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Since the degree of stress triaxiality can be easily manipulated in notched
samples, tests on them can provide crucial information to verify various con-
stitutive models of bulk metallic glasses (BMGs). Oftentimes, notched samples
exhibit enhanced ductility, but their strength can be reduced or improved, or
even be insensitive to, the notch geometric parameters. Based on a comparison
of notch studies on conventional metallic materials (that exhibit cavitation-
controlled failure) and composites (that exhibit crack bridging), as well as by
assembling many recent notch studies on BMGs, this review assesses the
following key factors: the role of stress triaxiality in the atomistic processes for
free volume evolution, the competition between and synergy of shear banding
and cavitation failure, and the geometric arrangements of shear bands that
delay shear or cavitation failure. Difficulties that prevent unified predictions
are also explained.

INTRODUCTION

In macroscopic mechanical tests such as those
based on tension and bending, bulk metallic glasses
(BMGs) exhibit strain localization into narrow
bands, called shear bands since they often align
with the principal shear stress directions, in spite of
small deviations. Although a consensus on the
detailed atomistic processes for shear band initia-
tion and growth remains elusive, a mechanistic
interpretation of such strain localizations can be
obtained from the instability of constitutive rela-
tionships in the classic Hill–Hutchinson–Rice
framework.1,2 Consequently, constitutive modeling
provides an indispensable link between structural
dynamic studies on the atomistic scale and exper-
imental observations using a wide range of mechan-
ical testing methods. One critical assessment along
this line is focused on mechanistic predictions using
various candidate constitutive laws, e.g., for the
conditions for the onset of shear bands, shear band
arrangement, their temperature and strain-rate
dependence, and their evolution into failure; For
example, the deformation of conventional metals
and alloys is governed by dislocation slips and
various interaction mechanisms. When the disloca-
tion density in face-centered cubic (FCC) crystals is

sufficiently large, their collective behavior can be
described by the Schmid law, whose validity
requires testing using atomistic modeling. For a
polycrystalline metal, by averaging the Schmid-type
crystal plasticity over individual grains, the macro-
scopic deformation now behaves as the Mises plas-
ticity, whereas the Taylor factor connects the
Schmid and Mises models. While individual dislo-
cation slip lines can be regarded as the instability
from the Schmid-type constitutive law because of
the corners on the yield surface, the Mises plasticity
is very resistant to any strain localization, unless
there are additional mechanisms for strain soften-
ing or pressure sensitivity. Casting this Schmid–
Mises relationship into BMGs, it is noted that the
macroscopic strain localization exhibits character-
istics resembling those of pressure-sensitive mate-
rials, as well as the transient heating in shear
bands. For the former, the shear band directions
depend on the degree of pressure sensitivity (e.g.,
the friction coefficient in the Mohr–Coulomb model)
and the flow nonnormality. Thus, mechanical tests
with various degrees of stress triaxiality can be
conducted to test various ways in which pressure
can be incorporated into the constitutive law. One
method often applied along this line is notch testing,
as discussed herein. For the latter, the BMG
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community tends to agree on the understanding
that the thermal effect is an after-effect of shear
band initiation, although its role in shear band
propagation remains under debate.3 Nevertheless,
this review only focuses on the effect of various
stress states as obtained from notch testing.

Before we discuss the experimental observations
of notch effects in BMGs, it is advisable to start with
a brief review of notch sensitivity in fracture
mechanics analysis, with a focus on the crack-
bridging concept in composites4,5 and the material
failure model in conventional metallic materials.6,7

In the quintessential problem shown in Fig. 1,
adapted from Bao and Suo,4 the crack is represented
by a cohesive interface model that relates the
traction and interfacial separation through a
micromechanically derived or phenomenological
constitutive law, characterized by a reference stress
r0 and a reference separation d0. From both dimen-
sional analysis and numerical simulations, the
crack-bridging zone is found to scale as Ed0=r0,
where E is the Young’s modulus. Therefore, the
maximum value of the applied load, rmax

1 , depends
on the ratio of this crack-bridging zone and the
notch root radius,

K ¼ Ed0

r0a
: ð1Þ

When K ! 0, the crack-bridging zone is very small
compared with the crack size or other geometric
features, so that the failure is governed by linear
elastic fracture mechanics (LEFM) and rmax

