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An as-cast high-entropy alloy with remarkable
mechanical properties strengthened by
nanometer precipitates

Gang Qin,a Ruirun Chen, *a Peter K. Liaw,b Yanfei Gao,b Liang Wang,a Yanqing Su,a

Hongsheng Ding,a Jingjie Guoa and Xiaoqing Lic

High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of

forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths

similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel

equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting. We observe that this HEA has excel-

lent mechanical properties, i.e., a yield strength of 458 MPa, and an ultimate tensile strength of 742 MPa

with an elongation of 40%. Many nanometer precipitates (5–50 nm in size) and domains (5–10 nm in

size) are found in the inter-dendrite and dendrite zones of the produced HEA, which is the key factor for

its excellent mechanical properties. The enthalpy of mixing between Cu and Mn, Cr, Co, or Ni is higher

than those of mixing between any two of Cr, Co, Ni and Mn, which leads to the separation of Cu from the

CoCrCuMnNi HEA. Furthermore, we reveal the nanoscale-precipitate-phase-forming mechanism in the

proposed HEA.

Introduction

High-entropy alloys (HEAs) composed of more than four mul-
tiple principal elements have attracted significant research
interest owing to their appealing properties,1–23 since they
were first reported in 2004.24,25 Although the principal
elements in the HEAs have different crystal structures, often
HEAs exhibit simple solid-solution phases, i.e., body-centered-
cubic (BCC), face-centered-cubic (FCC), and hexagonal-close-
packed structures. The concept of HEAs has seen a significant
development in the field of alloy design, and it opens up a
door to explore new high-performance materials.

To find high-performance HEAs, many investigations on
the magnetic properties, and mechanical properties at
different temperatures, and microstructures of HEAs were
carried out.1,3,6,26–31 So far, some HEAs with remarkable
mechanical performances were designed.1,3,6,26,32–49 For
example, a metastable dual-phase HEA that exhibits an excel-
lent strength-ductility combination due to the transformation-

induced plasticity effects was proposed by Li et al.26 Gludovatz
et al. discovered that the five-element high-entropy alloy,
CrMnFeCoNi,49 has exceptional damage tolerance, and its
tensile strength and fracture toughness are above 1 GPa and
200 MPa·m1/2, respectively, at a cryogenic temperature.49 They
found that the main factor for the enhanced properties at cryo-
genic temperatures is the formation of the deformation nano-
twinning.49 Yang et al. proposed a HEA with a tensile strength
of 1.5 GPa and a tensile strain of 50% at ambient temperature
by introducing high-density intermetallic nanoparticles.32

Fu et al. designed an FCC single-phase nano-crystalline
Co25Ni25Fe25Al7.5Cu17.5 HEA.37 The bulk HEA has an ultra-high
compressive yield strength, which is higher than that of any
FCC HEA reported in the previous literature.37 They claimed
that grain-boundary strengthening and dislocation strengthen-
ing are principally responsible for the measured ultra-high
strength of the HEA.37

3d Transition metals (e.g., Mn, Fe, Co, Cr, Ni, and Cu)
were frequently used to form alloy systems in the field of
HEAs. According to the principle of permutation and
combination, six kinds of equi-molar HEAs that contain five
principal elements can be formed with these elements, for
example, CoCrCuFeNi,38,39 CoCrFeMnNi,40,41 CoCuFeMnNi,42

CrCuFeMnNi,33 and CoCrCuFeMn.44 These five HEAs have
been studied in recent years.38–44 However, no information on
the CoCrCuMnNi HEA is obtained. Furthermore, the reported
HEAs with good ductility and high strength were usually
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treated by rolling, heat treatment, and so on,1,3,6,26,32–37,49

whereas HEAs prepared by direct casting rarely possess a good
combination of high strength and large elongation. Here, to
fill these gaps, we proposed the CoCrCuMnNi HEA that was
obtained by vacuum arc melting. The phase composition,
microstructure, and mechanical behavior of the equimolar
CoCrCuMnNi HEA were studied. Moreover, the solid-solution
strengthening was estimated to analyze the strengthening
mechanisms in the proposed HEA. Finally, an atomic-diffusion
model was used to describe the phase-forming process.

