispersion, and charge transfer terms. The
gradients of the ab initio energy terms can be computed with standard methods®®. The
gradients of the EFP terms except for charge transfer are discussed in Ref. ¥’. The main
difference between the standard EFP gradients and the gradients of the EFP terms in the
EFMO gradient is that in standard EFP computations, EFP fragments are rigid, while in
EFMO, the fragments are flexible. Taking into account flexible fragments results in
additional response terms with response equations that need to be solved to compute a fully

analytic gradient.

The anticipated US exascale computers are currently all planned to be heterogenous systems,
in which each node contains multiple GPUs. To take advantage of the massive parallelism
available, being able to effectively decompose the computation so that it can run in parallel

across nodes as well as use the parallelism inside nodes is important.

Transitioning to exascale computing involves multi-grain, massive yet flexible parallelization

13

AlP

Publishing

of a code, adoption of accelerators, careful use of bandwidth and memory structures. The
structure of the EFMO method maps very naturally onto these requirements. As a
fragmentation method, EFMO can have its independent monomer and dimer terms in energy
and gradient expressions, mapped onto different nodes or sets of nodes of a supercomputer,
while also reducing memory requirements down to that for a fragment or a dimer. There are a
limited number of communication points throughout the run (transitioning from monomers to
dimers, reduction for computing total energy or gradient), and the only term with significant
communication requirements is the total polarization, Efootl and 6Efootl /0xg, which is done
once per single point energy calculation and then once per gradient point, respectively. Within
other terms, for each monomer and dimer, one can either use shared-memory parallelization
or request a hybrid-parallel run at several nodes, depending on the scaling and
implementation of the electronic structure method of choice and available computational
resources. The electronic structure method can further utilize the oftfloading capability, if one
is already implemented (see Section III.A). Finally, describing many-body contributions via
the polarization term allows one to stop at the dimers in the EFMO energy expression,
reducing the scaling and memory bottlenecks to the requirements of the largest ab initio

dimer.

III. Electronic Structure Methods in GAMESS.

There have been many new electronic structure methods implemented in GAMESS in the last
15 years. These include novel implementations of the resolution of the identity (RI)-MP2
method, a multitude of coupled cluster methods thanks to the efforts of the Piecuch group, the
ORMAS MCSCF and CI method including a second order perturbation theory correction, a
coupled electron pair approximation (CEPA) suite of methods, the nearly exact correlation
energy extrapolation with intrinsic scaling (CEEIS) method spin-correct spin flip methods
based on ORMAS, the fundamental analysis of the chemical bond based on quasi-atomic
orbitals (QUAOSs), the density functional theory/tight binding (DFTB) method, and many
new functionals mostly due to the Truhlar group. Each of these is discussed in the following

paragraphs.

II1.A Hartree-Fock and Second Order Perturbation Theory Using a Hybrid
MPI/OpenMP Approach to Parallel Code

The introduction of the hybrid MPI/OpenMP parallel programming model to GAMESS is
one of the efforts to design efficient and scalable electronic structure codes that can treat
macromolecular systems at the ab initio level of accuracy. The combined MPI/OpenMP

model has been used in GAMESS for both regular quantum mechanics (QM) methods and

14

AlP

Publishing

QM methods in the fragmentation context. In GAMESS, MPI is wrapped in the distributed
data interface (DDI)® or the Generalized DDI (GDDI)!" interface to assist distributed arrays
allocated across multiple compute nodes, and the multilevel parallelism using the MPI group
concept. In this section, MPI mostly refers to the GDDI interface supporting the multilevel
parallelism in fragmentation methods. By using the group concept, the GDDI arranges MPI
compute processes (ranks) into groups. Ranks in the same group can communicate with each
other referring to the same MPI communicator. This allows each group of ranks to work on
independent chunks (e.g., a fragment ab initio calculation) that subsequently increases the
parallel coverage and the scalability of the parallel code. In fact, the distributed memory
model supported by the pure MPI model remains the best way to build and maintain very
large scalable supercomputers. However, the pure MPI parallel model is known to suffer from
a large memory footprint (e.g., due to replicated data in all ranks) and a high communication
overhead (e.g., for its send/receive message protocol) in large scale calculations. This
drawback becomes serious for the new multicore CPU generation. For instance, the Intel
KNL compute node can have 64, 68, 72 cores; each core has four threads; i.e., full CPU
utilization on each compute node can support up to 256-288 compute processes. The MPI

codes can rarely make use of more than half of these CPU cores.

Therefore, the hybrid MPI/OpenMP model was introduced to GAMESS to maintain the MPI
scalability and boost the efficiency of the computation (e.g., by alleviating MPI restrictions).
For the MPI/OpenMP fragmentation execution, MPI (GDDI) creates on each compute node
just one rank. This rank usually does no relevant computation; the actual computation is
carried out by the team of threads that are spawned from this MPI rank using the OpenMP
API. The role of the MPI rank is mainly to communicate with the other ranks in the other
compute nodes (e.g., through send and receive protocols). Since threads in a team can
efficiently share the node memory address, the MPI/OpenMP ansatz can minimize replicated
data as well as the intranode communication overhead that subsequently enhances the
computation efficiency and reduces the memory footprint. This approach has been applied to
both HF and DFT codes by Mironov and co-workers.

In addition to the hybrid MPI/OpenMP model, the resolution-of-the-identity (RI)
approximation®®°2 has been applied to correlated (fragmentation) methods, particularly to the
second-order Moller-Plesset perturbation theory (MP2). The idea behind this combination is
that the fragmentation methods chemically divide large molecules into “small” fragments;
this is followed by the application of the RI approximation that further reduces the size of
large data structures that arise from the underlying electronic structure calculations for
fragments; finally, the hybrid parallel programing model minimizes replicated data and

subsequently maximizes the available node shared memory. All of these factors maximize the

15

AlP

Publishing

locality of the computations by allowing the entire large data arrays or large chunks of them
to be fit into the node memory. The data is then processed by thread workers enabled by the
OpenMP API. The next paragraphs briefly discuss the MPI/OpenMP implementation for
regular and fragmentation HF and the RI-MP2 energy and gradient.

At the Hartree-Fock level of theory, the bottleneck of the calculations is the evaluation of
four-index two-electron repulsion integrals (4-2ERI) in the AO basis. The AO basis functions
on each atom that share certain common internal parameters (e.g., the angular momentum)
are grouped into a shell. The integral evaluation, therefore, would need to loop over four shell
(shell quartet) layers of AOs. Integrals of all AO basis functions in this shell combination are
calculated at once. Before the shell quartet is executed, a fairly large number of small
integrals can be eliminated’®®* using the Cauchy-Schwarz inequality. Both symmetry and the
screening can significantly reduce the computational cost of integral evaluation. After

integrals in a shell quartet are calculated, they are accumulated into the Fock matrix.

In the original MPI-based HF code® in GAMESS'* all data arrays (e.g., overlap matrix,
common blocks of AO shell information, Fock matrix, density matrix) are replicated over all
MPI ranks. A global sum is needed to accumulate the Fock matrix contribution from all MPI
ranks at the end of the calculation. For the new generation of multiple core computers, the
replicated arrays can introduce a very large memory footprint that deters the program from

making use of all compute node resources efficiently.

There are two algorithms for the MPI/OpenMP HF implementation®? in GAMESS, developed
by Mironov and co-workers. The first approach is based on the private Fock matrix, the
second uses a shared Fock matrix for threads in a team. The private Fock matrix approach
introduces better performance due to the direct accumulation of integrals to the Fock
matrices, and it only needs one barrier at the end of the computation to reduce the private
Fock matrix to the final one. For the shared Fock matrix approach, barriers are set up to
prevent data race conditions (i.e., writing integrals to the same memory address of the shared
Fock matrix). Apparently, the private Fock matrix method introduces a larger memory
footprint than the shared Fock approach. Therefore, the shared Fock approach is useful when
limited memory is a problem. Benchmark calculations for the MPI/OpenMP HF
implementations for carbon-based material up to 2,000 carbon atoms introduced a speedup of
~6x compared with the original MPI-based code in GAMESS.

In the fragmentation context, particularly the FMO method?¢-*695-%8 the MPI/OpenMP HF
implementation is only helpful for FMO© since this level treats each fragment in an isolated

environment. For higher FMO orders, each fragment is submerged into the electrostatic

16

AlP

Publishing

potential (ESP) of the nuclei and the electron density of all other fragments. The most
expensive part of the ESP is to evaluate the Coulomb interaction of electron densities among

fragments.

For correlated fragmentation methods, e.g., the second-order Moller-Plesset perturbation
theory method (MP2), one of the bottlenecks is the integral transformation from the AO to the
MO basis, which is a matrix multiplication operation. While matrix multiplication is well
supported by linear algebra libraries, the MP2 energy and gradient usually require large
memory to store large data structures such as 4-2ERIs in the AO, the MO and/or partially
AO/MO bases. There are two main MP2 codes in GAMESS. The first (IMS) code® relies on
storing partially and fully transformed integrals on disk files. The other (DDI) code®®!%
manipulates integral matrices on the distributed memory buffer. The DDI code is more
efficient since the read/write from/to the distributed memory is more efficient than those on
disk files. Another MP2 energy code'?! in GAMESS employs the resolution-of-the-identity
(RI) approximation that approximates 4-2ERIs by the product of 3-2ERIs and 2-2ERIs. The
computational cost of 3- and 2-2ERI integral evaluation is small (e.g., ~5-10% of the total
computational cost). For the MPI-based RI-MP2 implementation, when increasing the
number of MPI processes, the data is usually split into smaller chunks for write/read
operations and for subsequently feeding the matrix multiplication subroutine with smaller
chunks of input data. Therefore, increasing the number of MPI ranks might implicitly reduce

the overall performance.

Modern multicore compute nodes usually have ~64-72 cores with ~125-250GB of
memory/node. For the pure MPI model, if the number of MPI ranks created on each node is
equal to the number of cores, each rank can only use ~1-2GB in the memory address space.
Additionally, each MPI rank needs copies of most data (e.g., common blocks for AO and
auxiliary bases, MO vectors, density matrices). For calculations that need large memory, the
pure MPI code has to be kicked off with a small number of ranks that subsequently wastes a
large number of CPU cycles. For the hybrid MPI/OpenMP model, only a small number of
ranks (usually just one rank) are created on each compute node; each rank then spawns a
team of threads that can share the same memory address space. Therefore, both memory and
CPU cycles are used efficiently in the hybrid MPI/OpenMP model. This is particularly
important in the context of the fragmentation methods since in most cases, large data
structures in each fragment computation are usually well fitted to the node memory that
completely removes the time-consuming write/read operation to/from diskfile/distributed
memory. Therefore, in most fragmentation RI-MP2 calculations, all fragments can be treated
locally on one (logical) compute node that significantly improves the performance of the

implementation. When data structures are not fit into the node memory, the large shared

17

AlP

Publishing

memory of the MPI/OpenMP model still facilitates large chunks of distributed arrays to be
copied to node memory for computation, which is still much more efficient than copying
small tiles of data many times from distributed arrays to the replicated arrays in a pure MPI
treatment. Benchmark calculations on water clusters of ~2,200 water molecules using 8-700
64-core KNL nodes showed that the new MPI/OpenMP FMO/RI-MP2 energy code'’
implemented in GAMESS has gained a speedup of ~10x. For the gradient,'8 the speed up is
~4-8x.

Since 2018, the US Department of Energy (DOE) has started operating and deploying GPU-
based supercomputers with vendor optimized programming models such as CUDA, HIP and
SYCL. However, due to their limited functional portability, it is challenging for HPC
application developers to maintain their applications in an efficient and effective way across
various computer architectures. Directive-based programming models for accelerators can be
a solution. In terms of the RI approximation, the computational core of the MP2 correlation
energy evaluation is the matrix multiplication, which is supported by several GPU linear
algebra libraries (e.g., NVIDIA cublas). The cost of 3-index and 2-index 2-electron repulsion
integrals 1s about 5-10% of the total cost. Therefore, in an initial effort to port GAMESS
(Fortran) to GPUs'%2, all essential matrix multiplication operations in the RI-MP2 energy
kernel have been restructured and offloaded to GPUs using OpenMP and OpenACC GPU-
offloading models and multiple linear algebra libraries. The benchmark calculations for
clusters of 30-60 water molecules and fullerene (C60) show that the speedup of the GPU RI-
MP2 kernel on a single V100 GPU relative to the MPI/OpenMP RI-MP2 energy calculation
on a P9 socket (22 cores, 88 threads) is ~20x; the speedup relatively to the pure MPI RI-MP2
energy code on a P9 socket (22 cores) is ~60x. This study has demonstrated that directive-
based offloading implementations can perform near the GPU/CPU theoretical speed-up based

on the machine peak ratios.

II1.B Coupled Cluster Methods

GAMESS allows for a wide variety of calculations based on the coupled-cluster (CC) theory
and its extensions to excited, electron-attached, and ionized states via the equation-of-motion
(EOM) formalism. This includes CC and EOMCC wave functions and energies as well as

properties other than energy, and, in the ground-state case, larger polyatomic systems treated

with the local correlation cluster-in-molecule (CIM) formalism.

1. Ground-state calculations. All of the GAMESS ground state CC options, which have been

103-111

implemented in Refs. are based on the exponential wave function ansatz!'>»!!3 of the

18

AlP

Publishing

single-reference CC theory,'*'"” |\) =¢" | @), where T = z:vzl T, is the cluster operator, T,

is the n-particle—n-hole (np-nh) or n-tuply excited component of 7, N is the number of
correlated electrons, and |(D> is the reference determinant defining the Fermi vacuum, which is
usually obtained in HF calculations of the restricted (RHF), restricted open-shell (ROHF), or
unrestricted (UHF) types'?®!?!. The CC options in GAMESS allow for RHF'®*!!! and
ROHF!'%-!!! references, although the spin-integrated CC subroutines were written in a generic
way, which could be interfaced with restricted as well as unrestricted references. The spin-

103-108

adapted implementations of the closed-shell CC codes are faster than the corresponding

spin-integrated implementations by a factor of 2—3.

The ground state CC options in GAMESS include both the conventional approaches, such as
the CC method with doubles (CCD) in full and linearized forms,!'6-118:122123 the CC approach
with singles and doubles (CCSD), where T is truncated at the 7, component,'**!?> and the
widely used perturbative CCSD(T) correction, and the more robust renormalized CC (R-CC)
and completely renormalized CC (CR-CC) triples corrections to CCSD !03-109126.127 The
GAMESS CC options also include the conventional, renormalized, and completely
renormalized CCSD(TQ) levels correcting the CCSD energies for a combined effect of the

triply and quadruply excited clusters, !04-107:126-133

Among the CR-CC methods, one that is especially important is the CR-CC(2,3) triples
correction to CCSD, 9710134 which is at least as accurate as CCSD(T) for molecules near
their equilibrium geometries and for non-covalent interactions, while being much more robust
than CCSD(T) when chemical bonds are stretched or broken and when chemical reaction
pathways are examined. CR-CC(2,3) is recommended as a substitute for CCSD(T), especially
because computational costs of running CR-CC(2,3) are no more than twice the costs of the
analogous CCSD(T) calculations. Another bonus of using CR-CC(2,3), as an alternative to
CCSD(T), is the fact that, along with the accurate triples correction to CCSD, the user
running CR-CC(2,3) gets access to the one-body reduced density matrix (1-RDM), right
natural orbitals and their occupation numbers, Mulliken and Léwdin populations, bond
orders, and electrostatic dipole moments, calculated at the CCSD level. The linearized and
full CCD, CCSD(T), R-CCSD(T), CR-CCSD(T), R-CCSD(TQ), and CR-CCSD(TQ) are
implemented in GAMESS for closed-shell RHF references only.'%'% The CCSD and CR-
CC(2,3) codes work for both RHF and ROHF reference determinants, allowing one to
perform such calculations for closed- and open-shell systems.!07-10%134-136 " gbtain the CR-
CCSD(TQ) and CR-CCSD(T) energies, and add the quadruples (+Q) correction, defined as
[CR-CCSD(TQ) — CR-CCSD(T)], to the CR-CC(2,3) energy, as in the CR-CC(2,3)+Q

approximation!3%137,

19

AlP

Publishing

One of the most recent additions to GAMESS, which is particularly helpful when the CR-
CC(2,3) theory level is insufficient due to the more substantial coupling among the singly,
doubly, and triply excited clusters, i.e., when the full CCSDT-type treatment is required but

full CCSDT is too expensive, is the CC(t;3) option.!!%!":138 [n CC(t;3) one corrects energies
resulting from the active-space CCSDt calculations, in which 7 includes all singles (7)) , all

doubles (7,), and a subset of triples (a subset of 7, amplitudes) defined using active
orbitals'**!%0, for the remaining, predominantly dynamical, triple excitations that have not
been captured by CCSDt. Having the leading 7, amplitudes in it, the CCSDt approach alone
is already often very accurate, especially when non-parallelity errors characterizing potential
energy surfaces relative to its CCSDT parent are examined. CC(t;3) improves the CCSDt
calculations even further, being essentially as accurate as full CCSDT for both relative and
total electronic energies, even in situations involving bond breaking, at a fraction of the
computational cost."'*!"13% CCSDt becomes CCSDT'*! when all orbitals used to select 7,
amplitudes are active. So, the CCSDt codes in GAMESS allow one to run full CCSDT
calculations as a byproduct. When the active orbital set (which the user defines in the input)
is empty, CCSDt = CCSD and CC(t;3) = CR-CC(2,3). The CCSDt and CC(t;3) codes in
GAMESS, which, unlike other GAMESS CC and EOMCC options, were implemented using
automated formula derivation and implementation software, work for both RHF and ROHF

reference determinants, allowing calculations for closed- and open-shell species.

