
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 1

Mapping Spiking Neural Networks to
Neuromorphic Hardware

Adarsha Balaji, Anup Das, Yuefeng Wu, Khanh Huynh, Francesco Dell’Anna, Giacomo Indiveri,
Jeffrey L. Krichmar, Nikil Dutt, Siebren Schaafsma, and Francky Catthoor

Abstract—A neuromorphic hardware implements biological
neurons and synapses to execute spiking neural network (SNN)-
based machine learning. We present SpiNeMap, a design method-
ology to map SNNs to crossbar-based neuromorphic hardware,
minimizing spike latency and energy consumption. SpiNeMap op-
erates in two steps: SpiNeCluster and SpiNePlacer. SpiNeCluster
is a heuristic-based clustering technique to partition an SNN
into clusters of synapses, where intra-cluster local synapses are
mapped within crossbars of the hardware and inter-cluster global
synapses are mapped to the shared interconnect. SpiNeCluster
minimizes the number of spikes on global synapses, which
reduces spike congestion and improves application performance.
SpiNePlacer then finds the best placement of local and global
synapses on the hardware using a meta-heuristic-based approach
to minimize energy consumption and spike latency. We evaluate
SpiNeMap using synthetic and realistic SNNs on a state-of-the-
art neuromorphic hardware. We show that SpiNeMap reduces
average energy consumption by 45% and spike latency by 21%,
compared to the best performing SNN mapping technique.

Index Terms—Spiking Neural Network (SNN), Neuromorphic
Computing, Inter-Spike Interval (ISI).

I. INTRODUCTION

NEUROMORPHIC hardware such as TrueNorth [1], Loihi
[2], and DYNAP-SE [3] can implement machine learning

tasks [4]–[6] using spiking neural networks (SNNs) [7]–[9]. A
typical neuromorphic hardware consists of artificial neurons,
which generate spikes when a neuron’s action potential ex-
ceeds a threshold, and crossbars, which store synaptic weights.

To reduce energy consumption, the size of a crossbar is
constrained, accommodating a limited number of synapses
per neuron. To build a large chip, multiple crossbars are
integrated together using a shared interconnect such as a
Networks-on-Chip (NoC) [10]. A large SNN must therefore
be partitioned into synapses that are mapped inside crossbars
(local synapses) and those that are mapped on the shared
interconnect (global synapses) of the hardware. Unfortunately,
a shared interconnect introduces latency, which distorts inter-
spike intervals (ISIs) [11]. ISI distortion affects application
performance such as latency and accuracy (see Section II).

Recent works such as [12]–[17] uses a single large crossbar
to map SNNs. In Section V, we demonstrate the limitations of
these techniques when used to map SNNs to a multi-crossbar
neuromorphic hardware such as the DYNAP-SE. Techniques
that explicitly address mapping to multi-crossbar hardware are
PACMAN [18], NEUTRAMS [19], and PSOPART [20].

Compared to PACMAN and NEUTRAMS, which minimize
crossbar usage, PSOPART minimizes the number of spikes
on the shared interconnect. This optimization strategy reduces

spike congestion and ISI distortion, which improves applica-
tion performance. Unfortunately, PSOPART does not address
the placement of local and global synapses to the physical
resources of a neuromorphic hardware. PSOPART is therefore
limited to crossbars with shared bus interconnect.

A shared bus is a fundamental latency and energy bottle-
neck for large neuromorphic hardware, those that can map
over a million synapses [21]. In recent years, many scalable
interconnects are proposed. Examples include multi-stage NoC
for TrueNorth [1] and segmented bus for DYNAP-SE [?].
For these emerging interconnects, PSOPART presents two
key limitations. First, the synapse partitioning approach of
PSOPART does not scale to large SNNs. Second, the synapse
placement problem is not addressed in PSOPART, which
contributes significantly to latency and energy consumption.

We present SpiNeMap, a comprehensive design methodol-
ogy to map SNNs to multi-crossbar neuromorphic hardware,
minimizing energy consumption and spike latency on the
shared interconnect, and improving application performance.
Contributions : Following are our novel contributions:
• SpiNeCluster: We propose a heuristic-based approach to

partition SNNs into local and global synapses, reducing
the number of spikes on the shared interconnect.

• SpiNePlacer: We propose a meta-heuristic-based ap-
proach to place local and global synapses on physical
resources of a neuromorphic hardware, reducing energy
consumption and spike latency.

• We evaluate SpiNeMap on the DYNAP-SE neuromorphic
hardware using synthetic and realistic SNNs.

• We evaluate different interconnect topologies and spike
routing algorithms for emerging neuromorphic hardware.

Table I compares our contributions against state-of-the-art
techniques. We evaluate SpiNeMap with SNN-based applica-
tions on the DYNAP-SE hardware. We show that SpiNeMap
reduces energy consumption by 45% and spike latency by 21%

compared to the best performing state-of-the-art techniques.
This paper is organized as follows. We provide back-

ground in Section II. We describe the design methodology of
SpiNeMap in Section III. We present our evaluation setup in
Section IV and results in Section V. We describe related works
in Section VI. We conclude the paper in Section VII with an
outlook on the design of future neuromorphic platforms.

II. BACKGROUND

Figure 1 illustrates the mapping of an SNN to a crossbar.
Spikes from a pre-synaptic neuron injects current into the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 2

Techniques Partitioning Placement Objective

[12]–[17] × × Maximize single crossbar utilization
NEUTRAMS [19]

√
× Minimize number of crossbars

PSOPART [20]
√

× Minimize spikes on global synapses

SpiNeMap
√ √

Minimize energy consumption and latency of

neuromorphic hardware
√

Optimized × Not optimized

TABLE I: SpiNeMap vs. state-of-the-art approaches.

Fig. 1: Mapping an SNN to a crossbar.

crossbar, which is the product of spike voltage applied (i.e.,
input activation xi) along the row with the conductance of the
synaptic element at the cross-point (i.e., synaptic weight wij).
Current summations along columns are performed in paral-
lel and implement the sums

∑
j wijxi, needed for forward

propagation of neuron excitation xi. We focus on supervised
machine learning tasks, where an SNN is first trained with
representative examples and then deployed for inference with
in-field data. Performance is measured using accuracy, which
is assessed using inter-spike intervals (ISIs) [22]–[26].

To define ISI, we consider an SNN with N neurons and
S synapses, which are excited with an input over some
finite interval of time [0, T]. Neural activities in this time
interval generate K spikes, which we organize based on their
generation time and the source neuron as

{t11, t12, · · · , t1k1
}, {t21, t22, · · · , t2k2

}, · · · , {tN1 , tN2 , · · · , tNkN
}, (1)

where tni is the time of the ith spike generated by the nth

neuron and K =
∑N

i=1 ki. The ISI of this spike train is [22]

Ini = tni − tni−1 (2)

An application-level simulator such as CARLsim [27] al-
lows extracting the precise spike times from neurons, and
calculate the ISI using Equation 2. However, such simulators
do not incorporate hardware latencies. When an SNN is
mapped to a neuromorphic hardware, ISI will be affected by
1) the fixed latency within a crossbar to propagate current
through synaptic elements and 2) the variable latency of time-
multiplexing on the shared interconnect. To incorporate these
hardware latencies, we extract spike times at the synapse-
level rather than at the neuron-level. This is because a synapse
can encounter different latencies depending on whether it is
mapped inside a crossbar (i.e., local synapse) or on the shared
interconnect (i.e., global synapse). We represent the spike
times on synapses as

