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Abstract
Machine learning applications that are implemented with
spike-based computation model, e.g., Spiking Neural Net-
work (SNN), have a great potential to lower the energy con-
sumptionwhen executed on a neuromorphic hardware. How-
ever, compiling and mapping an SNN to the hardware is
challenging, especially when compute and storage resources
of the hardware (viz. crossbars) need to be shared among the
neurons and synapses of the SNN. We propose an approach
to analyze and compile SNNs on resource-constrained neu-
romorphic hardware, providing guarantees on key perfor-
mance metrics such as execution time and throughput. Our
approach makes the following three key contributions. First,
we propose a greedy technique to partition an SNN into
clusters of neurons and synapses such that each cluster can
fit on to the resources of a crossbar. Second, we exploit the
rich semantics and expressiveness of Synchronous Dataflow
Graphs (SDFGs) to represent a clustered SNN and analyze
its performance using Max-Plus Algebra, considering the
available compute and storage capacities, buffer sizes, and
communication bandwidth. Third, we propose a self-timed
execution-based fast technique to compile and admit SNN-
based applications to a neuromorphic hardware at run-time,
adapting dynamically to the available resources on the hard-
ware. We evaluate our approach with standard SNN-based
applications and demonstrate a significant performance im-
provement compared to current practices.

CCS Concepts: • Hardware → Neural systems; Emerg-
ing languages and compilers;Emerging tools andmeth-
odologies; • Computer systems organization → Data
flow architectures; Neural networks.
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1 Introduction
Machine learning tasks implemented with spike model [15]
and brain-inspired learning algorithms [21], e.g., Spiking
Neural Network (SNN) [47], have a great potential to lower
the energy consumption when they are executed on a neuro-
morphic hardware such as DYNAP-SE [51], TrueNorth [30],
Neurogrid [10], SpiNNaker [34], and Loihi [28]. This makes
SNNs attractive for implementing machine learning applica-
tions in resource and power-constrained environments, ones
where sensor and edge devices of the Internet-of-Things
(IoT) [37] typically operate. A neuromorphic hardware con-
sists of computation units called crossbars, communicating
with each other using an interconnect. A crossbar can ac-
commodate a fixed number of neurons and synapses.

Executing a program on a hardware involves several steps:
compilation, resource allocation, and run-time mapping. Al-
though apparent for mainstream computers, these steps are
challenging and not very well defined when executing an
SNN-based machine learning application on a neuromor-
phic hardware. This is because a neuromorphic hardware
implements accumulation-based alternate computing, where
neural computations and synaptic storage are co-located in-
side each crossbar and distributed in the hardware. This is
different from a conventional computer where CPUs com-
pute by exchanging data centrally from the memory.
Prior research efforts such as [5, 8, 9, 27, 40, 41, 46] have

only addressed design-time analysis of an application with
unlimited hardware resources, e.g., arbitrarily large crossbars
and many interconnected crossbars as needed to accommo-
date all neurons and synapses of the application. While these
efforts are still relevant when designing the hardware, they
cannot provide a realistic guarantee of performance when ex-
ecuting these applications on an off-the-shelf neuromorphic
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hardware. This is because prior efforts fail to answer how
to share compute and storage resources of the hardware to
guarantee performance when not all neurons and synapses
of an SNN can fit on the hardware at once. Table 1, shown
in Section 6, lists the number of neurons and synapses in
standard machine learning applications, which are on the
order of thousands of neurons and hundreds of thousands
of synapses. A neuromorphic hardware such as DYNAP-SE
[51] has four crossbars and each crossbar can accommodate
a maximum of 128 fanin synapses per neuron. Clearly, the
four crossbars must be time-shared when executing an SNN
model, which can lead to lower performance.
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Figure 1. Performance impact due to limited resources.
Figure 1 illustrates the throughput impact due to limited

resources on DYNAP-SE for the evaluated applications (see
Section 6). We observe that throughput obtained on DYNAP-
SE using current practices is on average 64% lower than
throughput analyzed using unlimited resources. Our objec-
tive is to reduce this performance gap when compiling SNN-

based applications on neuromorphic hardware with limited

resources. The figure also plots our approach, which achieves
an average 78% higher throughput than current practices.

A second limitation of existing approaches is that they do
not address run-time aspects, i.e., how to compile and admit

machine learning applications to the hardware in the least
possible time based on the available resources.

To address these limitations, we propose a systematic and
predictable approach to compile and map SNN-based ma-
chine learning applications on resource-constrained neuro-
morphic hardware, providing performance guarantee.

Contributions: Following are our key contributions.
• We propose to partition an SNN into clusters of neu-
rons and synapses, where each cluster can fit on to
the resources of a crossbar in the hardware. We pose
this as a bin-packing problem and propose a greedy
strategy to solve it, maximizing crossbar utilization.