2. Excited states. GAMESS can perform a variety of calculations for excited electronic
states, which are based on the EOMCC wave function ansatz.'** Among the EOMCC
methods implemented in GAMESS are the basic EOMCCSD approximation, 4> available for
both RHF and ROHF references,'*~'%” and the variety of CR-EOMCC and §-CR-EOMCC

127,143-147 \which can be run

triples corrections to the EOMCCSD total and excitation energies,
at this point for RHF reference only. If the user is interested in non-singlet states of a closed-
shell system or singlet as well as non-singlet states obtained in a single calculation, using the
open-shell EOMCCSD codes with the ROHF § = 0 reference determinant is the only option
in GAMESS at this time.'*” One can also use the open-shell EOMCCSD/ROHF codes for
excited states of molecules with non-singlet (e.g., doublet) ground states, but one has to keep
in mind that the resulting wave functions will not be spin adapted. If the user is interested in
rigorously spin-adapted CC/EOMCC calculations for the ground and excited states of
radicals or systems that can formally be obtained by adding one electron to or removing one
electron from the corresponding closed-shell core, choosing the electron-attachment (EA) and

ionization potential (IP) EOMCC options is the best idea.

EOMCCSD is reasonably accurate for excited states dominated by one-electron transitions,

20

AlP

Publishing

but it fails whenever the excited states of interest have significant double excitation character
or excited-state potentials along bond breaking coordinates are examined, producing errors in
the excitation energies that usually exceed 1 eV, being frequently much larger.'?7-12%131.143-
145,147,148 Eyen when excited state wave functions are dominated by one-electron transitions,
EOMCCSD is not fully quantitative, giving errors on the order of 0.3—0.5 eV in many
cases.'® One can rectify these problems by turning to higher EOMCC levels, represented in
GAMESS by the aforementioned CR-EOMCC and 3-CR-EOMCC triples corrections, which
are more robust, especially when two-electron excitation components become more

substantial, than the perturbative methods of the EOMCCSD(T)!*13% or CC3'3! type.
127,129,131,143,147

3. Electron-attached and ionization-potential equation-of-motion coupled-cluster
approaches. One of the most useful features of the EOMCC wave function ansatz is the
possibility to extend it to open-shell systems around closed shells, such as radicals and
cations or anions of closed-shell species, which can formally be obtained by attaching an

electron to or removing an electron from the underlying closed-shell core. This can be done

by replacing the particle-conserving form of the R, operator of EOMCC, which excites

electrons from the occupied to unoccupied orbitals in the reference, by its particle-
nonconserving EA (electron attachment) or IP (ionization) extensions. Due to the use of a
closed-shell reference wave function, which in the EA and IP EOMCC GAMESS options'>?
154 is the CCSD ground state of the underlying closed-shell core, the EA-EOMCC and IP-
EOMCC methods provide an ideal framework for performing orthogonally spin-adapted
calculations for radicals and cations or anions of closed-shell species. They are especially
useful in determining electronic spectra of radicals'4>13215% and photoelectron spectra.!>*!
The EA and IP EOMCC options in GAMESS include EA-EOMCC(2p-1k) and EA-
EOMCC(3p-2h) in the EA case and IP-EOMCC(24-1p) and IP-EOMCC(34-2p) in the IP
case, where symbols in parentheses indicate the truncation level. The higher-level EA-
EOMCC(3p-2h) and IP-EOMCC(34-2p) approaches are especially useful, since they prevent
failures of the basic EA-EOMCC(2p-14) and IP-EOMCC(2A-1p) approximations when the
relevant electron attachment/ionization processes are accompanied by significant electron
relaxation effects in the closed-shell core, which is the case in nearly all electronic states of

152-154

radicals and in the electron attachment and ionization processes in photoelectron

spectroscopy involving higher-energy shake-up states.!3>!%® When running the higher-level

EA-EOMCC(3p-2h) and IP-EOMCC(34-2p) calculations, computational costs may become a

140,157-

significant bottleneck. In the spirit of other active-space EOMCC methods, 161 this issue

is addressed in GAMESS by using active orbitals to select the dominant R and R

w,3p-2h w,3h-2p

21

AlP

Publishing

components.'>?7154 It is recommended to use the active-space EA-EOMCC(3p-2h) and IP-
EOMCC(3h-2p) approaches, which have costs on the order of CCSD or EOMCCSD times a

small prefactor.

4. Properties other than energy. GAMESS CCSD and EOMCCSD codes allow for analytic
calculations of properties other than the energy!*>!#* (available for closed-shell systems, as
described by RHF orbitals). GAMESS prints a number of useful ground and excited state
properties, such as dipole moments, Mulliken and Léwdin populations, bond orders, natural
orbitals and natural orbital occupation numbers, transition dipole moments, and dipole and
oscillator strengths, to name a few examples. Since the CC and EOMCC 1-RDMs are not

Hermitian, calculations of the dipole and oscillator strengths require that the relevant

K‘I’ . ‘9|‘PV> * type expressions are represented as <‘P p ‘6’|\PV><‘PV 9“1’ ﬂ> , which is exactly

what GAMESS does. In analogy to the CC and EOMCC states, one has to distinguish
between the left and right natural orbitals in determining, for example, many-electron
densities. To minimize the amount of output, only right natural orbitals are printed in the

main output file. This is not a major limitation though, since GAMESS also prints the

complete set of 1-RDMs and transition 1-RDMs y7(u,v), as defined above, in a RHF

molecular orbital (MO) basis in the auxiliary output file. Electrostatic properties, such as
dipole moments and (hyper)polarizabilities, can also be determined using finite-field
calculations. Geometry optimizations and transition-state searches can be performed using

numerical derivatives.

5. Local correlation cluster-in-molecule approaches. The CC and EOMCC calculations
using canonical RHF, ROHF, or other delocalized MOs may become prohibitively expensive
when larger many-electron systems are considered. For example, most of the methods
described above have computational steps that scale as the sixth or seventh power of the
system size, N, with memory requirements scaling as N*. This is addressed in GAMESS with
the help of fragmentation methods, discussed in Section II, and the local correlation CIM

23,162-168 which is capable of reducing the high polynomial costs of CC

methodology,
calculations using delocalized HF orbitals to steps that scale linearly (or even sublinearly)

with the system size, N.

The basic idea of all CIM-CC and CIM-MP# methods,?*!%*71%8 including those implemented
in GAMESS,?*!63-167 i5 the observation that the total correlation energy of a large system, or
any of its components, such as the triples correction of CCSD(T) or CR-CC(2,3), can be

obtained as a sum of contributions from the occupied orthonormal localized MOs (LMOs)

22

AlP

Publishing

and their respective occupied and unoccupied orbital domains that define the CIM subsys-

tems.

All CIM approaches result in straightforward algorithms in which, beginning with the AO —
MO integral transformation and ending up with the final CC or MPn work, the CC or MPn
calculation for a large system is split into independent and relatively inexpensive calcu-
lations, in analogy with other fragmentation approaches, for CIM orbital subsystems, which
can easily be executed in parallel (on multiple cores or multiple nodes, or both). The final
correlation energy of the entire system is determined by adding correlation energy contri-
butions extracted from the calculations for the individual CIM subsystems. They are
characterized by the linear scaling of the computational time with the system size, when a
single-level CIM-CC or CIM-MP2 approach is used,?>!>16416 memory requirements that do

not grow with the size of the system,23164166

coarse-grain parallelism, which can be further
enhanced by the fine-grain parallelism of each CIM subsystem calculation, and the purely
non-iterative character of the local triples and other perturbative energy corrections, which is
achieved in GAMESS via the concept of quasi-canonical subsystem MOs.?*!%* They can be
made even less expensive, leading, de facto, to sublinear scaling algorithms, when multi-level
CIM schemes mixing higher- and lower-order methods are employed.'®® The CIM
methodology implemented in GAMESS also allows one to combine canonical (e.g., MP2 or
CCSD) calculations for the entire system, which can be run in parallel, with local calculations
for subsystems that require a higher-level (e.g., CR-CC(2,3)) correlation treatment.'®’

The CIM methods implemented in GAMESS include MP2, CCD, CCSD, CCSD(T), and CR-
CC(2,3) for closed-shell systems and CCSD and CR-CC(2,3) for open shells. The main
parameter { controlling the design of CIM subsystem domains can be varied by the user (the
canonical limit is obtained when ¢ — 0), although GAMESS provides a default, which is
often a good starting point. The GAMESS CIM codes can be executed sequentially or in

parallel, and they can be combined with the FMO method, as described in Section II.
III.C ORMAS, ORMAS+MP2, CEPA

The Occupation Restricted Multiple Active Space (ORMAS)?>!% approach is a configuration
interaction (CI) method that, as the name implies: 1) divides the orthogonal orbitals of a
system into a number of ORMAS groups (OGs) and 2) allows the electron occupation of each
OG to vary between minimum and maximum limits. The number of OGs, their constituent
orbitals, and occupation minima/maxima can be arbitrarily chosen by the user (within logical
limits). In this way a very diverse set of CI and MCSCF wave functions can be constructed
and optimized. The implementation is determinant based, direct, and parallel so that several

billion determinants can be included in a calculation. The types of wave functions that can be

23

AlP

Publishing

optimized include ORMASO (constant number of electrons in each OG, e.g., groups of
bonding/antibonding orbitals), ORMASO-SD (SD = single and double excitations out of the
ORMASO space), and CIx/MR-Clx (x = desired maximum electron excitation level), for
which orbital optimization is also possible. More recently, single reference (SR) and
multireference (MR) coupled electron pair approximation (CEPA) methodologies were added
to the ORMAS module!”. Three popular approaches are available: CEPA(0)!”!, average

coupled pair functional (ACPF)!"!)72,

, and averaged quadratic coupled-cluster (AQCC
A significant enhancement to the ORMAS method is the ability to include second-order
perturbation theory energy corrections (ORMAS-PT2)?**. Then, large active spaces can be
used in MCSCEF reference functions, e.g., full valence or full &, and dynamic correlation
subsequently accounted for via PT2 corrections in the style of MRMP2/MCQDPT2%!73,
Thus, for large systems it is possible to cheaply compute accurate properties such as
binding/dissociation energies, transition state barrier heights (including for bond
forming/breaking), and excited state energies. With regard to the latter, one efficient route is
to use state-averaged MR-CISD reference wave functions (full-valence or -m) in which the
occupied orbitals are optimal. Additionally, energies of different spin states can be
simultaneously determined. Another useful feature is that solvent effects can be included via
the polarizable continuum method (PCM)* through MCSCF wave function optimization!’™
and one-electron integral modification. The ORMAS-PT2 implementation follows the style
of the analogously programmed MRMP2/MCQDPT methods'”® and is determinant based,

direct, and parallel.
II1. D Correlation Energy Extrapolation by Intrinsic Scaling

The Correlation Energy Extrapolation by Intrinsic Scaling (CEEIS) method of Bytautas and
Ruedenberg!’® is a powerful procedure for the recovery of the full configuration interaction

EFCI

energy, . CEEIS is based upon the exact expansion of the FCI energy as a sum of Clx

excitation level energy contributions
EFCT = E(0)+ AE(1,2) + X, -3 AE(X) (5)

where E(0) is the reference energy (single determinant or multiconfigurational) and excitation
levels are shown in parentheses. The energy difference AE(1,2) = E(2) — E(0) represents the
CISD (or CI2) correlation energy and AE(x) (x > 3) denotes the energy lowering when going
from Cl(x — 1) to Clx, i.e., AE(x) = E(x) — E(x — 1). In the CEEIS method, AE(1,2) and AE(3)
are computed exactly and AE(x) for x > 3 are extrapolated from energy differences AE(x|m) =
E(x|m) — E(x — 2|m). The latter two quantities are obtained from Clx and CI(x — 2)

24

AlP

Publishing

computations in which electrons are only allowed to excite into a number of active virtual
orbitals m that is less than the total number M. The crux of the CEEIS method is the
discovery that AE(x — 2|m) and AE(x|m) are linearly related as m approaches M, so that AE(x)
= AE(x|M) can be determined from AE(x — 2), and AE(x — 2|m), AE(x|m) over a range of m.
Therefore, when it is not possible to compute Clx energies in the full basis they can be
accurately determined via far cheaper computations. Further, by gradually increasing x,

estimates of FCI energies can be obtained.

An important consideration for CEEIS is the generation of appropriate virtual orbitals
following optimization of the reference wave function. The recommended approach is to
perform a preliminary CISD calculation, compute the corresponding one-particle density
matrix, and diagonalize the virtual-virtual block to obtain natural orbitals for the virtual space

(VSDNOs). These VSDNOs are then ordered according to decreasing occupation numbers.

An automated CEEIS procedure has been implemented in GAMESS where single
determinant and MCSCF zeroth-order functions can be used. The values of x and m are
specified by the user, however, these should be chosen carefully so that the changes in AE(x —
2|m) and AE(x|m) are linearly proportional. Ideally, the full CISDT (or CI3) energy should be
computed for high accuracy but if this is not possible it can be extrapolated from the CISD
energy. The CEEIS method has been used to determine benchmark-quality ground state

properties for a variety of molecules'7180

and has also been generalized for multiple
electronic states via use of state averaged reference functions!8!!#2, CEEIS has also been

utilized for the identification of compact and accurate CI wave functions®.

III.E Analysis of Complex Wave Functions by Reconstruction in terms of Quasi-atomic
Orbitals

While accurate computations of energetics and properties are an essential goal of ab initio
methods, equally vital is the deduction of insights in order to 1) translate the complex wave
functions into elementary, familiar bonding concepts, and 2) conceptualize rules and trends in
chemistry. Over the last several decades Ruedenberg and co-workers have evolved
comprehensive approaches to reconstitute molecular wave functions and energies in terms of
quasi-atomic orbitals. Many of these methods have been incorporated in the GAMESS

package and a synopsis of the available tools follows.

In the late 1970s Ruedenberg et al. showed that Full Optimized Reaction Space (FORS) wave
functions (i.e., full-valence active space MCSCF) intrinsically incorporate a set of minimal

basis orbitals that resemble deformed, quasi-atomic orbitals (QUAOs)'83-185, Subsequent to

25

AlP

Publishing

FORS optimization, QUAOs can be generated in several ways including: 1) direct
localization of the molecular orbitals (MOs), for which there are several available approaches
in GAMESS including the Edmiston-Ruedenberg method!®¢, and 2) optimal alignment of the
MOs to free-atom orbitals via singular value decomposition (SVD)!2. QUAOs can also be
formulated for wave functions that are simpler than FORS, viz., Hartree-Fock'? and less than
full valence MCSCF'¥", and rely on the generation of valence-virtual orbitals (VVOs)3%188,
The VVOs are extracted from the unoccupied virtual orbitals so that they, together with the
occupied orbitals, span an orbital space that is an excellent approximation to the full valence,
or internal, space. Once obtained, it is usually necessary to orient the QUAOs on each atom
so that they exhibit the global bonding pattern of the molecule (e.g., form bonds with other
atom QUAOSs or become lone pairs)'¥>!°°. This orientation is accomplished with a completely
unbiased, purely mathematical, method that uses no intuitive information about the molecule
whatsoever. Finally, the first-order density matrix is expressed in terms of the oriented
QUAUO:s to reveal qualitative and quantitative chemical data such as atom charges, non-
bonding/inactive orbitals, and bond types & strengths. Covalent bond strengths can also be
quantified by a new measure called the kinetic bond order that calculates the energy lowering

due to interference between oriented QUAOs'?’.