{τ11 , τ12 , · · · , τ1k1
}, {τ21 , τ22 , · · · , τ2k2

}, · · · , {τS1 , τS2 , · · · , τSkS
}, (3)

where τsj is the jth spike on sth synapse and spike timings in
the set {τsj } are obtained from spike timings in the set {tni }.
The ISI of this spike train is

Isj = τsj − τsj−1 (4)

We use the notation δsj to represent the latency of the jth spike
on sth synapse. The new ISI due to these latencies is

Isj |new = τsj + δsj − τsj−1 − δsj−1 (5)

The change in ISI (called ISI distortion) is

Isj |distortion = Isj |new − Isj = δsj − δsj−1 (6)

For local synapses, which are mapped within crossbars, all
spikes have the same latency, i.e., δsj = δsj−1. So, the ISI
distortion is zero. For global synapses, different spikes of the
same synapse can have different latencies due to the varying
congestion and routing paths on the shared interconnect. These
are the synapses that contribute to ISI distortion, i.e.,

Isj |distortion =

{
0 if s is mapped inside a crossbar
δsj − δsj−1 if s is mapped on the shared interconnect

(7)
ISI distortion leads to unacceptable accuracy loss (see

Section V). By reducing the number of spikes on global
synapses, spike congestion can be lowered, which would
reduce ISI distortion and improve application performance.
This is precisely the intuition behind the optimization strategy
in PSOPART [20] and also this work. The difference is that
this work also addresses the placement problem, which further
improves the energy consumption and spike latency.

III. SPINEMAP: MAPPING SPIKING NEURAL NETWORKS
TO NEUROMORPHIC HARDWARE

A. High-Level overview and difference with state-of-the-art

Figure 2(a) illustrates the design methodology of NEU-
TRAMS [19] and PACMAN [18], consisting of three steps
– 1) training an SNN model (step 1), 2) mapping synapses to
the hardware to minimize the number of crossbars (step 2),
and 3) deploying the SNN for inference (step 3).

Figure 2(b) illustrates PSOPART [20], which minimizes the
number of spikes on the shared interconnect in step 2 using
an instance of the particle swarm optimization (PSO) [28].

Figure 2(c) illustrates the proposed SpiNeMap methodology.
SpiNeMap extracts the precise times of spikes by simulating
an SNN in CARLsim. This spike information (called spike
trace) is first used by SpiNeCluster to partition the SNN
into local and global synapses, minimizing the number of
spikes on the shared interconnect. The partitioned SNN and
the spike trace are then used in SpiNePlacer to minimize the
latency and energy consumption. Overall, the SNN Partitioning
and Placement steps jointly improve application performance,
energy consumption, and spike latency.

B. Detailed design of SNN Partitioning via SpiNeCluster

Figure 3 illustrates an SNN partitioned into three clusters
A, B, and C. The number of spikes communicated between a
pair of neurons is indicated on its synapse. We also indicate
the local synapses in black and the global ones in blue in this
figure. The number of spikes on global synapses is 8.

We introduce the following notations for SpiNeCluster. Let
G(N ,S) be an SNN with a set N of neurons, and a set
S of synapses. A synapse si,j connects neuron ni with nj .
We partition this SNN into k clusters. Let H(C, E) be the
partitioned SNN with a set C of clusters, and a set E of global

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 3

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

(a) state-of-the-art approaches (e.g., NEUTRAMS, Eyeriss, PACMAN)

(b) our previous approach PSOPART

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

ISI of
validation

data

(minimize #crossbars)

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

(b) our proposed methodology SpiNeMap

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data(minimize #crossbars)

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

(a) state-of-the-art approaches, e.g., NEUTRAMS [19]

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

(a) state-of-the-art approaches (e.g., NEUTRAMS, Eyeriss, PACMAN)

(b) our previous approach PSOPART

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

ISI of
validation

data

(minimize #crossbars)

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

(b) our proposed methodology SpiNeMap

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data(minimize #crossbars)

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

(b) our previous approach PSOPART [20]

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

(a) state-of-the-art approaches (e.g., NEUTRAMS, Eyeriss, PACMAN)

(b) our previous approach PSOPART

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

ISI of
validation

data

(minimize #crossbars)

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

(b) our proposed methodology SpiNeMap

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data(minimize #crossbars)

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware
In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

(c) our proposed design methodology SpiNeMap

Fig. 2: A high-level overview of our SpiNeMap mechanism
and its difference with state-of-the-art.

clu
ste

r A

cluster B

cluster C

global

synapse

local
synapse

local
synapse

glo
ba

l
sy

na
ps

e

global

synapse

A

B

C

(a) SNN clusters with local
and global synapse

(b) abstract representation

16

22

16

local synapse

cluster A

cluster B

cluster C

3

3

6
3

8

4
4

6

2

3

3

6
3

8

4
4

6

2

3

3

6
3

8

4
4

6

2

inter-cluster spikes = 28 # inter-cluster spikes = 22

cluster Acluster B

cluster C

3

3

6
3

8

4
4

6

2

inter-cluster spikes = 8

cluster A

cluster B

clu
ste

r C

3

3

6
3

8

4
4

6

2

cluster A

cluster B

clu
ste

r C

local
synapses

global
synapses

Fig. 3: SNN partitioned into local and global synapses.

synapses. Transforming G(N ,S) → H(C, E) is a classical
graph partitioning problem [29], and has been applied in many
contexts, including task mapping on multiprocessor systems
[30]. Graph partitioning is an NP-complete problem [31], [32];
heuristics are typically used to find solutions. PSOPART [20]
uses an instance of particle-swarm optimization (PSO) [33] to
solve this problem. However, the search space soon becomes
intractable as the size of the SNN increases. To address this
limitation, we propose an alternative greedy approach, roughly
based on the Kernighan-Lin Graph Partitioning algorithm [29],
which we show to be scalable to large SNNs.

We set k = d |N |nc
e, where nc is the average number of

neurons that can be accommodated within a crossbar. Next,
we evenly (and arbitrarily) distribute neurons to these k
clusters. Next, we iteratively swap neurons between clusters
to minimize number of spikes on global synapses.

We formalize these steps in Algorithm 1. The algorithm
applies a 2-part procedure (lines 2-17) to every cluster pair
(with a total of

(
k
2

)
iterations). In the 2-part procedure, we

first calculate the total number of inter-cluster spike (gs)
with the two clusters (line 2). Next, we select a pair of
neurons ni and nj from the two selected clusters Ci and
Cj , respectively, such that neither ni nor nj is selected in
the previous iterations (lines 4-5). We then perform three

Algorithm 1: SNN Clustering algorithm.
1 foreach Ci, Cj ∈ C do

/* iterate over all cluster pairs */
/* begin 2-part procedure */

2 gs = total spikes between Ci and Cj ;
3 while True do
4 foreach ni ∈ Ci and nj ∈ Cj do
5 if ni and nj are not previously selected then
6 Move ni to Cj and calculate gs1;
7 Move nj to Ci and calculate gs2;
8 Swap ni and nj and calculate gs3;
9 Select the option which lowers gs;

10 Return new partitions C′
i, C

′
j ;

11 end
12 end
13 gs′ = total spikes between C′

i and C′
j ;

14 if gs′ < gs then
15 gs = gs′ and break;
16 end
17 end

/* end 2-part procedure */
18 end

1,0

2,0

Fig. 4: Illustrating the impact of different placements of
clusters of a partitioned SNN on a neuromorphic hardware.

operations: (1) move ni ∈ Ci to cluster Cj (if Cj can
accommodate more neurons) (line 6), (2) move nj ∈ Cj to
cluster Ci (if Ci can accommodate more neurons) (line 7),
and (3) swap ni and nj (line 8). We calculate the number of
inter-cluster spike for each of these operations, and select the
option that generates the maximum reduction of inter-cluster
spike compared to gs (line 9). We return the new clusters (line
10). We repeat the procedure (lines 4-13) while the number
of inter-cluster spike continues to be reduced (lines 14-16).