Experimental

An equi-atomic ratio CoCrCuMnNi HEA was prepared using an
arc-melting technology in a high-purity argon atmosphere
state. Metals with purity higher than 99 weight percent (wt%)
were selected as raw materials. For improving the chemical
homogeneity, the ingot was melted seven times. The phase
structure of the HEA was identified by X-ray diffraction (XRD)
using Cu Kα radiation (MXP21VAHF) from 20 to 100 degrees in
2θ at a scanning rate of 4 degrees per min. The microstructure
of the specimen was characterized by scanning-electron
microscopy (SEM) and transmission electron microscopy
(TEM). The elemental distribution was determined by using an
energy-dispersive spectrometer (EDS). For observing the micro-
structure, samples were ground and electro-polished (under a
room-temperature condition, with an applied voltage of 27 V,
the time is 15 s, and the electrolyte is a mixture of 90% acetic
and 10% perchloric acid). Flat specimens (1 mm in thickness,
10 mm in the gauge length, and 2 mm in width) were used for
tensile testing with an AG-X 20 kN electronic universal
material testing machine at room temperature. The strain
rate is 0.6 mm min−1. The strain was measured using an
extensometer.

Results

The tensile engineering stress–strain curve of the proposed
CoCrCuMnNi HEA is presented in Fig. 1a. The obtained
tensile yield and ultimate tensile strengths are about 458 MPa
and 742 MPa, respectively, and the corresponding elongation
is about 40%. To emphasize the substantial improvement in
the mechanical properties of our proposed HEA, we compare
our obtained results to those of some classical
HEAs,7,15,16,19,21,22,26,45–52,77–81 as shown in Fig. 1b–d. The
corresponding values are listed in Table 1. It is evident that
the CoCrCuMnNi HEA with an FCC structure possesses a good
combination of strength and ductility, relative to other HEAs.
It has a similar mechanical response to the single-phase
Fe20Mn20Ni20Co20Cr20 HEA (grain-refined)49 and the dual-
phase Fe50Mn30Co10Cr10 HEA (as-homogenized),26 the two
most successful HEAs to date.26,49

The XRD pattern of the CoCrCuMnNi HEA is presented in
Fig. 2. Only two similar diffraction peaks are observed, which
correspond to the FCC crystal structure. The reflection angles

of the two peaks are similar, implying that they have a similar
crystal structure. Moreover, the elemental distribution between
the dendritic and inter-dendritic areas was inspected by EDS.

Fig. 1 Mechanical properties of the CoCrCuMnNi high-entropy alloy.
(a) Tensile engineering stress–strain curves of the as-cast CoCrCuMnNi
HEA. (b) Mechanical properties for different HEAs.26,45–52 (c) The ulti-
mate tensile strength and elongation for the CoCrCuMnNi HEA and
other HEAs. (d) The tensile yield strength and elongation for the
CoCrCuMnNi HEA and other HEAs.7,15,16,19,21,22,26,45–52,77–81 The proces-
sing and heat-treatment conditions of these HEAs are shown in Table 1.
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It shows that the dendritic segregation areas are rich in Co and
Cr, while inter-dendritic segregation areas are rich in Cu and
Mn. The distribution of Ni is essentially identical. The skewing
of the diffraction peaks could be caused by different lattice
constants resulting from various elemental distributions
between FCC1 and FCC2 structures.

Fig. 3a displays the SEM images of the CoCrCuMnNi
HEA. It was found that the produced CoCrCuMnNi HEA has
a typical dendrite crystal structure. Fig. 3b shows an image
of the dendrite and inter-dendrite zones. Some plate-
strip precipitates were observed in the inter-dendrite zone.
Fig. 3c shows an image of the inter-dendrite zone with a
high magnification. A mass of nanometer precipitates was
found in the inter-dendrite zone. An image of the dendrite

zone with high magnification is presented in Fig. 3d. In the
dendrite zone, many nanometer precipitates were also
observed.