1 =r0 is
merely the inverse of the stress concentration factor
at the notch root (about 1/3 when L=W ! 1). This is
the limit of small-scale bridging (SSB). On the other
limit, a large K indicates large-scale bridging (LSB)
behavior, and the failure is then governed by the
strength of the cohesive interface, given by
rmax
1 =r0 ¼ L=W. The crack-bridging concept there-

fore nicely unifies the LEFM analysis and the
strength analysis, as shown in the flowchart in
Fig. 2 (also modified from Ref. 4), which finds a wide
range of applications in composite research,

particularly for the synergistic increase of strength
and toughness through microstructural design. It is
also worth noting that the LSB (i.e., strength-
governed) limit corresponds to the flaw tolerance
in biomimetics.8

In conventional metallic materials, the crack tip
is shielded by plastic deformation, and similarly we
can find small-scale yielding (SSY) and large-scale
yielding (LSY) when comparing the plastic zone size
to the crack size or other feature sizes that limit the
K-annulus. No failure can be predicted from plastic
zone analysis, so a micromechanical failure model
must be embedded along the crack path, as shown
in Fig. 3. In the classic Gurson–Tvergaard–Needle-
man (GTN) model,6,7 the yield surface is defined by
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Fig. 1. Notch sensitivity in composites as modeled by the bridged
crack (modified from Bao and Suo4). Geometric illustration of the
double-edge notched sample, where the ratio of the extent of crack-
bridging zone to the notch root radius dictates the small-scale
bridging (SSB, low K) to large-scale bridging (LSB, large K)
transition. The dimensionless parameter is K ¼ Ed0= ar0ð Þ.
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Fig. 2. Small-scale bridging (SSB) and large-scale bridging (LSB)
are dictated by the cohesive interface model and the stress analysis.
Notch- and flaw-sensitive conditions correspond to SSB, while flow-
tolerant behavior corresponds to LSB. This schematic (modified from
Bao and Suo4) applies to composites and biomimetics.
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Fig. 3. Notch sensitivity in conventional metallic materials as
modeled by the Gurson–Tvergaard–Needleman (GTN) model. The
void-based GTN model has no length scale, so the extent of damage
zone depends on the initial void distribution and the extent of plastic
zone as governed by the boundary-value problem.
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U ¼ re

rY

� �2

þ 2q1f
� cosh

3q2rm

2rY

� �
� 1 � q1f

�ð Þ2; ð2Þ

where re, rm, and rY are the Mises stress, mean
stress, and yield strength of the nonporous solid,
respectively, and the parameter f � is related to the
porosity f by

f � ¼
f ; f < fc
fc þ 1=q1�fcð Þ f�fcð Þ

ff�fc
; f � fc

�
ð3Þ

with fitting parameters fc, ff , q1, and q2. The cavities
nucleate and grow according to

_f ¼ 1 � fð Þ_epkk þ _fnucl; ð4Þ

with the plastic strain-rate tensor _epij. As Eq. 4 is
dictated by the volumetric plastic deformation, the
extent of the damage zone depends on the way in
which the stress triaxiality is modeled in Eq. 2 e.g.,
a number of variant GTN models are given in Ref. 9,
and also the stress state ahead of the cracks, holes,
notches, or more general boundary-value problems.
Along the latter line of thought, Needleman and
Tvergaard10 conducted extensive finite element
simulations of the failure process in notched round
bars. As shown schematically in Fig. 4, the fracture
strain decreases dramatically with increase of the
stress triaxiality, defined as T ¼ rm=re, obviously
due to the role of mean stress in enlarging the voids
in the GTN model. More interestingly, their results
can be characterized by the extent of the damage
zone; in the limit of large-scale damage (LSD), the
fracture strain will be considerably larger than that
of small-scale damage (SSD). Note that the GTN
model has no length scale, so the extent of the
damage zone depends on the notch geometry and
the ratio r1=rY, but the fracture energy shows mesh
size dependence.

These prior understandings in Figs. 1, 2, 3 and 4
lay the foundation to understand the notch effects in
BMGs. Loosely speaking, the shear-band-induced

failure resembles the bridged crack in mode II, and
the cavitation failure in BMGs shares the essential
stress triaxiality dependence of the GTN model.
However, these two processes are much more
complicated than the simple models shown in
Figs. 1 and 3; For example, multiple shear bands
can emanate from the notches, and the pressure
dependence of shear band initiation has several
origins on the atomistic scale, which is still under
debate even after extensive atomistic simulations.
We first review several sets of experiments, then
compare various interpretations in literature, but
based rather on our perspective through the inter-
pretations shown in Figs. 1, 2, 3 and 4.

