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ABSTRACT

The refined composite multiscale-entropy algorithm was applied to the time-dependent behavior of the
Weierstrass functions, colored noise, and Logistic map to provide the fresh insight into the dynamics
of these fluctuating phenomena. For the Weierstrass function, the complexity of fluctuations was found
to increase with respect to the fractional dimension, D, of the graph. Additionally, the sample-entropy
curves increased in an exponential fashion with increasing D. This increase in the complexity was found
to correspond to a rising amount of irregularities in the oscillations. In terms of the colored noise, the
complexity of the fluctuations was found to be the highest for the 1/f noise (f is the frequency of the
generated noise), which is in agreement with findings in the literature. Moreover, the sample-entropy
curves exhibited a decreasing trend for noise when the spectral exponent, 8, was less than 1 and obeyed
an increasing trend when g > 1. Importantly, a direct relationship was observed between the power-law
exponents for the curves and the spectral exponents of the noise. For the logistic map, a correspondence
was observed between the complexity maps and its bifurcation diagrams. Specifically, the map of the
sample-entropy curves was negligible, when the bifurcation parameter, R, varied between 3 and 3.5. Be-

yond these values, the curves attained non-zero values that increased with increasing R, in general.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of the sample-entropy (Sample En.) techniques have
been proposed to study the complexity of time-series data repre-
senting nonlinear dynamical systems [1]. One such technique is the
ApEn algorithm [2-4], which measures the probability that simi-
lar sequences (for a given number of points) will remain like each
other when an additional point is added. However, this method
contains bias due to self-matching. To overcome this issue, the
SampEn technique [5,6], which excludes self-matching in the cal-
culation, was proposed by Richman et al. [7]. Here the SampEn is
defined as the negative natural logarithm of the conditional prob-
ability that two sequences remain similar at the next point.

The multiscale entropy (MSE) algorithm was proposed by Costa
et al. [8] to calculate SampEn over a range of scales to represent
the complexity of a time series. Importantly, the MSE algorithm
resolved an issue with the ApEn method, which stated that the
white noise consisted of fluctuations that were more complex than
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those associated with the 1/f noise [9]. Here, f is defined as the
frequency of the generated noise, which is bounded between arbi-
trarily small and large values. However, this result was contradic-
tory since the 1/f noise was thought to be more intricate in nature.
However, the MSE technique, as proposed by Costa et al., showed
that although the white noise was more complex at lower scales,
the 1/f noise possessed higher levels of complexity at larger scaling
factors [8,10].

In addition, the MSE algorithm has been found to be useful
in analyzing and modeling temporal data, such as the serrated
flow [11,12], during mechanical deformation, in different alloy sys-
tems [13-15], physiological-time series [8,10,16-19], bearing vibra-
tion data [20], mechanical fault diagnosis [21], and financial time
series [22,23]. However, the MSE technique does have issues, such
as problems in accuracy and validity at large scale factors [9]. To
tackle these issues, Wu et al. [24]| developed the composite mul-
tiscale entropy (CMSE) algorithm, which can estimate the com-
plexity more accurately but increases the chance of producing un-
defined values. This technique has since been used to analyze
financial-time series [25,26].

More recently, Wu et al. modified the CMSE algorithm slightly
to produce what is known as the refined composite multiscale en-
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tropy (RCMSE) algorithm [9]. In their work, they compared the
complexity of the white and 1/f noise. In terms of accuracy, it was
found that the RCMSE algorithm outperformed both the MSE and
CMSE algorithms. Like its predecessors, this technique has been
used to study the complexity of different phenomena such as phys-
iological systems [27,28] and the intrinsic dynamics of traffic sig-
nals [29].