For identifying the compositions of FCC1 and FCC2, EDS
was applied in the HEA sample, and the results are shown in
Fig. 4. It shows that the dendrite region is enriched with Cr
and Co, and the inter-dendrite region is enriched with Cu.

To observe the nanostructure more clearly, the sample
was analyzed by TEM. As shown in Fig. 5a, some nanometer-
scale plate-strip precipitates (5–50 nm in size) were clearly
observed. The interface between the matrix and precipitate
is presented in Fig. 5b. Fig. 5c and d indicate that some
nanometer precipitates (5–50 nm in size) were formed in
this HEA. Fig. 5e shows the high-resolution TEM image for
the dendrite zone. In the inter-dendrite zone, many nano-
scale domains (5–10 nm in size) were observed. The
selected-area diffraction (SAD) patterns are displayed in
Fig. 5f. It shows that the dendrite has an FCC structure.
Furthermore, the elemental-distribution maps of the nano-
meter precipitates show that these nanometer precipitates
are Cu-rich, as shown in Fig. 6. Fig. 5g and h present the
nanometer precipitates and their corresponding selected-
area diffraction (SAD), which indicates that the nanometer
precipitates possess an FCC structure. Fig. 5i presents the
high resolution transmission electron microscopy (HRTEM)
image of this HEA. It shows that the matrix and precipitates
have a coherent relation at the interface. Fig. 5j and k
present the HRTEM image of the nanometer precipitate and
matrix, respectively. The lattice misfit ε between the matrix
and nano-precipitate was estimated to be ∼0.22% using the
equation ε = 2|d1 − d2|/(d1 + d2). Here d1 and d2 determined
from the HRTEM micrographs are the interatomic distances

Table 1 Tensile mechanical properties of different HEAs7,15,16,19,21,22,26,45–52,77–81

HEA
Yield strength
(MPa)

Ultimate tensile
strength (MPa)

Elongation
(%) Condition

CoCrCuMnNi (this paper) 458 742 40 Casting
CoCrFeMnNi48 209 496 61 Casting
CrCoFeNi46,47 155 472 58.9 Casting
Fe40Mn40Co10Cr10

45 240 489 58 Casting
CoCrFeMnNi (grain refined)49 400 750 57 Forging ∼6 μm grains
Fe50Mn30Co10Cr10 (as-homogenized)26 210 700 45 Homogenized at 1200 °C for 2 h
Ni45(FeCoCr)40(AlTi)15

19 811 1009 10 Casting
Fe0.4Cr0.4NiMnCu15 438 884 23 Casting
(FeCoNiCrMn)89Al11

48 1180 1174 8 Casting
CoCrFeNiNb0.155

47 321 744 21 Casting
CoCrFeNiMo0.3

46 (after annealing) 900 1200 19 Annealed at 500 °C for 4 h
AlCoCrFeNi2.2

16 545 1100 20 Casting
Fe20Co20Ni41Al19

50 577 1103 18.7 Casting
AlCoCrFeNi2.1

51 620 1155 20 Casting
Co9Cr7Cu36Mn25Ni23

52 401 700 36 Casting
AlCoCrFeNi2.1

7 75 994 25.6 Casting
AlCoCrFeNi2.1

7 275 1265 10.4 Cold rolling
CoCrFeMnNi21 888 1250 30 Forging and rolling ∼6 μm grains
CoCrFeNi-3C22 335 790 40 Casting
(CrCoNi)99.2Ti0.4C0.4

77 300 620 60 Casting
Al0.3CoCrFeNi

78 180 420 62 Annealed at heat treatment 1250 °C for 2 h
CoCrNi79 100 450 38 Casting
FeCoCrNiMn-1.3C80 500 800 30 Casting
Co10Cu20Mn30Ni40

81 457 772 35 Annealed at 1250 °C for 10 min

Fig. 2 XRD patterns of the CoCrCuMnNi high-entropy alloy.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 3965–3976 | 3967

Pu
bl

is
he

d 
on

 0
6 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
en

ne
ss

ee
 a

t K
no

xv
ill

e 
on

 2
/1

4/
20

20
 3

:3
6:

47
 P

M
. 

