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Abstract: Unalloyed nickel aluminide has important applications but lacks ductility at room
temperature. In this study, iron-added nickel aluminide alloys exhibit plasticity enhancement.
The nickel aluminide alloys are prepared with different iron contents (0, 0.25, and 1 at%) to study their
plasticity. The indentation-induced deformed areas are mapped by the synchrotron X-ray diffraction
to compare their plastic zones. A complimentary tight binding calculation and generalized embedded
atom method demonstrate how the Fe-addition enhances the plasticity of the iron-added nickel
aluminide alloys.

Keywords: synchrotron diffraction; metal and alloys; plastic behavior; microstructure; molecular
dynamics simulation

1. Introduction

Nickel aluminide (NiAl) alloys are famous for their anti-oxidation, anti-corrosion, and wear
resistance [1]. The density of NiAl alloys are two thirds of the Ni-based alloys and the thermal
conductivity is much higher than that of the Ni-based alloys [2]. The inter-metallics of NiAl systems
can strengthen the steels [3]. Particularly, adding nanoscale NiAl precipitates can strengthen iron
(Fe)-based alloy [4]. Fine et al. described the strengthening mechanism of the NiAl as the NiAl
precipitates can create misfit centers to decrease the Peierls stress [5]. However, NiAl alloys are
infamous for lack of plasticity [6]. To improve the ductility of the NiAl, metallurgists have tried to
add small amounts of different elements, such as gold [7], gallium, molybdenum, and Fe [8]. With
comparable sizes of the aforementioned atoms, the addition of different elements is substitutable to Ni
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or Al lattice sites, but not interstitial. Specifically, the addition of Fe can enhance the yield strength
and elongation for bulk performance. However, the underlying mechanisms of how Fe-addition
enhances the plasticity are still unclear, for example, phenomena happening at the lattice level and
microstructural accommodation of the Fe-addition having subjected to deformation.

Nowadays, the synchrotron X-ray diffraction (XRD) technique enables measurements to reveal
the microstructure at lattice levels [9]. Nondestructive diffraction mapping can estimate plastic zone
sizes by comparing diffraction patterns of the gauged plastically-deformed regions. The residual
lattice strains and peak widths can correlate the distribution of the dislocation density locally [10].
On the other hand, several theoretical models have provided possible mechanisms for microstructure
predictions, such as ab initio, tight-binding, and embedded-atom calculations [11].

2. Materials and Methods

Ishida et al. reported that when 0.25 (at%) Fe is added, the plastic strain increases to 6% [2].
Fine et al. [5], Rigney and Lewandowski [12] suggested that misfit centers play a key role for the
plasticity enhancement. In this paper, NiAl alloys with different amounts of Fe-additions were
prepared. According to Ishida et al.’s summary [2], three NiAl samples with atomic percentages of
0 at% Fe (Ni50Al50), 0.25 at% Fe (Ni49.875Al49.875Fe0.25), and 1 at% Fe (Ni49.5Al49.5Fe1)-additions with
the thickness of about 70 µm, were prepared. All specimens were mechanically polished with the fine
SiC sand paper up to the grit number of 2000, and then 0.05 µm γ-Al2O3 slurry was sprayed on the
napped cloth.

The samples were then indented by the same level of loads. Micro-indentation tests were
conducted under the continuous stiffness measurement module of the FISCHERSCOPE H100C
Hardness Measurement System at a constant strain rate, following the Vickers hardness testing
protocol [13]. The applied load was 500 mN, and dwell time was 30 s. The results of loading-unloading
curves were analyzed, following Ahn et al.’s [14] and Zeng et al.’s [15] methods and discussed
elsewhere [16].

In order to map the plastic-zone sizes, the indented specimens were examined by synchrotron
radiation XRD mapping measurements. The advantage of the synchrotron X-ray diffraction was
facilitated for its spatially-resolved mapping resolution as well as its nondestructive nature to gauge
a greater volume of the indented regions of the samples in-depth direction. Residual strains of the
indented regions were compared to the peak-width distributions. The diffraction peak widths could
be correlated with the dislocation [17] and stacking faults [18].

