
Public-Key Cryptography
in the Fine-Grained Setting

Rio LaVigne(B), Andrea Lincoln(B), and Virginia Vassilevska Williams

MIT CSAIL and EECS, Cambridge, USA
{rio,andreali,virgi}@mit.edu

Abstract. Cryptography is largely based on unproven assumptions,
which, while believable, might fail. Notably if P = NP , or if we live
in Pessiland, then all current cryptographic assumptions will be broken.
A compelling question is if any interesting cryptography might exist in
Pessiland.

A natural approach to tackle this question is to base cryptography
on an assumption from fine-grained complexity. Ball, Rosen, Sabin, and
Vasudevan [BRSV’17] attempted this, starting from popular hardness
assumptions, such as the Orthogonal Vectors (OV) Conjecture. They
obtained problems that are hard on average, assuming that OV and
other problems are hard in the worst case. They obtained proofs of work,
and hoped to use their average-case hard problems to build a fine-grained
one-way function. Unfortunately, they proved that constructing one using
their approach would violate a popular hardness hypothesis. This moti-
vates the search for other fine-grained average-case hard problems.

The main goal of this paper is to identify sufficient properties for
a fine-grained average-case assumption that imply cryptographic prim-
itives such as fine-grained public key cryptography (PKC). Our main
contribution is a novel construction of a cryptographic key exchange,
together with the definition of a small number of relatively weak struc-
tural properties, such that if a computational problem satisfies them, our
key exchange has provable fine-grained security guarantees, based on the
hardness of this problem. We then show that a natural and plausible
average-case assumption for the key problem Zero-k-Clique from fine-
grained complexity satisfies our properties. We also develop fine-grained
one-way functions and hardcore bits even under these weaker assump-
tions.

R. LaVigne—This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the National Science Foundation.
Research also supported in part by NSF Grants CNS-1350619 and CNS-1414119, and
by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
A. Lincoln—This work supported in part by NSF Grants CCF-1417238, CCF-1528078
and CCF-1514339, and BSF Grant BSF:2012338.
V. Williams—Partially supported by an NSF Career Award, a Sloan Fellowship, NSF
Grants CCF-1417238, CCF-1528078 and CCF-1514339, and BSF Grant BSF:2012338.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 605–635, 2019.
https://doi.org/10.1007/978-3-030-26954-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_20

606 R. LaVigne et al.

Where previous works had to assume random oracles or the existence
of strong one-way functions to get a key-exchange computable in O(n)
time secure against O(n2) adversaries (see [Merkle’78] and [BGI’08]),
our assumptions seem much weaker. Our key exchange has a similar gap
between the computation of the honest party and the adversary as prior
work, while being non-interactive, implying fine-grained PKC.

1 Introduction

Modern cryptography has developed a variety of important cryptographic prim-
itives, from One-Way Functions (OWFs) to Public-Key Cryptography to Obfus-
cation. Except for a few more limited information theoretic results [20,50,51],
cryptography has so far required making a computational assumption, P �= NP
being a baseline requirement. Barring unprecedented progress in computational
complexity, such hardness hypotheses seem necessary in order to obtain most
useful primitives. To alleviate this reliance on unproven assumptions, it is good
to build cryptography from a variety of extremely different, believable assump-
tions: if a technique disproves one hypothesis, the unrelated ones might still hold.
Due to this, there are many different cryptographic assumptions: on factoring,
discrete logarithm, shortest vector in lattices and many more.

Unfortunately, almost all hardness assumptions used so far have the same
quite stringent requirements: not only that NP is not in BPP, but that we
must be able to efficiently sample polynomially-hard instances whose solution
we know. Impagliazzo [31,47] defined five worlds, which capture the state of
cryptography, depending on which assumptions happen to fail. The three worlds
worst for cryptography are Algorithmica (NP in BPP), Heuristica (NP is not
in BPP but NP problems are easy on average) and Pessiland (there are NP
problems that are hard on average but solved hard instances are hard to sample,
and OWFs do not exist). This brings us to our main question.

Can we have a meaningful notion of cryptography even if we live in Pessiland
(or Algorithmica or Heuristica)?

This question motivates a weaker notion of cryptography: cryptography that
is secure against nk-time bounded adversaries, for a constant k. Let us see why
such cryptography might exist even if P = NP. In complexity, for most interesting
computational models, we have time hierarchy theorems that say that there are
problems solvable in O(n2) time (say) that cannot be solved in O(n2−ε) time for
any ε > 0 [28,30,53]. In fact, such theorems exist also for the average case time
complexity of problems [39]. Thus, even if P = NP, there are problems that are
hard on average for specific runtimes, i.e. fine-grained hard on average. Can we
use such hard problems to build useful cryptographic primitives?

Unfortunately, the problems from the time hierarchy theorems are difficult
to work with, a common problem in the search for unconditional results. Thus,
let us relax our requirements and consider hardness assumptions, but this time
on the exact running time of our problems of interest. One simple approach is

Public-Key Cryptography in the Fine-Grained Setting 607

to consider all known constructions of Public Key Cryptography (PKC) to date
and see what they imply if the hardness of the underlying problem is relaxed to
be nk−o(1) for a fixed k (as it would be in Pessiland). Some of the known schemes
are extremely efficient. For instance, the RSA and Diffie-Hellman cryptosystems
immediately imply weak PKC if one changes their assumptions to be about poly-
nomial hardness [23,49]. However, these cryptosystems have other weaknesses
– for instance, they are completely broken in a postquantum world as Shor’s
algorithm breaks their assumptions in essentially quadratic time [52]. Thus, it
makes sense to look at the cryptosystems based on other assumptions. Unfor-
tunately, largely because cryptography has mostly focused on the gap between
polynomial and superpolynomial time, most reductions building PKC have a
significant (though polynomial) overhead; many require, for example, multiple
rounds of Gaussian elimination. As a simple example, the Goldreich-Levin con-
struction for hard-core bits uses nω (where ω ∈ [2, 2.373) is the exponent of
square matrix multiplication [26,55]) time and n calls to the hard-core-bit dis-
tinguisher [27]. The polynomial overhead of such reductions means that if the
relevant problem is only n2−o(1) hard, instead of super-polynomially hard, the
reduction will not work anymore and won’t produce a meaningful cryptographic
primitive. Moreover, reductions with fixed polynomial overheads are no longer
composable in the same way when we consider weaker, polynomial gap cryptog-
raphy. Thus, new, more careful cryptographic reductions are needed.

Ball et al. [6,7] began to address this issue through the lens of the recently
blossoming field of fine-grained complexity. Fine-grained complexity is built upon
“fine-grained” hypotheses on the (worst-case) hardness of a small number of
key problems. Each of these key problems K, has a simple algorithm using
a combination of textbook techniques, running in time T (n) on instances of
size n, in, say, the RAM model of computation. However, despite decades of
research, no Õ(T (n)1−ε) algorithm is known for any ε > 0 (note that the tilde
∼ suppresses sub-polynomial factors). The fine-grained hypothesis for K is then
that K requires T (n)1−o(1) time in the RAM model of computation. Some of the
main hypotheses in fine-grained complexity (see [54]) set K to be CNF-SAT (with
T (n) = 2n, where n is the number of variables), or the k-Sum problem (with
T (n) = n�k/2�), or the All-Pairs Shortest Paths problem (with T (n) = n3 where
n is the number of vertices), or one of several versions of the k-Clique problem in
weighted graphs. Fine-grained complexity uses fine-grained reductions between
problems in a very tight way (see [54]): if problem A has requires running time
a(n)1−o(1), and one obtains an (a(n), b(n))-fine-grained reduction from A to B,
then problem B needs runtime b(n)1−o(1). Using such reductions, one can obtain
strong lower bounds for many problems, conditioned on one of the few key
hypotheses.

The main question that Ball et al. set out to answer is: Can one use fine-
grained reductions from the hard problems from fine-grained complexity to build
useful cryptographic primitives? Their work produced worst-case to average-case
fine-grained reductions from key problems to new algebraic average case prob-
lems. From these new problems, Ball et al. were able to construct fine-grained

608 R. LaVigne et al.

proofs of work, but they were not able to obtain stronger cryptographic prim-
itives such as fine-grained one-way-functions or public key encryption. In fact,
they gave a barrier for their approach: extending their approach would falsify the
Nondeterministic Strong Exponential Time Hypothesis (NSETH) of Carmosino
et al. [18]. Because of this barrier, one would either need to develop brand new
techniques, or use a different hardness assumption.

What kind of hardness assumptions can be used to obtain public-key
cryptography (PKC) even in Pessiland?

A great type of theorem to address this would be: for every problem P that
requires nk−o(1) time on average, one can construct a public-key exchange (say),
for which Alice and Bob can exchange a lg(n) bit key in time O(nak), whereas
Eve must take n(a+g)k−o(1) time to learn Alice and Bob’s key, where g is large,
and a is small. As a byproduct of such a theorem, one can obtain not just OWFs,
but even PKC in Pessiland under fine-grained assumptions via the results of Ball
et al. Of course, due to the limitations given by Ball et al. such an ideal theorem
would have to refute NSETH, and hence would be at the very least difficult to
prove. Thus, let us relax our goal, and ask

What properties are sufficient for a fine-grained average-case assumption so
that it implies fine-grained PKC?

If we could at least resolve this question, then we could focus our search for
worst-case to average-case reductions in a useful way.

1.1 Our Contributions

Our main result is a fine-grained key-exchange that can be formed from any
problem that meets three structural conditions in the word-RAM model of com-
putation. This addresses the question of what properties are sufficient to produce
fine-grained Public Key Encryption schemes (PKEs).

