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The refined composite multiscale-entropy algorithm was applied to the time-dependent behavior of the 

Weierstrass functions, colored noise, and Logistic map to provide the fresh insight into the dynamics 

of these fluctuating phenomena. For the Weierstrass function, the complexity of fluctuations was found 

to increase with respect to the fractional dimension, D , of the graph. Additionally, the sample-entropy 

curves increased in an exponential fashion with increasing D . This increase in the complexity was found 

to correspond to a rising amount of irregularities in the oscillations. In terms of the colored noise, the 

complexity of the fluctuations was found to be the highest for the 1/ f noise ( f is the frequency of the 

generated noise), which is in agreement with findings in the literature. Moreover, the sample-entropy 

curves exhibited a decreasing trend for noise when the spectral exponent, β , was less than 1 and obeyed 

an increasing trend when β > 1. Importantly, a direct relationship was observed between the power-law 

exponents for the curves and the spectral exponents of the noise. For the logistic map, a correspondence 

was observed between the complexity maps and its bifurcation diagrams. Specifically, the map of the 

sample-entropy curves was negligible, when the bifurcation parameter, R , varied between 3 and 3.5. Be- 

yond these values, the curves attained non-zero values that increased with increasing R , in general. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

A variety of the sample-entropy (Sample En.) techniques have

been proposed to study the complexity of time-series data repre-

senting nonlinear dynamical systems [1] . One such technique is the

ApEn algorithm [2–4] , which measures the probability that simi-

lar sequences (for a given number of points) will remain like each

other when an additional point is added. However, this method

contains bias due to self-matching. To overcome this issue, the

SampEn technique [5,6] , which excludes self-matching in the cal-

culation, was proposed by Richman et al. [7] . Here the SampEn is

defined as the negative natural logarithm of the conditional prob-

ability that two sequences remain similar at the next point. 

The multiscale entropy (MSE) algorithm was proposed by Costa

et al. [8] to calculate SampEn over a range of scales to represent

the complexity of a time series. Importantly, the MSE algorithm

resolved an issue with the ApEn method, which stated that the

white noise consisted of fluctuations that were more complex than
∗ Corresponding author. 
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hose associated with the 1/ f noise [9] . Here, f is defined as the

requency of the generated noise, which is bounded between arbi-

rarily small and large values. However, this result was contradic-

ory since the 1/ f noise was thought to be more intricate in nature.

owever, the MSE technique, as proposed by Costa et al., showed

hat although the white noise was more complex at lower scales,

he 1/ f noise possessed higher levels of complexity at larger scaling

actors [8,10] . 

In addition, the MSE algorithm has been found to be useful

n analyzing and modeling temporal data, such as the serrated

ow [11,12] , during mechanical deformation, in different alloy sys-

ems [13–15] , physiological-time series [8,10,16–19] , bearing vibra-

ion data [20] , mechanical fault diagnosis [21] , and financial time

eries [22,23] . However, the MSE technique does have issues, such

s problems in accuracy and validity at large scale factors [9] . To

ackle these issues, Wu et al. [24] developed the composite mul-

iscale entropy (CMSE) algorithm, which can estimate the com-

lexity more accurately but increases the chance of producing un-

efined values. This technique has since been used to analyze

nancial-time series [25,26] . 

More recently, Wu et al. modified the CMSE algorithm slightly

o produce what is known as the refined composite multiscale en-

https://doi.org/10.1016/j.chaos.2018.09.005
http://www.ScienceDirect.com
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ropy (RCMSE) algorithm [9] . In their work, they compared the

omplexity of the white and 1/f noise. In terms of accuracy, it was

ound that the RCMSE algorithm outperformed both the MSE and

MSE algorithms. Like its predecessors, this technique has been

sed to study the complexity of different phenomena such as phys-

ological systems [27,28] and the intrinsic dynamics of traffic sig-

als [29] . 

Therefore, the goal of the present work is to use the RCMSE

ethod to model and analyze the complexity of different fluctuat-

ng phenomena. These phenomena include the colored noise, the

eierstrass function, and the logistic map. In terms of the colored

oise, the current study will expand upon the studies conducted

y [8,10,15,30] on the white and 1/ f noise, where the noise with

pectral exponents ranging from –2 to 2 will be modeled and an-

lyzed. Furthermore, this study will provide an innovative way to

nderstand how the regularity of a fractal function changes with

espect to its fractional dimension. This investigation also takes an

riginal approach to examining the logistic map, where the com-

lexity of its fluctuations will be examined with respect to its

haotic behavior. Therefore, the present work is significant since it

dvances our fundamental understanding of the above phenomena.