1) Time complexity: Lines 2-17 are executed
(k
2

)
times,

with lines 4-16 executed at every iteration. Since a cluster can
accommodate nc neurons, the time complexity of Algorithm
1 is O

((k
2

)
× nc ∗ nc

)
= O

(
k2 × n2

c

)
= O

(
|N |2

)
.

C. Detailed design of SNN Placement via SpiNePlacer

Figure 4 illustrates two alternate placements of a partitioned
SNN (from SpiNeCluster) to the hardware. We show 9 cross-
bars arranged in a 3×3 mesh topology. Different placements of
clusters lead to different utilizations of interconnect segments,
which impact both energy consumption and latency. Clearly,
cluster placement problem can no longer be ignored for large
neuromorphic hardware (a common limitation of NEUTRAMS
[19], PACMAN [18], Eyeriss [34], and PSOPART [20]).

To perform design-space explorations for cluster place-
ment, we extend the Noxim [35] simulator to support 1)
simulation of spike traces from CARLsim, 2) simulation of
current and emerging interconnect topologies of neuromorphic
hardware, 3) simulation of different routing algorithms, and 4)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 4

CARLsim SpiNeCluster
(Algorithm 1)

SpiNePlacer

Noxim++

SNN-based
application
mapped to

neuromorphic
hardware

SNN-based
application

DYNAP-SE

Fig. 5: Our design methodology: SpiNeMap.

technology-specific energy and latency of interconnect wires
and switches. We call our new framework Noxim++.

Figure 5 illustrates our design methodology SpiNeMap.
Noxim++ is integrated in the SpiNePlacer and configured to
model the DYNAP-SE neuromorphic hardware [3].

To formalize the optimization problem of SpiNePlacer,
we consider the mapping of a clustered SNN H(C, E) to
the neuromorphic hardware A(V, I), where V is the set of
crossbars in the hardware and I is the set of connections of
these crossbars for a given interconnect topology.

Mapping M : H(C, E) → A(V, I) is specified by a logical
matrix (mij) ∈ {0, 1}|C|×|V|, where mij is defined as

mij =

{
1 if cluster ci ∈ C is mapped to crossbar vj ∈ V
0 otherwise

(8)

The mapping constraints are the following:
1. A cluster can be mapped to only one crossbar, i.e.,∑

j

mij = 1 ∀i (9)

2. A crossbar can accommodate at most one cluster, i.e.,∑
i

mij ≤ 1 ∀j (10)

In our design methodology, Noxim++ is used to generate
mapping that minimizes spike latency and energy consumption
on the interconnect. These are computed as follows.
• Average spike latency: This is the average delay experi-

enced by spikes on the interconnect, i.e.,

L =

Ns∑
i=1

[(hi − 1) ∗ lw + hi ∗ ls]/Ns, (11)

where hi is the number of hops a spike traverses between
the source and destination, lw is the interconnect segment
delay, and ls is the delay of the hop.

• Total energy consumption: This is the total energy con-
sumed by all spikes on the interconnect, i.e.,

E =

Ns∑
i=1

[(hi − 1) ∗ ew + hi ∗ es], (12)

where ew and es are the energy consumption on the wires
and hops, respectively.

To minimize the latency and energy consumption, we min-
imize the average number of hops that spikes communicate
before reaching their destination [36]. This is obtained using
Noxim++ for mapping Mi as Li = Noxim++(Mi) =

∑Ns
j=1 hj/Ns.

This is the fitness function of SpiNePlacer, which finds the
mapping with minimum average hop count, i.e.,

Lmin = La, where a = arg min{Noxim++(Mi)|i ∈ 1, 2, · · · }, (13)

We use an instance of PSO [28] to find the optimum
mapping. We instantiate np swarm particles. The position of
these particles are solutions to the fitness functions, and they
represent cluster mappings, i.e., M’s in Equation 13. Each
particle also has a velocity with which it moves in the search
space to find the optimum solution. During the movement, a
particle updates its position and velocity according to its own
experience (closeness to the optimum) and also experience of
its neighbors. We introduce the following notations.

D = |C| × |V| = dimensions of the search space (14)

Θ = {θl ∈ RD}np−1

l=0 = positions of particles in the swarm

V = {vl ∈ RD}np−1

l=0 = velocity of particles in the swarm

Position and velocity of swarm particles are updated, and the
fitness function is computed as

Θ(t+ 1) = Θ(t) + V(t+ 1) (15)

V(t+ 1) = V(t) + ϕ1 ·
(
Pbest −Θ(t)

)
+ ϕ2 ·

(
Gbest −Θ(t)

)
F (θl) = Ll = Noxim++(Ml)

where t is the iteration number, ϕ1, ϕ2 are constants and Pbest
(and Gbest) is the particles own (and neighbors) experience.
Finally, local and global bests are updated as

P l
best = F (θl) if F (θl) < F (P l

best)

Gbest = min
l=0,...np−1

P l
best (16)

Due to the binary formulation of the mapping problem (see
Equation 8), we need to binarize the velocity and position of
Equation 14, which we illustrate below.

V̂ = sigmoid(V) =
1

1 + e−V

Θ̂ =

{
0 if rand() < V̂

1 otherwise
(17)

In finding a new position of a PSO particle, we use the two
constraints (9) and (10).

1) PSO Algorithm: Figure 6 illustrates the PSO algorithm.
The algorithm first initializes positions of the PSO particles (8)
satisfying constraints (9) & (10). Next, the algorithm runs for
nISO iterations. At each iteration, the PSO algorithm evaluates
the fitness function (F) and updates its position based on
the local and global best positions (Equation 15), binarizing
these updates using Equation 17. The time complexity of the
PSO algorithm is therefore O(nISO × operations in each iteration),
where operations in each iteration is proportional to the PSO
dimension D = |C| × |V| and the number of particles np. The
overall time complexity is O (nISO × np × |C| × |V|).

D. Justification of SpiNeMap’s design choices

In this section, we motivate SpiNeMap’s design choices.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 5

Start

Calculate Fitness
F(𝛳t)

Equation (15)

Initialize Polulation
Equation (8)

F(𝛳t)<F(Pt
best)

Equation (16)
Retain Pbest Update Pbest

Update GbestRetain Gbest

Update Velocity (V)
Equation (15)

Update Position (𝛳)
Equation (15)

Convergence
criteria
met?

No

No

Yes

Yes

No

End
Yes

min(Pt
best)< Gbest

Equation (16)
t=0...np-1

m
u
lt

ip
le

 In
vo

ca
ti

on
s

Fig. 6: Flow chart of our PSO algorithm.