Specifically, the synchrotron X-ray diffraction experiments were performed at the National
Synchrotron Radiation Research Center (NSRRC) in Taiwan. The details of the instrument configuration
could be found in our recent reports [19,20]. The plastic-zone sizes were mapped at the wavelength of
0.56 Å (22 keV) at the beamline (BL) 01C2 with the controlled beam size about 500 × 500 µm2 and the
probing depth of a few tens of micrometers for spatial resolution. Meanwhile, the indented region
was scanned in an area size of 2500 × 2500 µm2. In addition, we employed BL 23A1 to obtain a more
complete microstructure evolution at a localized region of the deformation center before and after the
deformation process at the wavelength of 0.88 Å (14 keV) with the beam size about 50 × 50 µm2. The
grain sizes of three specimens, Ni50Al50, Ni49.875Al49.875Fe0.25, and Ni49.5Al49.5Fe1 were 183 ± 15 µm,
248 ± 25 µm, and 245 ± 25 µm, respectively.

According to the standard data-reduction procedures [21], the 2-dimensional (2D) XRD patterns
data was reduced into 1-dimensional (1D) profiles as a function of the scattering vector, Q
(=4π/λsin(θ/2); θ is the scattering angle, and λ is the incident radiation wavelength, respectively).
The main scattering vector closes to the Ewald sphere, resulting in the shorter projection of the
reciprocal lattice vector. The mosaic spread of the crystallites may project the real reciprocal lattice
vector. The diffraction peaks of (110), (200), and (211) of the body-centered-cubic (bcc) structure were
identified. After the diffraction-profile refinement, the lattice-strain evolution (εhkl) was calculated



Quantum Beam Sci. 2018, 2, 18 3 of 7

using the change in the d-spacing (dhkl) of the refined peak positions of each hkl as a function of
deformation with respect to the initial d-spacing (d0

hkl). The peak width was normalized.
The tight binding calculation and generalized embedded atom method (GEAM) were applied

to simulate the microstructure landscapes of the Fe-addition effect on the NiAl systems. With the
intention of modeling the microstructure evolution, seven NiAl systems with atomic percentages of
0 at%, 0.1 at%, 0.2 at%, 0.5 at%, 1 at%, 2 at%, and 3 at% Fe-additions were developed. The comparison
between the experimental and the simulated results were discussed in light of the residual strain and
dislocation, together with Fe-addition effects.

Based on our previous molecular dynamics (MD) simulation [21,22], the tight binding calculation
was employed to describe the interactions among Ni–Ni, Al–Al and Ni–Al pairs. For the Fe-addition
effect in this study, GEAM was utilized to simulate the interaction between Fe–Ni, Fe–Al, and Fe–Fe.

The calculations were performed in collaboration with the National Center for High-Performance
Computing (NCHC) in Taiwan on a range of massively-parallel platforms. AtomEye and ParaView [23,24]
were applied to examine the simulation results. A bcc unit cell was constructed as Al at the center and Ni
atoms at the corners. The sites of Al were then randomly substituted by Ni. After that, the sites of Ni and
Al were randomly substituted by Fe elements for 0, 0.1, 0.2, 0.5, 1, 2, and 3 at%, respectively.

3. Results

Figure 1a shows the center point for mapping. Along the horizontal direction (yellow arrow), nine
different regions were measured. The nine scanned regions overlapped each other by an area about
250 × 500 µm. The nine mapping points along the horizontal direction were depicted in Figure 1b.
Most diffraction patterns were described as spots in Figure 1c. These diffraction spots revealed the
information from each grain, but not averaged by many randomly-oriented grains. The area mapping
results of the normalized diffraction-peak width were plotted in a 2D contour map in Figure 1d. Due
to the plastic deformation, the diffraction spots may become some azimuthal broadening [25].
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Figure 1. Synchrotron measurements: (a) the indented region of the specimen is set at the center;
(b) nine measured areas in one direction are scanned and overlapping each other; (c) ypical diffraction
spots of the measured results, which are from the Ni50Al50 sample; (d) normalized diffraction
peak-width distribution of Ni50Al50.

In Figure 2, the lattice strain of the (110), (200), and (211) were shown as legends of squares
(�), circles (
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significant compressive strains were presented in Figure 2. The sizes of compressive lattice-strain
distributions of both Ni50Al50 in Figure 2a and Ni49.5Al49.5Fe1 in Figure 2c were smaller than that of
Ni49.875Al49.875Fe0.25 in Figure 2b. The compressive residual strain distribution of Ni49.875Al49.875Fe0.25