• We exploit the rich semantics and expressiveness of
Synchronous Data Flow Graphs (SDFGs) to represent
a clustered SNN and use Max-Plus Algebra to analyze
its performance, e.g., throughput.

• We model resource constraints such as limited cross-
bars, input and output buffer sizes, and communication
channel bandwidth into the SDFG representation. We
extend the Max-Plus Algebra and use Self-Timed Exe-
cution to construct static-order schedules to estimate
performance of this hardware-aware SDFG.

• We exploit a property of Self-Timed Scheduling to
derive the schedule for each tile at run-time, starting
from a single static-order schedule, without having to
construct these schedules from scratch. This reduces
the time to compile and admit a machine learning
application to the hardware at run time and adapt
dynamically to the available hardware resources.

Figure 2 shows a high-level workflow of our proposed
approach. The colored boxes in this figure are our key contri-
butions. This workflow incorporates both Artificial Neural
Network (ANN)-based applications written in a high-level
language such as PyTorch [54] or Tensorflow [1], and SNN-
based applications written in PyCARL [5]. In the former sce-
nario, analog computations of the trained ANN-based model
is first converted into spiking domain using the N2D2 (Neural
Network Design & Deployment) tool [11], an open-source
framework for Deep Neural Network (DNN) simulation and
full SNN-based applications building. Using this tool we have
previously demonstrated conversion of the heart-rate clas-
sification application [6], with less than 5% accuracy loss.
Once an SNN-based application is available, we simulate the
model in CARLsim [18] to record the number of spikes for
each neuron in the model when excited with the training
input. This spike information is then used in the partitioning
step of our workflow to generate a clustered model, which
is then used for analyzing performance on hardware.

Partitioning SNN2SDFG Max-Plus 
FormulationClustered 

SNN

Neuromorphic 
hardware

Run-time 
Allocation

Section: 2

PyTorch
Tensorflow

PyCARL

(ANN)

(SNN)

Training

Training

N2D2
CARLsim

SDFG Section: 4
Section: 3

Figure 2. Our proposed approach.

We evaluate performance and scalability of our approach
using standard SNN-based applications. Our results, detailed
in Section 7, demonstrate a significant performance improve-
ment compared to standard practices.

2 Crossbar-Aware Clustering of SNNs
2.1 Introduction to Spiking Neural Networks
An SNN is a computation model with spiking neurons and
synapses. Neurons communicate with each other by sending
short impulses of infinitesimally small duration, called spikes,
via synapses. Spiking neurons can be organized into feedfor-
ward topology, which consists of one input layer, one or more
hidden layers, and one output layer (e.g., DNN [44]). Spiking
neurons can also be organized in a recurrent topology [48].
SNN-based machine learning applications, especially those
that are deployed on sensor and edge devices of an IoT, typi-
cally operate on streaming data, i.e., these applications are



iterative in nature. For these applications, real-time perfor-
mance is measured in terms of throughput. We formulate
throughput in Section 3.2.

2.2 Crossbar Resource Constraints
A typical neuromorphic hardware (see Figure 7) consists
of crossbars, which are interconnected using an intercon-
nection fabric. A crossbar implements neuron dynamics
and facilitates synaptic storage. Therefore, each neuron and
synapse of an SNNmust be mapped to one of these crossbars.

In terms of constraints, a crossbar can accommodate only
a fixed number of synapses per neuron. This is illustrated in
Figure 3 with three examples using a small 4 × 4 crossbar. In
Figure 3(a), the crossbar implements a single 4-input neuron.
In this example, 5 out of 8 (62.5%) input and output (IO) ports
are utilized, and 4 out of 16 (25%) crosspoints are utilized. In
Figure 3(b), the crossbar implements one 3-input neuron; the
IO and crosspoint utilization are 50% and 18.75%, respectively.
Finally, in Figure 3(c), the crossbar implements two 2-input
neurons, resulting in IO and crosspoint utilization of 75% and
25%, respectively. Clearly, utilization varies based on how
neurons and synapses of an SNN are mapped to a crossbar.

(a) (b) (c)

Figure 3.Mapping of neurons & synapses to a 4x4 crossbar.

The SNN of a machine learning application can have many
neurons with many synapses per neuron. Take the example
of LeNet [43], a state-of-the-art convolutional neural net-
work (CNN) to classify handwritten digits (Figure 4). This
application has 4,634 neurons and 1,029,286 synapses, much
beyond what a single crossbar can accommodate. To map
such a large SNN to the hardware, the SNN needs to be
partitioned into clusters of neurons and synapses, where
each cluster can fit on to the resources of a crossbar in the
hardware. We discuss how to form clusters from an SNN in
Sec. 2.3 and how to share crossbars among clusters in Sec. 3.

Figure 4. The LeNet Cnvolutional Neural Network used for
handwritten digit classification.