. Refined composite multiscale entropy modeling and analysis 

For this section, the methodology of [9] will be used. Given a

iscrete time series of the form, X = [ x 1 x 2 … x i … x N ], one con-

tructs the coarse-grained (averaged) time series, y τ
j,k 

, using Eq. (1) ,

hich is written as: 

y τk, j = 

1 

τ

jτ+ k −1 ∑ 

i = ( j−1 ) τ+ k 
x i ; 1 ≤ j ≤ N 

τ
1 ≤ k ≤ τ (1) 

Here N is the total number of points in the original data set,

nd k is an indexing factor, which dictates at which x i one begins

he coarse-graining procedure. Additionally, one should note that

he coarse-grained series, y 1 
1 , 1 

, is simply the original time series,

 . Fig. 1 gives a schematic illustration of the coarse-graining pro-

edure. At this point, one constructs the template vectors, y τ,m 

i 
, of

imension, m [8] : 

 

τ,m 

i 
= 

{
y τi y τi +1 . . . . y 

τ
j . . . . y 

τ
i + m −1 

}
; 1 ≤ i ≤ N − m (2) 

Once y τ
k, j 

is constructed, the next step is to write the time se-

ies of y τ
k 

as a vector for each scale factor, τ : 

 

τ
k = 

{
y τk, 1 y 

τ
k, 2 . . . y 

τ
k,N 

}
(3) 

The next step in the process is to find n matching sets of dis-

inct template vectors. It should be noted that the previous studies

sed m = 2 as the size of the template vector [7–9] . For two vec-

ors to match, the infinity norm, d τ,m 

jk 
, of the difference between

hem must be less than a predefined tolerance value, r . Here the

nfinity norm may be written as: 

 

τ,m 

jk 
= 

∥∥y τ,m 

j 
− y τ,m 

k 

∥∥
∞ 

= max 
{∣∣y τ1 , j − y τ1 ,k 

∣∣ . . . 
∣∣y τi + m −1 , j − y τi + m −1 ,k 

∣∣} < r (4) 

Typically, r is chosen as 0.1–0.2 times the standard deviation,

f the original data set [10] . This choice ensures that the sample

ntropy relies on the sequential ordering, and not the variance, of

he original time series. For this study, a value of r = 0.15 σ will be

sed. 

Fig. 2 illustrates the matching process for the coarse-grained se-

ies, y 1 
1 , j 

= X ( j ) (here k = 1) [10] . In the graph, there is the template

equence, { x (1), x (2), x (3)}, which matches the template sequence,

 x (28), x (29), x (30)}, meaning that there is a matching three-

omponent template set. Here the matching points for the three-

omponent templates are denoted by blue boxes in the figure. This
alculation is, then, repeated for the next three-component tem-

late sequence in which a total count of matching template se-

uences is taken. Then the entire process is repeated for all two-

omponent template sequences. The number of matching two-

nd three-component template sequences are again summed and

dded to the cumulative total. 

This procedure is performed for each k from 1 to τ and, then,

he number of matching template sequences, n m 

k 
and n m +1 

k 
, is

ummed, which is written as: 

CMSE (y , τ, m, r) = Ln 

( ∑ τ
k =1 n 

m 

k,τ∑ τ
k =1 n 

m +1 
k,τ

)
(5)

The RCMSE value is typically denoted as the sample entropy of

ample en. for short. As with other techniques, the RCMSE curves

re used to compare the relative complexity of normalized time

eries [10] . However, an advantage of the RCMSE method is that

t has a lower chance of inducing the undefined entropy, as com-

ared to earlier algorithms [9] . As was done in previous studies [8–

0] , the sample entropy, was plotted for scale-factor values ranging

rom 1 to 20. 