Therefore, the goal of the present work is to use the RCMSE
method to model and analyze the complexity of different fluctuat-
ing phenomena. These phenomena include the colored noise, the
Weierstrass function, and the logistic map. In terms of the colored
noise, the current study will expand upon the studies conducted
by [8,10,15,30] on the white and 1/f noise, where the noise with
spectral exponents ranging from -2 to 2 will be modeled and an-
alyzed. Furthermore, this study will provide an innovative way to
understand how the regularity of a fractal function changes with
respect to its fractional dimension. This investigation also takes an
original approach to examining the logistic map, where the com-
plexity of its fluctuations will be examined with respect to its
chaotic behavior. Therefore, the present work is significant since it
advances our fundamental understanding of the above phenomena.

2. Refined composite multiscale entropy modeling and analysis

For this section, the methodology of [9] will be used. Given a
discrete time series of the form, X=[ x; X, ... X; ... Xy |, one con-
structs the coarse-grained (averaged) time series, y;k, using Eq. (1),
which is written as:

1 jT+k-1 ' N
Vei=7 2 % ¢ 1sjs— ls<kst (1)
i=(j—1)T+k

Here N is the total number of points in the original data set,
and k is an indexing factor, which dictates at which x; one begins
the coarse-graining procedure. Additionally, one should note that
the coarse-grained series, y}yl, is simply the original time series,
X. Fig. 1 gives a schematic illustration of the coarse-graining pro-
cedure. At this point, one constructs the template vectors, yfm of
dimension, m [8]:

v =AYy Y Yime) s 1<i<N-m (2)
Once yf(]. is constructed, the next step is to write the time se-
ries of y; as a vector for each scale factor, 7:

Vi ={¥i1Via---Yin} (3)

The next step in the process is to find n matching sets of dis-
tinct template vectors. It should be noted that the previous studies
used m=2 as the size of the template vector [7-9]. For two vec-
tors to match, the infinity norm, dj?,‘cm, of the difference between
them must be less than a predefined tolerance value, r. Here the
infinity norm may be written as:

G = v
= max { |y;j _y;k| e |yit+m—l,j _yf+m—1,l<|} <Tr (4)

Typically, r is chosen as 0.1-0.2 times the standard deviation,
of the original data set [10]. This choice ensures that the sample
entropy relies on the sequential ordering, and not the variance, of
the original time series. For this study, a value of r=0.150 will be
used.

Fig. 2 illustrates the matching process for the coarse-grained se-
ries, J’},j = X(j) (here k=1) [10]. In the graph, there is the template
sequence, {x(1), x(2), x(3)}, which matches the template sequence,
{x(28), x(29), x(30)}, meaning that there is a matching three-
component template set. Here the matching points for the three-
component templates are denoted by blue boxes in the figure. This

calculation is, then, repeated for the next three-component tem-
plate sequence in which a total count of matching template se-
quences is taken. Then the entire process is repeated for all two-
component template sequences. The number of matching two-
and three-component template sequences are again summed and
added to the cumulative total.

This procedure is performed for each k from 1 to T and, then,
the number of matching template sequences, n}' and nZ‘* 1 s
summed, which is written as:

T
D=1 My )
T 1

ka1 My

The RCMSE value is typically denoted as the sample entropy of
sample en. for short. As with other techniques, the RCMSE curves
are used to compare the relative complexity of normalized time
series [10]. However, an advantage of the RCMSE method is that
it has a lower chance of inducing the undefined entropy, as com-
pared to earlier algorithms [9]. As was done in previous studies [8—
10], the sample entropy, was plotted for scale-factor values ranging
from 1 to 20.

RCMSE(y, T,m, 1) = Ln( (5)

3. Modeling and analysis
3.1. Weierstrass functions

Weierstrass functions are an example of a function, which is
continuous but differentiable nowhere [31]. A proof of the non-
differentiability of this function can be found in [32], and a dis-
cussion as to its fractal nature can be read in [33]. Typically, the
Weierstrass function has a similar form to the following [34]:

o oi(ykt+er)

WO =3 oo (©)
k=1

where D is the fractional dimension with 1<D<2, y >1, and
@y is an arbitrary phase. Here, the real and imaginary parts of
Eq. (6) are known as the Weierstrass cosine and sine functions, re-
spectively. Additionally, D will be termed as the fractional dimen-
sion to avoid technical arguments over which type of dimension, D,
represents, such as the box-counting dimension, fractal dimension,
or the Hausdorff-Besicovitch dimension [34].