2.3 SNN Partitioning
The SNN partitioning problem is a classic bin-packing prob-
lem and we propose a greedy strategy to solve this. Algo-
rithm 1 shows the pseudo-code of this clustering algorithm.
We first sort (in ascending order) neurons based on each neu-
ron’s fanin synapses and store them in a list (neuron_list).
For each neuron in this sorted list, we check to see if this
neuron can be merged in one of the existing clusters in
the cluster_list. A neuron can be merged in a cluster if
the total number of IOs, crosspoints, and buffer usage of
the cluster after merging the neuron can still fit on a cross-
bar of the hardware. This is to ensure that the clustered
SNN is deadlock-free when executed on the hardware. If the
neuron can be merged, we assign the neuron and its fanin
synapses to the cluster. Otherwise, we form a new cluster.
The cluster_list is sorted in descending order of utiliza-
tion so that the less utilized clusters can be used for merging
neurons with higher fanin.

Algorithm 1: Crossbar-aware SNN partitioning.
1 neuron_list = sort neurons of the SNN based on their fanin synapses;
2 clusters_list = {};
3 foreach 𝑛 ∈ neuron_list do
4 find𝐶 ∈ cluster_list such that 𝑛 can be merged in𝐶 ; /* A

neuron can be merged to a cluster if the IO, bandwidth,
and buffer constraints of the cluster post merging are
not violated. */

5 if 𝐶 = ∅ then
6 cluster_list.push(𝐶);
7 end
8 else
9 Assign 𝑛 to𝐶 ;

10 end
11 sort cluster_list in descending order of IO and crosspoint

utilizations;
12 end
13 check for consistency, connectivity, and deadlock in the clustered SNN;

2.4 Analyzing Inter-cluster Communication
After partitioning, we analyze the inter-cluster communica-
tion, i.e., the number of spikes that are expected between
these clusters when an SNN model is deployed in the field
on a neuromorphic hardware. We use the spike information
collected during CARLsim-based SNN simulation (Fig. 2) to
compute the number of spikes between each cluster pair
using the neuron-to-cluster mapping obtained from Algo-
rithm 1. Next, we describe how to analyze this clustered SNN.

3 Dataflow Modeling of SNN Clusters
We model a clustered SNN as a Synchronous Data Flow
Graph (SDFG) for predictable performance analysis.

3.1 Operational Semantics of SDF Graphs
Synchronous Data Flow Graphs (SDFGs, see [45]) are com-
monly used to model streaming applications that are im-
plemented on a multi-processor system-on-chip [63]. Both
pipelined streaming and cyclic dependencies between tasks



can be easily modeled in SDFGs. These graphs are used to an-
alyze a system in terms of throughput and other performance
properties, e.g. execution time and buffer requirements [66].

Nodes of an SDFG are called actors. Each node is a cluster
of the SNN. Actors are computed by reading tokens (spikes)
from their input ports and writing the results of the compu-
tation as tokens on the output ports. The number of tokens
produced or consumed in one execution of an actor is called
the port rate. They represent the number of spikes per unit
time at the input and output of different clusters in the SNN.
Port rates are visualized as annotations on edges. Actor exe-
cution is also called firing, and it requires a fixed amount of
time to execute on a crossbar. Edges in the graph are called
channels and they represent dependencies among actors.

Figure 5 shows the example of an SDFG constructed using
our SNN2SDF tool [58] for the LeNet CNN model used in
handwritten digit classification [43]. There are 7 actors and
13 channels in this graph. For instance, actor_4 has two
outgoing channels. The channel going to actor_6 has a port
rate of 2 spikes per unit time, and the one going to actor_1
has a port rate of 3 spikes per unit time. From Fig. 5 we also
see that there are cycles in the graph. Such cycles may arise
during the partitioning step. Figure 6(a) illustrates a simple
feedforward network of 3 neurons (A, B, & C). Figure 6(b)
illustrates a scenario where neurons A and C are placed in
cluster 1 (actor 1) and neuron B in cluster 2 (actor 2) during
partitioning. Due to the connectivity of the neurons in Figure
6(a), there is a cyclic dependencency between the two actors:
actor_1→actor_2→actor_1. Therefore, Directed Acyclic
Graphs (DAGs) cannot be used to represent and analyze
clustered SNNs. This justifies our choice of using SDFGs.
An actor is called ready when it has sufficient input to-