. Modeling and analysis 

.1. Weierstrass functions 

Weierstrass functions are an example of a function, which is

ontinuous but differentiable nowhere [31] . A proof of the non-

ifferentiability of this function can be found in [32] , and a dis-

ussion as to its fractal nature can be read in [33] . Typically, the

eierstrass function has a similar form to the following [34] : 

 (t) = 

∞ ∑ 

k =1 

e i ( γ
k t+ ϕ k ) 

γ (2 −D ) k 
(6) 

here D is the fractional dimension with 1 < D < 2, γ > 1, and

k is an arbitrary phase. Here, the real and imaginary parts of

q. (6) are known as the Weierstrass cosine and sine functions, re-

pectively. Additionally, D will be termed as the fractional dimen-

ion to avoid technical arguments over which type of dimension, D ,

epresents, such as the box-counting dimension, fractal dimension,

r the Hausdorff-Besicovitch dimension [34] . 

Although Weierstrass functions cannot be differentiated in the

onventional sense, they have been shown to be differentiable to

ractional order [35–39] . Furthermore, both integrating and differ-

ntiating functions to arbitrary order involve more generalized def-

nitions, as compared to those found in the integer order calculus.

or example, the fractional integral has been defined as [40–42] : 

 

D 

−α
t f ( t ) = 

1 

�( α) 

∫ t 

c 

(
t − t ′ 

)α−1 
f 
(
t ′ 
)
dt ′ Re α > 0 (7) 

Here � is the well-known gamma function, and α is the or-

er of the derivative, which extends across the positive reals. Ex-

anding upon Eq. (7) , Oldham and Spanier show that the fractional

erivative of a function, f ( t ), may be written as [43,44] : 

 

D 

α
t f ( t ) = 

d n 

dt n 
a D 

α−n 
t f ( t ) 

= 

1 

�( n − α) 

d n 

dt n 

∫ t 

a 

(
t − t ′ 

)n −α−1 
f 
(
t ′ 
)
dt 

′ 
Re α > 0 

(8) 

In the spirit of the work found in [35] , we take the fractional

ntegral, as defined in Eq. (7) and apply it to the righthand side (r.

. s.) of Eq. (6) , while taking the limit of c → –∞ (from Eq. (7) ): 
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Fig. 1. Schematic for the coarse-graining procedure for (a) k = 1, τ = 2, (b) k = 1, τ = 3, (c) k = 2, τ = 2, and (d) k = 2, τ = 3. 
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D 

−α
t W ( t ) = 

1 

�( α) 

∞ ∑ 

k =1 

e iϕ k 

γ ( 2 −D ) k 

×
∫ t 

−∞ 

e iγ
k t ′ 

( t − t ′ ) 1 −α
dt ′ 0 < α < 1 (9)

Applying the substitution twice and integrating yields: 

−∞ 

D 

−α
t W ( t ) = 

∞ ∑ 

k =1 

e i ( γ
k t+ ϕ k − πα

2 ) 

γ [ 2 −( D −α) ] k 
(10)

In a similar fashion, we solve for the fractional derivative of the

W ( t ): 

−∞ 

D 

α
t W ( t ) = 

1 

�( 1 − α) 

∞ ∑ 

k =1 

e iϕ k 

γ ( 2 −D ) k 

d 

dt 

∫ t 

−∞ 

e iγ
k t ′ 

( t − t ′ ) α
dt ′ 
= 

∞ ∑ 

k =1 

e i ( γ
k t+ ϕ k + πα

2 ) 

γ [ 2 −( D + α) ] k 
0 < α < 1 (11)

For the present work, only the fractional integral and deriva-

ives for the cosine series (real part) of Eq. (6) , denoted as W c ( t ),

ill be analyzed. Additionally, W c ( t ) was determined by summing

he first 20 terms of the series. The fractional integral and deriva-

ive for W c ( t ) can be written as: 

∞ 

D 

−α
t W c ( t ) = 

∞ ∑ 

k =1 

cos 
(
γ k t + ϕ k − πα

2 

)
γ [ 2 −( D −α) ] k 

(12)

∞ 

D 

α
t W c ( t ) = 

∞ ∑ 

k =1 

cos 
(
γ k t + ϕ k + 

πα
2 

)
γ [ 2 −( D + α) ] k 

(13)
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Fig. 2. A simulated time series, y 1 
1 , j 

= X ( j ), is shown to illustrate the procedure for 

calculating the sample entropy for the case, m = 2, and a given r (which typically 

varies between 0.1 – 0.2 σ , where σ is the standard deviation of the time series 

[10] ). Dotted horizontal lines around data points represent X ( j ) ± r . When the ab- 

solute difference between two data points is less than or equal to r , they are con- 

sidered as a matching pair. A matching pair of sizes, 3 and 2, are, respectively, in- 

dicated by the blue (points { x (1), x (2), x (3)} and { x (28), x (29), x (30)}) and green 