Although Weierstrass functions cannot be differentiated in the
conventional sense, they have been shown to be differentiable to
fractional order [35-39]. Furthermore, both integrating and differ-
entiating functions to arbitrary order involve more generalized def-
initions, as compared to those found in the integer order calculus.
For example, the fractional integral has been defined as [40-42]:

1 t a—
D f0) = 15 [ (=)

Here I' is the well-known gamma function, and « is the or-
der of the derivative, which extends across the positive reals. Ex-
panding upon Eq. (7), Oldham and Spanier show that the fractional
derivative of a function, f(t), may be written as [43,44]:

dn
DES(O) = SmaDf " (0)
_ 1 dn
T T'(n—a)dr

'f(¢')dt’ Rea > 0 7)

[0y (@)t rew > 0
(8)

In the spirit of the work found in [35], we take the fractional
integral, as defined in Eq. (7) and apply it to the righthand side (r.
h. s.) of Eq. (6), while taking the limit of ¢ — -oo (from Eq. (7)):
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Fig. 1. Schematic for the coarse-graining procedure for (a) k=1, t=2, (b) k=1, =3, (c) k=2, T=2, and (d) k=2, T =3.
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Applying the substitution twice and integrating yields:
00 ei(yktﬂpk*%
—a _
—DFEW(t) = Z BYCECET (10)
In a similar fashion, we solve for the fractional derivative of the
W(t):
1 X oipy d ot eivkt
_DEW(t) = - ——dt’
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For the present work, only the fractional integral and deriva-
tives for the cosine series (real part) of Eq. (6), denoted as Wc(t),
will be analyzed. Additionally, W(t) was determined by summing
the first 20 terms of the series. The fractional integral and deriva-
tive for W¢(t) can be written as:

- > cos (ykt+<pk— ”2—“)
oD We(t) = Z y2-0-o)lk (12)
k=1
> cos (y*t + ¢y + =2
NAACEDY ( ) (13)

2—(D+a)]k
= y[ (D+a)]
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Fig. 2. A simulated time series, y}.j = X(j), is shown to illustrate the procedure for
calculating the sample entropy for the case, m=2, and a given r (which typically
varies between 0.1 - 0.20, where o is the standard deviation of the time series
[10]). Dotted horizontal lines around data points represent X(j)+r. When the ab-
solute difference between two data points is less than or equal to r, they are con-
sidered as a matching pair. A matching pair of sizes, 3 and 2, are, respectively, in-
dicated by the blue (points {x(1), x(2), x(3)} and {x(28), x(29), x(30)}) and green
(points {x(16), x(17)} and {x(20) x(21)}) boxes in the figure. (For interpretation of
the references to color in this figure legend, the reader is referred to the web ver-
sion of this article).

Before moving on, a few things should be discussed. It can be
seen from Eqs. (10)-(13) that the fractional derivative and integral
of W(t) is simply another Weierstrass function, which possesses
both a different fractional dimension, D’ (D’=D+«), and a com-
plex exponential, which has undergone a phase shift. As noted in
[35], the fractional integral of the Weierstrass function decreases
the fractional dimension by a factor equal to the order of the
derivative. In contrast, the fractional derivative increases the frac-
tional dimension of the function by the same amount.

