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Abstract: Thermoelectric (TE) materials can interconvert waste heat into electricity, which will become
alternative energy sources in the future. The high-entropy alloys (HEAs) as a new class of materials
are well-known for some excellent properties, such as high friction toughness, excellent fatigue
resistance, and corrosion resistance. Here, we present a series of HEAs to be potential candidates
for the thermoelectric materials. The thermoelectric properties of YxCoCrFeNi, GdxCoCrFeNiCu,
and annealed Al0.3CoCrFeNi were investigated. The effects of grain size and formation of the
second phase on thermoelectric properties were revealed. In HEAs, we can reduce the thermal
conductivity by controlling the phonon scattering due to the considerable complexity of the alloys.
The Y, Gd-doped HEAs are competitive candidate thermoelectric materials for energy conversion in
the future.
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1. Introduction

Traditional alloys include one or two principal elements, but high entropy alloys (HEAs) were
defined by Yeh et al. as a new class of materials containing five or more principal elements, each with
concentrations between 5 atomic percent (at %) and 35 atomic percent (at %) [1–3]. Studies have
shown that HEAs exhibit some excellent properties, compared with conventional alloys, such as high
hardness, great resistance to evaluation wear, corrosion, friction, fatigue, and oxidation [3–15].

With the development of the social economy and technology, the energy consumption of the
world has increased significantly, and the traditional petrochemical energy has been increasingly
exhausted. At present, more than 60 percent of energy is lost in the form of heat during the use of
energy [16]. Thermoelectric (TE) materials are going to be the potential candidates for alternative
sources of energy, because heat can be directly converted into the electrical energy and vice versa [17,18].
Therefore, the TE materials are also attractive because they can contribute to realizing the sustainable
utilization of resources [19]. If the industrial waste heat, automobile exhaust waste heat and other
waste heat are converted through thermoelectric materials, the energy efficiency will be greatly
improved, and the energy crisis and environment pollution will be alleviated. The thermoelectric
material is a kind of functional material which utilizes the transport and interaction of carriers and
phonons in solids to achieve the direct conversion between the thermal energy and electrical energy.

Metals 2018, 8, 781; doi:10.3390/met8100781 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0003-0185-3411
http://www.mdpi.com/2075-4701/8/10/781?type=check_update&version=1
http://dx.doi.org/10.3390/met8100781
http://www.mdpi.com/journal/metals


Metals 2018, 8, 781 2 of 11

The thermoelectric-power generation or refrigeration device made of thermoelectric material has the
advantages of being noise free, zero emission and pollution free, lacking vibration, small volume, etc.
It has been applied in deep space exploration and refrigeration, and has great potential in waste heat
power generation [20,21].

Conventional thermoelectric materials currently in use include Bi2Te3 based, PbTe based and
SiGe based, etc. Bi2Te3 is currently the most commercially successful thermoelectric material near
room temperature. It is widely used in the field of the thermoelectric refrigeration, and is also the
thermoelectric material with the highest power generation efficiency at low temperature [22]. Although
Bi2Te3 has been commercialized, its performance can be further improved by doping, composition
adjustment, etc. PbTe is the medium temperature thermoelectric material that has been studied for the
longest time and PbTe-based materials have been successfully used in the NASA aerospace missions
many times since 1960. In recent years, PbTe-based thermoelectric materials have made great progress.
The application temperature range of the Si-Ge alloy is more than 1000 K. It has been successfully
applied to some deep space detectors. For example, in the radioisotope temperature difference battery
of the Cassini Saturn detector, the thermoelectric conversion device is prepared by the Si-Ge alloy.
However, the reserves of Te and Ge elements are scarce and very costly; Pb is toxic, pollutes the
environment, and endangers people’s health. Therefore, the development of environmentally friendly,
new low-cost thermoelectric materials is particularly urgent.