(points {x(16), x(17)} and {x(20) x(21)}) boxes in the figure. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article). 
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Before moving on, a few things should be discussed. It can be

een from Eqs. (10) –(13) that the fractional derivative and integral

f W ( t ) is simply another Weierstrass function, which possesses

oth a different fractional dimension, D 

′ ( D 

′ = D ±α), and a com-

lex exponential, which has undergone a phase shift. As noted in

35] , the fractional integral of the Weierstrass function decreases

he fractional dimension by a factor equal to the order of the

erivative. In contrast, the fractional derivative increases the frac-

ional dimension of the function by the same amount. 

An alternate way to fractionally-differentiate the Weierstrass

unction was discussed in [38,39] . In their work, they differenti-

ted the cosine and sine series term-by-term, using the power-law

ule for fractional derivatives [43,45] : 

 

D 

α
t W c ( t ) = 0 D 

α
t 

∞ ∑ 

k =1 

cos 
(
γ k t + ϕ k 

)
γ ( 2 −D ) k 

= 

∞ ∑ 

k =1 

C t 

(
−α, γ k 

)
γ ( 2 −D ) k 

= 

∞ ∑ 

k =1 

t −αE 2 , 1 −α

(
−γ 2 k t 2 

)
γ ( 2 −D ) k 

(14) 

Here C t ( −α, γ ) is defined in [40] , while E δ,θ ( −t ) is simply the

wo-parameter Mittag-Leffler function [46–48] . Both positive and

egative values for α can be applied to the above equation. In ad-

ition, the lower limit for the derivative was set to 0. For the pur-

oses of simplification, it was assumed that ϕk = 0. 

.2. Colored noise 

The colored noise analyzed in the present work was made, us-

ng a similar method, as that in [8] . Here 200 sets of the uniformly-

istributed white noise signals composed of 10 4 points were gen-

rated. Each set was, then, fast Fourier transformed in which the

esulting power spectrum was filtered to behave according to a

/ f β distribution. To obtain the desired waveform, the resulting

ata was inverse Fourier transformed. This process was done for

values ranging from –2 to 2 in 0.25 increments. To highlight the

ecreasing/increasing trend of the complexity values with respect

o the scale factor, the sample entropy was plotted for scale factors

anging from 1 to 30. 
.3. Chaotic systems (logistic map) 

The logistic map is one of the simplest examples of chaos. Since

his phenomenon has been written in detail elsewhere [49–56] , it

ill not be discussed here. In terms of its characteristics, the logis-

ic map consists of an iterative polynomial form that is defined as:

 n +1 = R x n ( 1 − x n ) (15) 

here R is the bifurcation parameter. Typically, the ranges of val-

es for the map are 0 ≤ x n ≤ 1 and 1 ≤ R ≤ 4. 

. Results 

.1. Weierstrass functions 

Fig. 3 (a)–(c) shows a plot of this series [ Eq. (6) ] for ϕk = 0 (a

ractional dimension of 1.5), γ = 2 with its fractionally-integrated

 α = –0.2), and differentiated ( α = 0.2) counterparts. As can be seen

n Fig. 3 (a), where the curve was integrated, the curve appears

ess rough, as compared to the original function. In contrast, the

urve in Fig. 3 (c), where the function was differentiated, exhibits

n increased roughness. Therefore, this change in the fractional di-

ension of the Weierstrass function can be intuitively understood

n terms of how the shape of the graph changes. In addition, the

agnitude of the function was found to increase with respect to

he fractional dimension of the function. This increase in the mag-

itude of the function was also observed by Liang et al. [38] . 

It was previously claimed in [36] that the differintegral, as used

n Eqs. (9) and (11) , may not be applied to a purely-imaginary ordi-

ary exponential, as was done in [35] . However, the current work

onfirmed the derivations of West et al. [34] via the substitution.

amely, the integral in the above equations were converted into

amma functions for which the final solutions were derived. 