kens on all its input channels and sufficient buffer space
on all its output channels; an actor can only fire when it is
ready. A channel may also contain an initial token, shown
as annotation. For instance, the channel between actor_0
and actor_6 in the figure has 1 initial token. A set 𝑃𝑜𝑟𝑡𝑠 of
ports is assumed, and with each port 𝑝 ∈ 𝑃𝑜𝑟𝑡𝑠 , a finite rate
𝑅𝑎𝑡𝑒 (𝑝) ∈ N \ {0} is associated. Formally,
Definition 1. (Actor) An actor a𝑖 is a tuple (𝐼𝑖 ,𝑂𝑖 , 𝜏𝑖 , 𝜇𝑖 )
consisting of a set 𝐼𝑖 (⊆ 𝑃𝑜𝑟𝑡𝑠) of input ports, a set𝑂𝑖 (⊆ 𝑃𝑜𝑟𝑡𝑠)

of output ports with 𝐼𝑖∩𝑂𝑖 = ∅, 𝜏𝑖 is the execution time of a𝑖 and
𝜇𝑖 is its state space, i.e., buffer space needed for communicating

spikes on all of its channels.

Definition 2. (SDFG) An SDFG is a directed graph 𝐺𝑎𝑝𝑝 =

(𝐴,𝐶) consisting of a finite set 𝐴 of actors and a finite set

𝐶 ⊆ 𝑃𝑜𝑟𝑡𝑠2 of channels. The source of channel 𝑐ℎ
𝑗

𝑖
∈ 𝐶 is

an output port of actor a𝑖 , the destination is an input port of

actor a𝑗 . All ports of all actors are connected to precisely one

channel, and all channels are connected to ports of some actors.

The source and the destination port of channel 𝑐ℎ
𝑗

𝑖
are denoted

by 𝑆𝑟𝑐𝑃 (𝑐ℎ 𝑗

𝑖
) and 𝐷𝑠𝑡𝑃 (𝑐ℎ 𝑗

𝑖
) respectively. Channels connected

to the input and output ports of an actor a𝑖 are denoted by

𝐼𝑛𝐶 (a𝑖 ) and 𝑂𝑢𝑡𝐶 (a𝑖 ) respectively.

Before an actor a𝑖 starts its firing, it requires 𝑅𝑎𝑡𝑒 (𝑞𝑖 ) to-
kens from all (𝑝, 𝑞𝑖 ) ∈ 𝐼𝑛𝐶 (a𝑖 ). When the actor completes
execution, it produces 𝑅𝑎𝑡𝑒 (𝑝𝑖 ) tokens on every (𝑝𝑖 , 𝑞) ∈
𝑂𝑢𝑡𝐶 (a𝑖 ). One important property of an SDFG is through-
put, which is defined as the inverse of its long-term period.
A period is the average time needed for one iteration of the
SDFG. An iteration is defined as the minimum non-zero exe-
cution such that the original state of the SDFG is obtained.
This is the performance parameter used in this paper. Fol-
lowing definitions are introduced to formulate throughput.

Figure 5. SDFG representation of the LeNet CNN model
used for handwritten digit classification [43].

A B C
A C B

Cluster 1 
(actor 1) Cluster 2 

(actor 2)
(a) (b)

Figure 6. An example cycle generated due to partitioning.

Definition 3. (Repetition Vector) The Repetition Vector

RptV of an SDFG is defined as the vector specifying the number

of times actors in the SDFG are executed in one iteration.

In the SDFG representation of a clustered SNN, all spikes
generated on a channel are consumed by the destination
actor. This means that all actors are fired exactly once dur-
ing one iteration of the application. So, 𝑅𝑝𝑡𝑉 = [1111111].
Furthermore, by incorporating constraints of a crossbar dur-
ing the partitioning, we ensure that the SDFG generated from
the clustered SNN is consistent, connected, and deadlock free.



3.2 ComputingPerformanceonIniniteResources

Wepresentanapproachtocomputetheapplicationperiodof
anSDFGbyanalyzingitsmaximumcyclemean(MCM)and
assumingininitehardwareresources.Forthis,weuseMax-
PlusAlgebra[19,38,72].Thekeydiferenceofourapproach
withthesepriorapproachesistheincorporationofresource
constraints,whichwedescribenext.TheMax-Plussemiring
RmaxisthesetR∪{−∞}deinedwithtwobasicoperations
⊕and⊗,whicharerelatedtolinearalgebraas

𝑎⊕𝑏=max(𝑎,𝑏)and𝑎⊗𝑏=𝑎+𝑏 (1)

TouseMax-PlusAlgebratoanalyzeanSDFG,itiscustom-
arytoexpressthetimeatwhichanactoriresintermsof
precedingiringsandthenusestandardanalysistechniques
forMax-PlusAlgebratoestimatetimingperformance.For
theSDFGinFigure5,iringendtimeofall7actorsinthe
𝑘thiteration(inlinearalgebra)are

𝑡0(𝑘)≥𝑡0(𝑘−1)+𝜏0 (2)