NOTCH BRITTLENESS VERSUS INVERSE
NOTCH EFFECTS IN BMGS

For a notched bar with initial diameter W,
reduced diameter L, and notch radius a, similar to
the drawing in Fig. 1, the Bridgman solution relates
the stress triaxiality T (i.e., the ratio of the mean
stress to the effective Mises stress) to the geometric
features of the notch by

T ¼ rm

re
¼ 1

3
þ ln

L

4a
þ 1

� �
; ð5Þ

which is based on the fully plastic analysis from a
Mises solid. Assembling a number of literature
works11–19 and following the representation in Pan
et al.16,17 Figure 5 shows distinctive findings,
including notch sensitivity (i.e., notches will reduce
the strength, so-called notch brittleness) and
inverse notch effect (i.e., notches will increase the
strength, and the failure mode changes from shear
bands to cavitation).

In one of the earliest experimental works, Flores
and Dauskardt12 found the classic notch brittleness
in BMGs (i.e., the downward trend in Fig. 4). The
fracture strength in their Zr-based BMGs reduced
from 2.4 GPa to 1.5 GPa with increase of the stress

Effective strain at fracture

Stress triaxiality

uniaxial=1/3
Small-scale 
damage

Large-scale 
damage

Fig. 4. The dependence of fracture strain on stress triaxiality in
notched bars, schematically showing the numerical results from
Needleman and Tvergaard10 Similar to the SSB–LSB competition, the
extent of the damage zone as compared with the notch root radius or
other geometric features can significantly change the failure strain.

Stress triaxiality (or L/a)

Normalized strength

1

Inverse notch 
effect

Notch brittle

Fig. 5. Notch sensitivity in BMGs, showing both the conventional
notch brittleness and the inverse notch effect, schematically showing
the experimental results from Pan et al.16,17.

Remarks on the Notch Sensitivity of Bulk Metallic Glasses 879



triaxiality. As they did not find cavitation failure,
the mechanism in Fig. 3 is not applicable. Their
interpretation invokes a modification to Spaepen’s
free volume model.

In Spaepen’s model,20,21 the plastic strain rate is
related to the stress-biased jumps of atoms, which is
facilitated by the excess free volume,

@epij
@t

¼ t exp �DGm

kBT

� �
exp � av�

vf

� �
sinh

reX
2kBT

� �
sij
re

;

ð6Þ
where t is the vibration frequency, DGm is the
intrinsic activation barrier for an atom to jump into
a nearby vacancy, kB is the Boltzmann constant, vf

is the free volume, re is the Mises stress, and sij is
the deviatoric stress tensor that generalizes Spae-
pen’s original one-dimensional model to a multiaxial
stress state. The free volume is treated as a state
variable in the constitutive model, and its evolution
is specified by

@vf
@t

¼ v�t exp �DGm

kBT

� �
exp � av�

vf

� �

� 2akBT

vfCeff
cosh

reX
2kBT

� �
� 1

� �
� 1

nD

� �
;

ð7Þ

in which the creation of free volume is treated as an
Eshelby inclusion problem with effective modulus
Ceff , and the annihilation of free volume is via a
diffusional process after a few jumps (nD usually
being taken as an integer of 3 to 5). Neither Eqs. 6
nor 7 depends on the hydrostatic stress, so the shear
bands are not affected by the high stress triaxiality
in notched samples.

Flores and Dauskardt12 introduced a modification
to Eq. 7 by considering the hydrostatic expansion of
free volume,

vf ;initial ¼ vf ;0 1 þ rm

B

� 	
; ð8Þ

where B is the bulk modulus. As the mean stress
depends on the notch geometric factor, L=a, through
Eq. 5, the increase of initial free volume in Eq. 8
promotes the occurrence of strain localization in the
constitutive model in Eqs. 6 and 7. While the
prediction agrees nicely with their experimental
findings, this approach suffers the shortcoming that
these constitutive parameters and the free volume
are not easily measurable and also cannot be
calibrated from atomistic simulations. Regardless
of the atomistic details, the way of introducing the
mean stress into the constative law should be
constrained by the tensor mechanics and thermo-
dynamics for dissipative processes, which have been
extensively discussed by Chen et al.22,23 These
works specify the general forms for incorporating
the mean stress into the yield surface and flow
direction, and can be further generalized to include
thermal transport.3

To rationalize their finding of inverse notch
effects, Pan et al.15–17 invoked two mechanisms,
viz. (1) competition between the cavitation strength,
rc, and shear band failure strength, rs, and (2)
relaxation of free volume by the mean stress, which
delays shear band failure. The former mechanism
appears to resemble the GTN model in Fig. 3, but
the micromechanical processes are radically differ-
ent, since the void growth in the GTN model is
through Mises plastic deformation. Additionally,
experimental validation of homogeneous cavity
nucleation in BMGs is extremely challenging, and
only heterogeneous nucleation in shear bands has
been observed. Nevertheless, an upper bound on the
ratio rc=rs has been derived by Wei.24 The latter
mechanism involves a very different modification to
the Spaepen model than that shown in Eq. 8. The
diffusional process, as described by the term with
nD, is now replaced by the stress-biased diffusion
coefficient, given by

@vf

dt






annihilation

/ exp �DGm � rmV

kBT

� �
ð9Þ

where V is the activation volume. Consequently,
notches introduce a large mean stress, which facil-
itates free volume annihilation, so that the shear
band initiation obtained from the constitutive model
in Eqs. 6 and 7 will be delayed. This is opposite to
the prediction of Eq. 8.