Fig. 4 shows the RCMSE results for W c ( t ), as discussed above,

ith ϕk = 0 (a fractional dimension of 1.5), γ = 2, and its corre-

ponding fractionally-integrated and differentiated (–0.4 ≤α ≤ 0.4) 

unctions. Here each data set consists of 3 × 10 5 points. As can be

een, the sample entropy increases with respect to the fractional

imension of the function. In terms of the scale factor, the com-

lexity exhibits an increasing trend for fractional dimensions rang-

ng from 1.1 to 1.7. At D = 1.8, there is an initial decrease in the

ntropy with respect to the scale factor, followed by an increase.

owever, at D = 1.9, the sample entropy shows a decreasing trend

or τ . The increasing trend with respect to D suggests that Weier-

trass functions with this range of dimensions contain the increas-

ng complexity at all scales. Moreover, fractionally-differentiating

he Weierstrass function leads to a greater irregularity of the fluc-

uations at a noticeably-higher rate, as compared to when the

unction is integrated. 

To obtain a qualitative picture as to how the variability of the

eierstrass function changes with respect to D , a Poincaré plot

f the r. h. s. of Eqs. (12) and (13) was made and is shown in

ig. 5 . Here, the plot was made for fractional orders of α = –0.4,

0.15, 0.15, and 0.4, which correspond to fractional dimensions of

 = 1.1, 1.35, 1.65, and 1.9, respectively. As can be observed in the

raph, the points begin to noticeably spread at D = 1.65. In addi-

ion, the separation between points becomes significantly greater

or D = 1.9, which reveals the increasing irregularity in the data. 

Fig. 6 (a)–(c) shows the cosine series from Eq. (14) with its

ractionally-integrated and differentiated counterparts (plotted for 

 = 4 to 6 s). Notice the similarities between these figures and

ig. 3 (a)–(c). Fig. 7 illustrates the sample entropy for Eq. (14) with

values ranging from –0.4 to 0.4. From the figures, one can notice

lmost an exact resemblance between Figs. 4 and 7 . 
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Fig. 3. Plot of (a) Eq. (12) with the fractional order of α = –0.2 ( D = 1.3), (b) the cosine series from Eq. (6) , and (c) Eq. (13) with the fractional order of with α = 0.2 ( D = 1.7). 

Fig. 4. Sample entropy for the cosine series from Eq. (6) for the fractional dimen- 

sion, D , ranging from 1.1 to 1.9 and for –0.4 ≤α ≤ 0.4. 

 

 

 

 

 

 

 

 

 

Fig. 5. Poincaré plot of the r.h.s. of Eqs. (12) and (13) for fractional orders of α = –

0.4, –0.15, 0.15, and 0.4, which correspond to fractional dimensions of D = 1.1, 1.35, 

1.65, and 1.9, respectively. 
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4.2. Colored noise 

Fig. 8 shows the mean sample entropy of the colored noise

data for –2 ≤β ≤ 2 and 1 ≤ τ ≤ 30 plotted with the colored noise

plots for brown ( β = 2), pink (or 1/ f with β = 1), white ( β = 0), blue

( β = –1), and violet noises ( β = –2). Similar behavior in the sample

entropy was reported by Matcharashvili et al. for β values ranging

from 0.001 to 1.65 [57] . It should also be noted that the results for

white and 1/ f noise are similar to those reported in [8,10,15,28,30] .

In addition, the sample entropy exhibits the monotonic behavior

(increasing and decreasing) with respect to the scale factor across
ll β exponents. Furthermore, the MSE curves appear to shift from

he strictly-increasing to decreasing trends at the graph for the 1/ f

oise ( β = 1). Additionally, the curves, which correspond to β < 1,

ave decreasing trends that end with the sample-entropy values

ear zero at higher scale factors. This result indicates that as a

arger number of points are averaged together, the graphs become

ore regular. In contrast, the curves, which are increasing, become

ore complex, as the average contains a greater number of points.

The sample-entropy curves from the above figure were, then,

t according to the power-law form of SE ( n, β) = C τ n ( β ) , where n

s the power-law-fitted exponent, β is the spectrum exponent, and

 is some coefficient. It was found that there was a linear rela-

ionship for which n = 0.35–0.34 β with a corresponding r -squared
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Fig. 6. Plot of Eq. (14) with the fractional order of (a) α = –0.2 ( D = 1.3), (b) α = 0 ( D = 1.5), and (c) α = 0.2 ( D = 1.7). 