An alternate way to fractionally-differentiate the Weierstrass
function was discussed in [38,39]. In their work, they differenti-
ated the cosine and sine series term-by-term, using the power-law
rule for fractional derivatives [43,45]:

OD? i cos (th + (pk)

oDFWe (D) y @Dk

k=1
o0 Ct(—Ol,)/k) oo t_aEZ,l—a(_yMtz)

:Z y @Dk = Z y @Dk

k=1 k=1

(14)

Here Ci(—a,y) is defined in [40], while Es gy (—t) is simply the
two-parameter Mittag-Leffler function [46-48]. Both positive and
negative values for o can be applied to the above equation. In ad-
dition, the lower limit for the derivative was set to 0. For the pur-
poses of simplification, it was assumed that ¢, =0.

3.2. Colored noise

The colored noise analyzed in the present work was made, us-
ing a similar method, as that in [8]. Here 200 sets of the uniformly-
distributed white noise signals composed of 10* points were gen-
erated. Each set was, then, fast Fourier transformed in which the
resulting power spectrum was filtered to behave according to a
1/ff distribution. To obtain the desired waveform, the resulting
data was inverse Fourier transformed. This process was done for
B values ranging from -2 to 2 in 0.25 increments. To highlight the
decreasing/increasing trend of the complexity values with respect
to the scale factor, the sample entropy was plotted for scale factors
ranging from 1 to 30.

3.3. Chaotic systems (logistic map)

The logistic map is one of the simplest examples of chaos. Since
this phenomenon has been written in detail elsewhere [49-56], it
will not be discussed here. In terms of its characteristics, the logis-
tic map consists of an iterative polynomial form that is defined as:

Xnt1 = Rxn (1 — Xp) (15)

where R is the bifurcation parameter. Typically, the ranges of val-
ues for the map are 0<x; <1 and 1<R<4.

4. Results
4.1. Weierstrass functions

Fig. 3(a)-(c) shows a plot of this series [Eq. (6)] for ¢, =0 (a
fractional dimension of 1.5), y =2 with its fractionally-integrated
(¢ =-0.2), and differentiated (o = 0.2) counterparts. As can be seen
in Fig. 3(a), where the curve was integrated, the curve appears
less rough, as compared to the original function. In contrast, the
curve in Fig. 3(c), where the function was differentiated, exhibits
an increased roughness. Therefore, this change in the fractional di-
mension of the Weierstrass function can be intuitively understood
in terms of how the shape of the graph changes. In addition, the
magnitude of the function was found to increase with respect to
the fractional dimension of the function. This increase in the mag-
nitude of the function was also observed by Liang et al. [38].

It was previously claimed in [36] that the differintegral, as used
in Egs. (9) and (11), may not be applied to a purely-imaginary ordi-
nary exponential, as was done in [35]. However, the current work
confirmed the derivations of West et al. [34] via the substitution.
Namely, the integral in the above equations were converted into
gamma functions for which the final solutions were derived.

Fig. 4 shows the RCMSE results for Wc(t), as discussed above,
with ¢, =0 (a fractional dimension of 1.5), y =2, and its corre-
sponding fractionally-integrated and differentiated (-0.4 <« <0.4)
functions. Here each data set consists of 3 x 10° points. As can be
seen, the sample entropy increases with respect to the fractional
dimension of the function. In terms of the scale factor, the com-
plexity exhibits an increasing trend for fractional dimensions rang-
ing from 1.1 to 1.7. At D=1.8, there is an initial decrease in the
entropy with respect to the scale factor, followed by an increase.
However, at D= 1.9, the sample entropy shows a decreasing trend
for 7. The increasing trend with respect to D suggests that Weier-
strass functions with this range of dimensions contain the increas-
ing complexity at all scales. Moreover, fractionally-differentiating
the Weierstrass function leads to a greater irregularity of the fluc-
tuations at a noticeably-higher rate, as compared to when the
function is integrated.