All of the aforementioned methods are available in GAMESS and have been used to study a
series of diverse molecules to elucidate the inherent bonding patterns at minima and along
reaction surfaces'?!"!%. More recently, the methodology has been expanded to sixth row
atoms'?71%8, Complex techniques that resolve binding energies into intra-atomic and
interatomic parts have also been formulated and utilized to uncover the physical origins of

covalent binding!%-2%,

IIL.F Spin-Flip and Spin-Correct Spin-Flip

In most cases, the proper description of non-dynamic correlation requires the use of multi-
reference methods?’!. Though several multi-reference methods are available in GAMESS,
their exponential cost makes them computationally prohibitive, limiting such methods to
relatively small systems and small active spaces. The spin-flip (SF) family of methods,
introduced by Krylov in 20012°2%4 was developed as a possible alternative to multi-
reference methods, without the multi-reference cost. Contrary to conventional multi-
determinant approaches, SF methods rely on a high-spin reference determinant (Mg > 0)
which, through a series of spin-flipping excitations (AMs < 0), generates a multi-determinant
wave function of a lower multiplicity. The multi-determinant nature of the final wave
function, as well as the high-spin starting orbitals, allows SF methods to capture multi-

reference effects within a single-reference formalism. Spin-flip has been implemented within

26

AlP

Publishing

several quantum chemistry methods, including configuration interaction (SF-CI)?02205.206
time-dependent density functional theory (SF-TDDFT)?"’, and coupled cluster (SF-

CC)203,208,209’ among others.

Figure 1 gives a graphical representation of the single spin-flip procedure.

ST
|-

S {—T— AMg=—1 (g (ii) (iif) (iv)

o+

A

Re]icze:r;ce T % _T_
T | 4 ﬁ ﬁ

™) (vi) (vif) (viii)

Figure 1: A visual diagram of a single spin-flip procedure.

Due to their simplicity and speed, SF-CIS and SF-TDDFT (implemented within the Tamm-
Dancoff approximation) are the most popular iterations of the SF methods. Both methods are
available in GAMESS. This includes energies and analytic gradients, as well as solvent
effects through PCM>!°, or the effective fragment potential (EFP)*>*!!. These methods have
been used to successfully describe bond-breaking, transition state geometries, excited states,

9212 and in solution?'3.

and geometries of conical intersections, both in the gas phase
A significant disadvantage of SF methods is that they suffer from spin-contamination. The
spin-flip procedure shown in Figure 1 ensures that the final SF wave function is an
eigenfunction of the S, operator, but not necessarily an eigenfunction of the $? operator. This
is evident from the second half of determinants (v—viii) in Figure 1. In consequence, the final
SF wave function is often a mixture of different multiplicities. Moreover, the spin-
contamination is inconsistent and often hard to predict, particularly at geometries where
degenerate configurations are important. Because of its drawback, a variety of approaches
have been suggested to correct the spin-contamination of SF methods??3-206.214215,

The SF-ORMAS method!!*!'¢ was introduced in GAMESS to correct the spin-contamination

problem inherent in SF-CI methods. As the name suggests, SF-ORMAS is the spin-flip

27

AlP

Publishing

variant of the ORMAS-CI method, introduced by Ivanic in 20032>!°. ORMAS is a general
determinant-based CI algorithm that allows for the partition of the orbital space into arbitrary
subspaces, each constrained by a minimum and maximum electron occupation. This makes a
variety of CI schemes possible within a single computational formalism. The SF-ORMAS
variant functions similarly to the ORMAS-CI method but imposes the additional constraint
that all generated determinants must be of a lower multiplicity (AMgs < 0) than that of the

reference determinant (i.e. the “spin-flip” constraint).

The SF-ORMAS method not only corrects the spin-contamination problem, but due to the
flexibility of the ORMAS algorithm, allows for a variety of SF-CI schemes. SF-ORMAS can
be supplemented with a perturbation correction (termed SF-MRMP?2), to account for dynamic
correlation that is normally neglected from most SF schemes. Energies are available in both
the gas phase and in solution (via the EFP or PCM methods), whereas analytic gradients are
available only for the gas phase?'®. Recently, non-adiabatic coupling matrix elements
(NACME) were also implemented for the SF-ORMAS method?!”.

SF-ORMAS was shown to successfully describe minimum and transition state geometries,
diradical states, single and multiple bond-breaking, and low-lying excited states, with
accuracies often matching those of methods such as CASPT2 and MRCI''. Conical
intersections optimized with SF-ORMAS are comparable to those optimized by multi-
reference methods. The recently implemented NACME also shows good qualitative accuracy
compared to the NACME of methods such as CASSCF and MRCI?!7. This strongly suggests
that the SF-ORMAS method is suitable for the study of non-adiabatic effects.

II1.G Quantum Monte Carlo

As part of a Department of Energy Exascale Computing Project (ECP), the GAMESS EFMO
code has been interfaced with the quantum Monte Carlo (QMC) program suite QMCPACK.
This combined QMC-EFMO method*'® inherits the advantages of the two methods: the high
accuracy of QMC and favorable computational scaling of EFMO.

The QMC method is a family of stochastic approaches for solving the Schrodinger
equation?'®. The statistical uncertainties of the predicted QMC properties (e.g., the energy of
a molecule) can be estimated and controlled. Thus, the QMC results are typically very

reliable, with an accuracy that is typically below 1 kcal/mol?2%-22!,

The QMC method has a favorable scaling of computational time with respect to the number

of electrons that is close to cubic?**?2, In addition, the QMC algorithms, due to their

28

AlP

Publishing

stochastic nature, are easy to make parallel and are consequently ideally suited for massively
parallel computers. The QMC parallelization compensates for the fact that the pre-factor, i.e.
the constant of proportionality in front of the cubic scaling factor, is significantly larger than
that for HF and DFT. Overall, due its high accuracy and favorable computational scaling, the

QMC method is an attractive alternative to the more traditional ab initio methods.

The computational scaling of QMC can be substantially reduced by the use of fragmentation
methods. In the QMC-EFMO method, the energy is computed as in any EFMO computation
but with QMC instead of a post-HF method for the correlation energy of the monomers and

dimers.

The QMC-EFMO method is implemented through an integration of GAMESS and
QMCPACK programs. The molecular system is first fragmented in GAMESS. Next, a stream
of QMC correlation energy evaluations on monomers and dimers are done in parallel by an
initial calculation by GAMESS followed by a sequence of QMCPACK calculations.
Ultimately, all calculations are assembled in the final QMC-EFMO energy result.

The QMCPACK-GAMESS integration is based on Python and Fireworks??*. Fireworks is a
workflow automation package written in Python that utilizes the MongoDB database
system??°. The Python/Fireworks scripting automates the workflow of GAMESS and
QMCPACK input files creation, program runs, and output files parsing and thus achieves a

seamless integration of the two programs.

A double-basis approach following ref. 22 is used in the QMC-EFMO calculations. For the
QMC correlation energy, i.e. the QMC calculations by QMCPACK and the preliminary HF
by GAMESS, the Burkatzk-Filippi-Dolg (BFD) effective core potential (ECP) basis set?? is
used. For the generation of the EFP parameters in the initial EFMO calculation by GAMESS,
the 6-311++G(2df,2pd) basis sets is used.

QMC-EFMO is a method with computational scaling that is close to linear, while retaining
almost entirely the QMC correlation energy. The QMC-EFMO method is illustrated on
ground-state calculations on a four-water cluster, a set of larger water clusters and the
excitation energy of micro-solvated acetone. In all of these examples, QMC-EFMO

reproduces the full QMC correlation energies and excitation energies very well.
III.H Density Functionals

GAMESS provides access to many popular density functional approximations across the five

rungs of Jacob’s ladder®?® (e.g., local density approximation (LDA), generalized-gradient

29

AlP

Publishing

approximation (GGA), meta-GGA, hybrid GGA/meta-GGA, and double hybrid). The 2012
excited-state benchmark by Leang et al.??° showcased several density functional
approximations available in GAMESS that have been implemented for both ground- and
excited-state calculations. Several new density functional approximations have been added to
GAMESS since the study by Leang et al., most notably several variants of the Minnesota
meta-GGA density functionals: M11%23°, M11-L*°, MN12-L?*!, MN12-SX?*, MN15%* and
MN15-L?*. In addition to several revised versions of the Minnesota meta-GGA functionals:
revM062®, revM06-L?*, and revM11%37. Of the Minnesota family of density functional
approximations available in GAMESS, only M11, M11-L, revMO06, revM06-L, and revM 11

are limited to ground state calculations.
II1.I DFTB.

Fragmentation methods greatly reduce the computer time requirements for high-level ab
initio and first principles energies and gradients and allow their computation for large-scale
systems thanks to near-linear scaling behavior with system size and efficient parallelization
techniques. Long timescale molecular dynamics (MD) simulations on the other hand are still
difficult to perform even with the help of systematic fragmentation approaches®*®. This is
because even the smallest possible fragment calculation of analytical gradients requires
typically minutes, even on the fastest supercomputers available today, which means that a
nanosecond MD trajectory with a million integration time steps would have to run for almost
one calendar year. Time cannot easily be “parallelized”, in particular when systems are
studied in nonequilibrium or when the time scales of chemical processes, such as diffusion,
are inherently slow. Therefore, it is necessary to use a computationally less expensive
electronic structure method that reduces the time for the calculation of fragment energies and

gradients by at least one order of magnitude.

One such method that has recently become very popular is the density-functional tight-
binding (DFTB) method?*’, since it avoids the expensive calculation of electronic integrals by
way of a two-center approximation, the use of a minimal valence electron basis set, and
Hamiltonian and overlap matrix elements, as well as diatomic repulsive potentials. These
parameters are all tabulated as a function of interatomic distances for each chemical element
combination. The DFTB method comes in a range of flavors, characterized by the order to
which the electronic charge density fluctuation is expanded in a Taylor series around a
reference density (typically a superposition of atomic densities). DFTB1 is accurate to first
order and does not depend on charge densities?*; DFTB2 is accurate to second order and
contains Coulomb interactions between charge fluctuations®*'; DFTB3 is accurate to third

order and contains additionally a charge-dependent on-site self-interaction and a modification

30

AlP

Publishing

of the second-order Coulomb interaction term?*?. In addition, spin-polarization can be
introduced in all three flavors via the introduction of an interaction term between spin
populations in different atomic orbital shells, resulting in SDFTBn methodologies**’. Finally,
a range-separated treatment of the exchange energy was recently introduced as the LC-
DFTB2 flavor in analogy to, for instance, LC-oPBE, where the long-range correction
“switches on” Hartree-Fock exchange®**. Fully analytic second-order energy derivatives are
available for all DFTB versions except for LC-DFTB2, providing rapid and robust simulation
of infrared and Raman spectra even for open-shell systems®*. An implementation of time-
dependent DFTB (TD-DFTB) for the computation of UV/Vis absorption and emission
spectra of systems containing several hundred atoms is also available along with analytic
first-order energy derivatives, with and without the addition of the polarizable continuum
model (PCM)>*°,

The computational bottleneck of DFTB is associated with finding a self-consistent solution to
the charge (and spin) density fluctuations, which requires solving the generalized Kohn-Sham
eigenvalue equations in the tight binding framework. This step scales cubically with system
size, similar to the parent DFT method, and hence fragmentation is ideally suited to reduce
this unfavorable scaling. The resulting FMO-DFTB methods have been implemented in
GAMESS?"-2% and allow quadratic time-to-solution for the calculation of quantum chemical
atomic forces for very large systems?°. Both two- as well as three-body FMO expansions are
available for all DFTB versions?!. The code allows the use of the velocity Verlet time
integration algorithm for the long time scale MD simulations of complex systems, such as for

248 and a replica-exchange MD approach was also recently

instance peptide folding dynamics
implemented within GAMESS for use with DFTB to allow for more efficient phase space
sampling®®. This makes the DFTB-based quantum chemical computation of free energy
changes as a function of some inter- or intramolecular coordinate (potential of mean force,
PMF) possible at the selected level of DFTB or FMO-DFTB.

It is often said that “there is no free lunch”, and this is certainly the case for FMO-DFTB as
well. The electronic as well as repulsive potentials have to be optimized for the required
chemical element combinations and the desired DFTB version, and the parameter
optimization toolkit>>? will be released soon. In recent years, machine learning
parameterization techniques have been developed and employed that improve the
performance of the DFTB flavors such that results comparable to traditional density
functional theory (DFT), correlated electronic structure methods, or experimental data can be
obtained®*2. But no matter to what degree the DFTB parameters are optimized, the
requirement of parameter transferability will always result in systematic errors originating
from the DFTB approximations themselves, such as the use of a minimal basis set or the two-

center approximation. To mitigate this remaining systematic bias, A-machine learning

31

AlP

Publishing

methodologies?> based on Behler-Parrinello neural network (NN) corrections for DFTB
energies and forces have been developed**?%3. Since systematic bias is less dependent on a
given chemical system or geometric configuration, the DFTB+ANN approach is able to
extrapolate from, rather than interpolate amongst training data. MD simulations based on
FMO-DFTB+ANN are therefore expected to achieve first principles or even higher-level

accuracy for the predictive study of the dynamics of chemically complex systems.

II1.J Parallel Coupled Cluster

Coupled cluster (CC) theory'?! provides very accurate results in the computation of molecular
energies and properties. The CC method truncated at the single and double excitation level
(CCSD) and augmented with a noniterative perturbative treatment of triple excitations, viz.,
the CCSD(T) method!?*?%, is an accurate method in quantum chemistry. Unfortunately, the
steep scaling of the computational costs of the CC methods, e.g., N® for CCSD and N’ for
CCSD(T), where N is a measure of the system size, restricts their applicability to chemically
relevant problems. Adapting CC implementations to modern parallel computing architectures

13’16’257_259i5

can effectively surmount this barrier. The primary goal of a parallel CC algorithm
to make an efficient utilization of the total aggregate memory of a parallel computer for
storing memory demanding quantities, thus affording computations involving large molecules

and basis sets.

The existing parallel CCSD(T) implementation'*in GAMESS is based on the third generation
of the Distributed Data Interface®® (DDI/3), which introduced shared memory capabilities for
multiprocessor nodes on top of the multinode distributed memory model. The parallel
CCSD(T) algorithm uses three types of storage for the requisite quantities: (a) distributed
storage for large two-dimensional arrays over a number of nodes in a parallel computer
(distributed memory), which has the largest storage capability and also bears the largest
communication overhead, (b) the shared memory of each multiprocessor node, which can be
directly accessed and modified by all intranode processes, and (c) replicated memory of the

parallel processes on a node, which has the smallest storage capacity.

In the current GAMESS algorithm, the various classes of two-electron repulsion integrals (2-
ERIs) involving up to three virtual molecular orbital (MO) indices are stored in the
distributed memory. The four-virtual integrals ([VV|VV]), which present a memory
bottleneck, are not stored at all. The terms in the CCSD amplitude equations involving these
2-ERIs are rather computed via an atomic orbital (AO) integral-direct algorithm. Arrays of

size scaling as N? and N, e.g., the T1 amplitude matrix, are stored in the replicated memory of
each parallel process. On the other hand, the T2 amplitude matrix (storage scaling as Noszz,

where N, and Ny denote the number of occupied and virtual MOs, respectively) is stored once

32

AlP

Publishing

per node in its shared memory address. The workload pertaining to the evaluation of the
terms in the factorized CCSD amplitude equations is distributed over nodes according to the
distributed storage of the 2-ERIs. The workload on each node is further distributed among the
intranode processes. Importantly, the DDI/3 model employs Unix System V semaphores for

intranode communication rather than a thread-based model (e.g., the OpenMP API*?).