Fig. 7. Sample entropy for the cosine series from Eq. (14) for –0.4 ≤α ≤ 0.4, which 

corresponds to a fractional dimension, D , ranging from 1.1 to 1.9, respectively. 
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alue of 0.99. The results indicate that there is a strong positive

orrelation between these two parameters. Based on the linear

t, the concavity of the sample-entropy function undergoes a sign

hange when the power-spectrum exponent, β , is approximately

.97, which is relatively close to the exponent for the 1/ f noise. 

.3. Logistic map 

A plot for the logistic map with R = 3.2, 3.6, and 3.9 in the ini-

ial condition of x = 0.1 is shown in Fig. 9 . For R = 3.2, x n oscillates
1 
etween two values, which is characteristic of the very simple be-

avior. However, as can be observed in the graph, the fluctuations

ecome more irregular as R increases. 

To gain a better understanding of how the irregularity of the

uctuations changes with respect to R , the RCMSE method was ap-

lied to Eq. (15) for 3 ≤ R ≤ 4 and the initial condition of x 1 = 0.1.

ere, R was given these values, since this is where the interest-

ng behavior occurs [58] . Fig. 10 shows the resulting complexity

alues (for 1 ≤ τ ≤ 20) for this range of values. In the first region,

here 3 ≤ R < 3.5, the complexity is negligible for all scale factors.

or R = 3.5, there are non-zero values in the curve for scale fac-

ors of 13 and 15, which are, respectively, equal to 0.22 and 0.18.

or R > 3.5, the sample entropy begins to noticeably increase with

espect to the bifurcation parameter. 

Here the curves, in general, increase with respect to the bifurca-

ion parameter. In addition, the curves initially rise with the scale

actor until they reach a maximum and, then, begin to decrease

hereafter. Moreover, the curve for R = 3.85 has similar characteris-

ics, as compared to the curves for R = 3.5 and 3.55, where there

re peaks at midrange scale factors. However, the peaks for the

urve at R = 3.85 are relatively larger in magnitude. 

Fig. 11 shows the bifurcation diagram for Eq. (15) with

.8 ≤ R ≤ 4.0. Here the bifurcation diagram was divided into subsec-

ions (A black box denotes each subsection in Fig. 11 (a)) in which

ome of the boundaries consist of bifurcation points). Moreover, ar-

ows link the subsections of the bifurcation diagram to their re-

pective sample-entropy curves. Interestingly, as can be observed

n Fig. 11 (a)–(b), it appears that the complexity of the fluctuations

t a given R corresponds to the number of asymptotic values vis-

ted there. In this diagram, Fig. 10 was rotated clockwise to obtain

 better picture of how the overall behavior of the sample-entropy

urves varies with respect to the bifurcation parameter. 
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Fig. 8. Mean sample entropy of the colored noise data for –2 ≤β ≤ 2 and 1 ≤ τ ≤ 30 plotted with the colored noise plots for brown ( β = 2), pink (or 1/ f with β = 1), white 

( β = 0), blue ( β = –1), and violet noise ( β = –2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 9. The logistic map with an initial condition of x 1 = 0.1, bifurcation parameter, 

R = 3.2, 3.6, and 3.9, was plotted for n = 50 0 0–520 0. 

 

 

 

 

 

 

 

 

Fig. 10. Complexity plot of the logarithmic map for 3 ≤ R ≤ 4. Here each sample- 

entropy curve is plotted for 1 ≤ τ ≤ 20. 
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As can be seen in the figure, the oscillations, which occur

between the first and second bifurcation points, correspond to

curves, which have negligible values. The above implies that the

fluctuations occurring in this region are characteristic of simplis-

tic behavior. However, between the second and third bifurcation

points, which occurs for 3.45 < R ≤ 3.55, x oscillates between four

points. In this region, the sample-entropy curves contain some

non-zero values, meaning that there is some irregularity for these

types of oscillations. 
Above all, once R becomes greater than 3.55, the sample-

ntropy curves begin to rise, especially for points at lower scale

actors. For the most part, this section corresponds to the region of

he bifurcation diagram containing a high density of points. Nev-

rtheless, there are some areas in the diagram, which contain no
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Fig. 11. (a),(b) The bifurcation diagram (plotted for 2.8 ≤ R ≤ 4.0) for the logistic 

map with arrows that link the various regions of the map to its corresponding 

sample-entropy curves from Fig. 10 . 
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oints, and appear to parallel the sample-entropy curves, which

re lower in the overall magnitude, such as the curve for R = 3.85.

eyond the above bifurcation parameter, the curves continue to

ise again until R = 4. Since the behavior of x n diverges for R > 4,

he complexity was not calculated for this range. 