For our key exchange, we describe a set of properties, and any problem that
has those properties implies a polynomial gap PKE. An informal statement of
our main theorem is as follows.

Theorem [Fine-Grained Key-Exchange (informal)]. Let P be a computational
problem for which a random instance can be generated in O(ng) time for some g,
and that requires nk−o(1) time to be solved on average for some fixed k > g. Addi-
tionally, let P have three key structural properties of interest: (1) “plantable”:
we can generate a random-looking instance, choosing either to have or not to
have a solution in the instance, and if there is a solution, we know what/where it
is; (2) “average-case list-hard”: given a list of n random instances of the problem,
returning which one of the instances has a solution requires essentially solving all
instances; (3) “splittable”: when given an instance with a solution, we can split
it in O(ng) time into two slightly smaller instances that both have solutions.

Then a public key-exchange can be built such that Alice and Bob exchange
a lg(n) bit key in time n2k−g, where as Eve must take Ω̃(n3k−2g) time to learn
Alice and Bob’s key.

Public-Key Cryptography in the Fine-Grained Setting 609

Notice that as long as there is a gap between the time to generate a random
instance and the time to solve an instance on average, there is a gap between
N = n2k−g and n3k−2g = N3/2−1/(4(k/g)−2) and the latter goes to N3/2, as k/g
grows. The key exchange requires no interaction, and we get a fine-grained public
key cryptosystem. While our key exchange construction provides a relatively
small gap between the adversary and the honest parties (O(N1.5) vs O(N)), the
techniques required to prove security of this scheme are novel and the result is
generic as long as the three assumptions are satisfied. In fact, we will show an
alternate method to achieve a gap approaching O(N2) in the full version of this
paper.

Our main result above is stated formally and in more generality in Theorem5.
We will explain the formal meaning of our structural properties plantable, average-
case list-hard, and splittable later.

We also investigate what plausible average-case assumptions one might be
able to make about the key problems from fine-grained complexity so that the
three properties from our theorem would be satisfied. We consider the Zero-k-
Clique problem as it is one of the hardest worst-case problems in fine-grained
complexity. For instance, it is known that if Zero-3-Clique is in O(n3−ε) time for
some ε > 0, then both the 3-Sum and the APSP hypotheses are violated [54,57].
It is important to note that while fine-grained problems like Zero-k-Clique and
k-Sum are suspected to take a certain amount of time in the worst case, when
making these assumptions for any constant k does not seem to imply P �= NP
since all of these problems are still solvable in polynomial time.1

An instance of Zero-k-Clique is a complete k-partite graph G, where each
edge is given a weight in the range [0, R − 1] for some integer R. The problem
asks whether there is a k-clique in G whose edge weights sum to 0, modulo R.
A standard fine-grained assumption (see e.g. [54]) is that in the worst case, for
large enough R, say R ≥ 10n4k, Zero-k-Clique requires nk−o(1) time to solve.
Zero-k-Clique has no non-trivial average-case algorithms for natural distribu-
tions (uniform for a range of parameters, similar to k-Sum and Subset Sum).
Thus, Zero-k-Clique is a natural candidate for an average-case fine-grained hard
problem.

Our other contribution addresses an open question from Ball et al.: can a fine-
grained one-way function be constructed from worst case assumptions? While
we do not fully achieve this, we generate new plausible average-case assumptions
from fine-grained problems that imply fine-grained one-way functions.

1.2 Previous Works

There has been much prior work leading up to our results. First, there are a few
results using assumptions from fine-grained complexity and applying them to
cryptography. Second, there has been work with the kind of assumptions that
we will be using.

1 Assuming the hardness of these problems for more general k will imply P �= NP ,
but that is not the focus of our work.

610 R. LaVigne et al.

Fine-Grained Cryptography. Ball et al. [6,7] produce fine-grained wost-case
to average-case reductions. Ball et al. leave an open problem of producing a one-
way-function from a worst case assumption. They prove that from some fine-
grained assumptions building a one-way-function would falsify NSETH [6,18].
We avoid their barrier in this paper by producing a construction of both fine-
grained OWFs and fine-grained PKE from an average-case assumption.

Fine-Grained Key Exchanges. Fine-grained cryptography is a relatively unex-
plored area, even though it had its start in the 1970’s with Merkle puzzles: the
gap between honestly participating in the protocol versus breaking the security
guarantee was only quadratic [43]. Merkle originally did not describe a plausi-
ble hardness assumption under which the security of the key exchange can be
based. 30 years later, Biham, Goren, and Ishai showed how to implement Merkle
puzzles by making an assumption of the existence of either a random oracle or
an exponential gap one way function [16]. That is, Merkle puzzles were built
under the assumption that a one-way function exists which takes time 2n(1/2+δ)

to invert for some δ > 0. So while prior work indeed succeeded in building a fine-
grained key-exchange, it needed a very strong variant of OWFs to exist. It is
thus very interesting to obtain fine-grained public key encryption schemes based
on a fine-grained assumption (that might even work in Pessiland and below).

Another Notion of Fine-Grained Cryptography. In 2016, work by Degwekar,
Vaikuntanathan, and Vasudevan [22] discussed fine-grained complexity with
respect to both honest parties and adversaries restricted to certain circuit classes.
They obtained constructions for some cryptographic primitives (including PKE)
when restricting an adversary to a certain circuit class. From the assumption
NC1 �= ⊕L/poly they show Alice and Bob can be in AC0[2] while being secure
against NC1 adversaries. While [22] obtains some unconditional constructions,
their security relies on the circuit complexity of the adversary, and does not
apply to arbitrary time-bounded adversaries as is usually the case in cryptogra-
phy. That is, this restricts the types of algorithms an adversary is allowed to use
beyond just how much runtime these algorithms can have. It would be interest-
ing to get similar results in the low-polynomial time regime, without restricting
an adversary to a certain circuit class. Our results achieve this, though not
unconditionally.

Tight Security Reductions and Fine-Grained Crypto. Another area the world
of fine-grained cryptography collides with is that of tight security reductions
in cryptography. Bellare et.al. coined the term “concrete” security reductions
in [12,14]. Concrete security reductions are parametrized by time (t), queries (q),
size (s), and success probability (ε). This line of work tracks how a reduction
from a problem to a construction of some cryptographic primitive effects the
four parameters of interest. This started a rich field of study connecting theory
to practical cryptographic primitives (such as PRFs, different instantiations of
symmetric encryption, and even IBE for example [10,11,15,36]). In fine-grained
reductions we also need to track exactly how our adversary’s advantage changes

Public-Key Cryptography in the Fine-Grained Setting 611

throughout our reductions, however, we also track the running time of the honest
parties. So, unlike in the concrete security literature, when the hard problems are
polynomially hard (perhaps because P = NP), we can track the gap in running
times between the honest and dishonest parties. This allows us to build one way
functions and public key cryptosystems when the hard problems we are given
are only polynomially hard (Fig. 1).

Fig. 1. A table of previous works’ results in this area. There have been several results
characterizing different aspects of fine-grained cryptography. *It was [16] who showed
that Merkle’s construction could be realized with a random oracle. However, Merkle
presented the construction.

Similar Assumptions. This paper uses hypotheses on the running times of
problems that, while solvable in polynomial time, are variants of natural NP-
hard problems, in which the size of the solution is a fixed constant. For instance,
k-Sum is the variant of Subset Sum, where we are given n numbers and we need
to find exactly k elements that sum to a given target, and Zero-k-Clique is the
variant of Zero-Clique, in which we are given a graph and we need to find exactly
k nodes that form a clique whose edge weights sum to zero.

With respect to Subset Sum, Impagliazzo and Naor showed how to directly
obtain OWFs and PRGs assuming that Subset Sum is hard on average [32]. The
OWF is f(a, s) = (a,a · s), where a is the list of elements (chosen uniformly at
random from the range R) and s ∈ {0, 1}n represents the set of elements we add
together. In addition to Subset Sum, OWFs have also been constructed from
planted Clique, SAT, and Learning-Parity with Noise [34,41]. The constructions

612 R. LaVigne et al.

from the book of Lindell and the chapter written by Barak [41] come from a
definition of a “plantable” NP-hard problem that is assumed to be hard on
average.

Although our OWFs are equivalent to scaled-down, polynomial-time solvable
characterizations of these problems, we also formalize the property that allows us
to get these fine-grained OWFs (plantability). We combine these NP construc-
tions and formalizations to lay the groundwork for fine-grained cryptography.

In the public-key setting, there has been relatively recent work taking NP-
hard problems and directly constructing public-key cryptosystems [4]. They take
a problem that is NP-hard in its worst case and come up with an average-case
assumption that works well for their constructions. Our approach is similar, and
we also provide evidence for why our assumptions are correct.

In recent work, Subset Sum was also shown to directly imply public-key cryp-
tography [42]. The construction takes ideas from Regev’s LWE construction [48],
turning a vector of subset sum elements into a matrix by writing each element
out base q in a column. The subset is still represented by a 0–1 matrix, and error
is handled by the lack of carrying digits. It is not clear how to directly translate
this construction into the fine-grained world. First, directly converting from Sub-
set Sum to k-Sum just significantly weakens the security without added benefit.
More importantly, the security reduction has significant polynomial overhead,
and would not apply in a very pessimistic Pessiland where random planted Sub-
set Sum instances can be solved in quadratic time, say.

While it would be interesting to reanalyze the time-complexity of this con-
struction (and others) in a fine-grained way, this is not the focus of our work.
Our goal is to obtain novel cryptographic approaches exploiting the fine-grained
nature of the problems, going beyond just recasting normal cryptography in the
fine-grained world, and obtaining somewhat generic constructions.