To obtain a qualitative picture as to how the variability of the
Weierstrass function changes with respect to D, a Poincaré plot
of the r. h. s. of Egs. (12) and (13) was made and is shown in
Fig. 5. Here, the plot was made for fractional orders of o =-0.4,
-0.15, 0.15, and 0.4, which correspond to fractional dimensions of
D=11, 135, 1.65, and 1.9, respectively. As can be observed in the
graph, the points begin to noticeably spread at D=1.65. In addi-
tion, the separation between points becomes significantly greater
for D=1.9, which reveals the increasing irregularity in the data.

Fig. 6(a)-(c) shows the cosine series from Eq. (14) with its
fractionally-integrated and differentiated counterparts (plotted for
t=4 to 6s). Notice the similarities between these figures and
Fig. 3(a)-(c). Fig. 7 illustrates the sample entropy for Eq. (14) with
o values ranging from -0.4 to 0.4. From the figures, one can notice
almost an exact resemblance between Figs. 4 and 7.
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Fig. 3. Plot of (a) Eq. (12) with the fractional order of & =-0.2 (D=1.3), (b) the cosine series from Eq. (6), and (c) Eq. (13) with the fractional order of with « =0.2 (D=1.7).

Fig. 4. Sample entropy for the cosine series from Eq. (6) for the fractional dimen-
sion, D, ranging from 1.1 to 1.9 and for -0.4 <o <0.4.

4.2. Colored noise

Fig. 8 shows the mean sample entropy of the colored noise
data for -2 <8 <2 and 1<t <30 plotted with the colored noise
plots for brown (8 =2), pink (or 1/f with 8= 1), white (8 =0), blue
(B =-1), and violet noises (8 =-2). Similar behavior in the sample
entropy was reported by Matcharashvili et al. for 8 values ranging
from 0.001 to 1.65 [57]. It should also be noted that the results for
white and 1/f noise are similar to those reported in [8,10,15,28,30].
In addition, the sample entropy exhibits the monotonic behavior
(increasing and decreasing) with respect to the scale factor across

Uy

Fig. 5. Poincaré plot of the r.h.s. of Eqs. (12) and (13) for fractional orders of o =—
0.4, -0.15, 0.15, and 0.4, which correspond to fractional dimensions of D=1.1, 1.35,

1.65, and 1.9, respectively.

all B exponents. Furthermore, the MSE curves appear to shift from
the strictly-increasing to decreasing trends at the graph for the 1/f
noise (B8 =1). Additionally, the curves, which correspond to 8 <1,
have decreasing trends that end with the sample-entropy values
near zero at higher scale factors. This result indicates that as a
larger number of points are averaged together, the graphs become
more regular. In contrast, the curves, which are increasing, become
more complex, as the average contains a greater number of points.

The sample-entropy curves from the above figure were, then,
fit according to the power-law form of SE(n, 8)=Cz™#), where n
is the power-law-fitted exponent, 8 is the spectrum exponent, and
C is some coefficient. It was found that there was a linear rela-
tionship for which n=0.35-0.348 with a corresponding r-squared
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Fig. 6. Plot of Eq. (14) with the fractional order of (a) « =-0.2 (D=1.3), (b) «=0 (D=1.5), and (c) «=0.2 (D=1.7).

Fig. 7. Sample entropy for the cosine series from Eq. (14) for -0.4 <« < 0.4, which
corresponds to a fractional dimension, D, ranging from 1.1 to 1.9, respectively.

value of 0.99. The results indicate that there is a strong positive
correlation between these two parameters. Based on the linear
fit, the concavity of the sample-entropy function undergoes a sign
change when the power-spectrum exponent, 8, is approximately
0.97, which is relatively close to the exponent for the 1/f noise.

4.3. Logistic map

A plot for the logistic map with R=3.2, 3.6, and 3.9 in the ini-
tial condition of x; =0.1 is shown in Fig. 9. For R=3.2, x;,, oscillates

between two values, which is characteristic of the very simple be-
havior. However, as can be observed in the graph, the fluctuations
become more irregular as R increases.