While the current parallel CCSD(T) algorithm was demonstrated to achieve reasonable
scalability for chemically interesting problems in the limit of a large number of compute
nodes, there is room for further improvements. Current efforts are focused in this direction.
The distributed storage for the three virtual-one occupied integrals ([VV|VO]) in the current
parallel CCSD(T) algorithm presents a memory as well as communication bottleneck. A
pragmatic approach to reduce this bottleneck is to implement an AO integral-direct
algorithm?®! for the terms that involve these 2-ERIs. Unlike the [VV|VV] integrals, the
[VV|VO] integrals appear in a larger number of terms in the CCSD amplitude equations. A
judicious regrouping of the various terms is thus important for an efficient evaluation; for
example, to compute one group of terms involving the [VV|VO] integrals simultaneously
with the evaluation of terms involving the [VV|VV] 2-ERIs. The existing code segments will

be retained as much as possible such that the AO integrals need not be evaluated repeatedly.

Following the lead of the new RI-MP2 code discussed in Section III.A, the parallel CCSD(T)
code will make use of a hybrid DDI/OpenMP model by substituting the process-based
parallelism on each node with thread-based parallelism. In the DDI/3 model, collective
synchronizations over all intranode processes are applied in order to retain integrity of the
data stored in the shared memory address of the node. With an increasing number of
intranode processes, the increased synchronization overhead becomes competitive with the
enhanced distribution of the computational workload per node. For this reason, the intranode
scalability of the existing parallel CCSD(T) algorithm was found to be less than

optimal'?

.The synchronization overhead can be reduced by limiting the number of intranode
processes to only a few (ideally one). Each process then gets a larger amount of local
memory, which permits a larger amount of data to be replicated among them. The workload
on each process can then be suitably parallelized via OpenMP threads. As threads
communicate through a shared memory pool, an efficient parallelization at a significantly
lower interprocess communication cost can be achieved by assigning a large team of threads

to each process.

Further improvements in the parallel CCSD(T) implementation can be achieved by making
use of graphical processing units (GPUs) to perform certain computations, which are both
time consuming and memory expensive. GPUs facilitate a massive parallelization of logically
simple computational steps at very high speeds. Contractions involving the [VV|VV] and
[VVIVO] integrals with cluster amplitudes will be performed by offloading these

33

AlP

Publishing

computations to GPUs. This will require enabling GPU offloading capabilities within the
parallel CCSD(T) algorithm. The use of modern OpenMP standards will make this feasible.
An alternative strategy would be to obtain the 2-ERIs from the GPU-enabled integral library
named LibAcclInt, which is currently under development. This will accelerate the integral
evaluation step. Furthermore, all steps involving contractions of the 2-ERIS with cluster

amplitudes could be offloaded to GPUs for the maximum speedup.

Efficient parallel algorithms will also be developed for the existing sequential CR-CC(2,3)
implementation in GAMESS. As noted above, the CR-CC(2,3) approach'?7!2>-13! includes a
noniterative correction for triple excitations on top of the CCSD energy via the method-of-
moments ansatz. For developing a parallel CR-CC(2,3) algorithm, the key step is to
parallelize the triples correction part. A hybrid DDI/OpenMP model will be used for this
purpose. Further current developments in the CC methods within GAMESS include the
implementation of analytic gradients?®>2%* for the CCSD(T) and CR-CC(2,3) methods.
Massively parallel algorithms will be developed for gradient calculations using similar

parallelization models as outlined above.

Another important current development in the CC methodologies within GAMESS concerns
a massively parallel implementation of the CCSD(T) and CR-CC(2,3) methods employing
the resolution-of-the-identity (RI) approximation®®?%* for the 2-ERIs. Within the RI
approximation, the 2-ERI matrix is approximated as products of three-index tensors. The
storage requirements for the three-index integrals scale as N?Nuur, With Nuux denoting the size
of the auxiliary basis set, in contrast to the N* storage requirements for the conventional four-

index 2-ERIs.

265-269 would be to assemble and store

The straightforward way to implement RI-CC methods
the four-index 2-ERIs prior to the iterative solution of the CCSD amplitude equations. While
this would allow for the use of the existing CC implementation, such an algorithm does not
take advantage of the reduced storage of the 2-ERIs. An alternative strategy is to assemble the
four-index 2-ERIs as they are needed. Such an integral-direct algorithm bypasses the large
storage requirements for the 2-ERIs. However, the repeated integral assembling steps in
every iteration, the computational cost of which scales as N°, should be minimized for an
optimum efficiency. This can be achieved by regrouping the terms in the CCSD amplitude
equations and formulating them in terms of intermediates, which involve contractions
between the three-index 2-ERIs and the cluster amplitudes?*®2%°. The use of these
intermediates enables avoiding a direct evaluation of the terms involving the [VV|VO]
integrals. The evaluation of the term involving the [VV|VV] integrals still remains the rate-
determining step in the RI-CCSD calculation. An AO integral-direct algorithm will be
developed for this purpose, in which the four-index AO integrals will be assembled from the

prestored three-index AO integrals.

34

AlP

Publishing

With the above strategy to fully exploit the reduced storage requirements for the 2-ERIs, a
parallel implementation of the RI-CC methods would require significantly less distributed
data storage compared to the existing parallel CCSD(T) implementation. The use of the total
aggregate memory of a parallel computer for storing the 2-ERIs, as exploited in the DDI/3
model, is less important for the RI-CC methods.'**”*%27° The GDDI model partitions
compute nodes into groups, the size of which can be assigned according to the needs at
runtime. All quantities required for the RI-CC calculations will be replicated among the
groups, in this way eliminating the intergroup communication overhead. The three-index 2-
ERIs will be distributed within each group. The workload on each node will be distributed
over a small number of processes so as to maximize the associated shared memory per
process. The computation on each process will then be parallelized using teams of OpenMP
threads. One important advantage of using this hybrid GDDI/OpenMP model is the scope of
combining the RI-CC methods directly with the FMO approach, which is the final goal of this

work.

II1.K Interoperability

There are a few robust, no-cost or open-source, electronic structure packages available for ab
initio molecular electronic structure computations. Among those program suites GAMESS!,
NWChem?”!, PSI4%*7?, and CFOUR?"3, stand out as flagship development platforms to
perform highly accurate quantum chemical computations and implement new electronic
structure approaches/models. Each of these programs contains millions of lines of computer
codes and has unique functionalities and capabilities that have been developed over many
years through the efforts of many researchers. For example, GAMESS has been evolving for
almost four decades. However, there are tasks in ab initio electronic structure
computations/models that are common to all program suites. In order to minimize further
development efforts (minimize duplicate efforts) and to maximize the efficacy of the unique
features, GAMESS has been interfaced with quantum chemistry common driver and
databases (QCDB?"#) to be interoperable with the NWChem, PSI4, and CFOUR programs.
QCDB is written in python.

GAMESS has been interfaced with QCDB in such a way that one can generate input files for
PSI4, NWChem, CFOUR, and GAMESS using a common input syntax. These input files are
user-friendly and easy to use even for beginners. For example, an input file to calculate the
MP2/cc-pVTZ energy of the water molecule is as simple as

h20 = qcdb.set_molecule("""
O
H1138

35

AlP

Publishing

H11.82104.5

units au
")
gcdb.set_options({'basis":'cc-pVTZ'})
gcdb.energy('gms-mp2')

In the above notation, ‘gms’ stands for GAMESS. One can do the above computation in
NWChem, PSI4, and CFOUR by changing the 'gms-mp2' to 'nwc-mp2', 'p4-mp2', or 'c4-
mp2’, respectively. And also, QCDB can parse the output of those programs to produce a
common output. The flexibility of the input and output format reduces extra effort for users to

execute programs and manage data seamlessly regardless of the program.

The most beneficial part of the GAMESS-QCDB interface is that users are able to perform ab
initio electronic structure calculations across multiple programs, taking advantage of the
unique features of each program. For example, one can perform a very high-level benchmark
computation on a molecular cluster using CCSD(T)/cc-pV[Q5]Z level in Psi4 and then do a
post-CCSD(T) correction using NWChem or corrections computed via the EFMO approach,
for larger molecular clusters, in GAMESS. GAMESS-QCDB is beneficial to other programs
as well. For example, the GAMESS interface provides the EFP) capability through the
GAMESS potential file generation (MAKEFP) and then running EFP calculations on

molecular clusters for the other programs.
There are some methods, of course, such as HF, DFT, MP2, and coupled-cluster methods that
are common to the GAMESS, NWChem, PSI4, and CFOUR programs. However, there are

unique features in each program as well.

IV. Modern Programming Practices

As high performance computing enters the exascale era, new paradigms must be adopted.
This is especially true for widely used electronic structure packages such as GAMESS. In
addition to the development of strategies for parallel computer coding, some of which have
been discussed in the previous section, consideration must be given to the power
consumption by massively parallel computers (i.e., Dennard’s Law?’") which can be as costly
on an annual basis as the initial cost of the hardware. This means that strategies are needed
for minimizing the power consumption while at the same time optimizing the time to
solution. An equally important consideration is how to optimize the development, testing and
distribution of codes that are increasingly complex. These issues are discussed in the

following paragraphs.

36

AlP

Publishing

I'V.A Maximizing Performance under Power Constraints

Energy consumption has become a major design constraint in modern computing systems, for
which a power envelope has been established between 20 — 40 MW. Hence, GAMESS
scaling capabilities have to take into account the efficient usage of the available power
allocation, in addition to the efficiency of calculations. A way to achieve efficient power
usage has been implemented in GAMESS such that the operating core frequency and voltage
are reduced to the minimum?’® for the cores hosting the data-servers because they do not
participate in power demanding (computational) tasks. Recently, power allocation strategies
among DRAM, GPU, and CPU have been proposed for the hybrid CPU-GPU Libcchem
implementation (See Section V) that targets full GPU utilization, and thus, the GPU may
require high priority in power utilization. Previous experiments, however, showed that the
highest priority should be given to DRAM if (part of) a calculation is memory-intensive, such
as storing/reading the integrals, to avoid a huge performance penalty?”’. Then, the GPU gets
the second priority for allocating power to maximize the performance of GPU-intensive
phase of the application. Within the CPU power domains, the remaining power budget is
allocated in accordance with GAMESS calculation performance at runtime?’8. To determine
the amount of power to be allocated to the GPU, a feedback strategy is employed based on
current utilization of GPU components gathered using the NVIDIA System Management

Interface.

When power is allocated as per the above strategy, experiments on a 28-core Haswell-EP
platform equipped with a Kepler K40m GPU with five different GAMESS/Libcchem
calculations showed that the strategy provided maximum performance even with reduced
power consumption. Specifically, an 11% reduction in power consumption did not reduce
performance at all, while a 17% reduction in power resulted in only a 2% performance loss.
Figure 2 shows the Libcchem power usage during an HF calculation of a 19-water molecule
cluster (Wat-19), when the total power budget was set to 315 W (11% of the 351 W used

with maximum power needed.)

In summary, power re-allocation strategies have been successfully used in GAMESS

Libcchem to improve its energy efficiency.

37

AlP

Publishing

Wat-19

320
315

w
iy
o

305
300
295
290
285
280
275
270
0 5 10 15 20 25 30 35 40

Time (seconds)

Power Consumption (Watts)

Fig. 2. The power consumption of the wat-19 calculation using the feedback strategy when the
power allocation is set to 315 W. The power shown is the sum of the instantaneous GPU, CPU, and
DRAM power, which are obtained from nvidia-smi for GPU and from Intel Running Average Power
Limit (RAPL) interface for CPU and DRAM.

IV.B Software Development Process

1V.B.1 Version control and source repository
The GAMESS development source code is hosted on the GitHub collaborative development
platform?®” within a private repository and is managed using the git*** distributed version

control system. GAMESS employs the gitflow branching model?®!

with separate dedicated
branches for development and releases. Forking is disabled to ensure that all development
undergoes continuous integration, a software-engineering best practice of building and testing
every code change committed to a shared repository. With respect to the gitflow branching
model, all branches in GAMESS with new commits undergo integration testing. Daily
testing is performed for the development and releases branches to ensure that those branches
are always in a stable state. More information regarding how to contribute to the development

of GAMESS may be found at: https://www.msg.chem.iastate.edu/gamess/developers.html

1V.B.2 Continuous integration

8 and

GAMESS utilizes two continuous integration platforms for integration testing: Travis®
Jenkins?®. Travis is a cloud-based continuous integration platform. For open source and
academic research codes, Travis provides access to a single cloud-based compute instance for

building and testing known as a worker. The GAMESS Travis worker is configured to

38

https://www.msg.chem.iastate.edu/gamess/developers.html

AlP

Publishing

perform 5 build-tests on a 64-bit instance running Ubuntu 14.04.5 LTS that varies the
communication model (e.g., sockets and MPICH MPI?®*¥), math library (e.g., ATLAS?® and
netlib?®¢), and build option (e.g., non-threaded and OpenMP-threaded GAMESS). For one of
the build-tests, the FTNCHEK static analyzer is used to analyze the Fortran code for issues
such as common block alignment, variable usage before initialization, and code formatting.

A summary of the GAMESS Travis worker build-test configuration is provided in Table 3.

Tests
Static

Math Comm. Build Option Analysis

Build Validation
ATLAS | sockets non-threaded Yes Yes Yes
ATLAS | MPICH MPI | non-threaded Yes Yes No
Netlib sockets non-threaded Yes Yes No
Netlib sockets non-threaded Yes Yes No
ATLAS | MPICH MPI Threaded Yes Yes No

Table 3. GAMESS Travis worker build-test configuration.

Each build-test compiles GAMESS using the GNU compiler and performs validation testing
using a small test set consisting of serial and parallel runs. Although free and in the cloud
(off-premise), the Travis continuous integration platform has many limitations such as
available compiler and hardware support (e.g., no access to GPGPUs) and testing restrictions
(e.g., worker time-out if no output is received for any 10-minute time period).

To address the limitations of the Travis continuous integration platform, an on-site
installation of the Jenkins continuous integration platform was deployed and interfaced with
local computing resources to facilitate additional build-test configurations. For pull-requests
(code-integration requests) into the development branch, Jenkins performs 6 build-tests in
parallel running 64-bit Centos 7 that varies the compiler (e.g., GNU?*" | Intel?®® | and PGI?*),
communication model (e.g., sockets, OpenMPI**°, Intel MPI*°!), and math library (e.g.,
OpenBLAS?? | Intel MKL?%*, PGI BLAS?*). All six build-tests are performed on the same
CPU architecture. Each build-test compiles the non-threaded version of GAMESS and
performs validation testing using a large test set consisting of 665 serial and 529 parallel runs
with a test coverage of over 60% measured using gcov?®’. A summary of the GAMESS

Jenkins build-test configuration is provided in Table 4.

Tests

39

AlP

Publishing

Compiler Math Comm. Build Validation
GNU OpenBLAS sockets Yes Yes
GNU OpenBLAS OpenMPI Yes Yes
Intel Intel MKL sockets Yes Yes
Intel Intel MKL Intel MPI Yes Yes
PGI Intel MKL OpenMPI Yes Yes
PGI PGI BLAS OpenMPI Yes Yes

Table 4. GAMESS Jenkins build-test configuration for integration into the development branch.

A smaller set of appropriate build-tests configurations are performed for LIBCCHEM and

OpenMP threaded development.

For pull-requests into the release branch (e.g., new scheduled public release), multiple
computing architecture (e.g., Intel Sandybridge, Intel Haswell, Intel Skylake, AMD EPYC,
and NVIDIA GPGPU) testing is performed using the GNU compiler. Each CPU architecture
consists of four build-tests for the non-threaded build of GAMESS. The OpenMP threaded
build of GAMESS and the LibCChem CPU-only build consists of two build-tests each. The
GPU-accelerated LibCChem build of GAMESS currently consists of a single build-test using
an NVIDIA GPGPU (e.g., K20, K40, K80, or V100). A summary of the GAMESS Jenkins

build-test configurations for multiple computing architectures is provided in Table 5.