1.3 Technical Overview

Here we will go into a bit more technical detail in describing our results. First,
we need to describe our hardness assumptions. Then, we will show how to use
them for our fine-grained key exchange, and finally, we will talk briefly about
fine-grained OWFs and hardcore bits.

Our Hardness Assumption. We generate a series of properties where if a problem
has these properties then a fine-grained public key-exchange can be built.

One property we require is that the problem is hard on average, in a fine-
grained sense. Intuitively, a problem is average case indistinguishably hard if
given an instance that is drawn with probability 1/2 from instances with no
solutions and with probability 1/2 from instances with one solution, it is com-
putationally hard on average to distinguish whether the instance has 0 or 1
solutions. The rest of the properties are structural; we need a problem that is
plantable, average-case list-hard, and splittable. Informally,

Public-Key Cryptography in the Fine-Grained Setting 613

– The plantable property roughly says that one can efficiently choose to gen-
erate either an instance without a solution or one with a solution, knowing
where the solution is;

– The average case list-hard property says that if one is given a list of instances
where all but one of them are drawn uniformly over instances with no solu-
tions, and a random one of them is actually drawn uniformly from instances
with one solution, then it is computationally hard to find the instance with
a solution;

– Finally, the splittable property says that one can generate from one average
case instance, two new average case instances that have the same number of
solutions as the original one.

These are natural properties for problems and hypotheses to have. We will
demonstrate in the full version Zero-k-Clique has all of these properties. We
need our problem to have all three of these qualities for the key exchange. For
our one-way function constructions we only need the problem to be plantable.

The structural properties are quite generic, and in principle, there could be
many problems that satisfy them. We exhibit one: the Zero-k-Clique problem.

Because no known algorithmic techniques seem to solve Zero-k-Clique even
when the weights are selected independently uniformly at random from [0, cnk]
for a constant c, folklore intuition dictates that the problem might be hard on
average for this distribution: here, the expected number of k-Cliques is Θ(1), and
solving the decision problem correctly on a large enough fraction of the random
instances seems difficult. This intuition was formally proposed by Pettie [46] for
the very related k-Sum problem which we also consider.

We show that the Zero-k-Clique problem, together with the assumption that
it is fine-grained hard to solve on average, satisfies all of our structural properties,
and thus, using our main theorem, one can obtain a fine-grained key exchange
based on Zero-k-Clique.

Key Exchange Assumption. We assume that when given a complete k-partite
graph with kn nodes and random weights [0, R − 1], R = Ω(nk), any adversary
running in time nk−Ω(1) time cannot distinguish an instance with a zero-k-
clique solution from one without with more than 2/3 chance of success. In more
detail, consider a distribution where with probability 1/2 one generates a ran-
dom instance of size n with no solutions, and with probability 1/2 one generates
a random instance of size n with exactly one solution. (We later tie in this dis-
tribution to our original uniform distribution.) Then, consider an algorithm that
can determine with probability 2/3 (over the distribution of instances) whether
the problem has a solution or not. We make the conjecture that such a 2/3-
probability distinguishing algorithm for Zero-k-Clique, which can also exhibit
the unique zero clique whenever a solution exists, requires time nk−o(1).

Public Key Exchange. So, what does the existence of a problem with our three
properties, plantable, average-case list-hard, and splittable, imply?

614 R. LaVigne et al.

The intuitive statement of our main theorem is that, if a problem has the
three properties, and is nk hard to solve on average and can be generated
in ng time (for Zero-k-Clique g = 2), then a key exchange exists that takes
O(N) time for Alice and Bob to execute, and requires an eavesdropper Eve
Ω̃(N (3k−2g)/(2k−g)) time to break. When k > g Eve takes super linear time in
terms of N . When k = 3 and g = 2, an important case for the Zero-k-Clique prob-
lem, Eve requires Ω̃(N5/4) time.

For the rest of this overview we will describe our construction with the prob-
lem Zero-k-Clique.

To describe how we get our key exchange, it is first helpful to consider Merkle
Puzzles [8,16,43]. The idea is simple: let f be a one way permutation over n bits
(so a range of 2n values) requires 2n(1

2+ε) time to invert for some constant ε > 0.
Then, Alice and Bob could exchange a key by each computing f(v) on 10 · 2n/2

random element v ∈ [2n] and sending those values f(v) to each other. With .9
probability, Alice and Bob would agree on at least one pre-image, v. It would
take an eavesdropper Eve Ω(2n(1

2+ε)) time before she would be able to find the
v agreed upon by Alice and Bob. So, while Alice and Bob must take O(2n/2)
time, Eve must take O(2n(1

2+ε)) time to break it.
Our construction will take on a similar form: Alice and Bob will send sev-

eral problems to each other, and some of them will have planted solutions. By
matching up where they both put solutions, they get a key exchange.

Concretely, Alice and Bob will exchange m instances of the Zero-k-
Clique problem and in

√
m of them (chosen at random), plant solutions. The

other m−√
m will not have solutions (except with some small probability). These

m problems will be indexed, and we expect Alice and Bob to have both planted a
solution in the same index. Alice can check her

√
m indices against Bob’s, while

Bob checks his, and by the end, with constant probability, they will agree on a
single index as a key. In the end, Alice and Bob require O(mng +

√
mnk) time to

exchange this index. Eve must take time Ω̃(nkm). When m = n2k−2g, Alice and
Bob take O(n2k−g) time and Eve takes Ω̃(n3k−2g). We therefore get some gap
between the running time of Alice and Bob as compared to Eve for any value
of k ≥ g. Furthermore, for all δ > 0 there exists some large enough k such that
the difference in running time is at least O(T (n)) time for Alice and Bob and
Ω̃(T (n)1.5−δ) time for Eve. Theorem 5 is the formal theorem statement.

To show hardness for this construction we combine techniques from both fine-
grained complexity and cryptography (see Fig. 2). We take a single instance and
use a self-reduction to produce a list of � instances where one has a solution whp
if the original instance has a solution. In our reductions � will be polynomial in
the input size. Then, we take this list and produce two lists that have a solution
in the same location with high probability if the original instance has a solution.
Finally, we plant

√
� solutions into the list, to simulate Alice and Bob’s random

solution planting.

One Way Functions. First, and informally, a fine-grained OWF is a function
on n bits that requires Õ(T (n)1−δ) time to evaluate for some constant δ > 0,
and if any adversary attempts to invert f in time Õ(T (n)1−δ′

) for any constant

Public-Key Cryptography in the Fine-Grained Setting 615

Fig. 2. A depiction of our reduction showing hardness for our fine-grained key
exchange.

δ′ > 0, she only succeeds with probability at most ε(n), where ε is considered
“insignificant.”

Ball et al. [6] defined fine-grained OWFs, keeping track of the time required to
invert and the probability of inversion in two separate parameters. We streamline
this definition by fixing the probability an adversary inverts to an insignificant
function of input size, which we define in Sect. 2.

For this overview, we will focus on the intuition of using specific problems
k-Sum-R (k-Sum modulo R) or Zero-k-Clique-R (Zero-k-Clique modulo R) to
get fine-grained OWFs, though in the full version, we construct fine-grained
OWFs from a general class of problems. Let N be the size of the input to these
problems. Note that if R is too small (e.g. constant), then these problems are
solvable quickly and the assumptions we are using are false. So, we will assume
R = Ω(nk).

OWF Assumptions. Much like for our key exchange, our assumptions are about
the difficulty of distinguishing an instance of k-Sum or Zero-k-Clique with prob-
ability more than 2/3 in time faster than nk/2 or nk respectively. Formally,
randomly generating a k-Sum-R instance is creating a k lists of size n with val-
ues randomly chosen from [0, R−1]. Recall that a random Zero-k-Clique instance
is a complete k-partite graph where weights are randomly chosen from [0, R−1].
Our ‘weak’ k-Sum-R and Zero-k-Clique-R assumptions state that for any algo-
rithm running in O(n) time, it cannot distinguish between a randomly generated
instance with a planted solution and one without with probability greater than
2/3.

Note that these assumptions are much weaker than the previously described
key-exchange assumption, where we allowed the adversary O(nk−Ω(1)) time
instead of sub-linear.

Theorem 1 (Fine-Grained OWFs (informal)). If for some constant δ > 0
and range R = Ω(nk) either k-Sum-R requires Ω(N1+δ) time to solve with

616 R. LaVigne et al.

probability >2/3 or Zero-k-Clique-R requires Ω(N (1+δ)) time to solve with prob-
ability >2/3 then a fine-grained OWF exists.

The formal theorem is proved in the full version.
Intuitively our construction of a fine-grained OWF runs a planting procedure

on a random instance in time O(N). By our assumptions finding this solution
takes time Ω(N1+δ) for some constant δ > 0, and thus inverting this OWF takes
Ω(N1+δ).

We also get a notion of hardcore bits from this. Unlike in traditional crypto,
we can’t immediately use Goldreich-Levin’s hardcore bit construction [27]. Given
a function on N bits, the construction requires at least Ω(N) calls to the adver-
sary who claims to invert the hardcore bit. When one is seeking super-polynomial
gaps between computation and inversion of a function, factors of N can be
ignored. However, in the fine-grained setting, factors of N can completely elim-
inate the gap between computation and inversion, and so having a notion of
fine-grained hardcore bits is interesting.