1) Minimize spike count at the partitioning stage:
SpiNeMap minimizes the number of spikes at the partitioning
stage. To motivate this optimization objective, Figure 7 plots
the latency, ISI distortion, and drop in accuracy of the hand
written digit recognition application for different mapping
strategies generating different number of spikes on the shared
interconnect. The baseline hardware is the DYNAP-SE, with
four crossbars organized in a 2x2 mesh with XY routing
algorithm. Each crossbar can accommodate 256 neurons.

We observe that as the number of spikes on the shared
interconnect increases, the latency increases, increasing the ISI
distortion. This lowers the application accuracy. We observe a
similar behavior for other applications as well.

2) Integration of Noxim++ within PSO: The average spike
hop count depends on 1) the cluster mapping M and 2)
the routing algorithm that dynamically routes spikes on the
interconnect to avoid congestion of interconnect links. Our
PSO incorporates cluster mapping in the fitness function. Due
to the dynamic nature of spike routing for congestion avoid-
ance, we need to simulate the cycle-accurate behavior of the
interconnect for every mapping with the spike trace generated
from CARLsim. This allows us to accurately compute the
hop distance that each spike traverses before reaching its
destination. This motivates our strategy to integrate Noxim++
within PSO to minimize the average hop count.

3) Using PSO only for SpiNePlacer: PSOPART uses PSO
for SNN partitioning (equivalent of SpiNeCluster). In this
work we use PSO only for SpiNePlacer and a greedy approach
for SpiNeCluster. The rationale behind this is as follows. Had
PSO been used for SpiNeCluster, the total number of dimen-
sions for each particle in the PSO would be D = |N | × |C|.
The total number of dimensions of each particle in the PSO of

1.92M 2.13M 2.27M 2.32M 2.34M
Total number of spikes on the shared interconnect

2x

4x

6x

8x

Pe
rfo

rm
an

ce

1.0
1.9

3.2

5.5
6.2

1.0
1.6

18.8 43.1
67.8

1.3

4.9

11.0 22.5 22.5
time-multiplexing latency
ISI distortion
drop in accuracy

Fig. 7: Latency, ISI distortion, and accuracy as a function
of the number of spikes on the shared interconnect for the
handwritten digit recognition example.

SpiNePlacer is D = |C| × |V|. In Table II, we compare these
dimensions for different SNN sizes, with a fixed neuromorphic
hardware (16 256-neuron crossbars).

of PSO dimensions (D) for
SNN neurons SNN partitioning SNN placement

1,000 16,000 64
2,000 32,000 128
3,000 48,000 192
4,000 64,000 256

TABLE II: Dimensions of PSO to solve partitioning and
placement problems, for different SNN sizes on a fixed neu-
romorphic hardware with 16 crossbars, and 256 neurons each.

As we can clearly see from Table II, the PSO problem of
partitioning soon becomes intractable for a modest sized SNN,
even if we restrict to 1000 particles (each with dimensions
D) in the swarm. To keep the solution time reasonable, we
therefore, use PSO only for the placement problem (viz.
SpiNePlacer), and use a greedy approach instead for the
partitioning problem (viz. SpiNeCluster).

IV. EVALUATION METHODOLOGY

We build SpiNeMap with the following system components.
• CARLsim [27] : A GPU accelerated simulator used to

train and test SNN-based applications. CARLsim reports
spike times for every synapse in the SNN.

• Noxim++ [35] : A trace-driven and cycle-accurate inter-
connect simulator for multiprocessor systems. We extend
it 1) to incorporate crossbar-based architectures, 2) to
communicate spikes packets, and 3) to generate key
performance statistics such as energy, latency and ISI
distortion. Noxim++ uses spike traces from CARLsim to
compute these statistics.

• DYNAP-SE [3]: We use Noxim++ to model DYNAP-SE,
with 256-neuron crossbars interconnected using a multi-
stage networks-on-chip (NoCs). Technology parameters
are obtained from [37] for 45nm technology node [38].

A. Simulation environment

We conduct all experiments on a system with 8 CPUs, 32GB
RAM, and NVIDIA Tesla GPU, running Ubuntu 16.04.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 6

Category Applications Synapses Topology Spikes

synthetic

S 1000 240,000 FeedForward (400, 400, 100) 5,948,200
S 1500 300,000 FeedForward (500, 500, 500) 7,208,000
S 2000 640,000 FeedForward (800, 400, 800) 45,807,200
S 2500 1,440,000 FeedForward (900, 900, 700) 66,972,600
S 3000 2,000,000 FeedForward (1000, 1000, 1000) 155,123,000
S 3500 2,500,000 FeedForward (1000, 1000, 1500) 46,476,000
S 4000 3,750,000 FeedForward (1500, 1500, 1000) 149,580,500

realistic

ImgSmooth [27] 136,314 FeedForward (4096, 1024) 17,600
EdgeDet [27] 272,628 FeedForward (4096, 1024, 1024, 1024) 22,780

MLP-MNIST [9] 79,400 FeedForward (784, 100, 10) 2,395,300
HeartEstm [39] 636,578 Recurrent 3,002,223
HeartClass [40] 2,396,521 CNN1 1,036,485

CNN-MNIST [41] 159,553 CNN2 97,585
LeNet-MNIST [41] 1,029,286 CNN3 165,997
LeNet-CIFAR [41] 2,136,560 CNN4 589,953

1. Input(82x82) - [Conv, Pool]*16 - [Conv, Pool]*16 - FC*256 - FC*6
2. Input(24x24) - [Conv, Pool]*16 - FC*150 - FC*10
3. Input(32x32) - [Conv, Pool]*6 - [Conv, Pool]*16 - Conv*120 - FC*84 - FC*10
4. Input(32x32x3) - [Conv, Pool]*6 - [Conv, Pool]*6 - FC*84 - FC*10

TABLE III: Applications used for evaluating SpiNeMap.

B. Evaluated applications

Table III reports 7 synthetic and 8 realistic SNN applications
used for evaluation. The synthetic applications are indicated
with the letter ‘S’ followed by a number (e.g., S 1000), where
the number represents the total number of neurons in the
application. Column 3 reports the number of synapses in these
applications. Column 4 reports the SNN topology.

The realistic applications are image smoothing (ImgSmooth)
[27] on 64x64 images, edge detection (EdgeDet) [27] on 64x64
images using difference-of-Gaussian, multi-layer perceptron
(MLP)-based handwritten digit recognition (MLP-MNIST) [9]
on 28x28 images of handwritten digits, ECG-based heart-
rate estimation (HeartEstm) [39], ECG-based heart-beat clas-
sification (HeartClass) [40], CNN-based digit classification
(CNN-MNIST) [41], [42], CNN-based digit classification with
LeNet (LeNet-MNIST) [41], and CNN-based CIFAR image
classification with LeNet (LeNet-CIFAR) [41]. The last three
applications are part of the MLPerf benchmark suite [41] and
developed for analog computation model. We converted these
applications into spike-based model using the CNN-to-SNN
conversion tool N2D2 [43], [44].

C. Evaluated state-of-the-art techniques

We evaluate the following four approaches.
• The Baseline [19] minimizes the use of crossbars.
• The SCO [15] balances crossbar occupancy.
• The PSOPART minimizes the total number of spikes on

the shared interconnect.
• The SpiNeMap uses (1) SpiNeCluster to partition SNNs

into clusters and (2) SpiNePlacer to place these clusters to
crossbars of the hardware. SpiNeMap minimizes energy
consumption and latency on the shared interconnect.