To gain a better understanding of how the irregularity of the
fluctuations changes with respect to R, the RCMSE method was ap-
plied to Eq. (15) for 3 <R <4 and the initial condition of x; =0.1.
Here, R was given these values, since this is where the interest-
ing behavior occurs [58]. Fig. 10 shows the resulting complexity
values (for 1<t <20) for this range of values. In the first region,
where 3 <R < 3.5, the complexity is negligible for all scale factors.
For R=3.5, there are non-zero values in the curve for scale fac-
tors of 13 and 15, which are, respectively, equal to 0.22 and 0.18.
For R> 3.5, the sample entropy begins to noticeably increase with
respect to the bifurcation parameter.

Here the curves, in general, increase with respect to the bifurca-
tion parameter. In addition, the curves initially rise with the scale
factor until they reach a maximum and, then, begin to decrease
thereafter. Moreover, the curve for R=3.85 has similar characteris-
tics, as compared to the curves for R=3.5 and 3.55, where there
are peaks at midrange scale factors. However, the peaks for the
curve at R=3.85 are relatively larger in magnitude.

Fig. 11 shows the bifurcation diagram for Eq. (15) with
2.8 <R <4.0. Here the bifurcation diagram was divided into subsec-
tions (A black box denotes each subsection in Fig. 11(a)) in which
some of the boundaries consist of bifurcation points). Moreover, ar-
rows link the subsections of the bifurcation diagram to their re-
spective sample-entropy curves. Interestingly, as can be observed
in Fig. 11(a)-(b), it appears that the complexity of the fluctuations
at a given R corresponds to the number of asymptotic values vis-
ited there. In this diagram, Fig. 10 was rotated clockwise to obtain
a better picture of how the overall behavior of the sample-entropy
curves varies with respect to the bifurcation parameter.
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R=3.2, 3.6, and 3.9, was plotted for n=5000-5200.

As can be seen in the ﬁgure‘ the oscillations, which occur Fig. 10. Comp!exity plot of the logarithmic map for 3 <R <4. Here each sample-
between the first and second bifurcation points, correspond to ~ CntroPy curve is plotted for 1<7 <20.

curves, which have negligible values. The above implies that the
fluctuations occurring in this region are characteristic of simplis-
tic behavior. However, between the second and third bifurcation
points, which occurs for 3.45 <R <3.55, x oscillates between four
points. In this region, the sample-entropy curves contain some
non-zero values, meaning that there is some irregularity for these
types of oscillations.

Above all, once R becomes greater than 3.55, the sample-
entropy curves begin to rise, especially for points at lower scale
factors. For the most part, this section corresponds to the region of
the bifurcation diagram containing a high density of points. Nev-
ertheless, there are some areas in the diagram, which contain no
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Fig. 11. (a),(b) The bifurcation diagram (plotted for 2.8 <R<4.0) for the logistic
map with arrows that link the various regions of the map to its corresponding
sample-entropy curves from Fig. 10.

points, and appear to parallel the sample-entropy curves, which
are lower in the overall magnitude, such as the curve for R=3.85.
Beyond the above bifurcation parameter, the curves continue to
rise again until R=4. Since the behavior of x, diverges for R >4,
the complexity was not calculated for this range.

5. Discussion
5.1. Weierstrass functions

It was found that fractionally-differentiating the Weierstrass
function resulted in an enhanced roughness of the curves while
the integration had the opposite effect. Furthermore, this rough-
ness increased with respect to the fractional dimension of the
curve. From the results of the complexity analysis and modeling,
it was found that the degree of roughness corresponded to the
irregularity of the oscillations. As observed in Figs. 4 and 7, the
sample entropy appears to increase in an exponential fashion with
respect to the fractional dimension (and derivative order) of the
curve. Moreover, the sample entropy did not exhibit the decreasing
behavior with respect to 7 for a given D, which indicates that there
is complex behavior at all scales. This link between the fractional
dimension and the irregularity of the oscillations of the function
was also found in the work conducted by West et al. [34,35].