We show that for our concrete constructions of fine-grained OWFs, there is
a subset of the input of size O(lg(N)) (or any sub-polynomial function) which
itself requires Ω(N1+δ) time to invert. From this subset of bits we can use
Goldreich-Levin’s hardcore bit construction, only losing a factor of No(1) which
is acceptable in the fine-grained setting.

Theorem 2 (Hardcore Bits (informal)). If for some constant δ > 0 and
range R = Ω(nk) either k-Sum-R requires Ω(N1+δ) time to solve with probability
>2/3 or Zero-k-Clique-R requires Ω(N1+δ) time to solve with probability >2/3
then a fine-grained OWF exists with a hardcore bit that can not be guessed with
probability greater than 1

2 + 1/q(n) for any q(n) = no(1).

The formal theorem is also proved in the full version.
Intuitively, solutions for k-Sum-R and Zero-k-Clique-R can be described in

O(log(n)) bits—we just list the locations of the solution. Given a solution for
the problem, we can just change one of the weights and use the solution location
to produce a correct preimage. So, now using Goldreich-Levin, we only need to
make O(log(n)) queries during the security reduction.

1.4 Organization of Paper

In Sect. 2 we define our notions of fine-grained crypto primitives, including fine-
grained OWFs, fine-grained hardcore bits, and fine-grained key exchanges. In
Sect. 3, we describe a few classes of general assumptions (plantable, splittable,
and average-case list hard), and then describe the concrete fine-grained assump-
tions we use (k-Sum and Zero-k-Clique). Next, in Sect. 4 we show that the con-
crete assumptions we made imply certain subsets of the general assumptions.
In Sect. 5, we show that using an assumption that is plantable, splittable, and
average-case list hard, we can construct a fine-grained key exchange.

Public-Key Cryptography in the Fine-Grained Setting 617

2 Preliminaries: Model of Computation and Definitions

The running times of all algorithms are analyzed in the word-RAM model of
computation, where simple operations such as +,−, ·, bit-shifting, and memory
access all require a single time-step.

Just as in normal exponential-gap cryptography we have a notion of proba-
bilistic polynomial-time (PPT) adversaries, we can similarly define an adversary
that runs in time less than expected for our fine-grained polynomial-time solv-
able problems. This notion is something we call probabilistic fine-grained time
(or PFT). Using this notion makes it easier to define things like OWFs and
doesn’t require carrying around time parameters through every reduction.

Definition 1. An algorithm A is a T (n) probabilistic fine-grained time,
PFTT (n), algorithm if there exists a constant δ > 0 such that A runs in time
O(T (n)1−δ).

Note that in this definition, assuming T (n) = Ω(n), any sub-polynomial factors
can be absorbed into δ.

Additionally, we will want a notion of negligibility that cryptography has.
Recall that a function negl(n) is negligible if for all polynomials Q(n) and suf-
ficiently large n, negl(n) < 1/Q(n). We will have a similar notion here, but we
will use the words significant and insignificant corresponding to non-negligible
and negligible respectively.

Definition 2. A function sig(n) is significant if

sig(n) =
1

no(1)
.

A function insig(n) is insignificant if for all significant functions sig(n) and suf-
ficiently large n,

insig(n) < sig(n).

Note that for every polynomial f , 1/f(n) is insignificant. Also notice that if
a probability is significant for an event to occur after some process, then we only
need to run that process a sub-polynomial number of times before the event
will happen almost certainly. This means our run-time doesn’t increase even
in a fine-grained sense; i.e. we can boost the probability of success of a ran-
domized algorithm running in Õ(T (n)) from 1/ log(n) to O(1) just by repeating
it O(log(n)) times, and still run in Õ(T (n)) time (note that ‘̃ ’ suppresses all
sub-polynomial factors in this work).

2.1 Fine-Grained Symmetric Crypto Primitives

Ball et al. defined fine-grained one-way functions (OWFs) in their work from
2017 [6]. They parameterize their OWFs with two functions: an inversion-time
function T (n) (how long it takes to invert the function on n bits), and an

618 R. LaVigne et al.

probability-of-inversion function ε; given T (n)1−δ′
time, the probability any

adversary can invert is ε(T (n)1−δ′
). The computation time is implicitly defined

to be anything noticeably less than the time to invert: there exists a δ > 0 and
algorithm running in time T (n)1−δ such that the algorithm can evaluate f .

Definition 3 ((δ, ε)-one-way functions [6]). A function f : {0, 1}∗ → {0, 1}∗

is (δ, ε) -one-way if, for some δ > 0, it can be evaluated on n bits in O(T (n)1−δ)
time, but for any δ′ > 0 and for any adversary A running in O(T (n)1−δ′

) time
and all sufficiently large n,

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))
] ≤ ε(n, δ).

Using our notation of PFTT (n), we will similarly define OWFs, but with one
fewer parameter. We will only be caring about T (n), the time to invert, and
assume that the probability an adversary running in time less than T (n) inverts
with less time is insignificant. We will show in the full version that we can compile
fine-grained one-way functions with probability of inversion ε ≤ 1 − 1

no(1) into
ones with insignificant probability of inversion. So, it makes sense to drop this
parameter in most cases.

Definition 4. A function f : {0, 1}∗ → {0, 1}∗ is T (n) fine-grained one-way
(is an T (n)-FGOWF) if there exists a constant δ > 0 such that it takes time
T (n)1−δ to evaluate f on any input, and there exists a function ε(n) ∈ insig(n),
and for all PFTT (n) adversaries A,

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))
] ≤ ε(n).

With traditional notions of cryptography there was always an exponential or
at least super-polynomial gap between the amount of time required to evaluate
and invert one-way functions. In the fine-grained setting we have a polynomial
gap to consider.

Definition 5. The (relative) gap of an T (n) fine-grained one-way function f is
the constant δ > 0 such that it takes T (n)1−δ to compute f but for all PFTT (n)

adversaries A,

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))
] ≤ insig(n).

2.2 Fine-Grained Asymmetric Crypto Primitives

In this paper, we will propose a fine-grained key exchange. First, we will show
how to do it in an interactive manner, and then remove the interaction. Removing
this interaction means that it implies fine-grained public key encryption! Here
we will define both of these notions: a fine-grained non-interactive key exchange,
and a fine-grained, CPA-secure public-key cryptosystem.

First, consider the definition of a key exchange, with interaction. This def-
inition is modified from [16] to match our notation. We will be referring to a
transcript generated by Alice and Bob and the randomness they used to generate
it as a “random transcript”.

Public-Key Cryptography in the Fine-Grained Setting 619

Definition 6 (Fine-Grained Key Exchange). A (T (n), α, γ)-FG-Key
Exchange is a protocol, Π, between two parties A and B such that the following
properties hold

– Correctness. At the end of the protocol, A and B output the same bit (bA =
bB) except with probability γ;

Pr
Π,A,B

[bA = bB] ≥ 1 − γ

This probability is taken over the randomness of the protocol, A, and B.
– Efficiency. There exists a constant δ > 0 such that the protocol for both parties

takes time Õ(T (n)1−δ).
– Security. Over the randomness of Π, A, and B, we have that for all PFTT (n)

eavesdroppers E has advantage α of guessing the shared key after seeing a
random transcript. Where a transcript of the protocol Π is denoted Π(A,B).

Pr
A,B

[E(Π(A,B)) = bB] ≤ 1
2

+ α

A Strong (T (n))-FG-KeyExchange is a (T (n), α, γ)-FG-KeyExchange where α and
γ are insignificant. The key exchange is considered weak if it is not strong.

This particular security guarantee protects against chosen plaintext attacks.
But first, we need to define what we mean by a fine-grained public key cryp-
tosystem.

Definition 7. An T(n)-fine-grained public-key cryptosystem has the following
three algorithms.

KeyGen(1λ) Outputs a public-secret key pair (pk, sk).
Enc(pk,m) Outputs an encryption of m, c.
Dec(sk, c) Outputs a decryption of c, m.

These algorithms must have the following properties:

– They are efficient. There exists a constant δ > 0 such that all three algorithms
run in time O

(
T (n)1−δ

)
.

– They are correct. For all messages m,

Pr
KeyGen,Enc,Dec

[Dec(sk,Enc(pk,m)) = m|(pk, sk) ← KeyGen(1λ)] ≥ 1 − insig(n).

The cryptosystem is CPA-secure if any PFTT (n) adversary A has an insignif-
icant advantage in winning the following game:

1. Setup. A challenger C runs KeyGen(1n) to get a pair of keys, (pk, sk), and
sends pk to A.

2. Challenge. A gives two messages m0 and m1 to the challenger. The challenger
chooses a random bit b

$← {0, 1} and returns c ← Enc(pk,mb) to A.
3. Guess. A outputs a guess b′ and wins if b′ = b.

620 R. LaVigne et al.

3 Average Case Assumptions

Below we will describe four general properties so that any assumed-to-be-hard
problem that satisfies them can be used in our later constructions of one-way
functions and cryptographic key exchanges. We will also propose two concrete
problems with believable fine-grained hardness assumptions on it, and we will
prove that these problems satisfy some, if not all, of our general properties.

Let us consider a search or decision problem P . Any instance of P could
potentially have multiple witnesses/solutions. We will restrict our attention only
to those instances with no solutions or with exactly one solution. We define the
natural uniform distributions over these instances below.

Definition 8 (General Distributions). Fix a size n and a search problem
P . Define D0(P, n) as the uniform distribution over the set S0, the set of all
P -instances of size n that have no solutions/witnesses. Similarly, let D1(P, n)
denote the uniform distribution over the set S1, the set of all P -instances of size
n that have exactly one unique solution/witness. When P and n are clear from
the context, we simply use D0 and D1.