View Article Online

https://doi.org/10.1039/c9nr08338c


of {112} planes for the nano-precipitate and the matrix (see
Fig. 5j and k), respectively.

Discussion

So far, some physical parameters were reported to discuss the
phase formation and structural stability in HEAs,50–64 such
as the melting point Tm,

3,53 valence electron concentration
(VEC),3,55,56 atomic-size difference δ,3,53,57 entropy of mixing,
ΔSmix,

3,57 Ω (the ratio of ΔSmix to ΔHmix)
3,53,57,62,63, and

enthalpy of mixing, ΔHmix.
3,54,57,62,63 In the present work, the

δ, Ω, and VEC of our present HEA were investigated.
δ can be obtained by eqn (1)3,53,57,62,63

δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

ci 1� riPn
i¼1

ðciriÞ

0
BB@

1
CCA

2
vuuuuut ; ð1Þ

where ci and ri represent the atomic percentage and the atomic
radius of the ith component, respectively. Based on eqn (1),
the calculated δ of the CoCrCuMnNi HEA is 4.3%.

Ω can be derived by eqn (2)–(5)3,53,54,57,62,63

Ω ¼ TmΔSmix

ΔHmixj j ð2Þ

Tm ¼
Xn
i¼1

ðciðTmÞiÞ ð3Þ

ΔSmix ¼ �R
Xn
i¼1

ðci ln ciÞ ð4Þ

ΔHmix ¼
Xn
i¼1

Ωijcicj i=j ð5Þ

The number of component elements is represented by n.
(Tm)i is the melting point of the ith constituent element, the
universal gas constant, R, is 8.314 kJ−1 mol−1, Ωij usually

Fig. 3 SEM micrographs of the CoCrCuMnNi high-entropy alloy. (a) Image of the CoCrCuMnNi HEA. (b) Images of the dendrite and inter-dendrite
zones. (c) Image of the inter-dendrite zone. (d) Image of the dendrite zone.

Fig. 4 EDS results of the dendrite (marked A) and inter-dendrite region
(marked B).
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equals 4 ΔHmix
ij , and ΔHmix

ij represents the enthalpy of mixing
between the ith and jth component elements. The values of
ΔHmix

ij are displayed in Table 2.3,54 Based on eqn (2)–(5), the
obtained Tm, ΔSmix, ΔHmix, and Ω of the CoCrCuMnNi HEA
are 1706.5 K, 13.38 kJ−1 mol−1, 0.64 kJ mol−1, and 35.68,
respectively.

Previously, it was suggested that a stable solid-solution
phase is formed in multi-component HEA systems54 when
Ω ≥ 1.1 and δ ≤ 6.6%. Based on our calculated data, the
CoCrCuMnNi HEA should form a stable solid-solution phase.
However, two similar phases were observed in this HEA by
XRD and SEM. Although the two phases possess an FCC struc-
ture, their elemental compositions are different. This phenom-
enon is caused by solute segregation.

VEC is described as55,56,56,57

VEC ¼
Xn
i¼1

ciðVECÞi ð6Þ

where ci and n are the atomic percentage of the ith component
element and the number of component elements, respectively.
The VEC of the ith component element is denoted by (VEC)i.
Based on eqn (6), the calculated VEC of the CoCrCuMnNi HEA
is 8.2.