Tests
Architecture Math Comm. Build Option
Build Validation
Netlib socket non-threaded Yes Yes
Intel Sandybridge Netlib OpenMPI | non-threaded Yes Yes
Intel Haswell
Intel Skylake
AMD EPYC OpenBLAS socket non-threaded Yes Yes
OpenBLAS OpenMPI non-threaded Yes Yes
AMD EPYC Intel MKL OpenMPI Threaded Yes Yes
Intel Skylake Intel MKL OpenMPI Threaded Yes Yes
AMD EPYC Intel MKL OpenMPI LIBCCHEM Yes Yes
CPU-only
40

AlP

Publishing

LIBCCHEM
Intel Skylake Intel MKL OpenMPI CPU-only Yes Yes

Intel Sandybridge + NVIDIA

GPGPU Intel MKL OpenMPI LIBCCHEM Yes Yes

Table 5. GAMESS Jenkins build-test configuration for integration into the release branch.

The total wall-time to complete all Jenkins build-tests in Table 3 is approximately 72 hours
and 1s dependent on resource availability. Due to the heavy load placed on local

computational resources, Jenkins can only be triggered by a successful Travis session.

1V.B.3 Testing framework

The GAMESS testing framework consists of a set of python scripts that provides the
functionality of running GAMESS inputs and parsing and validating the generated output.
The python parse takes any GAMESS log file and extracts all predefined content and stores
the content into a validation file in JSON object notation. During testing, a generated log file
is parsed and a similar JSON object file is created containing the parsed values. The name of
the log file and the number of validation entries must match in order for validation to
proceed. For each validation entry, the values are compared and measured against the

specified tolerance for each entry.

The testing framework is designed to work with unstructured output commonly encountered
when using scientific software. The parsed content can be extended to accommodate new

unstructured output by defining new parse groups.

1V.B.4 Portability and Source Code
GAMESS prides itself in being a highly portable quantum chemistry code. End-users have
the option of compiling from source, using pre-compiled binaries, or obtaining a Singularity

container image.

GAMESS can be compiled with minimal third-party dependencies on many variants of 32-bit
and 64-bit Linux, Apple, and Microsoft Windows operating systems. At minimum, GAMESS
requires the C-shell, a C and Fortran compiler, and the GNU make tool. The GAMESS build
process is coordinated using several C-shell scripts. These C-shell scripts have recently been
integrated with the GNU make tool to enable parallel compilation of the Fortran sources files.
The build process involves invoking a C-shell script, config, that will prompt the end-user to
provide the build target, build directory location, binary name, compiler choice, math library
selection, communication mode (e.g., sockets or MPI), and additional build options (e.g.,

with the Michigan State Coupled-Cluster Theory package, with OpenMP threading, or with

41

AlP

Publishing

LibCChem). The latter process will generate a file, install.info, containing the build

configuration.

Pre-compiled GAMESS binaries are made available for 64-bit Microsoft Windows users.
These native binaries are prepared using the latest PGI Community Edition compilers and
provide end-users with two options for statically linked math libraries (e.g., Intel MKL or
PGI BLAS). The only supported distributed data interface (DDI) communication mode for
Microsoft Windows is MPI; therefore, end-users are required to install the Microsoft MPI
library (MS-MPI) provided with the pre-compiled GAMESS binary package. Several
Windows batch scripts, shortcuts, and step-by-step visual instructions are provided with the
pre-compiled GAMESS binary package to help lower the barrier to learning how to deploy
GAMESS using the Windows Command Prompt.

1V.B.5 Singularity container
Alternatively, through an agreement between GAMESS and NVIDIA, end-users have the

294 container image®”>. The

option of deploying GAMESS using a GPU-enabled Singularity
GAMESS container image provided by NVIDIA contains a pre-configured and pre-installed
copy of GAMESS with the GPU-accelerated LibCChem package. The GPU-enabled
container image of GAMESS was made available on the NVIDIA GPU Compute cloud
(NGCC) during its inaugural launch at the Supercomputing 2017 conference*. Application
containers are an emerging technology that have the potential to help improve code
portability and reproducibility in scientific computing. Scientific software developers can use
application containers to package and share images of their pre-configured and pre-installed
application along with all software dependencies. For scientific software with complex
software dependencies, such as the GPU-accelerated LibCChem package (e.g., CUDA?7,
Global Arrays?*®, BLAS, LAPACK?%°, and HDF53%), application containers can significantly
lower the barrier to usage. As application container technology becomes more available
across operating system vendors, GAMESS may consider offering a single container image

as a cross-platform solution.

V. LibCChem

The breakdown of Dennard*’! scaling marked the beginning of a new computational era, in
which the familiar latency-oriented processor architectures were (almost completely)
replaced by throughput-oriented ones for performance purposes. Among the latter, during the
last two decades, GPUs**? have cemented their status as near-ideal “number-crunching”
machines, delivering the lion’s share of the FLOP performance achieved by the most

powerful supercomputers in the world. For example, Summit, the fastest supercomputer in

42

AlP

Publishing

the world according to the Top500, acquires 95% of its peak FLOP performance from its
NVIDIA V100 GPUs*®,

As computational hardware morphs into these novel, intrinsically parallel architectures,
quantum chemical methods and their underpinning implementations must evolve accordingly.
GAMESS' has started on this evolution via its use of LibCChem!#!63% 3 specialized C++
library designed for high-performance electronic structure theory computing on both CPUs
and GPUs. Besides introducing object-oriented programming into GAMESS, LibCChem also
enables GPU usage through its use of the CUDA programming model, for execution on
NVIDIA graphics cards. Currently, LibCChem can execute a number of different quantum
chemistry calculations on NVIDIA GPUs. These include the evaluation of electron-repulsion
integrals (ERIs) via the Rys Quadrature algorithm'*, the Fock build step of Restricted
Hartree-Fock (RHF) energy calculations'’, the evaluation of MP2 energies®*, and the

calculation of RI-MP2 energies and gradients.

Recently, also a new GPU port path has been enabled directly within GAMESS itself, via the
usage of OpenMP GPU offloading of the hybrid MPI/OpenMP RI-MP2 (Fortran) code'%.

In the following sections we discuss the GPU implementations in LibCChem and GAMESS
Fortran and their performance.

V.A Integrals

The evaluation of integrals is arguably the most common bottleneck in quantum
chemistry*®>3%_ For this reason, efficient integral evaluation has been a historically prolific
area of research®*’ 33! leading to algorithmic enhancements that have been instrumental in
enabling quantum chemical calculations on increasingly large systems. In this section we will
focus on the GAMESS capability to evaluate ERIs on GPUs. Their sheer number - formally
O(N*) - makes their computation the most expensive step of an SCF procedure, and an

obvious candidate for accelerator offloading.
V.A.1 Rys quadrature

The first algorithm for the evaluation of ERIs on GPUs in LibCChem was implemented in
2010 by Asadchev et al.'* The code, which is still operational, provides a high-performance
Rys quadrature algorithm, in which memory access patterns and data reuse were specifically
optimized for GPUs. In the Rys quadrature scheme, ERIs are evaluated as combinations of
2D-integrals (Rys integrals), which are largely shared among different ERIs within a given
integral class. The LibCChem implementation maps each ERI class to a different thread
block. The Rys integrals are stored on a per-block basis in the shared memory of the GPU,
enabling their efficient reuse (within a thread block) when constructing an ERI class. To

43

AlP

Publishing

further improve performance, the Rys quadrature implementation in LibCChem was designed
to have two execution modes: a small and a large angular momentum path. Within the small
angular momentum path, Rys integrals are evaluated using polynomial expressions obtained
by fully expanding the recurrence relations. These formulae were then parsed through

Sage’®

, a Python package that performs Common Subexpression Elimination (CSE). This
way, the polynomial expressions were simplified and reordered to maximize register reuse.
For high angular momentum classes, the 2D-integrals are instead evaluated, as traditionally,
in terms of recursion, and transfer relations and then combined to form the ERIs. The Rys
quadrature integral code was later coupled with a novel Hartree-Fock algorithm, which
presented a maximum speedup of 38.9x against the GAMESS/Rys implementation. The GPU
version of the algorithm showed a single-core maximum speedup of 17x against the CPU

version (vide infra).
V.A.2 LibAcclInt

Currently, LibCChem can also evaluate ERIs via the Head-Gordon-Pople method, due to the
interface with the LibAccInt ERI library. LibAcclnt (Library for Accelerated Integral
evaluation) is a standalone integral library that is intended to interface with any quantum
chemistry code. However, special consideration is given to the GAMESS FORTRAN code
and the LibCChem C++ code. An interface to connect GAMESS and LibCChem with
LibAcclnt is in progress, in order to enable optimized integral routines targeted for GPU
execution, while also providing parallel CPU evaluation. The library will support several
GPU programming models, in order to execute on GPU architectures. The initial
implementation of the library is based on the CUDA execution model. The initial algorithm
in planning for the library is the Head-Gordon-Pople*! (HGP) algorithm, an optimized

version of the Obara-Saika’?’

algorithm and an excellent approach for mid-contraction
degrees. Additionally, the Obara-Saika algorithm, which outperforms the HGP algorithms for
certain contraction degrees and combinations of angular momenta, is planned for
implementation. Finally, early contraction schemes for the fast evaluation of highly

309 axis switch method and

contracted low-angular-momentum ERIs, such as the Pople-Hehre
the CCTTT path in the PRISM algorithm?®'® will also be implemented. The integration of this
GPU oriented library will enable GAMESS and GAMESS + LibCChem to possess extremely

fast and efficient routines for integral calculations.
V.B HF, GFB

The formation of the two-electron portion of the Fock matrix in the Fock build step is the

most computationally expensive procedure in a Hartree-Fock (HF) implementation. The Fock

build step is composed of two main algorithmic stages: 1) The evaluation of the ERIs, and ii)

The contraction of the computed ERIs with corresponding density matrix elements, which are
44

AlP

Publishing

then added into the Fock matrix. LibCChem offloads both stages to GPUs, effectively

minimizing the Fock build runtime'>.

The goal for the new HF implementation was twofold: 1. To create a high-performance HF
code for medium-sized systems (i.e., on the order of ~2,000-3,000 basis functions), and 2. To
create a HF code that minimizes, if not entirely eliminates, the need for required

synchronization between threads.

The new HF code uses a number of algorithmic design features to achieve its two goals. The
first design feature is its distribution of tasks to different GPUs via a binned shell-pair
container. The binned shell pair container is a three-dimensional container that contains
batches of shell pairs, such that all shell pairs in a batch are from the same shell pair class.
The shell pair container arranges these shell pair batches in two ways - by shell pair class
cost; and by shell pair value, where the shell pair value refers to the exponent of the largest
integral that can be calculated by the shell pair batch. The use of a binned shell pair container
achieves two goals. First, screening can automatically be performed through a smart
combination of shell pair batches to create shell quartet batches. This is because the value of
the largest integral created by a shell quartet batch can be uniquely mapped to the sum of the
shell pair value of the two constituent shell pair batches. Thus, screening can occur at the task
distribution stage rather than after task distribution, significantly improving load balance.
Additionally, all shell quartets within a shell quartet batch will have exactly the same
computational cost, leading to a perfectly load-balanced computation of the ERIs arising

from a shell quartet batch.

The shell quartet batches are formed by combining a bra shell pair batch with one or multiple
ket shell pair batches, and subsequently distributed to different MPI ranks (i.e., GPUs) via a
master-slave model. The cost of each shell pair batch is calculated beforehand, and the most
expensive shell quartet batches are formed first and distributed first, efficiently balancing the
workload across the active processes. Within a shell quartet batch, the different shell quartets
are distributed to different GPU threads, so that the ERI computation is performed for each
shell quartet by a single thread. As each shell quartet in a shell quartet batch will have the
same code path, this enables taking advantage of the SIMT hardware architecture model that
GPUs offer.

To minimize the required thread synchronization, a novel Fock contraction has been devised

and implemented. First, multiple portions of the Fock matrix are stored and written to

separately. The first such portion is the J (Coulomb) matrix, which contains the two Coulomb

blocks used in the Fock contraction step. For a given shell quartet batch, these are written

completely in parallel without any thread synchronization. The exchange (K) portions are

written to via the use of a series of three-dimensional exchange (K) arrays. For a given shell
45

AlP

Publishing

quartet batch, there exists one K array per exchange block, leading to four K arrays being
written to overall. Each K array is a three-dimensional object, where the first two dimensions
represent a location on the Fock matrix, and the third dimension represents a position within a
buffer to be flushed to a given Fock matrix element determined by the first two dimensions.
During the computation of the exchange elements in the Fock contraction step, each
exchange element is written to a unique location in one of the four K arrays, eliminating the
need for any thread synchronization. After the K arrays are written to, they are flushed in
parallel into the Fock matrix. In this way, the new HF code achieves a minimal amount of
required thread synchronization, as both the Coulomb and exchange elements can be added to

the Fock matrix with no thread synchronization whatsoever.

The benefits of such an approach can be seen in the speedup of the new LibCChem HF code
compared to the default GAMESS MPI-parallel HF code on Summit. Both codes were run on
a 150-water cluster using the PCO segmented basis set. The LibCChem code was run using a
single V100 GPU. The CPU code was run in parallel using 3, 6, 9, 12, 15, 18, and 21 threads
on a single Summit Power9 CPU. This was done to compare the performance of the new
LibCChem code against a parallel run of the GAMESS HF code, and also to compare the
performance of the new LibCChem HF code against the predicted serial timing of the
GAMESS HF code, determined via extrapolation. Compared to the fully parallel GAMESS
HF code using 21 threads, that is using the 21 cores of the P9 processor at Simultaneous
Multi-Threading (SMT) level 1, the new LibCChem code achieved a speedup of ~39x.
Against the predicted serial timing of the GAMESS HF code, the new LibCChem HF
algorithm achieved a speedup of ~755x. These significant speedups display both the
effectiveness of the current LibCChem HF algorithm and the effectiveness of GPUs as a

“number-crunching” machine.
V.C MP2

Along with ERI computations and RHF Fock build calculations, LibCChem can also perform
MP2 energy calculations on GPUs. The initial implementation of LibCChem MP2 was
written by Tomlinson et. al,>* initially devised for CPUs, and later ported to GPUs. This
implementation brought a number of memory footprint and performance improvements,
when compared to the original GAMESS implementation. First, chained matrix

operations were reordered to minimize the FLOP count and highly tuned math libraries were
adopted for all of the integral transformations. Second, the per-core memory footprint was
significantly reduced, thereby enabling computations using several thousands of basis
functions. Third, the I/O bottleneck was alleviated by implementing a strategy that uses
OpenMP to assign threads to some I/O duties, while other threads are performing compute

operations. The use of the HFDS parallel file storage library was used to further enhance I/O.

46

AlP

Publishing

V.D RI-MP2

The resolution of the identity (RI) approximation is a way to ameliorate the cost of the
evaluation of ERIs, as discussed in Section III.A. The RI approximation factorizes the four
center two electron integrals into the product of two and three center integrals, which
significantly reduces the cost. It can be applied to any method that evaluates ERIs. The first
implementation of the RI methodologies in LibCChem was for the MP2 method. Two sets of
RI-MP2 methods are found within GAMESS + LibCChem: a hybrid MPI/OpenMP CPU
version (Fortran) which now supports OpenMP GPU offloading!®?, and a CUDA version in
LibCChem that supports NVIDIA GPUs.

The RI-MP2 implementations in GAMESS and LibCChem focus the GPU intensive tasks in

1/2 transformation and to

the dense matrix multiply operations needed for the MO and the V'~
create the 4-center two-electron integrals from the three-center ones. This is done via
cuBLAS enabled matrix operations on GPUs. In GAMESS, the final RI three center integrals
can be stored in three levels using 1) distributed memory, which can be expanded to a desired
size by adding more compute nodes; ii)) CPU compute node memory, which is a fixed number
and usually varies in the range of ~250-512 GB for modern multicore CPUs; and iii) GPU
high bandwidth global memory, which is as small as ~16 GB. In the fragmentation context,
the whole matrix can usually fit on CPU node memory and/or the GPU global memory. For
large calculations, the matrix storage can be spilled to the distributed memory. Benchmark
calculations for water clusters and fullerene showed that the speedup of the GPU RIMP2
energy kernel using a single V100 GPU relative to the MPI/OpenMP RI-MP2 energy code
using a P9 socket (21 physical cores, 4 hardware threads) is 14x'%2. This has demonstrated
that directive-based offloading implementations can perform near the GPU/CPU theoretical

speedup based on the machine peak ratios.