3.1 General Useful Properties

We now turn our attention to defining the four properties that a fine-grained
hard problem needs to have, in order for our constructions to work with it.

To be maximally general, we present definitions often with more than
one parameter. The four properties are: average case indistinguishably hard,
plantable, average case list-hard and splittable.

We state the formal definitions. In these definitions you will see constants for
probabilities. Notably 2/3 and 1/100. These are arbitrary in that the properties
we need are simply that 1/2 < 2/3 and 2/3 is much less than 1 − 1/100. We
later boost these probabilities and thus only care that there are constant gaps.

Definition 9 (Average Case Indistinguishably Hard). For a decision or
search problem P and instance size n, let D be the distribution drawing with
probability 1/2 from D0(P, n) and 1/2 from D1(P, n).

Let val(I) = 0 if I is from the support of D0 and let val(I) = 1 if I is from
the support of D1.

P is Average Case Indistinguishably Hard in time T (n) (T (n)-ACIH) if
T (n) = Ω(n) and for any PFTT (n) algorithm A

Pr
I∼D

[A(I) = val(I)] ≤ 2/3.

We also define a similar notion for search problems. Intuitively, it is hard
to find a ‘witness’ for a problem with a solution, but we need to define what a
witness is and how to verify a witness in the fine-grained world.

Public-Key Cryptography in the Fine-Grained Setting 621

Definition 10 (Average Case Search Hard). For a search problem P and
instance size n, let D1 = D1(P, n).

Let wit(I) denote an arbitrary witness of an instance I with at least one
solution.

P is Average Case Search Hard in time T (n) if T (n) = Ω(n) and

– there exists a PFTT (n) algorithm V (a fine-grained verifier) such that
V (I, wit(I)) = 1 if I has a solution and wit(I) is a witness for it and 0
otherwise

– and for any PFTT (n) algorithm A

Pr
I∼D1

[A(I) = wit(I)] ≤ 1/100.

Note that ACIH implies ACSH, but not the other way around. In fact,
given difficulties in dealing with problems in the average case, getting search-to-
decision reductions seems very difficult.

Our next definition describes a fine-grained version of a problem (or relation)
being ‘plantable’ [41]. The definition of a plantable problem from Lindell’s book
states that a plantable NP-hard problem is hard if there exists a PPT sampling
algorithm G. G produces both a problem instance and a corresponding witness
(x, y), and over the randomness of G, any other PPT algorithm has a negligible
chance of finding a witness for x.

There are a couple of differences between our definition and the plantable
definition from Lindell’s book the [41]. First, we will of course have to put a fine-
grained spin on it: our problem is solvable in time T (n) and so we will need to be
secure against PFTT (n) adversaries. Second, we will be focusing on a decision-
version of our problems, as indicated by Definition 9. Intuitively, our sampler
(Generate) will also take in a bit b to determine whether or not it produces an
instance of the problem that has a solution or does not.

Definition 11 (Plantable ((G(n), ε)-Plantable)). A T (n)-ACIH or T (n)-
ACSH problem P is plantable in time G(n) with error ε if there exists a ran-
domized algorithm Generate that runs in time G(n) such that on input n and
b ∈ {0, 1}, Generate(n, b) produces an instance of P of size n drawn from a
distribution of total variation distance at most ε from Db(P, n).

If it is a T (n) − ACSH problem, then Generate(n, 1) also needs to output a
witness wit(I), in addition to an instance I.

We now introduce the List-Hard property. Intuitively, this property states
that when given a list of length �(n) of instances of P , it is almost as hard to
determine if there exists one instance with a solution as it is to solve an instance
of size �(n) · n.

Definition 12 (Average Case List-hard ((T (n), �(n), δLH)-ACLH)). A
T (n)- ACIH or T (n)-ACSH problem P is Average Case List Hard in time T (n)
with list length �(n) if �(n) = nΩ(1), and for every PFT	(n)·T (n) algorithm A,

622 R. LaVigne et al.

given a list of �(n) instances, I = I1, I2, . . . , I	(n), each of size n distributed as
follows: i

$← [�(n)] and Ii ∼ D1(P, n) and for all j �= i, Ij ∼ D0(P, n);

Pr
I

[A(I) = i] ≤ δLH .

It’s worth noting that this definition is nontrivial only if �(n) = nΩ(1). Oth-
erwise �(n)T (n) = Õ(T (n)), since �(n) would be sub-polynomial.

We now introduce the splittable property. Intuitively a splittable problem
has a process in the average case to go from one instance I into a pair of average
looking problems with the same number of solutions. We use the splittable prop-
erty to enforce that a solution is shared between Alice and Bob, which becomes
the basis of Alice and Bob’s shared key (see Fig. 2).

Definition 13 ((Generalized) Splittable). A T (n)-ACIH problem P is gen-
eralized splittable with error ε, to the problem P ′ if there exists a PFTT (n) algo-
rithm Split and a constant m such that

– when given a P -instance I ∼ D0(P, n), Split(I) produces a list of length m of
pairs of instances {(I11 , I12), . . . , (Im

1 , Im
2)} where ∀i ∈ [1,m] Ii

1, I
i
2 are drawn

from a distribution with total variation distance at most ε from D0(P ′, n) ×
D0(P ′, n).

– when given an instance of a problem I ∼ D1(P, n), Split(I) produces a list of
length m of pairs of instances {(I11 , I12), . . . , (Im

1 , Im
2)} where ∃i ∈ [1,m] such

that Ii
1, I

i
2 are drawn from a distribution with total variation distance at most

ε from D1(P ′, n) × D1(P ′, n).

3.2 Concrete Hypothesis

Problem Descriptions. Two key problems within fine-grained complexity are the
k-Sum problem and the Zero-k-Clique problem.

Given k lists of n numbers L1, . . . , Lk, the k-Sum problem asks, are there
a1 ∈ L1, . . . , ak ∈ Lk so that

∑k
j=1 aj = 0. The fastest known algorithms for k-

Sum run in n�k/2�−o(1) time, and this running time is conjectured to be optimal,
in the worst case (see e.g. [2,44,54]).

The Zero-k-Clique problem is, given a graph G on n vertices and integer edge
weights, determine whether G contains k vertices that form a k-clique so that
the sum of all the weights of the clique edges is 0. The fastest known algorithms
for this problem run in nk−o(1) time, and this is conjectured to be optimal in
the worst case (see e.g. [1,5,17,40]). As we will discuss later, Zero-k-Clique and
k-Sum are related. In particular, it is known [56] that if 3-Sum requires n2−o(1)

time, then Zero-3-Clique requires n3−o(1) time. Zero-3-Clique is potentially even
harder than 3-Sum, as other problems such as All-Pairs Shortest Paths are known
to be reducible to it, but not to 3-Sum.

A folklore conjecture states that when the 3-Sum instance is formed by draw-
ing n integers uniformly at random from {−n3, . . . , n3} no PFTn2 algorithm can

Public-Key Cryptography in the Fine-Grained Setting 623

solve 3-Sum on a constant fraction of the instances. This, and more related
conjectures were explicitly formulated by Pettie [46].

We propose a new hypothesis capturing the folklore intuition, while drawing
some motivation from other average case hypotheses such as Planted Clique.
For convenience, we consider the k-Sum and Zero-k-Clique problems modulo a
number; this variant is at least as hard to solve as the original problems over the
integers: we can reduce these original problems to their modular versions where
the modulus is only k (for k-Sum) or

(
k
2

)
(for Zero-k-Clique) times as large as

the original range of the numbers.
We will discuss and motivate our hypotheses further in Sect. 4.

Definition 14. An instance of the k-Sum problem over range R, k-Sum-R,
consists of kn numbers in k lists L1, . . . , Lk. The numbers are chosen from
the range [0, R − 1]. A solution of a k-Sum-R instance is a set of k numbers
a1 ∈ L1, . . . , ak ∈ Lk such that their sum is zero mod R,

∑k
i=1 ai ≡ 0 mod R.

We will also define the uniform distributions over k-Sum instances that have
a certain number of solutions. We define two natural distributions over k-Sum-R
instances.

Definition 15. Define Dksum
uniform[R,n] be the distribution of instances obtained

by picking each integer in the instance uniformly at random from the range
[0, R − 1].

Define Dksum
0 [R,n] = D0(k-Sum-R,n) to be the uniform distribution over

k-Sum-R instances with no solutions. Similarly, let Dksum
1 [R,n] = D1(k-Sum-

R,n) to be the uniform distribution over k-Sum-R instances with 1 solution.
The distribution Dksum[R, i, n] is the uniform distribution over k-

Sum instances with n values chosen modulo R and where there are exactly i
distinct solutions.

Let Dksum
0 [R,n] = Dksum[R, 0, n], and Dksum

1 [R,n] = Dksum[R, 1, n].

We now proceed to define the version of Zero-k-Clique that we will be using.
In addition to working modulo an integer, we restrict our attention to k-partite
graphs. In the worst case, the Zero-k-Clique on a general graph reduces to Zero-
k-Clique on a complete k-partite graph2[3].

Definition 16. An instance of Zero-k-Clique-R consists of a k-partite graph
with kn nodes and partitions P1, . . . , Pk. The k-partite graph is complete: there
is an edge between a node v ∈ Pi and a node u ∈ Pj if and only if i �= j. Thus,
every instance has

(
k
2

)
n2 edges. The weights of the edges come from the range

[0, R − 1].
A solution in a Zero-k-Clique-R instance is a set of k nodes v1 ∈ P1, . . . , vk ∈

Pk such that the sum of all the weights on the
(
k
2

)
edges in the k-clique formed

by v1, . . . , vk is congruent to zero mod R:
∑

i∈[1,k]

∑
j∈[1,k] and j
=i w(vi, vj) ≡ 0

mod R. A solution is also called a zero k-clique.
2 This reduction is done using color-coding [3], an example of this lemma exists in the

paper “Tight Hardness for Shortest Cycles and Paths in Sparse Graphs” [40].