The models presented above in Eqs. 8 and 9 lack
predictive capability, because the expected mecha-
nisms are very difficult to verify or calibrate using
atomistic studies. Recent work by Lei et al.25 com-
bined experimental studies and continuum and
atomistic simulations, quantitatively determining
for the first time the competition between shear
failure and normal mode fracture. This paves the
way for further development of constitutive studies
of this transition. Specifically, a constitutive law
needs to couple the evolution of one or many state
variables, describing structural order (such as free
volume) and extent of damage (such as void frac-
tion), which will predict the simultaneous processes
of strain localization and damage.

SYNERGISTIC EFFECTS FROM VARIOUS
MECHANISMS

As the deformation behavior in BMGs is governed
by strain localization into shear bands, we need to
incorporate two more mechanisms. First, under
uniaxial loading conditions, BMGs fail catastroph-
ically immediately after shear band initiation
because of the lack of geometric constraints of the
major shear band. Referring to Fig. 6, if the notched
segment is too tall, the entire sample will fail, as in
uniaxial tests of plates or bars. On the other hand, if
the height of the notched segment is low, multiple
shear bands will emanate from the notch roots, thus
reducing the effective shear strain on each shear
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band and delaying the evolution from shear banding
to shear failure. The extent of these shear bands can
be roughly estimated from the plastic zone size,
calculated by using the Mises or Drucker–Prager
plasticity model. Large-scale yielding is preferable,
since the plastic zone can then grow away from
notches, albeit limited by other boundary condi-
tions. Second, the transition from shear bands to
cavitation failure in Pan et al.16,17 should not be a
sharp one. Shear band initiation certainly relaxes
the stress concentration and thus delays the com-
plete transition to cavitation failure. Under these
circumstances, the weak zones (which are shear
bands in our case) will relieve the stress concentra-
tion along the cavitation plane and thus delay this
ductile fracture, as noticed in the competition
between decohesion and dislocation emission26 and
in continuum plasticity simulations.27 The same
idea has been used in composite mechanics. In
Fig. 1, one can introduce various weak zones near
the notches or cracks, so that LSB is more likely to
occur and the composite will have higher toughness
due to the additional energy dissipation into these
weak zones.

UNIFIED PERSPECTIVE ON NOTCH
EFFECTS

Summarizing the above discussions on notch
experiments in composites, conventional metallic
materials, and BMGs, the following unified per-
spective can be developed:

1. Notch brittleness versus notch ductileness can
be tuned via the crack-bridging characteristics,
as in composite mechanics. SSB makes it brittle,
while LSB makes it ductile. For BMGs, this can
be done by:

(a) Emanating multiple shear bands from
notch roots and extending these shear
bands away from notches

(b) Identifying the relevant strength and sep-
aration parameters, i.e., r0 and d0, upon
treating the cavitation fracture as a cohe-
sive interface model

2. Notch brittleness versus notch ductileness can
be tuned from the extent of damage zone as in
the GTN model for conventional metals and
alloys. SSY or SSD makes it brittle, while LSY
or LSD makes it ductile. For BMGs, this can be
done by

(a) Estimating the plastic zone from a contin-
uum Mises or Drucker–Prager model

(b) Developing a GTN-type void model for
BMGs (which appears to be feasible from
recent atomistic simulations, but with con-
fusion arising from the locations of void
nucleation)

3. The notch sensitivity of BMGs depends on a
number of atomistic processes, on which con-
sensus has not been reached, including:

(a) The role of stress triaxiality in the flow
equation (for _epij) and evolution equation (for
the state variable, e.g., free volume)

(b) The role of stress triaxiality in the growth
of cavities.

4. The notch sensitivity of BMGs depends on how
microscopically shear bands are arranged, lead-
ing to:

(a) Stress redistribution and strain reduction
on multiple shear bands

(b) The delay of cohesive fracture or cavitation
from the shear bands

5. The failure process in BMGs should be modeled
based on some microscopic processes of damage
initiation and evolution, while unit events such
as void growth should be simulated using
atomistic models. This remains elusive, but
BMG notch experiments can provide both in-
sight and validation examples.
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