. Discussion 

.1. Weierstrass functions 

It was found that fractionally-differentiating the Weierstrass

unction resulted in an enhanced roughness of the curves while

he integration had the opposite effect. Furthermore, this rough-

ess increased with respect to the fractional dimension of the

urve. From the results of the complexity analysis and modeling,

t was found that the degree of roughness corresponded to the

rregularity of the oscillations. As observed in Figs. 4 and 7 , the

ample entropy appears to increase in an exponential fashion with

espect to the fractional dimension (and derivative order) of the

urve. Moreover, the sample entropy did not exhibit the decreasing

ehavior with respect to τ for a given D , which indicates that there

s complex behavior at all scales. This link between the fractional

imension and the irregularity of the oscillations of the function

as also found in the work conducted by West et al. [34,35] . 

Also, the increase in the complexity of the Weierstrass function,

s seen in Fig. 4 , arises from an increase in the information content

f its oscillations, as D rises [59] . This increase is a consequence

f the growth in the unpredictability, or irregularity of the state

ue to more erratic fluctuations. Furthermore, the decrease in the

redictability of the fluctuations for W c ( t ) was further observed in

he Poincaré plot from Fig. 5 , where the separation of consecutive

oints accelerated for larger values of the fractional dimension. 

As can be observed in Fig. 3 (a)–(c) and 6 (a)–(c), the curves pro-

uced from Eqs. (12) and (13) were very similar, if not identical, to
hose fashioned from Eq. (14) . Furthermore, their sample-entropy

urves, as seen in Figs. 4 and 7 , behaved in a similar fashion where

oth curves increased in a parabolic trend with respect to the or-

er of the derivative and D . The similarities between the two forms

ere unexpected, since the former involves altering D , while the

atter does not change this quantity. At the time of this writing,

he implications of the above result are not entirely understood,

ut will hopefully be the subject of further investigation. 

.2. Colored noise 

The results for the colored-noise modeling and analysis indi-

ate that the sample-entropy curves, as shown in Fig. 8 , appear

o comprise a spectrum. As can be seen, the complexity curves

or noise corresponding to 1 < β < 2 have increasing trends, while

hose for the noise with β < 1 decrease with respect to τ . More-

ver, the curves shift from the concave up to concave down at

≈ 1, for reasons that are not entirely understood. Furthermore,

t is well known that the spectral exponent values of 0 < β < 2 cor-

espond to fluctuations that consist of the antipersistent behavior,

hich means that the magnitudes of fluctuations regresses back

owards the mean of the data set [60] . Therefore, the antipersistent

ehavior can also be thought of as self-regulating. Furthermore, the

hite noise, which has a power spectrum that is constant with re-

pect to frequency ( β = 0), consists of fluctuations, which are un-

orrelated. 

Like other work, including [8,10,15,30,61] , the results of the

resent modeling and analysis found that the 1/ f noise, in gen-

ral, consists of fluctuations that are more complex in nature, as

ompared to other colored noise, which can be seen in Fig. 8 .

ore specifically, the sample-entropy values for the 1/ f noise re-

ain higher for τ > 10, as compared to other noise. This result in-

icates that this type of noise is resistant to a loss in correlations

t all scales. Furthermore, this resistance to a loss in complexity

ay explain why the intricate phenomenon, which is conducive

o life, such as heart-beat contractions or neuronal firing, observes

uctuations, which imitate the 1/ f noise. 

A link between the complexity of the time-series data and heart

unction was observed in studies conducted by Costa et al. [8,10] .

or both studies, they found that subjects with the healthy heart

unction had increasing trends (concave down) in the sample en-

ropy with respect to the scale factor. Furthermore, they reported

he same increasing trend when comparing young and elderly pa-

ients that were both healthy, although the complexity was signif-

cantly higher for all scale factors in the former. In contrast, sub-

ects that experienced atrial fibrillation exhibited decreasing trends

n the complexity of the heart-beat-interval-time-series. Addition-

lly, subjects who had the congestive heart failure had the lowest

ample entropy values for τ > 2, as compared to the other two con-

itions of heart health. Moreover, the sample entropy was higher

t larger scale factors for the healthy subjects, as compared to the

alues for the atrial fibrillation. 