624 R. LaVigne et al.

We now define natural distributions over Zero-k-Clique-R instances.

Definition 17. Define Dzkc
uniform[R,n] to be the distribution of instances

obtained by picking each integer edge weight in the instance uniformly at random
from the range [0, R − 1].

Define Dzkc
0 [R,n] = D0(Zero-k-Clique-R,n) to be the uniform distribution

over Zero-k-Clique-R instances with no solutions. Similarly, let Dzkc
1 [R,n] =

D1(Zero-k-Clique-R,n) to be the uniform distribution over Zero-k-Clique-R
instances with 1 solution.

The distribution is Dzkc[R, i, n] the uniform distribution over zero k-clique
instances on kn nodes with weights chosen modulo R and where there are
exactly i distinct zero k-cliques in the graph. Let Dzkc

0 [R,n] = Dzkc[R, 0, k] and
Dzkc

1 [R,n] = Dzkc[R, 1, k].

Weak and Strong Hypotheses. The strongest hypothesis that one can make is
that the average case version of a problem takes essentially the same time to
solve as the worst case variant is hypothesized to take. The weakest but still
useful hypothesis that one could make is that the average case version of a prob-
lem requires super-linear time. We formulate both such hypotheses and derive
meaningful consequences from them.

We state the weak versions in terms of decision problems and the strong
version in terms of search problems. Our fine-grained one-way functions and
fine-grained key exchanges can both be built using the search variants. We make
these choices for clarity of presentation later on.

Definition 18 (Weak k-Sum-R Hypothesis). There exists some large
enough constant c such that for all constants c′ > c, distinguishing Dksum

0 [c′R,n]
and Dksum

1 [c′R,n] is n1+δ-ACIH for some δ > 0.

Definition 19 (Weak Zero-k-Clique-R Hypothesis). There exists some
large enough constant c such that for all constants c′ > c, distinguishing
Dzkc

0 [c′R,n] and Dzkc
1 [c′R,n] is n2+δ-ACIH for some δ > 0.

Notice that the Zero-k-Clique-R problem is of size O(n2).

Definition 20 (Strong Zero-k-Clique-R Hypothesis for range nck). For
all c > 1, given an instance I drawn from the distribution Dzkc

1 [nck, n] where
the witness (solution) is the single zero k-clique is formed by nodes {v1, . . . , vk},
finding {v1, . . . , vk} is nk-ACSH.

Some may find the assumption with range nk to be the most believable
assumption. This is where the probability of a Zero-k-Clique existing at all is a
constant.

Definition 21 (Random Edge Zero-k-Clique Hypothesis). Let sol(I) be
a function over instances of Zero-k-Clique problems where sol(I) = 0 if there
are no zero k-cliques and sol(I) = 1 if there is exactly one of zero k-clique. Let
wit(I) be a zero k-clique in I, if one exists. Given an instance I drawn from

Public-Key Cryptography in the Fine-Grained Setting 625

the distribution Dzkc
uniform[nk, n] there is some large enough n such that for any

PFTnk algorithm A

Pr
I∼D

[A(I) = wit(I)|sol(I) = 1] ≤ 1/200.

Theorem 3. Strong Zero-k-Clique-R Hypothesis for range R = nck is implied
by the Random Edge Random Edge Zero-k-Clique Hypothesis if c > 1 is a con-
stant.

The proof of this Theorem is in the full version.3

4 Our Assumptions - Background and Justification

In this section, we justify making average-case hardness assumptions for k-SUM
and Zero k-Clique—and why we do not for other fine-grained problems. We start
with some background on these problems, and then justify why our hypotheses
are believable.

4.1 Background for Fine-Grained Problems

Among the most popular hypotheses in fine-grained complexity is the one con-
cerning the 3-Sum problem defined as follows: given three lists A,B and C of
n numbers each from {−nt, . . . , nt} for large enough t, determine whether there
are a ∈ A, b ∈ B, c ∈ C with a+b+c = 0. There are multiple equivalent variants
of the problem (see e.g. [25]).

The fastest 3-Sum algorithms run in n2(log log n)O(1)/ log2 n time (Baran,
Demaine and Patrascu for integer inputs [9], and more recently Chan’18 for real
inputs [19]). Since the 1990s, 3-Sum has been an important problem in compu-
tational geometry. Gajentaan and Overmars [25] formulated the hypothesis that
3-Sum requires quadratic time (nowadays this means n2−o(1) time on a word-
RAM with O(log n) bit words), and showed via reductions that many geometry
problems also require quadratic time under this hypothesis. In recent years, many
more consequences of this hypothesis have been derived, for a variety of non-
geometric problems, such as sequence local alignment [1], triangle enumeration
[37,44], and others.

As shown by Vassilevska Williams and Williams [56], 3-Sum can be reduced
to a graph problem, 0-Weight Triangle, so that if 3-Sum requires n2−o(1) time
on inputs of size n, then 0-Weight Triangle requires N3−o(1) time in N -node
graphs. In fact, Zero-Weight Triangle is potentially harder than 3-Sum, as one
can also reduce to it the All-Pairs Shortest Paths (APSP) problem, which is
widely believed to require essentially cubic time in the number of vertices. There
is no known relationship (via reductions) between APSP and 3-Sum.

The Zero-Weight Triangle problem is as follows: given an n-node graph with
edge weights in the range {−nc, . . . , nc} for large enough c, denoted by the
3 Thank you to Russell Impagliazzo for discussions related to the sizes of ranges R.

626 R. LaVigne et al.

function w(·, ·), are there three nodes p, q, r so that w(p, q) + w(q, r) + w(r, p) =
0? Zero-Weight Triangle is just Zero-3-Clique where the numbers are from a
polynomial range. An equivalent formulation assumes that the input graph is
tripartite and complete (between partitions).

Both 3-Sum and Zero-Weight Triangle have generalizations for k ≥ 3: k-
Sum and Zero-Weight k-Clique, defined in the natural way. We give their defi-
nitions in Definitions 14 and 16 respectively.

4.2 Justifying the Hardness of Some Average-Case Fine-Grained
Problems

The k-Sum problem is conjectured to require n�k/2�−o(1) time (for large enough
weights), and the Zero-Weight k-Clique problem is conjectured to require nk−o(1)

time (for large enough weights), matching the best known algorithms for both
problems (see [54]). Both of these conjectures have been used in fine-grained
complexity to derive conditional lower bounds for other problems (e.g. [1,5,17,
40]).

It is tempting to conjecture average-case hardness for the key hard prob-
lems within fine-grained complexity: Orthogonal Vectors (OV), APSP, 3-Sum.
However, it is known that APSP is not hard on average, for many natural distri-
butions (see e.g. [21,45]), and OV is likely not (quadratically) hard on average
(see e.g. [35]).

On the other hand, it is a folklore belief that 3-Sum is actually hard on
average. In particular, if one samples n integers uniformly at random from
{−cn3, . . . , cn3} for constant c, the expected number of 3-Sums in the instance
is Θ(1), and there is no known truly subquadratic time algorithm that can solve
3-Sum reliably on such instances. The conjecture that this is a hard distribution
for 3-Sum was formulated for instance by Pettie [46].

The same folklore belief extends to k-Sum. Here a hard distribution seems
to be to generate k lists uniformly from a large enough range {−cnk, . . . , cnk},
so that the expected number of solutions is constant.

Due to the tight relationship between 3-Sum and Zero-Weight Triangle, one
might also conjecture that uniformly generated instances of the latter problem
are hard to solve on average. In fact, if one goes through the reductions from
the worst-case 3-Sum problem to the worst-case Zero-Weight Triangle, via the
3-Sum Convolution problem [44,57] starting from an instance of 3-Sum with
numbers taken uniformly at random from a range, then one obtains a list of
Zero-Weight Triangle instances that are essentially average-case. This is eas-
ier to see in the simpler but less efficient reduction in [57] which from a 3-
Sum instance creates n1/3 instances of (complete tripartite) Zero-Weight Trian-
gle on O(n2/3) nodes each and whose edge weights are exactly the numbers from
the 3-Sum instance. Thus, at least for k = 3, average-case hardness for 3-Sum is
strong evidence for the average-case hardness for Zero-Weight Triangle.

In the full version we give a reduction between uniform instances of uniform
Zero-Weight k-Clique with range Θ(nk) and instances of planted Zero-Weight

Public-Key Cryptography in the Fine-Grained Setting 627

k-Clique with large range. Working with instances of planted Zero-Weight k-
Clique with large range is easier for our hardness constructions, so we use those
in most of this paper.

Justifying the Hardness of Distinguishing. Now, our main assumptions
consider distinguishing between the distributions D0 and D1 for 3-Sum and Zero-
Weight Triangle. Here we take inspiration from the Planted Clique assumption
from Complexity [29,33,38]. In Planted Clique, one first generates an Erdös-
Renyi graph that is expected to not contain large cliques, and then with proba-
bility 1/2, one plants a clique in a random location. Then the assertion is that
no polynomial time algorithm can distinguish whether a clique was planted or
not.

We consider the same sort of process for Zero-k-Clique. Imagine that we
first generate a uniformly random instance that is expected to have no zero k-
Cliques, by taking the edge weights uniformly at random from a large enough
range, and then we plant a zero k-Clique with probability 1/2 in a random
location. Similarly to the Planted Clique assumption, but now in a fine-grained
way, we can assume that distinguishing between the planted and the not-planted
case is computationally difficult.