HEAs are always being studied for their mechanical properties. Maybe many new and unexpected
properties remain for us to explore. In the search for TE materials, the performance of this kind of
material is estimated by the dimensionless figure of merit, defined as ZT = S2Tσ/k [23], where S is
the Seebeck coefficient, T is the absolute temperature, σ is the electrical conductivity, and k = ke + kl
is the total thermal conductivity, where ke and kl are the electronic and lattice components of the
thermal conductivity, respectively. In practical applications, the efficiency of the TE material depends
on the average ZT over the whole working temperature range, rather than its max ZT [24]. So it
is our goal to raise the average ZT over the entire working temperature. The larger the ZT value,
the better the performance of the TE material. We can easily understand from the equation of ZT
that large S and σ, and low k will attain a satisfactory ZT value [25]. In addition, the Seebeck
coefficient, electric conductivity, and thermal conductivity, which measure the performance of TE
materials, are coupled by the carrier concentration [26]. The variation trend of the three parameters
was summarized in Figure 1 as a result of the great efforts of the researchers [27]. We observe that
different carrier concentrations lead to various conduction properties. The materials can be divided into
insulators, semiconductors, and metals according to their carrier concentration. With the increase of
the carrier concentration, the Seebeck coefficient significantly decreases, while the electric conductivity
and the electronic thermal conductivity increase [28]. At present, semiconductor materials are the
hotspot of the thermoelectric properties, and the TE properties of metallic materials are still remain to
be studied.

Generally, for a TE material, the reduction of the kl is an effective measure to obtain a high ZT
value. And ke relates to the conductivity of the materials, whereas kl has nothing to do with other
parameters. The scattering of phonons plays a crucial part on kl. The complexity, or disorder in the
crystal structure leads to the scattering of phonons. So, it is a feasible method to reduce the lattice
thermal conductivity by enhancing the phonon scattering [29–33].

In HEAs, Yeh summarized mainly four core effects of this new kind of alloys. One of them is the
severe lattice-distortion effect [1,3,14]. The severe lattice-distortion effect is always compared with
the traditional alloys, where the lattice site is mainly occupied by the principal element. For HEAs,
each constituent element has the same possibility to occupy the lattice sites, since the size of each atom
can be different in some cases, which can lead to severe lattice distortion [1,3,15]. Therefore, in the
HEAs, the strategies to control phonon scattering can be generally achieved through the complex nature
of the materials [34]. Because of the severe lattice-distortion effect and the points defect, HEAs offer
a large amount of complexity, which is conducive to phonon scattering. The phase structure of the
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HEAs is always highly symmetrical, such as face-centered-cubic (FCC), body-centered-cubic (BCC),
and hexagonal-close-packed (HCP) phases. So it is possible for the new class of materials to reach a high
convergence of the bands close to the Fermi level to attain the high Seebeck coefficient values [35–37].
Therefore, the peculiar microstructures and properties of the HEA provide opportunities to obtain the
low lattice thermal conductivity and appropriate Seebeck coefficient to achieve a high ZT value and
act as a new class of thermoelectric materials.Metals 2018, 8, x FOR PEER REVIEW  3 of 11 
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Nevertheless, the thermoelectric properties of the HEAs were not extensively studied in the
literature. Here the annealed Al0.3CoCrFeNi (annealed at 473 K, 673 K, 873 K, and 1073 K),
GdxCoCrFeNiCu (x = 0, 0.3), and YxCoCrFeNiCu (x = 0, 0.05, 0.1) were prepared, and the parameters
for the thermoelectric properties were studied in this paper.

2. Experimental Section

The button ingots (30 g each) of the sample were prepared by the arc-melting method in a
vacuum-titanium-gettered high purity argon (99.999 volume percent, vol %) atmosphere and cooled by
the water in a copper crucible. The purity of the element was greater than 99.95 weight percent (wt %).
The samples were flipped and remelted at least five times in order to achieve a good homogeneity.
We obtain Al0.3CoCrFeNi, GdxCoCrFeNiCu (x = 0, 0.3), and YxCoCrFeNi (x = 0, 0.05, 0.1) ingots.
The Al0.3CoCrFeNi was then annealed at 473 K, 673 K, 873 K, and 1073 K in the muffle furnace,
respectively. The as-cast samples were cut and then polished to obtain a bright and smooth surface.
The crystalline structures of all the samples were obtained with X-ray diffraction (XRD) (Rigaku, Tokyo,
Japan) using the Cu-Kα radiation, operating in the 2θ range of 20◦–100◦ at a scanning rate of 4◦/min.
The microstructures of the samples were characterized by a SE-4800 scanning electron microscope
(SEM) (Hitachi, Tokyo, Japan) operated in a back-scatter electron (BSE) mode. The thermal conductivity
of the samples was measured in the laser thermal conductivity analyzer (TC-9000H, Ulvac-Riko,
Yokohama, Japan), and the cylindrical samples were cut from the center of the ingots with a diameter of
6 mm and thickness of 1 mm. A Seebeck coefficient analyzer (ZEM-3) (Advance-Riko, Yokohama, Japan)
was used to determine the temperature-dependent Seebeck coefficient and the electrical resistivity
(1/σ). All of the samples were studied from 298 K to ~873 K. The temperature difference of each
measure point was 50 K.
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3. Results