D. Evaluated metrics

We evaluate the following metrics.
• Total number of spikes: This is the number of spikes (Ns)

on the shared interconnect post crossbar placement.
• Spike latency: This is computed using Eq. 11.
• Energy consumption: This is computed using Eq. 12.

SpiNeMap
Energy Spike ISI Application

Consumption Latency Distortion Accuracy
(Sec. V-B) (Sec. V-C) (Sec. V-D) (Sec. V-E)

vs. Baseline [19] 45% 21% 36% 12%
vs. SCO [15] 40% 27% 39% 20%
vs. PSOPART [20] 20% 13% 23% 5%

TABLE IV: Summary of results.

• Average ISI distortion: This is computed using Eq. 7,
averaged over all spikes, i.e.,

I =

Ns∑
i=1

Ii|distortion/Ns, (18)

V. RESULTS AND DISCUSSIONS

A. Summary of results

Table IV summarizes our results.

B. Energy consumption on the shared interconnect

Figure 8 reports the energy consumption of each of our
applications for each of our evaluated systems normalized to
the Baseline. We make the following three observations.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

En
er

gy
 c

on
su

m
pt

io
n

no
rm

al
ize

d
to

 th
e

Ba
se

lin
e

Baseline
SCO

PSOPART
SpiNeMap

Fig. 8: Energy consumption normalized to the Baseline.

First, the average energy consumption of SCO is simi-
lar to the Baseline. Second, PSOPART has an average 31%

lower energy consumption than the Baseline. This reduction
is because PSOPART minimizes the total number of global
spikes, which reduces the energy consumption on the shared
interconnect (see Eq. 12). Third, SpiNeMap has the lowest
energy consumption of all our evaluated systems (on average,
45% lower than Baseline, 40% lower than SCO, and 20%

lower than PSOPART). These improvements are because of
SpiNeMap’s optimization policies: 1) SpiNeCluster, which
reduces the total number of spikes on the shared interconnect,
and 2) SpiNePlacer, which places these clusters on crossbars
to minimize energy consumption.

C. Spike latency on the shared interconnect

Figure 9 reports the spike latency of each of our applications
for each of our evaluated systems normalized to the Baseline.
We make the following three observations.

First, the average spike latency of SCO is 14% higher than
the Baseline. Second, PSOPART has 9% lower average spike
latency than Baseline. This improvement is because PSOPART
reduces the total number of spikes on the shared interconnect,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 7

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

Sp
ik

e
la

te
nc

y
no

rm
al

ize
d

to
 th

e
Ba

se
lin

e Baseline
SCO

PSOPART
SpiNeMap

Fig. 9: Spike latency normalized to the Baseline.

which reduces spike congestion and latency. Third, SpiNeMap
has the lowest average spike latency among all our evaluated
systems (21% lower than Baseline, 27% lower than SCO, and
13% lower than PSOPART). These improvements are due to
SpiNeMap’s optimization policies: 1) SpiNeCluster, which
reduces the number of spikes, and 2) SpiNeCluster, which
minimizes the average number of hop counts (see Eq. 11).

D. ISI distortion on the shared interconnect

Figure 10 compares ISI distortion of each of our appli-
cations for each of our evaluated systems normalized to the
Baseline. We make the following three observations.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

IS
I d

ist
or

tio
n

no
rm

al
ize

d
to

 th
e

Ba
se

lin
e Baseline

SCO
PSOPART
SpiNeMap

Fig. 10: ISI distortion normalized to the Baseline.

First, ISI distortion of SCO is on average 12% higher than
the Baseline. Second, PSOPART has 21% lower average ISI
distortion than Baseline. This reduction is due to the reduction
of the number of spikes (see Section V-F). Third, SpiNeMap
has the lowest ISI distortion of all our evaluated systems (36%

lower than Baseline, 39% lower than SCO, and 23% lower than
PSOPART). The improvement with respect to PSOPART is
because of our new SpiNePlacer step (see Figure 2), which
reduces ISI distortion by reducing spike latency.

E. Application accuracy

Figure 11 reports accuracy of each of our applications for
each of our evaluated systems normalized to the Baseline.
We observe that the accuracy results directly correlate with
ISI distortion (see Section V-D). Accuracy of SCO is lower
than Baseline by an average 6%. PSOPART has an average 7%

higher accuracy than Baseline due to the 17% reduction in ISI
distortion. SpiNeMap has the highest accuracy among all our

evaluated systems (on average, 12% higher than Baseline, 20%

higher than SCO, and 5% higher than PSOPART).

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ap
pl

ica
tio

n
ac

cu
ra

cy

no
rm

al
ize

d
to

 th
e

Ba
se

lin
e Baseline SCO PSOPART SpiNeMap

Fig. 11: Application accuracy normalized to the Baseline.

F. Spike count on the shared interconnect

Figure 12 reports the total number of spikes communicated
on the shared interconnect of each of our applications for each
of our evaluated systems normalized to the Baseline. We make
the following three observations.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

Av
er

ag
e

sp
ik

e
co

un
t

no
rm

al
ize

d
to

 th
e

Ba
se

lin
e Baseline

SCO
PSOPART
SpiNeMap

Fig. 12: Spike count normalized to the Baseline.

First, SCO has an average 6% higher spike count compared
to Baseline. These extra spikes increases energy consumption
(see Section V-B). Second, PSOPART has on average 23%

lower spikes than Baseline due to its PSO-based clustering.
Third, SpiNeMap generates the lowest number of spikes (26%

lower than Baseline, 24% lower than SCO, and 9% lower than
PSOPART) The improvement over PSOPART is due to the
greedy approach of Algorithm 1, which outperforms PSO for
large application use-cases.

G. Optimization time

Figure 13 compares execution time of our new clustering
algorithm (Algorithm 1) against the PSO-based clustering
of PSOPART normalized to the Baseline. We observe that
SpiNeCluster has an average 3x lower execution time than
PSOPART. Moreover, SpiNeCluster generates lower spikes on
the interconnect and reduces energy consumption and latency.
We conclude that SpiNeCluster is scalable and and better than
PSO for solving the clustering problem.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 8

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

2.0
Ex

ec
ut

io
n

tim
e

no
rm

al
ize

d
to

 th
e

Ba
se

lin
e

 (l
og

sc
al

e)
Baseline PSOPART SpiNeMap

Fig. 13: Execution time normalized to the Baseline.

H. Interconnect design-space explorations

Figure 14 illustrates explorations of interconnect for neuro-
morphic hardware. We compare 1) NoC interconnect with XY
(used in DYNAP-SE), NorthLast and WestFirst routing, and
2) segmented bus [45] interconnect (used in next-generation
of DYNAP-SE) for all our evaluated workloads.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

Sp
ik

e
la

te
nc

y
no

rm
al

ize
d

to
 S

pi
Ne

M
ap

wi

th
 X

Y
ro

ut
in

g

XY NorthLast WestFirst SegmentedBus

Fig. 14: Interconnect exploration using SpiNeMap

We observe that NorthLast and WestFirst routing have an
average 7% and 4% higher latency than XY routing respec-
tively. Segmented bus has the lowest spike latency among
all (average 54% lower than NoC with XY routing). Lower
spike latency leads to lower energy consumption and higher
application performance. We have open-sourced SpiNeMap
to allow design-space explorations on emerging interconnect
strategies and routing algorithms for neuromorphic hardware.