Our actual hypothesis is that when one picks an instance that has no zero
k-Cliques at random with probability 1/2 and picks one that has a zero k-Clique
with probability 1/2, then distinguishing these two cases is hard. As we show
later, this hypothesis is essentially equivalent to the planted version (up to some
slight difference between the underlying distributions).

Similarly to Planted Clique, no known approach for Zero-k-Clique seems to
work in this average-case scenario, faster than essentially nk, so it is natural to
hypothesize that the problem is hard. We leave it as a tantalizing open problem
to determine whether the problem is actually hard, either by reducing a popular
worst-case hypothesis to it, or by providing a new algorithmic technique.

5 Fine-Grained Key Exchange

Now we will explain a construction for a key exchange using general distributions.
We will then specify the properties we need for problems to generate a secure
key exchange. We will finally generate a key exchange using the strong Zero-k-
Clique hypothesis. Sketches for most of proofs of these theorems are provided
here, while full proofs can be found in the full version.

Before doing this, we will define a class of problems as being Key Exchange
Ready (KER).

Definition 22 (Key Exchange Ready (KER)). A problem P is �(n)-
KER with generate time G(n), solve time S(n) and lower bound solving time
T (n) if

– there is an algorithm which runs in Θ̃(S(n))) time that determines if an
instance of P of size n has a solution or not,

– the problem is (�(n), δLH)-ACLH where δLH ≤ 1
34 ,

628 R. LaVigne et al.

– is Generalized Splittable with error ≤1/(128�(n)) to the problem P ′ and,
– P ′ is plantable in time G(n) with error ≤1/(128�(n)).
– �(n)T (n) ∈ ω̃

(
�(n)G(n) +

√
�(n)S(n)

)
, and

– there exists an n′ such that for all n ≥ n′, �(n) ≥ 214.

5.1 Description of a Weak Fine-Grained Interactive Key Exchange

The high level description of the key exchange is as follows. Alice and Bob
each produce �(n) − √

�(n) instances using Generate(n, 0) and
√

�(n) generate
instances with Generate(n, 1). Alice then shuffles the list of �(n) instances so that
those with solutions are randomly distributed. Bob does the same thing (with
his own private randomness). Call the set of indices that Alice chooses to plant
solutions SA and the set Bob picks SB. The likely size of SA ∩SB is 1. The index
SA ∩ SB is the basis for the key.

Alice determines the index SA ∩ SB by brute forcing all problems at indices
SA that Bob published. Bob can brute force all problems at indices SB that
Alice published and learn the set SA ∩ SB .

If after brute forcing for instances either Alice or Bob find a number of
solutions not equal to 1 then they communicate this and repeat the procedure
(using interaction). They only need to repeat a constant number of times.

More formally our key exchange does the following:

Construction 4 (Weak Fine-Grained Interactive Key Exchange). A
fine-grained key exchange for exchanging a single bit key.

– Setup(1n): output mpk = (n, �(n)) and �(n) > 214.
– KeyGen(mpk): Alice and Bob both get parameters (n, �).

• Alice generates a random SA ⊂ [�], |SA| =
√

�. She generates a list of
instances IA = (I1A, . . . , I	

A) where for all i ∈ SA, Ii = Generate(n, 1) and
for all i �∈ SA, Ii

A = Generate(n, 0) (using Alice’s private randomness).
Alice publishes IA and a random vector v $← {0, 1}log 	.

• Bob computes IB = (I1B , . . . , I	
B) similarly: generating a random SB ⊂ [�]

of size
√

� and for every instance Ij ∈ IB, if j ∈ SB, Ij = Generate(n, 1)
and if j �∈ SB, Ij = Generate(n, 0). Bob publishes IB.

– Compute shared key: Alice receives IB and Bob receives IA.
• Alice computes what she believes is SA ∩ SB: for every i ∈ SA, she brute

force checks if Ii
B has a solution or not. For each i that does, she records

in list LA.
• Bob computes what he thinks to be SB ∩ SA: for every j ∈ SB, he checks

if Ij
A has a solution. For each that does, he records it in LB.

– Check: Alice takes her private list LA: if |LA| �= 1, Alice publishes that the
exchange failed. Bob does the same thing with his list LB: if |LB | �= 1, Bob
publishes that the exchange failed. If either Alice or Bob gave or received a
failure, they both know, and go back to the KeyGen step.
If no failure occurred, then |LA| = |LB | = 1. Alice interprets the index i ∈ LA

as a vector and computes i · v as her key. Bob uses the index in j ∈ LB and
also computes j ·v. With high probability, i = j and so the keys are the same.

Public-Key Cryptography in the Fine-Grained Setting 629

5.2 Correctness and Soundness of the Key Exchange

We want to show that with high probability, once the key exchange succeeds,
both Alice and Bob get the same shared index. The full proofs for Lemmas 1, 2,
and 3 can be found in the full version of this paper.

Lemma 1. After running Construction 4, Alice and Bob agree on a key k with
probability at least 1 − 1

10,000	e .

Sketch of Proof. We notice that the only way Alice and Bob fail to exchange
a key is if they both generate a solution accidentally in each other’s sets (that
is Alice generates exactly one accidental solution in SB and Bob in SA), and
SA ∩ SB = ∅. All other ‘failures’ are detectable in this interactive case and
simply require Alice and Bob to run the protocol again. So, we just bound the
probability this happens, and since εplant ≤ 1

100
√

	
, we get the bound 1− 1

10,000	e .
��

We next show that the key-exchange results in gaps in running time and
success probability between Alice and Bob and Eve. Then, we will show that
this scheme can be boosted in a fine-grained way to get larger probability gaps
(a higher chance that Bob and Alice exchange a key and lower chance Eve gets
it) while preserving the running time gaps.

First, we need to show that the time Alice and Bob take to compute a shared
key is less (in a fine-grained sense) than the time it takes Eve, given the public
transcript, to figure out the shared key. This includes the number of times we
expect Alice and Bob to need to repeat the process before getting a usable key.

Time for Alice and Bob.

Lemma 2. If a problem P is �(n)-KER with plant time G(n), solve time S(n)
and lower bound T (n) when �(n) > 100, then Alice and Bob take expected time
O(�G(n) +

√
�S(n)) to run the key exchange.

Time for Eve.

Lemma 3. If a problem P is �(n)-KER with plant time G(n), solve time S(n)
and lower bound T (n) when �(n) ≥ 214, then an eavesdropper Eve, when given
the transcript IT , requires Ω̃(�(n)T (n)) time to solve for the shared key with
probability 1

2 + sig(n).

Sketch of Proof. This is proved in two steps. First, if Eve can determine the
shared key in time PFT	(n)T (n) with advantage δEve, then she can also figure
out the index in PFT	(n)T (n) time with probability δEve/4. Second, if Eve can
compute the index with advantage δEve/4, we can use Eve to solve the list-
version of P in PFT	(n)T (n) with probability δEve/16, which is a contradiction
to the list-hardness of our problem. This first part follows from a fine-grained
Goldreich-Levin hardcore-bit theorem, proved in the full version.

The second part, proving that once Eve has the index, then she can solve
an instance of P , uses the fact that P is list-hard, generalized splittable, and

630 R. LaVigne et al.

plantable. Intuitively, since P is already list hard, we will start with a list of
average problem instances (I1, . . . , I), and our goal will be to have Eve tell
us which instance (index) has a solution. We apply the splittable property to
this list to get lists of pairs of problems. For one of these lists of pairs, there
will exist an index where both instances have solutions. These lists of pairs will
almost look like the transcript between Alice and Bob during the key exchange:
if I had a solution then there should be one index such that both instances
in a pair have a solution. Now, we just need to plant

√
� − 1 solutions in the

left instances and
√

� − 1 on the right, and this will be indistinguishable from
a transcript between Alice and Bob. If Eve can find the index of the pair with
solutions, we can quickly check that she is right (because the instances inside
the list are relatively small), and simply return that index. ��

Now, we can put all of these together to get a weak fine-grained key exchange.
We will then boost it to be a strong fine-grained key exchange (see the Definition
6 for weak versus strong in this setting).

Theorem 5. If a problem P is �(n)-KER with plant time G(n), solve time
S(n) and lower bound T (n) when �(n) ≥ 214, then Construction 4 is a
((�(n)T (n), α, γ)-FG-KeyExchange, with γ ≤ 1

10,000	(n)e and α ≤ 1
4 .

Proof. This is a simple combination of the correctness of the protocol, and the
fact that an eavesdropper must take more time than the honest parties. We
have that the Pr[bA = bB] ≥ 1 − 1

10,000	e , implying γ ≤ 1
10,000	e from Lemma

1. We have that Alice and Bob take time O(�(n)G(n) +
√

�(n)S(n)) and Eve
must take time Ω̃(�(n)T (n)) to get an advantage larger than 1

4 by Lemmas 2

and 3. Because P is KER, �(n)T (n) ∈ ω̃
(
�(n)G(n) +

√
�(n)S(n)

)
, implying

there exists δ > 0 so that �(n)G(n)+
√

�(n)S(n) ∈ Õ(�(n)T (n)1−δ). So, we have
correctness, efficiency and security. ��

Next, we are going to amplify the security of this key exchange using parallel
repetition, drawing off of strategies from [24] and [13].

Theorem 6. If a weak (�(n)T (n), α, γ)-FG-KeyExchange exists where γ = O
(

1
nc

)

for some constant c > 0, but α = O(1), then a Strong (�(n)T (n))-FG-KeyExchange
also exists.