The above results were subsequently compared with the data

ttained from this study on the modeling and analysis of the col-

red noise. Based on the results of [8] , the entropy measure for the

ealthy subjects most resembled the curve from the colored noise

ata from Fig. 8 for the spectral exponents of 1.25 < β < 1.50. The

odel predictions are somewhat similar to the results of another

tudy, which found that β was 1.1 for healthy individuals [62] . Im-

ortantly, the above trend indicates that the heart-beat rhythms

ssociated with healthy patients contain fluctuations that are self-

egulating to keep the heart rate away from extreme values, which

s consistent with homeostasis. 

On the other hand, when comparing the results of this anal-

sis with the data for subjects with atrial fibrillation from [8,10] ,

he complexity values were comparable to the colored noise with
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β values ranging from 0 to 0.25 (see Fig. 8 ). This result suggests

that the heart-beat patterns for people in this condition possess

lower correlations, and are almost completely random in nature.

In contrast, the subjects that underwent congestive heart failure

had heart-beat fluctuations with sample-entropy values that var-

ied between the curves for 1.75 < β < 2. The above statement indi-

cates that patients, which had this condition, exhibited heart-beat

fluctuations that are very similar to the brown noise, as shown

in Fig. 8 . Since the brown noise corresponds to Brownian motion,

it may be thought that those who suffer from this complication

exhibit heart-beat patterns that correspond to random-walk pro-

cesses, which consist of trivial long-range correlations [63] . 

5.3. Logistic map (chaos) 

As observed in Figs. 10 and 11 , the complexity was found to be

negligible when the bifurcation parameter ranged from 3 to 3.45.

The above region corresponds to oscillations before the first bifur-

cation point, where the system behaves as a limit cycle attractor.

More specifically, x i oscillates between two values, which is in-

dicative of the simplistic behavior. However, the sample-entropy

curves begin to contain nonzero values for 3.45 ≤ R < 3.55, which

correspond to the region between the first and second bifurcation

points in Fig. 11 . In this range, the system oscillates between 4

points, which is indicative of the behavior that is more irregular

than the fluctuations of the system in the previous region. 

After this second bifurcation, the complexity of the oscillations

continues to rise, until the bifurcation parameter reaches 3.56995

[49] , which is where the system transitions from the predictable

to chaotic behavior. Beyond this point, the sample-entropy curves,

in general, increase at a much faster rate with respect to the

bifurcation parameter. This increase in the complex behavior of

Eq. 13 , as R ranges from 3.56995 to ∼ 3.82843, is characterized

by a periodic phase interrupted by bursts of the aperiodic behav-

ior [64] . Moreover, there is a sudden decrease in the complexity

at R = 3.85, which is most likely associated with the island of sta-

bility at R = 3.82843 [65] , which shows the non-chaotic behavior.

Furthermore, this decrease in the complexity arises from the sys-

tem oscillating between only three points. 

With respect to the scale factor, the curves initially rise until

they reach a maximum for τ of ∼ 5 and, then, begin to decrease,

as seen in Fig. 10 . This behavior simply means that the irregularity

of the oscillations achieves a maximum when the data set is av-

eraged for every 5 points. However, the underlying physics of this

behavior is not well understood and will hopefully be the subject

of future endeavors. 

6. Conclusions 

To summarize, the refined composite multiscale entropy algo-

rithm was applied to the time- dependent oscillatory behavior

of Weierstrass functions, the colored noise, and the logistic map.

Here, several interesting results were found. Firstly, the complexity

of fluctuations for the Weierstrass cosine function were found to

increase with respect to the fractional dimension of the graph. Fur-

thermore, the sample-entropy curves increased in an exponential

fashion with respect to the fractional dimension, D , of the graph.

This increase in the complexity was found to correspond to the

irregularity of the oscillations. Secondly, in terms of the colored

noise, the complexity was found to be highest for the 1/ f noise,

which is in agreement with findings in the literature. Moreover,

the sample-entropy curves exhibited a decreasing trend for noise

when the spectral exponent, β , was less than 1 and obeyed an in-

creasing trend when β > 1. Additionally, the power-law exponent

for the curves had a direct correlation with the spectral exponents

of the noise. For the logistic map, the sample-entropy curves were
egligible when the bifurcation parameter, R , varied between 3 and

.5. Beyond these values, the curves attained non-zero values that

enerally increased with respect to R , in general. 
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