It was reported that a single FCC solid-solution phase
should be formed with the VEC ≥ 8.55,57 Both the FCC and
BCC phases coexist55,56 when 6.87 ≤ VEC < 8. A single BCC
phase is presented when VEC < 6.87.55,56 Alloys with a VEC
between 6.88 and 7.84 are prone to the σ-phase formation
either in the as-cast state or during aging at suitable
temperatures.58,59 The CoCrCuMnNi HEA, prepared by arc
melting in the present work, satisfies the condition for
forming a stable single FCC solid-solution structure based on
the calculated data. However, the experimental results show
that the CoCrCuMnNi HEA contains two similar FCC struc-
tures, which could be caused by the lattice-distortion differ-
ence produced by elemental segregation.

Based on the analysis results of TEM and EDS, the forming
process of nanometer precipitates was established, as shown
in Fig. 7. As the temperature decreases, the dendrites grow
gradually, as presented in Fig. 7a and b. Fig. 7c shows that
many nanometer precipitates are generated in the inter-den-
drite zone. Fig. 7d shows that many nanometer precipitates
are generated in the dendrite zone.

Three factors contribute to the formation of the nano-pre-
cipitates. Firstly, the atomic-diffusion velocity is reduced due
to the sluggish diffusion effect in the HEA when a variety of
elements are mixed together, which lowers the grain-growth
speed, and provides time for nucleation. Secondly, the exces-
sive Cu atoms gather in the inter-dendrite zone, which makes
it easier for the segregation of Cu as cores with decreasing the
temperature. This trend also promotes the formation of nano-
meter precipitates. Thirdly, as shown in Fig. 8, the ΔHmix

between Cu and Co, Cr, Mn, or Ni in the CoCrCuMnNi HEA is
higher than that between any two of Co, Cr, Mn, and Ni
elements, which leads to the separation of Cu from the

Fig. 5 TEM images of the CoCrCuMnNi high-entropy alloy. (a) Plate-
strip precipitates in the HEA. (b) High-resolution TEM image showing the
plate-strip precipitates. (c and d) Nanometer precipitates in the HEA. (e)
High-resolution TEM image of the dendrite zone. (f ) The corresponding
selected-area diffraction (SAD) pattern for c. (g) Nanometer precipitates
in the HEA. (h) The corresponding SAD pattern for g. (i) High-Resolution
Transmission Electron Microscopy (HRTEM) image of this HEA, showing
the details between the matrix and nano-precipitate interface. ( j and k)
HRTEM image of the nanometer precipitate and matrix.
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CoCrCuMnNi HEA, forming precipitates. It is difficult for the
precipitates to increase in size due to the sluggish diffusion
effect. Hence, the nanometer precipitates are formed.

In order to describe the formation process of nanometer
precipitates in more detail, an atomic-diffusion model is pro-
posed. As shown in Fig. 9a, Co, Cr, Cu, Mn, and Ni are mixed

together when the alloy is in the liquid state. As the tempera-
ture decreases, the Cr, Co, Ni, and Mn are separated out,
which is due to their higher melting point than that of Cu (see
Fig. 9b). Then, a part of the Cu atoms dissolves in the
CoCrMnNi matrix, forming the FCC1 (Co and Cr rich) phase. A
part of the Cr, Co, Ni, and Mn atoms dissolve in the Cu matrix,

Fig. 6 Elemental distributions of the plate-strip precipitates in the CoCrCuMnNi HEA.
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forming the FCC2 (Cu rich) phase (see Fig. 9c). Furthermore,
some Cr, Co, Ni, and Mn atoms are separated out from the (Cr,
Co, Ni and Mn)-supersaturated solid solution, while the rest of
the Cu atoms are separated out from the Cu-supersaturated
solid-solution, forming precipitates (see Fig. 9d).

The basic reinforcement mechanism for materials contains
solid-solution strengthening,65–69 strain hardening,26,69 phase-
transformation strengthening,26,70,71 fine-grain strengthen-
ing,6,21 and second-phase strengthening.26,65–69 The second-
phase strengthening and solid-solution strengthening are ana-
lyzed in our as-cast CoCrCuMnNi HEA. Our proposed HEA
(CoCrCuMnNi) contains five elements with very different
atomic radii, which will cause a larger lattice distortion and
contribute to the solid-solution strengthening. Furthermore,
in our HEA (CoCrCuMnNi), a large amount of nanometer-pre-
cipitates and domains were observed, which hinders the dis-
location movement and further contributes to the improve-
ment of strength.