Also, the increase in the complexity of the Weierstrass function,
as seen in Fig. 4, arises from an increase in the information content
of its oscillations, as D rises [59]. This increase is a consequence
of the growth in the unpredictability, or irregularity of the state
due to more erratic fluctuations. Furthermore, the decrease in the
predictability of the fluctuations for W(t) was further observed in
the Poincaré plot from Fig. 5, where the separation of consecutive
points accelerated for larger values of the fractional dimension.

As can be observed in Fig. 3(a)-(c) and 6(a)-(c), the curves pro-
duced from Egs. (12) and (13) were very similar, if not identical, to

those fashioned from Eq. (14). Furthermore, their sample-entropy
curves, as seen in Figs. 4 and 7, behaved in a similar fashion where
both curves increased in a parabolic trend with respect to the or-
der of the derivative and D. The similarities between the two forms
were unexpected, since the former involves altering D, while the
latter does not change this quantity. At the time of this writing,
the implications of the above result are not entirely understood,
but will hopefully be the subject of further investigation.

5.2. Colored noise

The results for the colored-noise modeling and analysis indi-
cate that the sample-entropy curves, as shown in Fig. 8, appear
to comprise a spectrum. As can be seen, the complexity curves
for noise corresponding to 1 <8 <2 have increasing trends, while
those for the noise with 8 <1 decrease with respect to t. More-
over, the curves shift from the concave up to concave down at
B~1, for reasons that are not entirely understood. Furthermore,
it is well known that the spectral exponent values of 0 < 8 <2 cor-
respond to fluctuations that consist of the antipersistent behavior,
which means that the magnitudes of fluctuations regresses back
towards the mean of the data set [60]. Therefore, the antipersistent
behavior can also be thought of as self-regulating. Furthermore, the
white noise, which has a power spectrum that is constant with re-
spect to frequency (B =0), consists of fluctuations, which are un-
correlated.

Like other work, including [8,10,15,30,61], the results of the
present modeling and analysis found that the 1/f noise, in gen-
eral, consists of fluctuations that are more complex in nature, as
compared to other colored noise, which can be seen in Fig. 8.
More specifically, the sample-entropy values for the 1/f noise re-
main higher for 7 > 10, as compared to other noise. This result in-
dicates that this type of noise is resistant to a loss in correlations
at all scales. Furthermore, this resistance to a loss in complexity
may explain why the intricate phenomenon, which is conducive
to life, such as heart-beat contractions or neuronal firing, observes
fluctuations, which imitate the 1/f noise.

A link between the complexity of the time-series data and heart
function was observed in studies conducted by Costa et al. [8,10].
For both studies, they found that subjects with the healthy heart
function had increasing trends (concave down) in the sample en-
tropy with respect to the scale factor. Furthermore, they reported
the same increasing trend when comparing young and elderly pa-
tients that were both healthy, although the complexity was signif-
icantly higher for all scale factors in the former. In contrast, sub-
jects that experienced atrial fibrillation exhibited decreasing trends
in the complexity of the heart-beat-interval-time-series. Addition-
ally, subjects who had the congestive heart failure had the lowest
sample entropy values for T > 2, as compared to the other two con-
ditions of heart health. Moreover, the sample entropy was higher
at larger scale factors for the healthy subjects, as compared to the
values for the atrial fibrillation.

The above results were subsequently compared with the data
attained from this study on the modeling and analysis of the col-
ored noise. Based on the results of [8], the entropy measure for the
healthy subjects most resembled the curve from the colored noise
data from Fig. 8 for the spectral exponents of 1.25 < 8 < 1.50. The
model predictions are somewhat similar to the results of another
study, which found that 8 was 1.1 for healthy individuals [62]. Im-
portantly, the above trend indicates that the heart-beat rhythms
associated with healthy patients contain fluctuations that are self-
regulating to keep the heart rate away from extreme values, which
is consistent with homeostasis.