VI. RELATED WORKS

This is the first work that jointly addresses the partition-
ing and placement of SNNs on crossbar-based neuromorphic
hardware, minimizing the energy consumption, spike latency,
and ISI distortion, and improving application accuracy.

A. SNN-based machine learning

Recently, machine learning tasks are designed using spiking
neural networks (SNNs) to improve energy efficiency. Ver-
straeten et al. propose reservoir computing with SNNs for
speech recognition [46]. Grzyb et al. use spiking liquid state
machine for facial recognition [47]. Diehl et al. propose hand-
written digit recognition using SNNs [9]. Das et al. propose
spiking liquid state machine for heart-rate estimation [39]. We
evaluate SpiNeMap using these applications.

Analog neural networks such as convolutional neural net-
works (CNNs) have been immensely successful in computer
vision tasks. The machine learning database MLPerf [41]
provides a comprehensive collection of these applications. We
converted these applications to spike model using N2D2 [43]
and use them to evaluate SpiNeMap.

B. Neuromorphic hardware

Recently, several research groups are investigating crossbar-
based neuromorphic hardware with non-volatile memory tech-
nologies. Ramasubramanian et al. use Spin-transfer torque
magnetic RAM (STT MRAM) [48], Burr et al. use phase-
change memories (PCM) [49], while Mallik et al. use oxide-
based resistive RAM (OxRAM) [50] to design neuromorphic
crossbars. While all these orthogonal works focus on the
design of a crossbar, we focus on the architecture of a neuro-
morphic chip integrating multiple such crossbars. Examples
of commercial neuromorphic chips include TrueNorth [1],
Loihi [2], and DYNAP-SE [3]. We evaluate SpiNeMap on
DYNAP-SE. Khan et al. propose SNN mapping strategy for
SpiNNaker [51]. Ji et al. propose NEUTRAMS for crossbar-
based neuromorphic hardware [19]. In Section V we compare
SpiNeMap against NEUTRAMS (i.e., the Baseline) and found
that SpiNeMap is significantly better in terms of energy,
latency, and application accuracy.

C. SNN simulators

SpiNeMap uses CARLsim [27] due to its detailed STDP and
homeostasis models, parameter tuning, and multi-GPU support
to accelerate the simulation. SpiNeMap can be combined with
any other SNN simulators [52]–[56].

D. Related concepts in the domain of embedded systems

Graph partitioning problem has been extensively used for
embedded multiprocessor systems, where an application task
graph is partitioned to map tasks on the processing cores
[57]–[59]. These mapping techniques cannot be directly used
for clustering because of the new metric ISI distortion that
is specific to SNN. We chose the clustering technique in
SpiNeCluster because it is scalable and generates a good
starting solution for the SpiNePlacer.

VII. CONCLUSION AND FUTURE OUTLOOK

We introduce SpiNeMap, a design methodology to map
SNN-based applications to crossbar-based neuromorphic hard-
ware. SpiNeMap completes the mapping in two steps. In
Step 1 (SpiNeCluster), we use a heuristic-based clustering
algorithm to partition SNNs into local and global synapses,
with local synapses mapped within crossbars, and global
synapses to the shared interconnect. SpiNeCluster minimizes
spikes on the shared interconnect, reducing spike congestion
and ISI distortion. In Step 2 (SpiNePlacer), we use an instance
of the particle swarm optimization (PSO) to place clusters
on physical crossbars in the hardware, optimizing energy
consumption and spike latency on the shared interconnect.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 9

We evaluate SpiNeMap using synthetic and realistic SNN
applications. We show that SpiNeMap reduces energy con-
sumption by 45% and spike latency by 21%, compared to the
best of state-of-the-art techniques. These improvements reduce
ISI distortion by 36%, improving application accuracy by 12%.

We have open-sourced our framework to enable future work
based on SpiNeMap [60].

A. Future outlook

We now describe how SpiNeMap can be used to advance
the field of neuromorphic computing.
Mapping new machine learning approaches to hardware: In
this paper, we use supervised machine learning tasks to
evaluate SpiNeMap. Emerging machine learning approaches
such as [61]–[66] can also be mapped to the neuromorphic
hardware using SpiNeMap by first simulating the application
in CARLsim, and then using the spike trace to partition and
place clusters to hardware.

We demonstrate SpiNeMap for spike-based model. Machine
learning tasks designed with analog model such as CNN or
MLP can also be used in our design methodology by first
converting them to spike-based model before presenting to
SpiNeMap. In this work, we demonstrate this using three ana-
log CNN-based applications. We converted these applications
to spike-based model using the N2D2 framework.

For rate model, information is encoded as average firing rate
of neurons. ISI distortion due to congestion on the interconnect
does not always lead to performance loss as long as the average
number of spikes received within a given time interval remains
the same. A relevant metric for the rate model is the spike
disorder. We provide a proper intuition behind spike disorder
as follows: We consider a source neuron generating spikes at
time t = 0ns, 5ns, and 25ns. Spike rates of the source neuron
are 200MHz and 50MHz, respectively. These three spikes need
to be communicated to a destination neuron. We consider a
scenario where spike 0 and 2 are received at time t = 5ns
and 30ns, and spike 1 is re-routed due to congestion, reaching
the destination neuron at t = 35ns. Spike rate observed at the
destination neuron is 40MHz and 200MHz, respectively. This
is spike disorder, which can lead to performance loss. We
formulate spike disorder as follows. Let F i = {F i

1, · · · , F i
ni
} be

the expected spike arrival rate at neuron i (from CARLsim)
and F̂ i = {F̂ i

1, · · · , F̂ i
ni
} be the actual spike rate considering

hardware latencies. The spike disorder is computed as

spike disorder =

ni∑
j=1

[(F i
j − F̂ i

j)2]/ni (19)

SpiNeCluster can be extended to support spike disorder.
Using SpiNeMap for other neuromorphic hardware:
SpiNeMap is a general-purpose design methodology
for mapping SNN-based applications to crossbar-based
neuromorphic hardware. We evaluate SpiNeMap for
DYNAP-SE. Our future work will demonstrate integration of
SpiNeMap with Loihi and TrueNorth.

In this work we use Noxim [35] for cycle-accurate simula-
tion of neuromorphic interconnect. Noxim allows significant
advantage in terms of trace-driven simulations, extensions to

other interconnect types. SpiNeMap can be used with other
interconnect simulators such as [67]–[69], which also support
cycle-accurate and trace-driven simulation.

ACKNOWLEDGMENT

This work is supported by the National Science Founda-
tion Award CCF-1937419 (RTML: Small: Design of System
Software to Facilitate Real-Time Neuromorphic Computing).

REFERENCES

[1] M. V. DeBole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P.
Risk, J. Kusnitz, C. O. Otero, T. K. Nayak, R. Appuswamy, and others,
“TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years,”
Computer, vol. 52, no. 5, pp. 20–29, 2019.

[2] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng,
A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–
99, 2018.

[3] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multi-
core architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs),” Transactions on
Biomedical Circuits and Systems, vol. 12, no. 1, pp. 106–122, 2018.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Conference on
computer vision and pattern recognition, 2016, pp. 2818–2826.

[6] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Conference on acoustics, speech
and signal processing, 2013, pp. 6645–6649.

[7] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[8] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International journal
of computer vision, vol. 113, no. 1, pp. 54–66, 2015.

[9] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, 2015.