To evaluate the solid-solution-strengthening effect on our
proposed HEA, we investigated the Labusch-strengthening
factor proposed by Wu et al.72,73 To compare the solid-solu-
tion-strengthening effects, we calculated the Labusch-strength-
ening factors, (LCoCrMnNi→CoCrFeMnNi and LCoCrMnNi→CoCrCuMnNi)

for the CoCrFeMnNi and CoCrCuMnNi HEAs, respectively, by
eqn (7)

LM!N ¼ μN
XN

i¼Mþ1

ηi

1þ 1
2
ηi

0
B@

1
CA

2

þα2δi
2

2
64

3
75xi

8><
>:

9>=
>;

2
3

; ð7Þ

where μN is the shear modulus of the N-element alloy, xi is the
molar fraction of the ith element, and α is a dimensionless
parameter.72,73 ηi and δi are the modulus and lattice mis-
matches, and they can be obtained by

ηi ¼
1
μ

dμi
dxi

; δi ¼ 1
a
dai
dxi

; ð8Þ

Fig. 7 Schematic diagram of the nanometer-precipitate-forming process.

Table 2 Enthalpy of mixing (ΔHmix
ij , kJ mol−1) in binary equi-atomic

alloys

Element (atomic radius, nm) Co Cr Cu Mn Ni

Co (0.1251) — −4 6 −5 0
Cr (0.1249) −4 — 12 2 −7
Cu (0.1278) 6 12 — 4 4
Mn (0.1350) −5 2 4 — −8
Ni (0.1246) 0 −7 4 −8 —

Fig. 8 ΔHmix (enthalpy of mixing) between any two elements in the
CoCrCuMnNi HEA.
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where a(μ) and ai(μi) are the lattice constants (shear modulus)
of the alloy and the solute element, respectively.

Assuming a linear relationship between the lattice con-
stants and shear moduli of equiatomic alloys and their
constituent elements, aCu and μCu can be derived from
eqn (9)–(12)

4
5
aCoCrMnNi þ 1

5
aCu

� �
¼ aCoCrCuMnNi ð9Þ

4
5
μCoCrMnNi þ

1
5
μCu

� �
¼ μCoCrCuMnNi ð10Þ

4
5
aCoCrMnNi þ 1

5
aFe

� �
¼ aCoCrFeMnNi ð11Þ

4
5
μCoCrMnNi þ

1
5
μFe

� �
¼ μCoCrFeMnNi: ð12Þ

where aCoCrCuMnNi and μCoCrCuMnNi were obtained from the
XRD and tensile test; aCoCrFeMnNi, μCoCrFeMnNi, aFe and μFe were
adopted from the previous study.72,73

Based on eqn (8), ηCu, δCu, ηFe and δFe can be derived from
eqn (13)–(16)

ηCu ¼ μCu � μCoCrCuMnNi

1� xCuð ÞμCoCrCuMnNi
ð13Þ

δCu ¼ aCu � aCoCrCuMnNi

1� xCuð ÞaCoCrCuMnNi
ð14Þ

ηFe ¼
μFe � μCoCrFeMnNi

1� xFeð ÞμCoCrFeMnNi
ð15Þ

δFe ¼ aFe � aCoCrFeMnNi

1� xFeð ÞaCoCrFeMnNi
: ð16Þ

Using the obtained data, the Labusch-strengthening factors
of LCoCrMnNi→CoCrFeMnNi (from CoCrMnNi to CoCrMnNi + Fe)
and LCoCrMnNi→CoCrCuMnNi (CoCrMnNi to CoCrMnNi + Cu) were
calculated to be 6.29 and 7.9, respectively, based on eqn (7).
This result indicates that Cu has a higher solid-solution
strengthening effect than Fe on CoCrMnNi.