In LibCChem, the storage of the necessary quantities, such as the integrals, is done in the AO
basis. If the integrals to store are small, the RI-MP2 algorithm will use the Global Arrays
toolkit to store them. However, if they are large the HDF5 parallel I/O library is used. In
benchmark calculations conducted on a 150-H20 cluster using the aug-cc-pVDZ basis set, the
LibCChem RI-MP2 algorithm yielded a speedup of ~14x using a single V100 NVIDIA GPU
compared to the (LibCChem RI-MP2) CPU code run on a P9 socket using 21 cores at SMT
level 2 (increasing the SMT from 2 to 4, did not yield any CPU performance improvement).
The speedup of a calculation on the same molecular system using 66 V100 GPUs was 798x
with respect to the fully parallel execution on the P9 CPU. This showed that the RI-MP2
LibCChem implementation can reach near the V100 peak throughput on a single GPU,

maintaining also an extremely high performance when operating on a large number of GPUs.

V.E Usability
47

AlP

Publishing

Throughout its lifespan, LibCChem has seen significant improvements to its usability as a
library. The goal of such enhancements was to meet the following design features: 1) the code
must be maintainable and readable, allowing for further development; i) it should be
modular, enabling users to build only selected functionalities; iii) it should always be
compatible with modern versions of its critical dependencies; 1v) it must be designed to be
highly portable.

General improvements in the usability of LibCChem came in different forms. At its
inception, LibCChem was built using a patched version of GNU Autotools, the Boost library
and the Global Arrays library, making it extremely complicated to build in any other system
than the one it was developed on. For this reason, the build system was replaced with CMake,
a modern, cross-platform, open source tool for managing the building of packages.
Transitioning to a modern build system and not relying on a patched version of Autotools
enabled LibCChem to update to the most modern versions of the Boost and Global Arrays

libraries.

Another major improvement to LibCChem usability was achieved by upgrading from the
C++98 standard to C++11. Such a modernization in the standard adopted by the library
resulted in fewer external dependencies and in the capability to access modern C++
constructs. This also lowered the reliance of LibCChem on the Boost library, as many of its
functionalities are directly provided by the C++11 standard. LibCChem was also made more
modular. The library is capable of performing different types of calculations. However,
originally these different functionalities were not modularized. All of the available methods
were by default compiled and linked to GAMESS. To streamline both the build and
development processes, the code has been split into four “modules” - the Hartree-Fock
module, the RI module (containing both RI-MP2, and Density-Fitted Hartree-Fock), the CC
module, and the MP2 module. These modules can now be selected for compilation during the
configuration of GAMESS. During the LibCChem build process, the build system recognizes
which modules the user would like to build and builds only the files associated with those

modules.

Along with build system improvements, LibCChem compiler support was augmented.
LibCChem now supports a wide variety of compilers for compilation usage. Specifically, the
library has been tested and proven to work on the GCC (up to 9.1), Intel, PGI, XL, and Clang
compiler tool chains. Additionally, LibCChem has been tested and shown to compile using
GCC on ARM and IBM architectures. This increase in compiler support was facilitated
primarily via the removal of non-portable code from LibCChem such as the “pedantic”
warnings issued by the GCC compiler with the -pedantic flag. This compiler flag issues

warnings for any code that does not strictly conform to the ISO C standard. Generally, this

48

AlP

Publishing

consists of code that uses GCC-specific extensions and would thus not compile on other

compilers.

Started in the early 2010s, the LibCChem library has served as the GPU arm of GAMESS.
With GPUs becoming more and more important in the world of high-performance computing,
LibCChem has become a more significant part of the GAMESS software package. For this
reason, LibCChem has seen many improvements since its inception, ranging from

algorithmic changes to upgrades in usability by users of the library.

Along with LibCChem, however, interest has also risen in directly offloading GAMESS
calculations to GPUs via the use of OpenMP. GPU offloading via a pragma-based approach
allows for portability, as the standard could support multiple vendors within it. At this point
the GPU oftloading of GAMESS Fortran is limited by compiler support. Future development
of GAMESS in this area is to come.

VI. Summary and Future

GAMESS is a broad-based multi-function living electronic structure code. Many of the future
developments of GAMESS and Libcchem have already been mentioned. These include the
development of fully analytic gradients for the QM-EFP2 method and for the CCSD(T) and
CR-CC(2,3) coupled cluster methods, and the development of RI-CC methods and their
integration with the FMO and EFMO fragmentation methods. Fully analytic EFMO gradients
are almost, but not quite completed, and the derivation and coding of fully analytic gradients
for the AFO version of FMO are in progress. The development of highly parallel codes are
planned for all of the coupled cluster methods that have been implemented in GAMESS and
that will be implemented in LibCChem. The various components in Libcchem, such as
LibAcclnt. the generalized Fock build and RI-MP2 will be more seamlessly integrated. In all
of these endeavors, improving the parallelism and overall computational efficiency will be a

central focus.

Gagliardi, Truhlar and co-workers have developed the multi-configurational pair density
functional theory (MCP-DFT) that introduces multi-configurational character into DFT. Their
implementation will soon be released in GAMESS. Shortly thereafter, the MCP-DFT analytic
gradients will be added.

Work is underway on enriching the existing CC routines with the double electron-attachment
and double ionization potential EOMCC options, which are particularly useful in determining

154

electronic spectra of biradicals, °* and approximate coupled-pair approaches, which extend

traditional CC truncations to a strongly correlated regime.

49

AlP

Publishing

Acknowledgements. The development of GAMESS has been supported by several agencies,
including the Air Force Office of Scientific Research, the Department of Defense, the
Department of Energy, the National Science Foundation, and the National Institutes of health.
Support has also been provided by Intel, Microsoft, and NVIDIA. The members of the
GAMESS development group are very grateful for this support. The development of GAMESS
has benefitted from the support of many supercomputer centers, including those sponsored by
the National Science Foundation (e.g., NCSA), the Department of Defense via the High
Performance Computing Modernization Program, and the Department of Energy (e.g., the
Argonne Leadership Computing Facility, the Oak Ridge Leadership Computing Facility, the
National Energy Research Scientific Computing Center). The authors also thank Dr. Takeshi
Nagata whose contributions to GAMESS are numerous and who passed away at too young an

age.

Data Availability Statement. Data sharing is not applicable to this article as no new data

were created or analyzed in this study.

References:

'M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki,
N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, Journal
of Computational Chemistry 14, 1347 (1993).

2 M.S. Gordon and M.W. Schmidt, in Theory and Applications of Computational Chemistry,
edited by C.E. Dykstra, G. Frenking, K.S. Kim, and G.E. Scuseria (Elsevier, Amsterdam,
2005), pp. 1167—-1189.

3 B. Njegic and M.S. Gordon, The Journal of Chemical Physics 125, 224102 (2006).

4 H. Li and M.S. Gordon, The Journal of Chemical Physics 126, 124112 (2007).

3> K.K. Baldridge and V. Jonas, The Journal of Chemical Physics 113, 7511 (2000).

® D.M. Chipman, The Journal of Chemical Physics 124, 224111 (2006).

7 J.R. Shoemaker and M.S. Gordon, The Journal of Physical Chemistry A 103, 3245 (1999).

8 L. Bytautas and K. Ruedenberg, The Journal of Chemical Physics 121, 10852 (2004).

N. Minezawa and M.S. Gordon, The Journal of Physical Chemistry A 113, 12749 (2009).

10 N.(%875#11T) Minezawa, N. De Silva, F. Zahariev, and M.S.(52 & 6 5.2%) Gordon, The
Journal of Chemical Physics 134, 054111 (2011).

'], Mato and M.S. Gordon, Physical Chemistry Chemical Physics 20, 2615 (2018).

12 A.C. West, M.W. Schmidt, M.S. Gordon, and K. Ruedenberg, The Journal of Chemical
Physics 139, 234107 (2013).

50

AlP

Publishing

13 R.M. Olson, J.L. Bentz, R.A. Kendall, M.W. Schmidt, and M.S. Gordon, The Journal of
Chemical Theory and Computation 3, 1312 (2007).

4 A. Asadchev, V. Allada, J. Felder, B.M. Bode, M.S. Gordon, and T.L. Windus, Journal of
Chemical Theory and Computation 6, 696 (2010).

I3 A. Asadchev and M.S. Gordon, The Journal of Chemical Theory and Computation 8, 4166
(2012).

16 A. Asadchev and M.S. Gordon, The Journal of Chemical Theory and Computation 9, 3385
(2013).

7B.Q. Pham and M.S. Gordon, Journal of Chemical Theory and Computation (2019).

18 B.Q. Pham and M.S. Gordon, (Submitted) (n.d.).

1 D.G. Fedorov, RM. Olson, K. Kitaura, M.S. Gordon, and S. Koseki, Journal of
Computational Chemistry 25, 872 (2004).

20M.S. Gordon, Q.A. Smith, P. Xu, and L.V. Slipchenko, Annu Rev Phys Chem 64, 553 (2013).
2 S.R. Pruitt, C. Steinmann, J.H. Jensen, and M.S. Gordon, Journal of Chemical Theory and
Computation 9, 2235 (2013).

22 J. Ivanic, The Journal of Chemical Physics 119, 9364 (2003).

23W. Li, P. Piecuch, J.R. Gour, and S. Li, The Journal of Chemical Physics 131, 114109 (2009).
24 L. Roskop and M.S. Gordon, The Journal of Chemical Physics 135, 044101 (2011).

25 A.D. Findlater, F. Zahariev, and M.S. Gordon, The Journal of Physical Chemistry A 119,
3587 (2015).

26 K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chemical Physics Letters 313,
701 (1999).

27D.G. Fedorov and K. Kitaura, The Journal of Chemical Physics 120, 6832 (2004).

28 D.G. Fedorov and K. Kitaura, The Journal of Physical Chemistry A 111, 6904 (2007).

2 D.G. Fedorov, T. Nagata, and K. Kitaura, Physical Chemistry Chemical Physics 14, 7562
(2012).

39 D.G. Fedorov, WIREs Computational Molecular Science 7, 1322 (2017).

31'Y. Nishimoto and D.G. Fedorov, The Journal of Chemical Physics 148, 064115 (2018).

32'V. Mironov, A. Moskovsky, M. D’Mello, and Y. Alexeev, The International Journal of High
Performance Computing Applications 33, 212 (2019).

33 S.R. Pruitt, H. Nakata, T. Nagata, M. Mayes, Y. Alexeev, G. Fletcher, D.G. Fedorov, K.
Kitaura, and M.S. Gordon, The Journal of Chemical Theory and Computation 12, 1423 (2016).
34 D.G. Fedorov, Y. Sugita, and C.H. Choi, The Journal of Physical Chemistry B 117, 7996
(2013).

33 8. Tto, D.G. Fedorov, Y. Okamoto, and S. Irle, Computer Physics Communications 228, 152
(2018).

36 T.(7k FH X 5) Nagata, K. Brorsen, D.G. Fedorov, K.(AL7Ri#17%) Kitaura, and M.S.(5% & 78
H.72) Gordon, The Journal of Chemical Physics 134, 124115 (2011).

51

AlP

Publishing

37 H. Nakata and D.G. Fedorov, Physical Chemistry Chemical Physics 21, 13641 (2019).

38 H. Nakata, D.G. Fedorov, S. Yokojima, K. Kitaura, M. Sakurai, and S. Nakamura, The
Journal of Chemical Physics 140, 144101 (2014).

3 D.G. Fedorov, A. Brekhov, V. Mironov, and Y. Alexeev, The Journal of Physical Chemistry
A 123, 6281 (2019).

40 D.G. Fedorov and K. Kitaura, The Journal of Chemical Physics 147, 104106 (2017).

41 D.S. Kaliakin, D.G. Fedorov, Y. Alexeev, and S.A. Varganov, The Journal of Chemical
Theory and Computation 15, 6074 (2019).

42 T. Nagata, D.G. Fedorov, T. Sawada, and K. Kitaura, The Journal of Physical Chemistry A
116, 9088 (2012).

43 D.G. Fedorov, The Journal of Chemical Theory and Computation 15, 5404 (2019).

4 D.G. Fedorov and K. Kitaura, The Journal of Physical Chemistry A 122, 1781 (2018).

45 H. Nakata, Y. Nishimoto, and D.G. Fedorov, The Journal of Chemical Physics 145, 044113
(2016).

46 H. Nakata, T. Nagata, D.G. Fedorov, S. Yokojima, K. Kitaura, and S. Nakamura, The Journal
of Chemical Physics 138, 164103 (2013).

47 M.C. Green, H. Nakata, D.G. Fedorov, and L.V. Slipchenko, Chemical Physics Letters 651,
56 (2016).

48 H. Nakata, D.G. Fedorov, S. Yokojima, K. Kitaura, and S. Nakamura, Chemical Physics
Letters 603, 67 (2014).

4 D.G. Fedorov and K. Kitaura, The Journal of Chemical Physics 122, 054108 (2005).

50 T. Ikegami, T. Ishida, D.G. Fedorov, K. Kitaura, Y. Inadomi, H. Umeda, M. Yokokawa, and
S. Sekiguchi, Journal of Computational Chemistry 31, 447 (2010).

SI'T. Nagata, D.G. Fedorov, K. Ishimura, and K. Kitaura, The Journal of Chemical Physics 135,
044110 (2011).

52 H. Nakata, D.G. Fedorov, K. Kitaura, and S. Nakamura, Chemical Physics Letters 635, 86
(2015).

3 D.G. Fedorov and K. Kitaura, The Journal of Chemical Physics 123, 134103 (2005).

4 S R. Pruitt, D.G. Fedorov, and M.S. Gordon, The Journal of Physical Chemistry A 116, 4965
(2012).

3 K.R. Brorsen, F. Zahariev, H. Nakata, D.G. Fedorov, and M.S. Gordon, The Journal of
Chemical Theory and Computation 10, 5297 (2014).

56 M. Chiba, D.G. Fedorov, T. Nagata, and K. Kitaura, Chemical Physics Letters 474, 227
(2009).

37 D.G. Fedorov, T. Ishida, and K. Kitaura, The Journal of Physical Chemistry A 109, 2638
(2005).

38 A. Stone, The Theory of Intermolecular Forces (Oxford University Press, 2013).

3 PN. Day, J.H. Jensen, M.S. Gordon, S.P. Webb, W.J. Stevens, M. Krauss, D. Garmer, H.

52

AlP

Publishing

Basch, and D. Cohen, The Journal of Chemical Physics 105, 1968 (1996).

0 1. Adamovic, M.A. Freitag, and M.S. Gordon, The Journal of Chemical Physics 118, 6725
(2003).

®1'S. Yoo, F. Zahariev, S. Sok, and M.S. Gordon, The Journal of Chemical Physics 129, 144112
(2008).

2P, Arora, L.V. Slipchenko, S.P. Webb, A. DeFusco, and M.S. Gordon, The Journal of Physical
Chemistry A 114, 6742 (2010).

63 M. Krauss and S.P. Webb, The Journal of Chemical Physics 107, 5771 (1997).

64 A. DeFusco, J. Ivanic, M.W. Schmidt, and M.S. Gordon, The Journal of Physical Chemistry
A 115, 4574 (2011).

65 A. DeFusco, N. Minezawa, L.V. Slipchenko, F. Zahariev, and M.S. Gordon, The Journal of
Physical Chemistry Letters 2, 2184 (2011).

% L.V. Slipchenko, The Journal of Physical Chemistry A 114, 8824 (2010).

67 1. Adamovic and M.S. Gordon, The Journal of Physical Chemistry A 109, 1629 (2005).

8 S. Sok, S.Y. Willow, F. Zahariev, and M.S. Gordon, The Journal of Physical Chemistry A
115, 9801 (2011).

6 de Silva N., M.A. Adreance, and M.S. Gordon, Journal of Computational Chemistry 40, 310
(2019).

70 E.B. Guidez and M.S. Gordon, The Journal of Physical Chemistry A 121, 3736 (2017).
1'V.S. Bryantsev, M.S. Diallo, A.C.T. van Duin, and W.A. Goddard, The Journal of Chemical
Theory and Computation 5, 1016 (2009).

2 J. Rezag, K.E. Riley, and P. Hobza, The Journal of Chemical Theory and Computation 7,
2427 (2011).

73 Jensen, J. H., Gordon; M.S. Molecular Physics 89, 1313 (1996).

74 H. Li, M.S. Gordon, and J.H. Jensen, The Journal of Chemical Physics 124, 214108 (2006).
> D.D. Kemp, J.M. Rintelman, M.S. Gordon, and J.H. Jensen, Theoretical Chemistry Accounts
125, 481 (2010).