[10] L. Benini and G. De Micheli, “Networks on chip: A new paradigm for
systems on chip design,” in Conference on design, automation & test in
Europe, 2002, pp. 418–419.

[11] T. Sauer, “Interspike interval embedding of chaotic signals,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, pp. 127–
132, 1995.

[12] A. Ankit, A. Sengupta, and K. Roy, “Neuromorphic computing across
the stack: Devices, circuits and architectures,” in Workshop on signal
processing systems, 2018, pp. 1–6.

[13] X. Zhang, A. Huang, Q. Hu, Z. Xiao, and P. K. Chu, “Neuromorphic
computing with memristor crossbar,” physica status solidi (a), vol. 215,
no. 13, p. 1700875, 2018.

[14] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired
computing,” Nature materials, vol. 18, no. 4, p. 309, 2019.

[15] M. K. F. Lee, Y. Cui, T. Somu, T. Luo, J. Zhou, W. T. Tang, W.-F.
Wong, and R. S. M. Goh, “A system-level simulator for rram-based
neuromorphic computing chips,” Transactions on architecture and code
optimization, vol. 15, no. 4, p. 64, 2019.

[16] P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An all-memristor
deep spiking neural computing system: A step toward realizing the low-
power stochastic brain,” Transactions on emerging topics in computa-
tional intelligence, vol. 2, no. 5, pp. 345–358, 2018.

[17] W. Wen, C.-R. Wu, X. Hu, B. Liu, T.-Y. Ho, X. Li, and Y. Chen, “An eda
framework for large scale hybrid neuromorphic computing systems,” in
Design automation conference, 2015, pp. 1–6.

[18] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber, “A
hierachical configuration system for a massively parallel neural hardware
platform,” in Conference on computing frontiers, 2012, pp. 183–192.

[19] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“NEUTRAMS: Neural network transformation and co-design under neu-
romorphic hardware constraints,” in Symposium on microarchitecture,
2016, pp. 1–13.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 10

[20] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaafsma,
“Mapping of local and global synapses on spiking neuromorphic hard-
ware,” in Conference on design, automation & test in Europe, 2018, pp.
1217–1222.

[21] Y. Orii, A. Horibe, K. Matsumoto, T. Aoki, K. Sueoka, S. Kohara,
K. Okamoto, S. Yamamichi, K. Hosokawa, and H. Mori, “Advanced
interconnect technologies in the era of cognitive computing,” in Pan
pacific microelectronics symposium, 2016, pp. 1–6.

[22] S. Grün and S. Rotter, Analysis of parallel spike trains. Springer, 2010,
vol. 7.

[23] R. P. N. Rao and T. J. Sejnowski, “Spike-timing-dependent Hebbian
plasticity as temporal difference learning,” Neural computation, vol. 13,
no. 10, pp. 2221–2237, 2001.

[24] D. P. Phillips and S. A. Sark, “Separate mechanisms control spike
numbers and inter-spike intervals in transient responses of cat auditory
cortex neurons,” Hearing research, vol. 53, no. 1, pp. 17–27, 1991.

[25] R. Brette, “Philosophy of the spike: rate-based vs. spike-based theories
of the brain,” Frontiers in systems neuroscience, vol. 9, p. 151, 2015.

[26] Y. Dan and M.-m. Poo, “Spike timing-dependent plasticity of neural
circuits,” Neuron, vol. 44, no. 1, pp. 23–30, 2004.

[27] T. Chou, H. J. Kashyap, J. Xing, S. Listopad, E. L. Rounds, M. Beyeler,
N. Dutt, and J. L. Krichmar, “Carlsim 4: An open source library for
large scale, biologically detailed spiking neural network simulation using
heterogeneous clusters,” in International joint conference on neural
networks, 2018, pp. 1–8.

[28] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Symposium on micro machine and human science, 1995, pp.
39–43.

[29] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell system technical journal, vol. 49, no. 2, pp.
291–307, 1970.

[30] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration
energy aware task mapping for reliable multiprocessor systems,” Future
generation computer systems, vol. 30, pp. 216–228, 2014.

[31] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified np-
complete problems,” in Symposium on theory of computing, 1974, pp.
47–63.

[32] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Design automation conference, 1982,
pp. 175–181.

[33] J. Kennedy, “Particle swarm optimization,” Encyclopedia of machine
learning, pp. 760–766, 2010.

[34] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” Journal of solid-state circuits, vol. 52, no. 1, pp. 127–138, 2017.

[35] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim:
An open, extensible and cycle-accurate network on chip simulator,” in
Conference on application-specific systems, architectures and proces-
sors, 2015, pp. 162–163.

[36] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration: A quantitative evaluation of
point-to-point, bus, and network-on-chip approaches,” Transactions on
design automation of electronic systems, vol. 12, no. 3, p. 23, 2007.

[37] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures for
spiking deep neural networks,” in International electron devices meeting,
2015, pp. 4–2.

[38] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” Transactions on electron
devices, vol. 53, no. 11, pp. 2816–2823, 2006.

[39] A. Das, P. Pradhapan, W. Groenendaal, P. Adiraju, R. T. Rajan,
F. Catthoor, S. Schaafsma, J. L. Krichmar, N. Dutt, and C. Van Hoof,
“Unsupervised heart-rate estimation in wearables with liquid states and
a probabilistic readout,” Neural networks, vol. 99, p. 134, 2018.

[40] A. Balaji, F. Corradi, A. Das, S. Pande, S. Schaafsma, and F. Catthoor,
“Power-accuracy trade-offs for heartbeat classification on neural net-
works hardware,” Journal of low power electronics, vol. 14, no. 4, pp.
508–519, 2018.

[41] MLPerf: Fair and useful benchmarks for measuring training and
inference performance of ML hardware, software, and services.
https://mlperf.org/training-overview/overview.

[42] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[43] N2D2: Neural Network Design and Deployment.
https://github.com/CEA-LIST/N2D2.

[44] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci,
“Conversion of artificial recurrent neural networks to spiking neural
networks for low-power neuromorphic hardware,” in Conference on
rebooting computing, 2016, pp. 1–8.

[45] A. Balaji, Y. Wu, A. Das, F. Catthoor, and S. Schaafsma, “Exploration
of segmented bus as scalable global interconnect for neuromorphic
computing,” in Great lakes symposium on VLSI, 2019, pp. 495–499.

[46] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Reservoir-based
techniques for speech recognition,” in International joint conference on
neural networks, 2006, pp. 1050–1053.

[47] B. J. Grzyb, E. Chinellato, G. M. Wojcik, and W. A. Kaminski, “Facial
expression recognition based on liquid state machines built of alternative
neuron models,” in International joint conference on neural networks,
2009, pp. 1011–1017.

[48] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, “Spindle: Spintronic deep learning engine for large-
scale neuromorphic computing,” in International symposium on low
power electronics and design, 2014, pp. 15–20.

[49] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches,
I. Boybat, M. L. Gallo, K. Moon, J. Woo, H. Hwang, and Y. Leblebici,
“Neuromorphic computing using non-volatile memory,” Advances in
Physics: X, vol. 2, no. 1, pp. 89–124, 2017.

[50] A. Mallik, D. Garbin, A. Fantini, D. Rodopoulos, R. Degraeve, J. Stuijt,
A. K. Das, S. Schaafsma, P. Debacker, G. Donadio, H. Hody, L. Goux,
G. S. Kar, A. Furnemont, A. Mocuta, and P. Raghavan, “Design-
technology co-optimization for oxrram-based synaptic processing unit,”
in Symposium on VLSI Technology, 2017, pp. T178–T179.