𝑡1(𝑘)=max 𝑡3(𝑘−1),𝑡5(𝑘−1),𝑡2(𝑘),𝑡4(𝑘),𝑡6(𝑘)+𝜏1

𝑡2(𝑘)=𝑡6(𝑘)+𝜏2

𝑡3(𝑘)=𝑡5(𝑘)+𝜏3

𝑡4(𝑘)≥𝑡4(𝑘−1)+𝜏4

𝑡5(𝑘)=max 𝑡3(𝑘−1),𝑡1(𝑘),𝑡2(𝑘)+𝜏5

𝑡6(𝑘)=max 𝑡1(𝑘−1),𝑡0(𝑘),𝑡4(𝑘)+𝜏6

Observethattheiringendtimeofactoractor_iinthe
𝑘thiterationisafteritsiringendtimeinthe(𝑘−1)thitera-
tion.Furthermore,theproductionandconsumptionratesare
thesameforeverychannelintheSDFG.Usingpreviously
introducedMax-Plussemantics,iringendtimesforevery
actorintheSDFGcanbeexpressedas

𝑡𝔫(𝑘)=⊕𝑡𝔪(𝑘−1)⊗𝜏𝔫,∀𝔪∈𝑃𝑟𝑒(𝔫) (3)

Withasimpletransformationofvariables,theabovesum-
of-productequationcanberewrittenas

tk=T·tk−1 (4)

whereTcapturesexecutiontimes𝜏𝔫.Thefollowingdeini-
tionsareintroducedtoestimatelatency.

Deinition4.(Digraph)ThedigraphΓ(𝑇)ofa𝑛×𝑛matrix
𝑇withentriesdeinedinRmaxisthetuple⟨𝐴,𝐸⟩,where𝐴isthe
setofvertices,i.e.,𝐴={1,2,···𝑛}and𝐸isthesetofconnected
orderedarcsbetweenverticesi.e.,𝐸={(𝑖,𝑗)|𝑇𝑖,𝑗≠−∞}.

Deinition5.(Walk)Awalk𝑤indigraphΓ(𝑇)isthese-
quenceofarcs(𝑥1,𝑥2)(𝑥2,𝑥3)···(𝑥𝑘−1,𝑥𝑘);headofanarcin
thesequenceiseitherthestartvertexofthewalkortailvertex
ofaprecedingarc;andthetailvertexofanarcinthesequenceis
eithertheendvertexofthewalkorheadvertexofasucceeding
arc.Weightofthewalkisgivenby

|𝑤|𝑇=𝑇𝑥1𝑥2+···𝑇𝑥𝑘−1𝑥𝑘 (5)

Deinition6.(Cycle)Acycle𝑐indigraphΓ(𝑇)isthewalk
(𝑥1,𝑥2)(𝑥2,𝑥3)···(𝑥𝑘−1,𝑥𝑘),suchthat𝑥𝑘=𝑥1.

Deinition7.(MaximumCycleMean)Themaximumcycle
mean,𝜌max(𝑇)isthemaximumoftheweight-to-lengthratio
ofallcycles𝑐inΓ(𝑇)i.e.,

𝜌max(𝑇)= max
∀𝑐inΓ(𝑇)

|𝑐|𝑇
|𝑐|
=max
𝑘≥1

max
𝑥1,···,𝑥𝑘

𝑇𝑥1𝑥2+···𝑇𝑥𝑘𝑥1
𝑘

(6)

Inthispaper,performanceofanSNNisdeinedin
termsofthroughputoftheequivalentSDFG,measuredas
theinverseofitsmaximumcyclemean(Equation6).

4 Hardware-AwarePerformanceAnalysis

WenowextendtheMax-Plusformulationtoanalyzeperfor-
manceofanSNNonaresource-constrainedhardware.

4.1 PlatformDescription

PerformanceofanSNN,computedusingEquation6,gives
themaximumperiodpossiblewithininitehardwarere-
sourcesintermsofcrossbars,bufersizes,andcommuni-
cationbandwidth.Forof-the-shelfneuromorphichardware,
however,theseresourcesarelimited.Figure7showsatypical
tile-basedneuromorphichardware,wheretilesareconnected
viaaninterconnection.Eachtileconsistsofacrossbar(C),
inputandoutputbufers,andanetworkinterface(NI).A
crossbarisatwodimensionalorganizationofhorizontaland
verticalelectrodes.Ateverycross-point,thereisaOxide-
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Figure7.Anexampletile-basedneuromorphichardware.
Eachtileconsistsofacrossbar,inputandoutputbufers,and
anetworkinterface(NI).