3.1. Crystal Structure

The XRD patterns of the annealed Al0.3CoCrFeNi were shown in Figure 2. The Al0.3CoCrFeNi
alloy exhibited a simple FCC crystal structure at all the mentioned annealing temperatures. Figures 3a
and 4a show the XRD patterns of GdxCoCrFeNiCu and YxCoCrFeNi, respectively. Only the FCC phase
was detected when x = 0. With the increases of Y and Gd contents, new peaks appeared. Those new
diffraction peaks were identified as the Laves phase. The microstructure of these HEAs was also
displayed in the Figures 3b,c and 4b,c. The HEAs with the Y addition show the typical cast dendrite
(DR) identified as the FCC phase, and interdendrite (IR) identified as the Laves phase. With the
increase of the Y content, the grain is refined. Based on the XRD patterns of GdxCoCrFeNiCu, it can
be concluded that when x = 0, the diffraction peaks coincide with the FCC phase. In the sample with
x = 0.3, both FCC and Laves phases can be observed, while the FCC structure is still the main phase.
With the increase of the Gd content, the grain is refined.
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3.2. Electrical Conductivity

The average electrical conductivity for the annealed Al0.3CoCrFeNi alloys was presented in
Figure 5a. Electrical conductivity is closely connected with the change of temperature. In general,
the electrical conductivity of the alloys decreases with increasing the temperature, while the electrical
conductivity of the semiconductor is directly proportional to the temperature within a certain
temperature range [8–11]. We observed from Figure 5a that the Al0.3-HEA worked in accordance
with the trend, and the electrical conductivity was inversely proportional to the temperature [14].
But they do not exactly line up with the trend of the annealing temperature. For the sample as-cast,
annealed at 473 K and 873 K, the electrical conductivity decreases with the increasing the annealing
temperature, while the other two samples do not entirely follow this rule. It is noted that the sample
annealed at 673 K shows the highest electrical conductivity among all of the mentioned Al0.3-HEAs.
The conductivity of the samples annealed at 1073 K falls in between the as-cast and annealed at 473 K
samples. The conductivity of GdxCoCrFeNiCu and YxCoCrFeNi were shown in Figures 6a and 7a.
The electrical conductivity decreases with the increase of Y and Gd. The Gd0CoCrFeNiCu shows the
highest conductivity among all tested samples.
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3.3. Thermal Conductivity

The thermal conductivity (k) of Al0.3CoCrFeNi was shown in Figure 5b. Thermal conductivity
was measured between 298 K and 873 K. The samples were tested every 323 K. In general, the thermal
conductivity of Al0.3 HEAs was in direct proportion to the temperature except for some special points.
The conductivity of GdxCoCrFeNiCu and YxCoCrFeNi also increases with increasing temperature.
Furthermore, it was observed that the k value decreases as the contents of Y and Gd increase.
The Y0.05CoCrFeNi was noted for its lowest thermal conductivity in all the samples studied.

3.4. Seebeck Coefficient

The average Seebeck coefficient values for Al0.3CoCrFeNi were exhibited in Figure 5c. It was
observed that the alloys annealed at 673 K and 1073 K reveal a negative Seebeck coefficient. The positive
and negative values of the Seebeck coefficient represent the different diffusion patterns of electrons.
For the Al0.3-HEAs, the absolute values of the Seebeck coefficient almost decrease with increasing
the annealing temperature, except for some points. The change of S did not show an obvious
relationship with the test temperature. The Seebeck coefficient of the other two HEAs were shown in
Figures 6c and 7c. The absolute values, S, of the GdxCoCrFeNiCu alloys decrease with the increase of
the Gd content. Nevertheless, the S is in the direct proportion to the test temperature. The absolute
Seebeck coefficient values for Yx-HEAs decrease with increasing x in the low-temperature range (298 K
to 573 K). In the temperature range of 573 K to 723 K, S0.05 was greater than S0.1, and in the range of
773 K to 873 K, Y0.05 shows the highest absolute Seebeck coefficient.