In order to conduct the quantitative analysis of the solid-
solution strengthening by introducing Cu, we evaluated the
solid-solution strength by a conventional formula74,75

Δσs ¼
MGC

1
2

εG
1þ 0:5 εGj j � 3εa

����
����
3
2

700
: ð17Þ

Here C and G are the concentration and shear modulus of
solute elements, respectively. M76 is the Taylor factor, which is
3.06. We treated the CoCrCuMnNi HEA as a pseudo-binary
alloy, X0.8Cu0.2 (X denotes the CoCrMnNi HEA). Using the
above obtained εG, ηCu, εa, and δCu, the obtained value of Δσs
is 39 MPa by adding Cu into the CoCrMnNi HEA. Using the
same method, the calculated value of Δσs is 10 MPa by adding
Fe into the CoCrMnNi HEA. These results further demonstrate
that the introduction of Cu has a higher solid-solution-

Fig. 9 Atomic-diffusion model for the forming process of nanometer precipitates.
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strengthening effect on CoCrMnNi than adding Fe. Moreover,
this result implies that the appearance of the nanometer-
precipitates and domains is the main strengthening mecha-
nism for the CoCrCuMnNi HEA that has a yield strength of
458 MPa.

To summarize, we designed and prepared the CoCrCuMnNi
HEA, which possesses a good comprehensive mechanical per-
formance, i.e., a yield strength of 458 MPa, and an ultimate
tensile strength of 742 MPa with an elongation of 40%. We
observed a large amount of nanometer precipitates (5–50 nm
in size) and domains (5–10 nm in size) are generated in the
CoCrCuMnNi HEA. The calculated results of the enthalpy of
mixing show that Cu and Co, Cr, Mn, or Ni has a higher
enthalpy of mixing, which promotes the separation of Cu-rich
precipitates. It is difficult for the Cu-rich precipitates to grow
because of the sluggish diffusion effect. Hence, the nanometer
precipitates are formed. We compare the Labusch-strengthen-
ing factors (LCoCrMnNi→CoCrFeMnNi and LCoCrMnNi→CoCrCuMnNi) for
the CoCrFeMnNi and CoCrCuMnNi HEAs; this shows that Cu
has a higher solid-solution strengthening effect than Fe on
CoCrMnNi. We obtained the additional value of solid-solution
strengthening produced by adding Cu, which is much smaller
than the measurements obtained by the tension test. This
trend indicates that nanometer-precipitate strengthening has a
greater effect than the solid-solution-strengthening mechanism.

Conclusions

It should be emphasized that we have not only developed a
CoCrCuMnNi HEA in the current work, but our study also
sheds light on developing HEAs with remarkable mechanical
properties. Furthermore, some main conclusions are drawn.

1. The CoCrCuMnNi HEA is composed of two FCC phases.
A large amount of nanometer precipitates (5–50 nm in size)
and domains (5–10 nm in size) are found in the inter-dendrite
and dendrite zones.

2. This CoCrCuMnNi HEA prepared by vacuum arc melting
exhibits excellent mechanical properties. The obtained
tensile yield and the ultimate tensile strengths are about
458 MPa and 742 MPa, respectively, and the corresponding
elongation is approximately 40%. This HEA has a mechanical
response almost identical to those of the single-phase
Fe20Mn20Ni20Co20Cr20 HEA (grain-refined) and the dual-phase
Fe50Mn30Co10Cr10 HEA (as-homogenized), the two most suc-
cessful HEAs to date.

3. The enthalpy of mixing between Cu and Co, Cr, Mn, or
Ni is higher than that between any two of Cr, Co, Ni, and Mn
elements, which is the key factor for the separation of Cu from
the CoCrCuMnNi HEA.

4. The second-phase-strengthening mechanism plays an
important role in the strengthening of the CoCrCuMnNi HEA.
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