4.2 BindingActors(Clusters)toTiles

SimilarinveintoPYCARL[5],weusealoadbalancingstrat-
egytobindclustersofanSNNtothetilesofthehardware.
Weirstformulatetheloadofatileasfollows:

𝑙𝑜𝑎𝑑(𝑡𝑖𝑙𝑒)=𝑎∗crossbar+𝑏∗bufer+𝑐∗connection+𝑑∗bandwidth(7)

where𝑎,𝑏,𝑐and𝑑areuser-deinedconstantsusedtopriori-
tizediferenthardwareresourcesonatile.Next,wepropose
agreedyapproachtobalancetheloadoneachtile.Forthis,
weirstdistributetheclustersevenlytothetilesandcalcu-
latethestandarddeviationoftileloads.Foreveryclusterpair
thatisboundtotwodiferenttiles,weswaptheclustersto
seeifthestandarddeviationreduces.Ifitreduces,weretain
thisnewbindingandcontinueanalyzingotherclusterpairs.

4.3 ExecutingaClusteronaCrossbar

Aclusterisexecutedbyplacingitsneuronsandsynapseson
tothecrossbarofatile.Figure8illustratesthisexecution
mechanism.Synapticweights𝑤1and𝑤2areprogrammed



into OxRAM cells P1 and P2, respectively. The output spike
voltages, 𝑣1 from N1 and 𝑣2 from N2, inject current into the
crossbar, which is obtained by multiplying a pre-synaptic
neuron’s output spike voltage with the OxRAM cell’s con-
ductance at the cross-point of the pre- and post-synaptic
neurons (following Ohm’s law). Current summations along
columns are performed in parallel using Kirchhoff’s current
law, and implement the sums

∑
𝑗 𝑤𝑖𝑣𝑖 , needed for forward

propagation of neuron excitation. The execution time of a
cluster is the current propagation delay through an OxRAM
synapse and is obtained from Malik et al. [49]. Note that
though we use OxRAM synapses as example, the execution
technique applies to any resistive non-volatile synapse.

𝑤"
𝑤#

𝑣"
𝑣#

𝑤"𝑣" + 𝑤#𝑣#

N1

N2
𝑤#
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𝑣#

𝑃"

𝑃#

Figure 8. Executing a cluster on a crossbar.
Although a crossbar implements analog computations,

spikes at the output are converted into digital packets before
communicating on the interconnect. We use the Address
Event Representation (AER) protocol [13]. Figure 9 shows
an example explaining the principles behind AER. Here, four
neurons in a crossbar spikes at time 3, 0, 1 and 2 time units,
respectively. The encoder encodes these four spikes in order
to be communicated on the interconnect. As can be clearly
seen from this figure, a spike is encoded uniquely with its
source and time of spike. Therefore, each token in the SDFG
is simply a spike packet with header encoding the address
and time, and zero payload.

CHAPTER 2. BACKGROUND KNOWLEDGE

chips. There are several published benchmark reports for different chips. In the following para-
graph, TrueNorth chip is cited as a proof of the significant reduction of power consumption.

TrueNorth is a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via
an intra-chip network that integrates 1 million programmable spiking neurons and 256 million
configurable synapses, designed and fabricated by IBM [24]. Paul A. Merolla et al. ran a multi-
object detection and classification application both on a state-of-art von Neumann computer and
the neuromorphic system built with TrueNorth chip, and compared power consumption. According
to their documented results, TrueNorth consumes 26 pJ per synaptic event with mean neurons
fire at 20 Hz and 128 active synapses, which is 176,000 times less energy per event compared with
the generic-propose microprocessor running the same network [25].

Accelerating neural network applications

Neuromorphic computing is biologically inspired and it is integrating spiking neural networks into
hardware level [8]. As a benefit, the neural network applications, such as image detection and
classification, big data analysis, machine learning etc., are accelerated with the natural imple-
mentation.

TrueNorth continues to be cited as a proof. According to the report of Paul A. Merolla et
al., TrueNorth can deliver 46 billion synaptic operations per second (SOPS) per watt for a typical
network and 400 billion SOPS per watt for networks with high spike rates and high number of
active synapses, whereas todays most energy-efficient supercomputer achieves 4.5 billion floating-
point operations per second (FLOPS) per watt [25]. Although the metric units are different, the
computational capability can by some means be indicated by the number of operations per second.

2.2.3 Synapse communications

This project is conducting the research on communication mechanisms and architecture of neur-
omorphic computing. In this section, some existent and conventional protocols and architectures
are introduced as the basis of this research.

Address event representation protocol

Address-event representation (AER) is a communication protocol originally proposed as a method
to communicate sparse neural events between neuromorphic chips. Massive interconnections
among individual neurons or neuron clusters are allocated to the reduced number of channels
by time division multiplexing. According to the protocol, each spike is represented by its location
and spiking time.

Figure 2.4: A example of AER protocol [2].
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Figure 9. An example AER protocol (adapted from [13]).