4. Discussion

Recently, particular interest has focused on the formation of the secondary phase in thermoelectric
materials to reduce their lattice electric conductivity [31]. From the XRD patterns of the as-cast
YxCoCrFeNi, the connection between crystal structures and Y contents can be clearly observed.
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Only diffraction peaks corresponding to the FCC crystal structure was observed in the Y0CoCrFeNi
alloy. However, reflections of the Laves phases can be found with the increase of the Y content.
The Laves phase can be identified as a YNi type. With the increase of the Y content, the grain is refined.
The microstructure of GdXCoCrFeNiCu was shown in the Figure 3b,c, which was typical of dendritic
structures. The grain size decreases with changing x from 0 to 0.3. In the multiphase compounds,
the inhomogeneous distribution of dopants between the matrix and secondary phase plays a crucial
role in the electronic-transport properties [23]. The XRD patterns and microstructures were observed
in Figure 2. All of the Al0.3-HEA samples exhibit a simple FCC structure, and with the increase of
the annealing temperature, the grain size increases [38]. We can regard all of the HEA samples as
similar low-dimensional thermoelectric materials, which follows the size effect. The low-dimensional
thermoelectric material reduces the average free path of the phonon by the size effect to decrease the
lattice thermal conductivity [29,39–43]. The lattice thermal conductivity decreases with the decrease of
the grain size, which is due to the fact that the small grain size will enhance the long wave phonons
scattering. The grain size and thermal conductivity of all samples conform to this rule [12–15].

From the electric-conductivity data, we observe that the conductivity of all the HEA samples
decreases with increasing temperature, which is consistent with the traditional alloys. The Al0.3 HEAs,
annealed at 673 K, possess a high electric conductivity (~1.1 MS·m−1). The connection between the
electric conductivity and annealing temperature was, however, not entirely systematic. Furthermore, a
small variation in the composition of the main phase will consequently affect the value for the electric
conductivity [36]. With increasing the contents of Y and Gd, the K value decreases. It is because the
movement of the carriers (electrons in the metal) is affected by the generation of the Laves phase,
leading to the decrease of the electric conductivity.

The change in the Seebeck coefficient for the Al0.3-HEAs was not entirely systematic over the full
annealing temperature range, but the S was changing in a systematic order during the high annealing
temperature (873 K and 1073 K). The absolute S value decreases as the annealing temperature changes
from 873 K to 1073 K, and the coefficient was nearly in a direct proportion to the test temperature.
The change in the Seebeck coefficient from positive to negative values can be ascribed to a change of the
diffusion direction of the carriers. In general, the formation of the second phase in the thermoelectric
materials will introduce the barrier, which will block the low-energy carriers and thus, cause the
decrease of the Seebeck coefficient [44,45]. In the high test-temperature range, the Y0.05-HEA shows
the greatest absolute Seebeck coefficient. Nevertheless, with the formation of the Laves phase in
GdxCoCrFeNiCu alloys, the absolute S values decrease. We believe that it is because the rare earth
element, Gd, possesses a special [46,47] electronic structure. Moreover, due to the bipolar conduction,
the Seebeck coefficient is basically in direct proportion to the temperature, since noticeable minority
carriers would be excited at high temperatures [21]. We therefore believe that it is necessary to combine
both the composition and phase structure with band structures in order to obtain a satisfactory Seebeck
coefficient. Serious efforts should be directed towards the band-structure engineering to make the
HEAs as effective TE materials. Nowadays, typically investigated TE materials may be semiconducting
oxides such as ZnO and Bi2O2Se [48,49]. They exhibit ZT values of 0.025 and 0.047 at elevated
temperatures of 1073 and 773 K, respectively. Compared to that, the ZT of the HEA studied in the
present manuscript is lower. However, high-entropy alloys are not traditional thermoelectric materials.
The significance of this paper is to provide an exploration of the possibility of the high-entropy alloy as
the thermoelectric material. It is found that the structure of HEA could be changed by doping elements
and heat treatment to improve the thermoelectric properties, which provides guiding significance for
the study of thermoelectric properties of high-entropy alloys. This is an important insight useful in
establishing strategies aimed to design a new kind of thermoelectric materials.

5. Conclusions

We show the potential for the HEAs to act as thermoelectric materials even in the high temperature
range. Moreover, it is found that the investigated Al0.3CoCrFeNi reaches a ZT value of 0.008. There is
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a large variety of properties that could be discovered in the HEAs. There is a potential for the
HEAs to attain an intrinsically-low lattice thermal conductivity due to the complex microstructure.
Our research is a step toward the connection between the phase and band structure with the
thermoelectric performance.
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