[51] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “SpiNNaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in International joint conference on neural
networks, 2008, pp. 2849–2856.

[52] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
neuroscience, vol. 3, p. 26, 2009.

[53] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “Pynn: a common interface for
neuronal network simulators,” Frontiers in neuroinformatics, vol. 2,
p. 11, 2009.

[54] E. Yavuz, J. Turner, and T. Nowotny, “Genn: a code generation frame-
work for accelerated brain simulations,” Nature scientific reports, vol. 6,
p. 18854, 2016.

[55] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[56] O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, “Design exploration
methodology for memristor-based spiking neuromorphic architectures
with the xnet event-driven simulator,” in Symposium on nanoscale
architectures, 2013, pp. 7–12.

[57] A. Das, A. K. Singh, and A. Kumar, “Energy-aware dynamic recon-
figuration of communication-centric applications for reliable MPSoCs,”
in Workshop on reconfigurable and communication-centric Systems-on-
Chip, 2013, pp. 1–7.

[58] A. Das, M. Walker, A. Hansson, B. Al-Hashimi, and G. Merrett,
“Hardware-software interaction for run-time power optimization: A case
study of embedded Linux on multicore smartphones,” in International
symposium on low power electronics and design, 2015, pp. 165–170.

[59] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: survey of current and emerging trends,” in
Design automation conference, 2013, pp. 1–10.

[60] A. Balaji. (2019) SpiNeMap: Mapping Spiking Neural Networks to
Neuromorphic Hardware. [Online]. Available: https://github.com/drexel-
DISCO/SpiNeMap

[61] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learn-
ing through cross-modal transfer,” in Advances in neural information
processing systems, 2013, pp. 935–943.

[62] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” Transactions on pattern analysis and machine intelligence,
vol. 28, no. 4, pp. 594–611, 2006.

[63] S. J. Pan and Q. Yang, “A survey on transfer learning,” Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[64] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[65] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, pp. 2531–2560, 2002.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 11

[66] D. L. Silver, Q. Yang, and L. Li, “Lifelong machine learning systems:
Beyond learning algorithms,” in AAAI Spring Symposium Series, 2013.

[67] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally,
“Booksim 2.0 users guide,” Standford University, 2010.

[68] L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, and A. Narayanan, “Nirgam:
a simulator for noc interconnect routing and application modeling,” in
Conference on design, automation & test in Europe, 2007, pp. 16–20.

[69] K. Huynh, “Exploration of dynamic communication networks for neu-
romorphic computing,” 2016.

Adarsha Balaji Adarsha Balaji received a Bachelors
degree from Visvesvaraya Technological University,
India, in 2012 and a Master’s degree from Drexel
University, Philadelphia, PA, in 2017. He is currently
pursuing a Ph.D. degree from the Department of
Electrical and Computer Engineering, Drexel Uni-
versity, Philadelphia, PA. His current research inter-
ests include design of neuromorphic computing sys-
tems, particularly data-flow and power optimization
of spiking neural networks (SNN) hardware.

Anup Das Dr. Anup Das is an Assistant Professor at
Drexel University. He received a Ph.D. in Embedded
Systems from National University of Singapore in
2014. Following his Ph.D., he was a post-doctoral
fellow at the University of Southampton and a
researcher at IMEC. His research focuses on neu-
romorphic computing and architectural exploration.
He is a senior member of the IEEE.

Yuefeng Wu Yuefeng was enrolled in a joint master program of KTH,
Royal Institute of Technology, Stockholm, Sweden and Technology University
of Eindhoven after receiving his bachelor degree from Tianjin University.
He worked at IMEC NL for his master thesis and researched on the
communication mechanisms of neuromorphic computing.

Khanh Huynh Biography not available.

Francesco G. Dell’Anna Francesco G. Dell’Anna
received the BE degree in computer engineering
and the ME degree in embedded systems from
Polytechnic of Turin in 2014 and 2016 respectively.
In 2016 he attended the electrical engineering master
program at KULeuven, working on a neuromorphic
simulator in IMEC (Belgium). He is currently a
researcher and a Ph.D. student in the department of
Micro- and Nanotechnology systems at the univer-
sity college of southeast Norway.

Giacomo Indiveri Giacomo Indiveri is a Professor
at the Faculty of Science of the University of Zurich,
Switzerland, director of the Institute of Neuroinfor-
matics (INI) of the University of Zurich and ETH
Zurich, and head of the Neuromorphic Cognitive
Systems group at INI. Indiveri was awarded an ERC
starting grant in 2011, and an ERC consolidator
grant in 2017. He is interested in the study of real
and artificial neural processing systems, and is build-
ing hardware neuromorphic cognitive systems, using
full custom analog and digital VLSI technology.

Jeffrey L. Krichmar Jeffrey L. Krichmar received
a B.S. in Computer Science in 1983 from the
University of Massachusetts at Amherst, a M.S. in
Computer Science from The George Washington
University in 1991, and a Ph.D. in Computational
Sciences and Informatics from George Mason Uni-
versity in 1997. He spent 15 years as a software
engineer on projects ranging from the PATRIOT
Missile System at the Raytheon Corporation to Air
Traffic Control for the Federal Systems Division of
IBM. From 1999 to 2007, he was a Senior Fellow

in Theoretical Neurobiology at The Neurosciences Institute. He currently is
a professor in the Department of Cognitive Sciences and the Department
of Computer Science at the University of California, Irvine. He is a Senior
Member of IEEE and the Society for Neuroscience.

Nikil D. Dutt Nikil D. Dutt (F) received a Ph.D. in
Computer Science from the University of Illinois at
Urbana-Champaign in 1989, and is currently a Dis-
tinguished Professor of Computer Science, Cognitive
Sciences, and EECS at the University of California,
Irvine. He is also a Distinguished Visiting Professor
in the CSE department at IIT Bombay, India. Dutts
research interests are in embedded systems, elec-
tronic design automation (EDA), computer systems
architecture and software, healthcare IoT, and brain-
inspired architectures and computing. He is a Fellow

of the ACM, Fellow of the IEEE, and recipient of the IFIP Silver Core Award.

Siebren Schaafsma Dr. Siebren Schaafsma is an
R&D manager in the IoT unit of Imec The Nether-
lands (Imec-nl). He received two masters (Nuclear
physics in 1988 and computer science in 1989) at
the Rijks Universiteit Groningen (RUG). His disser-
tation in the latter one addresses a neural networks
implementation on a transputer cluster. He received
his Ph.D. (Dr.) from the University of Nijmegen
(KUN) in the Biophysics Department.

Francky Catthoor Dr. Francky Catthoor received
a Ph.D. in EE from the Katholieke Univ. Leuven,
Belgium in 1987. Between 1987 and 2000, he has
headed several research domains in the area of syn-
thesis techniques and architectural methodologies.
Since 2000 he is strongly involved in other activ-
ities at IMEC including deep submicron technology
aspects, IoT and biomedical platforms, and smart
photovoltaic modules, all at IMEC Leuven, Belgium.
Currently he is an IMEC fellow. He is also part-
time full professor at the EE department of the

KULeuven. He has been associate editor for several IEEE and ACM journals.
He was elected IEEE fellow in 2005.