4.4 Computing-Resource Aware Performance
To compute performance of an SNNon a resource-constrained
neuromorphic hardware, we first construct its hardware-
aware SDFG and then compute the maximum cycle mean
using the Max-Plus Algebra formulation of Equation 6.
The following three steps describes this approach start-

ing from the actor binding of Section 4.2. Without loss of
generality, we use Equation 8 as a running binding example.

tile_0 : actor_3, actor_6 tile_2 : actor_2 (8)
tile_1 : actor_2, actor_5 tile_3 : actor_1, actor_4

Step 1 (BufferModeling): Limited input and output buffer-
sizes are modeled as back-edges with initial tokens in the
hardware-aware SDFG. The number of tokens on this back-
edge indicates the buffer-size available. When an actor gener-
ates spikes on a channel, the available size reduces; when the
receiving actor consumes the spike, the available buffer is re-
leased. Figure 5 shows such an example of a back-edge, where
the buffer size of the channel from actor_4 to actor_1 is
shown as five. Before actor_4 can be executed, it has to
check if enough buffer space is available. This is modeled
by requiring tokens from the back-edge to be consumed.
Since it produces three tokens per firing, three tokens from
the back-edge are consumed, indicating reservation of three
buffer spaces. On the consumption side, when actor_1 is
executed, it frees three buffer spaces, indicated by a release of
three tokens on the back-edge. We assume atomic execution
of actors on a crossbar, i.e., a crossbar reads input tokens
and produces output tokens in the output buffer for no more
than one actor at any given instance of time. To prevent
other actors mapped to the same crossbar from being fired
simultaneously, the output buffer space is claimed at the
start of execution and released only at the end of firing.

Figure 10 shows the final hardware-aware SDFG of LeNet-
based handwritten digit classification on a neuromorphic
hardware with four tiles. For simplicity of representation,
we have omitted the back-edges from the figure.

Figure 10.Hardware-aware SDFG of LeNet-based handwrit-
ten digit recognition on the neuromorphic hardware of Fig. 7.



Step 2 (Actor Ordering): The number of crossbars in a
neuromorphic hardware is limited and therefore they may
have to be shared between actors of an SNN. However, on
a tile, only one instance of an actor can be executing at
the same moment in time. We use time-division multiple-
access (TDMA) to allocate time slices to actors mapped to
the same tile. During the allocated time slice, an actor is
executed on the crossbar of the tile and generates spikes,
which are stored in the output buffer for communication on
the interconnect. Next, we generate the order in which the
actors bound to a tile are fired to provide a guarantee on
performance, i.e., throughput. For this, we apply our Max-
Plus Algebra formulation (Eq. 6) on the hardware-aware
SDFG of Fig. 10. This is our static-order schedule.We construct
this schedule at design time.
Step 3 (Actor Execution):Once the static-order schedule

is constructed for all tiles of the hardware, we use self-timed
execution strategy [52] for executing these actors at run-
time. In this strategy, the exact firing times of actors are
discarded, retaining only the assignment and ordering of
actors on each tile as obtained from the design-time analysis
(step 2). At run time, ready actors are inserted in a list and
fired in the same order as determined from design time.

5 Run-time Resource Management
A modern neuromorphic hardware is expected to execute
many SNN applications simultaneously. When a new appli-
cation is to be admitted to a hardware, which is currently
running other applications, the incoming application needs
to be compiled and mapped to the hardware within a short
time window, based on resources currently available on the
hardware. Furthermore, when an existing application fin-
ishes execution, its hardware resources are freed, meaning
that such resources can now be allocated to other running ap-
plications to improve their performance. Clearly, a dynamic
compilation strategy is needed to address them.

We observe that over 75% of the total compilation time of
an SNN application is due to the time consumed in construct-
ing the static-order schedule for each tile of the neuromor-
phic hardware (see Section 7.3). To address this, we exploit
the basic property of Max-Plus Algebra and self-timed sched-
uling, which is expressed as the following lemma.
Lemma 1. If the schedule of actors on a single-tile system

is used to derive the schedule for a multi-tile system by keep-

ing the actor firing order unchanged, the resultant multi-tile

schedule is free of deadlocks [12].

Based on this lemma, we propose the following. First, we
construct the static-order schedule for all actors of an SNN
on a single tile at design-time. This is achieved using our
proposed Max-Plus Algebra formulation of Equation 6. Next,
we discard the exact timing information, retaining only the
actor firing orders for run-time use. At run-time, we first
construct the actor binding to tiles (Section 4.2), considering

the available resources. Next, we use the single-tile static-
order schedule to fire actors when they are ready. Figure 11
illustrates our run-time methodology.

PartitioningSNN Construct Single-tile 
Static-Order Schedule

Equation 6

Actor Binding

Section 4.2

Self-timed Execution

Design-time Run-time

Available 
Resources

Figure 11. Our approach to run-time resource management.
Figure 12 illustrates the construction of per-tile schedules

for an SNN application with seven run-time actors, and with
two different binding of actors to tiles and the same single-
tile static order schedule. We illustrate two scenarios in this
example. In the first scenario (left), the application uses two
tiles of the hardware. In the second scenario (right), the
application uses three tiles of the hardware. In both scenarios,
actor orders on each tile is the same as that on the single-tile.
Since tile schedules are not constructed from scratch, the
schedule construction time is much lower (see Table 3).