76 Q.A. Smith, K. Ruedenberg, M.S. Gordon, and L.V. Slipchenko, The Journal of Chemical
Physics 136, 244107 (2012).

"TL.V. Slipchenkot and M.S. Gordon, Molecular Physics 107, 999 (2009).

8 E.B. Guidez, P. Xu, and M.S. Gordon, The Journal of Physical Chemistry A 120, 639 (2016).
7 T. Sattasathuchana, P. Xu, and M.S. Gordon, The Journal of Physical Chemistry A 123, 8460
(2019).

80 M.W. Schmidt, E.A. Hull, and T.L. Windus, The Journal of Physical Chemistry A 119, 10408
(2015).

81 M.A. Freitag, M.S. Gordon, J.H. Jensen, and W.J. Stevens, The Journal of Chemical Physics
112, 7300 (2000).

82 P. Xu, F. Zahariev, and M.S. Gordon, The Journal of Chemical Theory and Computation 10,

53

AlP

Publishing

1576 (2014).

83 L. Schoeberle, E.B. Guidez, and M.S. Gordon, The Journal of Physical Chemistry A 122,
6100 (2018).

84SAPT(2020).

85 B. Jeziorski and R. Moszynski, 58 (n.d.).

8 C. Steinmann, D.G. Fedorov, and J.H. Jensen, The Journal of Physical Chemistry A 114,
8705 (2010).

87 C. Bertoni and M.S. Gordon, The Journal of Chemical Theory and Computation 12, 4743
(2016).

88 P. Pulay, Molecular Physics 17, 197 (1969).

8 G.D. Fletcher, M.W. Schmidt, B.M. Bode, and M.S. Gordon, Computer Physics
Communications 128, 190 (2000).

% J L. Whitten, The Journal of Chemical Physics 58, 4496 (1973).

1 0. Vahtras, J. Almléf, and M.W. Feyereisen, Chemical Physics Letters 213, 514 (1993).

2 F. Weigend, M. Hiser, H. Patzelt, and R. Ahlrichs, Chemical Physics Letters 294, 143 (1998).
3 M. Hiser and R. Ahlrichs, Journal of Computational Chemistry 10, 104 (1989).

%Y. Alexeev, R.A. Kendall, and M.S. Gordon, Computer Physics Communications 143, 69
(2002).

% D. Fedorov and K. Kitaura, The Fragment Molecular Orbital Method: Practical Applications
to Large Molecular Systems (CRC Press, 2009).

% M.S. Gordon, D.G. Fedorov, S.R. Pruitt, and L.V. Slipchenko, Chemical Reviews 112, 632
(2012).

7K. Kitaura, T. Sawai, T. Asada, T. Nakano, and M. Uebayasi, Chemical Physics Letters 312,
319 (1999).

% T. Nakano, T. Kaminuma, T. Sato, Y. Akiyama, M. Uebayasi, and K. Kitaura, Chemical
Physics Letters 318, 614 (2000).

9 K. Ishimura, P. Pulay, and S. Nagase, Journal of Computational Chemistry 28, 2034 (2007).
100 ¢ M. Aikens, S.P. Webb, R.L. Bell, G.D. Fletcher, M.W. Schmidt, and M.S. Gordon, Theor
Chem Acc 110, 233 (2003).

101 M. Katouda and S. Nagase, International Journal of Quantum Chemistry 109, 2121 (2009).
102 3. Kwack, C. Bertoni, B. Pham, and J. Larkin, WACCPD (2019).

103p Piecuch, S.A. Kucharski, K. Kowalski, and M. Musial, Computer Physics
Communications 149, 71 (2002).

104 K. Kowalski and P. Piecuch, The Journal of Chemical Physics 113, 18 (2000).

105 K. Kowalski and P. Piecuch, The Journal of Chemical Physics 113, 5644 (2000).

106 p Piecuch, S.A. Kucharski, and K. Kowalski, Chemical Physics Letters 344, 176 (2001).
107p, Piecuch and M. Wioch, The Journal of Chemical Physics 123, 224105 (2005).

108 p Piecuch, M. Wtoch, J.R. Gour, and A. Kinal, Chemical Physics Letters 418, 467 (2006).

54

AlP

Publishing

199 M. Wioch, J.R. Gour, and P. Piecuch, The Journal of Physical Chemistry A 111, 11359
(2007).

110 7. Shen and P. Piecuch, The Journal of Chemical Physics 136, 144104 (2012).

11 J. Shen and P. Piecuch, Chemical Physics 401, 180 (2012).

12 J. Hubbard and R.E. Peierls, Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 240, 539 (1957).

13 N.M. Hugenholtz, Physica (1957).

4 F. Coester, Nuclear Physics 7, 421 (1958).

1S F. Coester and H. Kiimmel, Nuclear Physics 17, 477 (1960).

116 J. Cizek, The Journal of Chemical Physics 45, 4256 (1966).

17 7. Cizek, in Advances in Chemical Physics (John Wiley & Sons, Ltd, 2007), pp. 35-89.

118 J. Cizek and J. Paldus, International Journal of Quantum Chemistry 5, 359 (1971).

19 3. Paldus, J. Cizek, and I. Shavitt, Physical Review A §, 50 (1972).

120 J. Paldus and X. Li, in Advances in Chemical Physics (John Wiley & Sons, Ltd, 2007), pp.
1-175.

121 R J. Bartlett and M. Musiat, Reviews of Modern Physics 79, 291-352 (2007).

122 J.A. Pople, R. Krishnan, H.B. Schlegel, and J.S. Binkley, International Journal of Quantum
Chemistry 14, 545 (1978).

123 R.J. Bartlett and G.D. Purvis, International Journal of Quantum Chemistry 14, 561 (1978).
124 G.D. Purvis and R.J. Bartlett, The Journal of Chemical Physics 76, 1910 (1982).

125 K. Raghavachari, G.W. Trucks, J.A. Pople, and M. Head-Gordon, Chemical Physics Letters
157, 479 (1989).

126 p. Piecuch and K. Kowalski, in Computational Chemistry: Reviews of Current Trends
(WORLD SCIENTIFIC, 2000), pp. 1-104.

127 Wtoch, M.; Lodriguito, M.D.; Piecuch, P., and Gour J.R., Molecular Physics 104, 2149
(20006). ibid. 2006, 104, 2991 [Erratum; last name of Wtoch corrected].

128 P. Piecuch, K. Kowalski, 1.S.0. Pimienta, and S.A. Kucharski, In Low-Lying Potential
Energy Surfaces; ACS Symposium Series, Vol. 828, edited by M.R. Hoffmann and K.G. Dyall
(American Chemical Society, Washington, D.C., 2002), pp. 31-64.

129 P, Piecuch, K. Kowalski, 1.S.0. Pimienta, and M.J. Mcguire, International Reviews in
Physical Chemistry 21, 527 (2002).

130 P, Piecuch, K. Kowalski, P.-D. Fan, and 1.S.0. Pimienta, in Advanced Topics in Theoretical
Chemical Physics, edited by J. Maruani, R. Lefebvre, and E.J. Brindas (Springer Netherlands,
Dordrecht, 2003), pp. 119-206.

B1 P, Piecuch, K. Kowalski, 1.S.0. Pimienta, P.-D. Fan, M. Lodriguito, M.J. McGuire, S.A.
Kucharski, T. Kus, and M. Musiat, Theor Chem Acc 112, 349 (2004).

132 P, Piecuch, M. Wtoch, and A.J.C. Verandas, Progress in Theoretical Chemistry and Physics
(2007). Vol. 16, Topics in the Theory of Chemical and Physical Systems, edited by S. Lahmar,

55

AlP

Publishing

J. Maruani, S. Wilson, and G. Delgado-Barrio (Springer, Dordrecht, 2007), pp. 63—121.

133 S A. Kucharski and R.J. Bartlett, The Journal of Chemical Physics 108, 9221 (1998).

134 P Piecuch, J.R. Gour, and M. Witoch, International Journal of Quantum Chemistry 108,
2128 (2008).

135Y. Ge, M.S. Gordon, and P. Piecuch, The Journal of Chemical Physics 127, 174106 (2007).
136 Y. Ge, M.S. Gordon, P. Piecuch, M. Wtoch, and J.R. Gour, The Journal of Physical
Chemistry A 112, 11873 (2008).

137P, Piecuch, M. Wtoch, and A.J.C. Varandas, Theoretical Chemistry Accounts 120, 59 (2008).
138 J. Shen and P. Piecuch, The Journal of Chemical Theory and Computation 8, 4968 (2012).

139 P, Piecuch, S.A. Kucharski, and R.J. Bartlett, The Journal of Chemical Physics 110, 6103
(1999).

140 p_Piecuch, Molecular Physics 108, 2987 (2010).

141 J. Noga and R.J. Bartlett, The Journal of Chemical Physics 86, 7041 (1987).

142 JF. Stanton and R.J. Bartlett, The Journal of Chemical Physics 98, 7029 (1993).

143 K. Kowalski and P. Piecuch, The Journal of Chemical Physics 120, 1715 (2004).

144 M. Wtoch, J.R. Gour, K. Kowalski, and P. Piecuch, The Journal of Chemical Physics 122,
214107 (2005).

145 Piecuch P., Gour J., and Wtoch M., International Journal of Quantum Chemistry 109, 3268
(2009).

146 G. Fradelos, J.J. Lutz, T.A. Wesotowski, P. Piecuch, and M. Wtoch, The Journal of Chemical
Theory and Computation 7, 1647 (2011).

147 J.J. Lutz and P. Piecuch, Computational and Theoretical Chemistry 1040-1041, 20 (2014).
148 P Piecuch, J.A. Hansen, and A.O. Ajala, Molecular Physics 113, 3085 (2015).

149 J.D. Watts and R.J. Bartlett, Chemical Physics Letters 233, 81 (1995).

150 J.D. Watts and R.J. Bartlett, Chemical Physics Letters 258, 581 (1996).

1510, Christiansen, H. Koch, and P. Jergensen, The Journal of Chemical Physics 103, 7429
(1995).

152 J R. Gour, P. Piecuch, and M. Wtoch, The Journal of Chemical Physics 123, 134113 (2005).
153 JR. Gour and P. Piecuch, The Journal of Chemical Physics 125, 234107 (2006).

134 JR. Gour, P. Piecuch, and M. Witoch, International Journal of Quantum Chemistry 106,
2854 (20006).

I55'N.P. Bauman, J.A. Hansen, and P. Piecuch, The Journal of Chemical Physics 145, 084306
(2016).

156 N.P. Bauman, J.A. Hansen, M. Ehara, and P. Piecuch, The Journal of Chemical Physics 141,
101102 (2014).

157 J. Shen and P. Piecuch, The Journal of Chemical Physics 138, 194102 (2013).

158 K. Kowalski and P. Piecuch, The Journal of Chemical Physics 113, 8490 (2000).

159 K. Kowalski and P. Piecuch, The Journal of Chemical Physics 115, 643 (2001).

56

AlP

Publishing

160 K. Kowalski and P. Piecuch, Chemical Physics Letters 347, 237 (2001).

161 K Kowalski, S. Hirata, M. Wtoch, P. Piecuch, and T.L. Windus, The Journal of Chemical
Physics 123, 074319 (2005).

162§, Li, J. Ma, and Y. Jiang, J Comput Chem 23, 237 (2002).

163§, Li, J. Shen, W. Li, and Y. Jiang, The Journal of Chemical Physics 125, 074109 (2006).
164 W. Li, P. Piecuch, and J.R. Gour, in Advances in the Theory of Atomic and Molecular
Systems: Conceptual and Computational Advances in Quantum Chemistry, edited by P.
Piecuch, J. Maruani, G. Delgado-Barrio, and S. Wilson (Springer Netherlands, Dordrecht,
2009), pp. 131-195.

165\. Li and P. Piecuch, The Journal of Physical Chemistry A 114, 6721 (2010).

166 W. Li and P. Piecuch, The Journal of Physical Chemistry A 114, 8644 (2010).

167 p M. Kozlowski, M. Kumar, P. Piecuch, W. Li, N.P. Bauman, J.A. Hansen, P. Lodowski, and
M. Jaworska, The Journal of Chemical Theory and Computation 8, 1870 (2012).

168 W. Li, Z. Ni, and S. Li, Molecular Physics 114, 1447 (2016).

169 J. Ivanic, The Journal of Chemical Physics 119, 9377 (2003).

170 J Tvanic and M.W. Schmidt, The Journal of Physical Chemistry A 122, 5223 (2018).

17 R.J. Gdanitz and R. Ahlrichs, Chemical Physics Letters 143, 413 (1988).

172 p.G. Szalay and R.J. Bartlett, Chemical Physics Letters 214, 481 (1993).

173 K. Hirao, Chemical Physics Letters 190, 374 (1992).

174 H. Li and J.H. Jensen, Journal of Computational Chemistry 25, 1449 (2004).

175 J M. Rintelman, M.S. Gordon, G.D. Fletcher, and J. Ivanic, The Journal of Chemical Physics
124, 034303 (20006).

176 1. Bytautas and K. Ruedenberg, The Journal of Chemical Physics 121, 10905 (2004).

177 L. Bytautas and K. Ruedenberg, The Journal of Chemical Physics 121, 10919 (2004).

178 . Bytautas and K. Ruedenberg, The Journal of Chemical Physics 122, 154110 (2005).

179 . Bytautas and K. Ruedenberg, The Journal of Chemical Physics 124, 174304 (2006).

180 1., Bytautas, T. Nagata, M.S. Gordon, and K. Ruedenberg, The Journal of Chemical Physics
127, 164317 (2007).

181 . Bytautas, N. Matsunaga, G.E. Scuseria, and K. Ruedenberg, The Journal of Physical
Chemistry A 116, 1717 (2012).

82D, Theis, J. Ivanic, T.L. Windus, and K. Ruedenberg, The Journal of Chemical Physics 144,
104304 (2016).

183 K. Ruedenberg, M.W. Schmidt, M.M. Gilbert, and S.T. Elbert, Chemical Physics 71, 41
(1982).

184 K. Ruedenberg, M.W. Schmidt, and M.M. Gilbert, Chemical Physics 71, 51 (1982).

185 K. Ruedenberg, M.W. Schmidt, M.M. Gilbert, and S.T. Elbert, Chemical Physics 71, 65
(1982).

186 C. Edmiston and K. Ruedenberg, Reviews of Modern Physics 35, 457 (1963).

57

AlP

Publishing

87 A.C. West, M.W. Schmidt, M.S. Gordon, and K. Ruedenberg, The Journal of Physical
Chemistry A 119, 10360 (2015).

138 W.C. Lu, C.Z. Wang, M.W. Schmidt, L. Bytautas, K.M. Ho, and K. Ruedenberg, The Journal
of Chemical Physics 120, 2638 (2004).

189 J. Ivanic, G.J. Atchity, and K. Ruedenberg, Theoretical Chemistry Accounts 120, 281
(2008).

190 J Tvanic and K. Ruedenberg, Theoretical Chemistry Accounts 120, 295 (2008).

YL A.C. West, M.W. Schmidt, M.S. Gordon, and K. Ruedenberg, The Journal of Physical
Chemistry A 119, 10368 (2015).

192 A.C. West, M.W. Schmidt, M.S. Gordon, and K. Ruedenberg, The Journal of Physical
Chemistry A 119, 10376 (2015).

193 A.C. West, J.J. Duchimaza-Heredia, M.S. Gordon, and K. Ruedenberg, The Journal of
Physical Chemistry A 121, 8884 (2017).

194 G. Schoendorff, A.C. West, M.W. Schmidt, K. Ruedenberg, A.K. Wilson, and M.S. Gordon,
The Journal of Physical Chemistry A 121, 3588 (2017).

195 1.J. Duchimaza Heredia, K. Ruedenberg, and M.S. Gordon, The Journal of Physical
Chemistry A 122, 3442 (2018).

196 J.J. Duchimaza Heredia, A.D. Sadow, and M.S. Gordon, The Journal of Physical Chemistry
A 122, 9653 (2018).

197 G. Schoendorff, A.C. West, M.W. Schmidt, K. Ruedenberg, and M.S. Gordon, The Journal
of Physical Chemistry A 123, 5242 (2019).