On the other hand, when comparing the results of this anal-
ysis with the data for subjects with atrial fibrillation from [8,10],
the complexity values were comparable to the colored noise with
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B values ranging from 0 to 0.25 (see Fig. 8). This result suggests
that the heart-beat patterns for people in this condition possess
lower correlations, and are almost completely random in nature.
In contrast, the subjects that underwent congestive heart failure
had heart-beat fluctuations with sample-entropy values that var-
ied between the curves for 1.75 < 8 < 2. The above statement indi-
cates that patients, which had this condition, exhibited heart-beat
fluctuations that are very similar to the brown noise, as shown
in Fig. 8. Since the brown noise corresponds to Brownian motion,
it may be thought that those who suffer from this complication
exhibit heart-beat patterns that correspond to random-walk pro-
cesses, which consist of trivial long-range correlations [63].

5.3. Logistic map (chaos)

As observed in Figs. 10 and 11, the complexity was found to be
negligible when the bifurcation parameter ranged from 3 to 3.45.
The above region corresponds to oscillations before the first bifur-
cation point, where the system behaves as a limit cycle attractor.
More specifically, x; oscillates between two values, which is in-
dicative of the simplistic behavior. However, the sample-entropy
curves begin to contain nonzero values for 3.45 <R < 3.55, which
correspond to the region between the first and second bifurcation
points in Fig. 11. In this range, the system oscillates between 4
points, which is indicative of the behavior that is more irregular
than the fluctuations of the system in the previous region.

After this second bifurcation, the complexity of the oscillations
continues to rise, until the bifurcation parameter reaches 3.56995
[49], which is where the system transitions from the predictable
to chaotic behavior. Beyond this point, the sample-entropy curves,
in general, increase at a much faster rate with respect to the
bifurcation parameter. This increase in the complex behavior of
Eq. 13, as R ranges from 3.56995 to ~ 3.82843, is characterized
by a periodic phase interrupted by bursts of the aperiodic behav-
ior [64]. Moreover, there is a sudden decrease in the complexity
at R=3.85, which is most likely associated with the island of sta-
bility at R=3.82843 [65], which shows the non-chaotic behavior.
Furthermore, this decrease in the complexity arises from the sys-
tem oscillating between only three points.

With respect to the scale factor, the curves initially rise until
they reach a maximum for t of ~ 5 and, then, begin to decrease,
as seen in Fig. 10. This behavior simply means that the irregularity
of the oscillations achieves a maximum when the data set is av-
eraged for every 5 points. However, the underlying physics of this
behavior is not well understood and will hopefully be the subject
of future endeavors.

6. Conclusions

To summarize, the refined composite multiscale entropy algo-
rithm was applied to the time- dependent oscillatory behavior
of Weierstrass functions, the colored noise, and the logistic map.
Here, several interesting results were found. Firstly, the complexity
of fluctuations for the Weierstrass cosine function were found to
increase with respect to the fractional dimension of the graph. Fur-
thermore, the sample-entropy curves increased in an exponential
fashion with respect to the fractional dimension, D, of the graph.
This increase in the complexity was found to correspond to the
irregularity of the oscillations. Secondly, in terms of the colored
noise, the complexity was found to be highest for the 1/f noise,
which is in agreement with findings in the literature. Moreover,
the sample-entropy curves exhibited a decreasing trend for noise
when the spectral exponent, 8, was less than 1 and obeyed an in-
creasing trend when g > 1. Additionally, the power-law exponent
for the curves had a direct correlation with the spectral exponents
of the noise. For the logistic map, the sample-entropy curves were

negligible when the bifurcation parameter, R, varied between 3 and
3.5. Beyond these values, the curves attained non-zero values that
generally increased with respect to R, in general.
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