was about 1250 µm wide (from −500 to 750 µm). The compressive region of Ni50Al50 was about 500
and that of Ni49.5Al49.5Fe1 was about 480 µm wide. Additionally, the maximum compressive strain near
the indented center of the Ni50Al50 and Ni49.875Al49.875Fe0.25 was found at the (200) plane, while that of
the Ni49.5Al49.5Fe1 was detected at the (211) plane. To further discuss the aforementioned indentation
results, Kramer et al.’s [26] theoretical model of the plastic zone size was recalled, considering
the indentation load, yield strength, and zone size. The greater plastic-zone size and the smaller
compressive strain indicated that the plasticity of Ni49.875Al49.875Fe0.25 was better than Ni50Al50 and
Ni49.5Al49.5Fe1, consistent with Fine et al.’s prediction [5] and Ishida et al.’s results [2].
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We utilized MD simulations to identify the lattice-misfit distortion through the individual
interaction between Ni and Al atoms. The microstructure before yielding was shown in Figure 3a.
There had already been some local lattice-misfit-induced distortions in the microstructure before
yielding. After yielding, the distorted shuffles could temporally occupy high-energy sites, as seen
Figure 3b. With the aim of quantifying the results, the evolution of tensors subjected to deformation
was observed for the characteristic principal stresses such as σ1, σ2 and σ3. The maximum shear stress
(τmax) could be calculated in Equation (1),

τmax =
σ1 − σ3

2
(σ1 > σ2 > σ3). (1)
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) stresses. In Figure 3c, the differences between minimum and maximum
strains are the largest at the 0.5% Fe-addition, suggesting a saddle point around 0.5% Fe-addition.
Similarly, another saddle point was found at the 0.5% Fe-addition in Figure 3d. An associated
local minimum was also found for τmax at 0.2% Fe-addition in Figure 3e. Based on the simulated
microstructures addressed in Figure 3a,b, the model indicates that Fine et al.’s [5] lattice misfit effect
will be maximized at the Fe-addition around 0.2~0.5%.

4. Discussion

We conducted the mapping for nine successive regions whose overlapping distance was 250 µm
in order to examine the centered regions induced by the indented zone with plasticity with respect
to the addition of the Fe content. In our work, we assumed the undeformed region to be the farthest
away from the indented center. Thus the lattice-strain variation in the deformed regions as a function
of the distance from center was calculated accordingly. In Figure 2, the indented center determined
based on the lattice strain and full width half maximum (FWHM) evolution was already shifted to
the zero position, which was considered to be deformed the most. The distribution mapping of the
normalized diffraction-peak width at the indented center in Figure 1d exhibited the broadening of
peak-width, which correlates with the wide range of compressive residual strain of the (110) lattice
plane in the microscopic view and also the plastic zone size in the macroscopic view. The gradient
from black to white in the color scale bar represents the relative distribution of FWHM from the least
to the most broadening. The red color corresponds to the more broadening of diffraction-peak width
at the center compared to the surrounding region around the center, implying the more deformed at
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the center area. The mapping results of the peak width provide an additional evidence to support the
lattice-strain evolution.

The maximum compressive strain of the (200) plane near the indented center of the
Ni49.875Al49.875Fe0.25 was about −0.026, which was less than −0.041 of the Ni50Al50. With the increase
of the Fe-addition up to 1.0%, the level of the maximum compressive strain reached −0.042 at the (211)
plane. The enhancement of plasticity with respect to the addition of a certain Fe amount was attributed
to the distortion and dislocation-density distribution in the microstructure evolution induced by the
lattice-misfit effect which was demonstrated by MD simulations, resulting in a smaller compressive
strain and a larger indentation-induced plastic zone size determined by X-ray results. The lattice strain
value of the (200) of the Ni49.875Al49.875Fe0.25 achieved from the X-ray experiment was in the range
0.02–0.026, which was in agreement with the one attained from the MD simulation of 0.018–0.027.
The MD simulation strongly supports the experimental X-ray results in which the strong impact of the
lattice misfit on the plastic enhancement of NiAl alloys was evidently observed with the addition of Fe
around 0.2~0.5%.

5. Conclusions

In summary, three NiAl alloys, Ni50Al50, Ni49.875Al49.875Fe0.25, and Ni49.5Al49.5Fe1 were prepared
to investigate Morris E. Fine’s lattice-misfit effect by Fe-addition. All the three samples were indented
under the same load conditions. Nondestructive synchrotron diffraction mapping was employed
to quantify the plastic-zone sizes around the indented areas. The Fe-addition in stoichiometry of
Ni49.875Al49.875Fe0.25 could most improve the ductility. Molecular dynamics simulation was applied
to model the microstructure evolution and validates the aforementioned plasticity enhancement
phenomenon. The results suggest that the Fe-addition around 0.2~0.5% can create the energy-saddle
point, relaxing the lattice-misfit effect at the yielding the most.
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