198 G. Schoendorff, M.W. Schmidt, K. Ruedenberg, and M.S. Gordon, The Journal of Physical
Chemistry A 123, 5249 (2019).

199 M.W. Schmidt, J. Ivanic, and K. Ruedenberg, The Journal of Chemical Physics 140, 204104
(2014).

200 A.C. West, M.W. Schmidt, M.S. Gordon, and K. Ruedenberg, The Journal of Physical
Chemistry A 121, 1086 (2017).

201 M.W. Schmidt and M.S. Gordon, Annual Review of Physical Chemistry 49, 233 (1998).
202 A 1. Krylov, Chemical Physics Letters 350, 522 (2001).

203 A 1. Krylov, Chemical Physics Letters 338, 375 (2001).

204 A 1. Krylov, Accounts of Chemical Research 39, 83 (2006).

205J.8. Sears, C.D. Sherrill, and A.I. Krylov, The Journal of Chemical Physics 118, 9084 (2003).
206 D. Casanova and M. Head-Gordon, The Journal of Chemical Physics 129, 064104 (2008).
207y, Shao, M. Head-Gordon, and A.I. Krylov, The Journal of Chemical Physics 118, 4807
(2003).

28 D, Casanova, L. V. Slipchenko, A.I. Krylov, and M. Head-Gordon, The Journal of Chemical
Physics 130, 044103 (2009).

2995, V. Levchenko and A.I. Krylov, The Journal of Chemical Physics 120, 175 (2004).

58

AlP

Publishing

210 J. Tomasi, B. Mennucci, and R. Cammi, Chemical Reviews 105, 2999 (2005).

211 M.S. Gordon, J.M. Mullin, S.R. Pruitt, L.B. Roskop, L. V Slipchenko, and J. a Boatz, The
Journal of Physical Chemistry B 113, 9646 (2009).

212 N. Minezawa and M.S. Gordon, The Journal of Physical Chemistry A 115, 7901 (2011).

213 N. Minezawa and M.S. Gordon, The Journal of Chemical Physics 137, 034116 (2012).
214D, Casanova and M. Head-Gordon, Physical Chemistry Chemical Physics 11, 9779 (2009).
215 X Zhang and J.M. Herbert, The Journal of Chemical Physics 143, 234107 (2015).

216 J. Mato and M.S. Gordon, The Journal of Physical Chemistry A 123, 1260 (2019).

217 J. Mato and M.S. Gordon, Physical Chemistry Chemical Physics Manuscript, (n.d.).

218 F. Zahariev and M. Gordon, Molecular Physics 117, 1532 (2019).

219 B.M. Austin, D.Y. Zubarev, and W.A. Lester Jr, Chemical Reviews 112, 263 (2012).

220 M.A. Morales, J. McMinis, B.K. Clark, J. Kim, and G.E. Scuseria, Journal of Chemical
Theory and Computation 8, 2181 (2012).

221 W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Reviews of Modern Physics 73, 33
(2001).

222 M. Caffarel, T. Applencourt, E. Giner, and A. Scemama, Communication: Toward an
Improved Control of the Fixed-Node Error in Quantum Monte Carlo: The Case of the Water
Molecule (AIP Publishing LLC, 2016).

223 K.P. Esler, J. Kim, D.M. Ceperley, W. Purwanto, E.J. Walter, H. Krakauer, S. Zhang, P.R.
Kent, R.G. Hennig, C. Umrigar, and others, in Journal of Physics: Conference Series (10P
Publishing, 2008), p. 012057.

224 A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-
M. Rignanese, G. Hautier, and others, Concurrency and Computation: Practice and Experience
27,5037 (2015).

22’MongoDB (2020).

226 D.G. Fedorov and K. Kitaura, Chemical Physics Letters 597, 99 (2014).

227 M. Burkatzki, C. Filippi, and M. Dolg, The Journal of Chemical Physics 126, 234105
(2007).

228] P. Perdew, K. Schmidt, and others, Van Doren, V 1 (2001).

229§ S. Leang, F. Zahariev, and M.S. Gordon, The Journal of Chemical Physics 136, 104101
(2012).

20 R. Peverati and D.G. Truhlar, Journal of Physical Chemistry Letters 2, 2810 (2011).

1R, Peverati and D.G. Truhlar, Physical Chemistry Chemical Physics 14, 13171 (2012).

232 R. Peverati and D.G. Truhlar, Physical Chemistry Chemical Physics 14, 16187 (2012).

23 H.S. Yu, X. He, S.L. Li, and D.G. Truhlar, Chemical Science. 7, 5032 (2016).

24 H.S. Yu, X. He, and D.G. Truhlar, Journal of Chemical Theory and Computation 12, 1280
(2016).

235Y. Wang, P. Verma, X. Jin, D.G. Truhlar, and X. He, Proceedings of the National Academy

59

AlP

Publishing

of Sciences 115, 10257 (2018).

236y Wang, X. Jin, S.Y. Haoyu, D.G. Truhlar, and X. He, Proceedings of the National Academy
of Sciences 114, 8487 (2017).

237 P, Verma, Y. Wang, S. Ghosh, X. He, and D.G. Truhlar, The Journal of Physical Chemistry
A 123,2966 (2019).

238 K R. Brorsen, N. Minezawa, F. Xu, T.L. Windus, and M.S. Gordon, Journal of Chemical
Theory and Computation 8, 5008 (2012).

239 Q. Cui and M. Elstner, Physical Chemistry Chemical Physics 16, 14368 (2014).

240D, Porezag, T. Frauenheim, T. K&hler, G. Seifert, and R. Kaschner, Physical Review B 51,
12947 (1995).

241 M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and
G. Seifert, Physical Review B 58, 7260 (1998).

242 M. Gaus, Q. Cui, and M. Elstner, Journal of Chemical Theory and Computation 7, 931
(2011).

243 C. Kohler, G. Seifert, U. Gerstmann, M. Elstner, H. Overhof, and T. Frauenheim, Physical
Chemistry Chemical Physics 3, 5109 (2001).

244 V. Lutsker, B. Aradi, and T.A. Niehaus, The Journal of Chemical Physics 143, 184107
(2015).

245y, Nishimoto and S. Irle, Chemical Physics Letters 667, 317 (2017).

246y, Nishimoto, The Journal of Physical Chemistry A 120, 771 (2016).

247y, Nishimoto, D.G. Fedorov, and S. Irle, Journal of Chemical Theory and Computation 10,
4801 (2014).

248y, Nishimoto, D.G. Fedorov, and S. Irle, Chemical Physics Letters 636, 90 (2015).

2% V.Q. Vuong, Y. Nishimoto, D.G. Fedorov, B.G. Sumpter, T.A. Niehaus, and S. Irle, Journal
of Chemical Theory and Computation 15, 3008 (2019).

250y, Nishimoto, H. Nakata, D.G. Fedorov, and S. Irle, The Journal of Physical Chemistry
Letters 6, 5034 (2015).

251y, Nishimoto and D.G. Fedorov, Journal of Computational Chemistry 38, 406 (2017).

22 v.Q. Vuong, J. Akkarapattiakal Kuriappan, M. Kubillus, J.J. Kranz, T. Mast, T.A. Niehaus,
S. Irle, and M. Elstner, Journal of Chemical Theory and Computation 14, 115 (2018).

233 0.A. Von Lilienfeld, Angewandte Chemie International Edition 57, 4164 (2018).

254 L. Shen and W. Yang, Journal of Chemical Theory and Computation 12, 2017 (2016).

255 J. Zhu, B.G. Sumpter, S. Irle, and others, MRS Communications 9, 867 (2019).

236 J. Geertsen, M. Rittby, and R.J. Bartlett, Chemical Physics Letters 164, 57 (1989).

257 A.P. Rendell, T.J. Lee, and R. Lindh, Chemical Physics Letters 194, 84 (1992).

258 VM. Anisimov, G.H. Bauer, K. Chadalavada, R.M. Olson, J.W. Glenski, W.T. Kramer, E.
Apra, and K. Kowalski, Journal of Chemical Theory and Computation 10, 4307 (2014).

2% I.A. Kaliman and A.1. Krylov, Journal of Computational Chemistry 38, 842 (2017).

60

AlP

Publishing

260 1. Dagum and R. Menon, IEEE Computational Science and Engineering 5, 46 (1998).

261 R, Kobayashi and A.P. Rendell, Chemical Physics Letters 265, 1 (1997).

262 A C. Scheiner, G.E. Scuseria, J.E. Rice, T.J. Lee, and H.F. Schaefer 111, The Journal of
Chemical Physics 87, 5361 (1987).

263 T.J. Lee and A.P. Rendell, The Journal of Chemical Physics 94, 6229 (1991).

264 M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chemical Physics Letters 208, 359
(1993).

265 A.P. Rendell and T.J. Lee, The Journal of Chemical Physics 101, 400 (1994).

266 E. Epifanovsky, D. Zuev, X. Feng, K. Khistyaev, Y. Shao, and A.I. Krylov, The Journal of
Chemical Physics 139, 134105 (2013).

267 C. Peng, J.A. Calvin, and E.F. Valeev, International Journal of Quantum Chemistry 119,
€25894 (2019).

268 T. Shen, Z. Zhu, 1.Y. Zhang, and M. Scheffler, Journal of Chemical Theory and Computation
15, 4721 (2019).

269 A.E. DePrince 111 and C.D. Sherrill, Journal of Chemical Theory and Computation 9, 2687
(2013).

270 T, Nakano, T. Kaminuma, T. Sato, K. Fukuzawa, Y. Akiyama, M. Uebayasi, and K. Kitaura,
Chemical Physics Letters 351, 475 (2002).

271 M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam, D. Wang,
J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong, Computer Physics Communications
181, 1477 (2010).

272] M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F.A. Evangelista, J.T.
Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams, N.J. Russ, M.L. Leininger, C.L.
Janssen, E.T. Seidl, W.D. Allen, H.F. Schaefer, R.A. King, E.F. Valeev, C.D. Sherrill, and T.D.
Crawford, WIREs Computational Molecular Science 2, 556 (2012).

273] F. Stanton, J. Gauss, L. Cheng, M.E. Harding, D.A. Matthews, and P.G. Szalay, CFOUR,
Coupled-Cluster Techniques for Computational Chemistry, a Quantum-Chemical Program
Package (n.d.).

274QCDB (2020).

2SWikipedia (2020).

276 . Sundriyal, M. Sosonkina, A. Gaenko, and Z. Zhang, Journal of Parallel and Distributed
Computing 73, 1157 (2013).

277y, Sundriyal, M. Sosonkina, B. Westheimer, and M.S. Gordon, Journal of Computer and
Communications 7, 252 (2019).

278 V. Sundriyal, M. Sosonkina, B. Westheimer, and M. Gordon, Journal of Computer and
Communications 6, 184 (2018).

2GitHub (2020).

2803 Chacon and B. Straub, Pro Git (Apress, 2014).

61

AlP

Publishing

281y, Driessen, URL Http://Nvie. Com/Posts/a-Successful-Git-Branching-Model (2010).
22Travis CI (2020).

283 Jenkins (2020).

249MPICH (2020).

285 R.C. Whaley and A. Petitet, Software: Practice and Experience 35, 101 (2005).

286 S, Browne, J. Dongarra, E. Grosse, and T. Rowan, D-Lib Magazine 1, (1995).

27GNU (2020).

288 Intel, Intel Compilers (2020).

289 NVIDIA/PGI, PGI Compilers and Tools (2020).

20 E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P.
Kambadur, B. Barrett, A. Lumsdaine, and others, in FEuropean Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting (Springer, 2004), pp. 97—104.

21 Intel, (2020).

220penBLAS (2020).

293 Intel, Intel MKL (2020).

2% G.M. Kurtzer, V. Sochat, and M.W. Bauer, PloS One 12, (2017).

2%3GAMESS Singularity (2020).

2% N. Newsroom, NVIDIA Newsroom Newsroom (2017).

2INVIDIA Developer (2017).

2% J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apra, The
International Journal of High Performance Computing Applications 20, 203 (2006).

2% E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide (Siam, 1999).

30HDFS (2020).

301 R H. Dennard, F.H. Gaensslen, H.-N. Yu, V.L. Rideout, E. Bassous, and A.R. Leblanc,
PROCEEDINGS OF THE IEEE 87, 11 (1999).

392 B. Caulfield, The Official NVIDIA Blog (2009).

393 Top500 (2019).

304D .G. Tomlinson, A. Asadchev, and M.S. Gordon, Journal of Computational Chemistry 37,
1274 (2016).

305 A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory (Dover Publications, Mineola, N.Y, 1996).

39 T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory:
Helgaker/Molecular Electronic-Structure Theory (John Wiley & Sons, Ltd, Chichester, UK,
2000).

397'S. Obara and A. Saika, The Journal of Chemical Physics 84, 3963 (1986).

398 L.E. McMurchie and E.R. Davidson, Journal of Computational Physics 26, 218 (1978).

399 J.A. Pople and W.J. Hehre, Journal of Computational Physics 27, 161 (1978).

62

AlP

Publishing

310 P M.W. Gill and J.A. Pople, International Journal of Quantum Chemistry 40, 753 (1991).
3P M.W. Gill, B.G. Johnson, and J.A. Pople, International Journal of Quantum Chemistry 40,
745 (1991).

312 M. Dupuis, J. Rys, and H.F. King, The Journal of Chemical Physics 65, 111 (1976).

313 J. Rys, M. Dupuis, and H.F. King, J. Comput. Chem. 4, 154 (1983).

314 J. Zhang, Journal of Chemical Theory and Computation 14, 572 (2018).

315 K. Yasuda, Journal of Computational Chemistry 29, 334 (2008).

316 S, Reine, T. Helgaker, and R. Lindh, Wiley Interdisciplinary Reviews: Computational
Molecular Science 2, 290 (2012).

317 B.P. Pritchard and E. Chow, Journal of Computational Chemistry 37, 2537 (2016).

318 A Rak and G. Cserey, Chemical Physics Letters 622, 92 (2015).

319'Y. Miao and K.M. Merz, Journal of Chemical Theory and Computation 11, 1449 (2015).
320y, Miao and K.M. Merz, Journal of Chemical Theory and Computation 9, 965 (2013).

321 A. Asadchev and M.S. Gordon, Computer Physics Communications 183, 1563 (2012).

322 M. Hiser, J. Almlof, and M.W. Feyereisen, Theoret. Chim. Acta 79, 115 (1991).

323 H. Horn, H. Weif3, M. Haser, M. Ehrig, and R. Ahlrichs, Journal of Computational Chemistry
12, 1058 (1991).

324 T P. Hamilton and H.F. Schaefer, Chemical Physics 150, 163 (1991).

325 R. Lindh, Theoret. Chim. Acta 85, 423 (1993).

326 R. Lindh, U. Ryu, and B. Liu, The Journal of Chemical Physics 95, 5889 (1991).

327N. Flocke and V. Lotrich, Journal of Computational Chemistry 29, 2722 (2008).

38 E. F. Valeev, Libint: A Library for the Evaluation of Molecular Integrals of Many-Body
Operators over Gaussian Functions (2019).

329 G.M.J. Barca and PM.W. Gill, The Journal of Chemical Theory and Computation 12, 4915
(2016).

330 G.M.J. Barca and P.-F. Loos, The Journal of Chemical Physics 147, 024103 (2017).

331 M. Head-Gordon and J.A. Pople, The Journal of Chemical Physics 89, 5777 (1988).
3323ageMath Mathematical Software System (2019).

63

Al A
A

8815000°5/€901°01:10d SV 37114V SIHL 311D ISVId

sulysiiqnd

diV

Time (seconds)

Wat-19

8815000°5/€901°01:100 SV 3TJ1LAV SIHL 3110 ISVI1d

19s0dA) pue pajpakdod usaq sey)l 8OUO UOISISA SIU) WOJ) JUBIBLIP 84 [|IM PJ0J3J JO UCISIBA SUIjUO 8y} ‘JenemoH 1duosnuew pajdadde ‘pamalnal Jaad s Joyine sy si siy |

1dI4OSNNVIN d31d300V

s2ISAyd |ed1wayd jo
jeudnor ayl

Suysnqng

diV

	Manuscript File
	1
	2