The proof of Theorem 6 is in the full version of this paper.

Remark 1. It is not obvious how to amplify correctness and security
of a fine-grained key exchange at the same time. If we have a weak
(�(n)T (n), α, γ)-FG-KeyExchange, where α = insig(n) but γ = O(1), then we
can use a standard repetition error-correcting code to amplify γ. That is, we can
run the key exchange log2(n) times to get log2(n) keys (most of which will agree
between Alice and Bob), and to send a message with these keys, send that mes-
sage log2(n) times. With all but negligible probability, the decrypted message
will agree with the sent message a majority of the time. Since with very high

Public-Key Cryptography in the Fine-Grained Setting 631

probability the adversary cannot recover any of the keys in PFT	(n)T (n) time,
this repetition scheme is still secure.

As discussed in Theorem 6, we can also amplify a key exchange that has con-
stant correctness and polynomial soundness to one with 1 − insig(n) correctness
and polynomial soundness. However, it is unclear how to amplify both at the
same time in a fine-grained manner.

Corollary 1. If a problem P is �(n)-KER, then a Strong (�(n)T (n))-FG-
KeyExchange exists.

The proof of Corollary 1 is included in the full version of this paper.
Finally, using the fact that Alice and Bob do not use each other’s messages to

produce their own in Construction 4, we prove that we can remove all interaction
through repetition to get a T (n)-fine-grained public key cryptosystem. The key
insight is that if there are no false positives Then LA and LB are the same, they
will either both fail or both succeed. The proof Theorem 7 below is included in
the full version of the paper.

Theorem 7. If a problem P is �(n)-KER, then a �(n) ·T (n)-fine-grained public
key cryptosystem exists.

Note that this encryption scheme can be used to send any sub-polynomial
number of bits, just by running it in sequence sub-polynomially many times. We
also want to note that the adversary’s advantage cannot be any less than 1

poly(n)

since, due to the fine-grained nature of the scheme, the adversary can always
solve the hard problem via guessing.

Corollary 2. Given the strong Zero-k-Clique-R Hypothesis over range R = nk,
there exists a (�(n)T (n), 1/4, insig(n))-FG-KeyExchange, where Alice and Bob can
exchange a sub-polynomial-sized key in time Õ

(
n2k−2

)
when �(n) = n2k−4.

There also exists a �(n)T (n)-fine-grained public-key cryptosystem, where we
can encrypt a sub-polynomial sized message in time Õ

(
n2k−2

)
.

The Zero-3-Clique hypothesis (the Zero Triangle hypothesis) is the most
believable version of the Zero-k-Clique hypothesis. Note that even with the
strong Zero-3-Clique hypothesis we get a key exchange with a gap in the running
times of Alice and Bob vs Eve. In this case, the gap is t = 5/4 = 1.2.

References

1. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7 4

2. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 434–443
(2014)

https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-662-43948-7_4

632 R. LaVigne et al.

3. Alon, N., Yuster, R., Zwick, U.: Color coding. Encyclopedia of Algorithms, pp. 335–
338. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-2864-4 76

4. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different
assumptions. In: Proceedings of the Forty-Second ACM Symposium on Theory of
Computing, STOC 2010, pp. 171–180. ACM, New York (2010)

5. Backurs, A., Tzamos, C.: Improving viterbi is hard: better runtimes imply faster
clique algorithms. CoRR, abs/1607.04229 (2016)

6. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained hard-
ness. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 483–496
(2017)

7. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 26

8. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal—an O(n2)-query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 22

9. Baran, I., Demaine, E.D., Patrascu, M.: Subquadratic algorithms for 3SUM. Algo-
rithmica 50(4), 584–596 (2008)

10. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: 37th Annual Symposium on
Foundations of Computer Science, FOCS 1996, Burlington, Vermont, USA, 14–16
October 1996, pp. 514–523 (1996)

11. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 394–403
(1997)

12. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-44750-4 2

13. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in
computationally sound protocols? In: Proceedings of the 38th Annual Symposium
on Foundations of Computer Science, FOCS 1997, p. 374. IEEE Computer Society,
Washington, DC (1997)

14. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 32

15. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 24

16. Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography on strong
one-way functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 55–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 4

17. Bringmann, K., Gawrychowski, P., Mozes, S., Weimann, O.: Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 1190–1206 (2018)

https://doi.org/10.1007/978-1-4939-2864-4_76
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-540-78524-8_4

Public-Key Cryptography in the Fine-Grained Setting 633

18. Carmosino, M.L., Gao, J., Impagliazzo, R., Mihajlin, I., Paturi, R., Schneider, S.:
Nondeterministic extensions of the strong exponential time hypothesis and con-
sequences for non-reducibility. In: Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA, 14–16 Jan-
uary 2016, pp. 261–270 (2016)

19. Chan, T.M.: More logarithmic-factor speedups for 3SUM, (median, +)-convolution,
and some geometric 3SUM-hard problems. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, 7–10 January 2018, pp. 881–897 (2018)

20. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

21. Cooper, C., Frieze, A.M., Mehlhorn, K., Priebe, V.: Average-case complexity of
shortest-paths problems in the vertex-potential model. Random Struct. Algorithms
16(1), 33–46 (2000)

22. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 533–562.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 19

23. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006)

24. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 21

25. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. 45(4), 140–152 (2012)

26. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: International Sym-
posium on Symbolic and Algebraic Computation, ISSAC 2014, Kobe, Japan, 23–25
July 2014, pp. 296–303 (2014)

27. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
STOC 1989, pp. 25–32. ACM, New York (1989)

28. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Trans. Am. Math. Soc. 117, 285–306 (1965)

29. Hazan, E., Krauthgamer, R.: How hard is it to approximate the best nash equilib-
rium? SIAM J. Comput. 40(1), 79–91 (2011)

30. Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape turing machines. J.
ACM 13(4), 533–546 (1966)

31. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, 19–22 June 1995, pp. 134–147 (1995)

32. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum, vol. 9, no. 02 (2002)

33. Jerrum, M.: Large cliques elude the metropolis process. Random Struct. Algo-
rithms 3(4), 347–360 (1992)

34. Juels, A., Peinado, M.: Hiding cliques for cryptographic security. Des. Codes Crypt.
20(3), 269–280 (2000)

35. Kane, D.M., Williams, R.R.: The orthogonal vectors conjecture for branching pro-
grams and formulas. CoRR, abs/1709.05294 (2017)

https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21

634 R. LaVigne et al.

36. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, Washington, DC, USA, 27–30 October 2003,
pp. 155–164 (2003)

37. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3SUM conjec-
ture. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12 January 2016, pp.
1272–1287 (2016)

38. Kucera, L.: Expected complexity of graph partitioning problems. Discrete Appl.
Math. 57(2–3), 193–212 (1995)

39. Levin, L.A.: On storage capacity of algorithms. Soviet Math. Dokl. 14(5), 1464–
1466 (1973)

40. Lincoln, A., Williams, V.V., Williams, R.R.: Tight hardness for shortest cycles and
paths in sparse graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10
January 2018, pp. 1236–1252 (2018)

41. Lindell, Y.: Tutorials on the Foundations of Cryptography: Dedicated to Oded
Goldreich, 1st edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57048-8

42. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 23

43. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978)

44. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 603–610 (2010)

45. Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in O(n2)
time with high probability. J. ACM 60(4), 26:1–26:25 (2013)

46. Pettie, S.: Higher lower bounds from the 3SUM conjecture. In: Fine-Grained Com-
plexity and Algorithm Design Workshop at the Simons Institute (2015)

47. Razborov, A.A., Rudich, S.: Natural proofs. In: Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, Montréal, Québec, Canada,
23–25 May 1994, pp. 204–213 (1994)

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, pp. 84–93. ACM, New York (2005)

49. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

50. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 9

51. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
52. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-

ing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, SFCS 1994, pp. 124–134. IEEE Computer Society, Washington, DC (1994)

53. Tseitin, G.S.: Seminar on math, logic (1956)
54. Williams, V.V.: On some fine-grained questions in algorithms and complexity. In:

Proceedings of the International Congress of Mathematicians (2018, to appear)

https://doi.org/10.1007/978-3-319-57048-8
https://doi.org/10.1007/978-3-319-57048-8
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/3-540-46035-7_9

Public-Key Cryptography in the Fine-Grained Setting 635

55. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Pro-
ceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, 19–22 May 2012, pp. 887–898 (2012)

56. Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix and
triangle problems. In: 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, Las Vegas, Nevada, USA, 23–26 October 2010, pp. 645–654
(2010)

57. Williams, V.V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. SIAM J. Comput. 42(3), 831–854 (2013)

	Public-Key Cryptography in the Fine-Grained Setting
	1 Introduction
	1.1 Our Contributions
	1.2 Previous Works
	1.3 Technical Overview
	1.4 Organization of Paper

	2 Preliminaries: Model of Computation and Definitions
	2.1 Fine-Grained Symmetric Crypto Primitives
	2.2 Fine-Grained Asymmetric Crypto Primitives

	3 Average Case Assumptions
	3.1 General Useful Properties
	3.2 Concrete Hypothesis

	4 Our Assumptions - Background and Justification
	4.1 Background for Fine-Grained Problems
	4.2 Justifying the Hardness of Some Average-Case Fine-Grained Problems

	5 Fine-Grained Key Exchange
	5.1 Description of a Weak Fine-Grained Interactive Key Exchange
	5.2 Correctness and Soundness of the Key Exchange

	References