Single-tile Static Order Schedule

tile_0

tile_1

tile_0

tile_1

tile_2

Binding: Binding:

Figure 12. Schedules constructed from the same single-tile
static order schedule using 2 and 3 tiles, respectively.

However, performance obtained using this single-tile sched-
ule can be lower than the maximum performance of a multi-
tile schedule constructed independently. As long as this per-
formance deviation is bounded, the actor schedule for any
tile can be easily derived from the binding of actors to this tile
and a given single-tile static-order schedule. In Section 7.6,
we evaluate the performance of this scheduling.

6 Evaluation Methodology
6.1 Hardware Models
We model the DYNAP-SE neuromorphic hardware [51] with
the following configurations.

• A tiled array of 4 crossbars, each with 128 input and
128 output neurons. There are 65,536 crosspoints (i.e.,
OxRAM NVMs) in each crossbar.

• Spikes are digitized and communicated between cores
through a mesh routing network using the Address
Event Representation (AER) protocol.



• Each synaptic element is an HfO2-Based OxRAM De-
vice. Timing parameters are modeled from [36].

To test scalability of our compilation technique, we also
evaluate hardware models with 9 and 16 neuromorphic cores.

6.2 Evaluated Applications
We evaluate eight standard SNN-based machine learning ap-
plications: 1) image smoothing (ImgSmooth) [18] on 64 × 64
images; 2) edge detection (EdgeDet) [18] on 64×64 images us-
ing difference-of-Gaussian; 3) multi-layer perceptron (MLP)-
based handwritten digit recognition (MLP-MNIST) [32] on
28×28 images of handwritten digits from the MNIST dataset
[31]; 4) heart-rate estimation (HeartEstm) using electrocar-
diogram (ECG) data [26] from the Physionet database [50];
5) ECG-based heart-beat classification (HeartClass) [6]; 6)
handwritten digit classification with standard CNN (CNN-
MNIST) [56, 62]; 7) handwritten digit classification with the
LeNet CNN (LeNet-MNIST) [56]; and 8) image classifica-
tion with LeNet CNN (LeNet-CIFAR) [56] with images from
the CIFAR dataset [42]. The LeNet CNN model is described
in [43]. Table 1 summarizes the topology and the number of
neurons, synapses, and spikes of these applications. Image-
based applications are iteratively executed on test images.
Applications Synapses Neurons Topology Spikes Accuracy
ImgSmooth [18] 136,314 980 FeedForward (4096, 1024) 17,600 100%
EdgeDet [18] 272,628 1,372 FeedForward (4096, 1024, 1024, 1024) 22,780 100%
MLP-MNIST [32] 79,400 984 FeedForward (784, 100, 10) 2,395,300 95.5%
HeartEstm [26] 636,578 6,952 Recurrent 3,002,223 99.2%
HeartClass [6] 2,396,521 24,732 CNN1 1,036,485 85.12%
CNN-MNIST [56] 159,553 5,576 CNN2 97,585 96.7%
LeNet-MNIST [56] 1,029,286 4,634 CNN3 165,997 99.1%
LeNet-CIFAR [56] 2,136,560 18,472 CNN4 589,953 84.0%

1. Input(82x82) - [Conv, Pool]*16 - [Conv, Pool]*16 - FC*256 - FC*6
2. Input(24x24) - [Conv, Pool]*16 - FC*150 - FC*10
3. Input(32x32) - [Conv, Pool]*6 - [Conv, Pool]*16 - Conv*120 - FC*84 - FC*10
4. Input(32x32x3) - [Conv, Pool]*6 - [Conv, Pool]*6 - FC*84 - FC*10
Table 1. Applications used to evaluate our approach.

6.3 Evaluated State-of-the-art Techniques
We evaluate the following three approaches.

• SpiNeMap [8] maps SNNs to tiles, minimizing spikes
on the interconnect. Clusters on a tile are executed in
a random order.

• PYCARL [5] maps SNNs to tiles, balancing tile load.
Clusters on a tile are executed in a random order.

• Our proposed approach uses SDFGs to analyze the
performance of an SNN on a neuromorphic hardware.
Clusters are allocated to tiles based on this analysis.
Overall, our approach balances load on each tile and
uses static-order schedule to improve throughput.

6.4 Evaluated Metrics
We evaluate the following performance metrics.

• Performance: This is the throughput of each applica-
tion on the hardware.

• Compilation Time: This is the time to compile and map
each application on the hardware.

• Resource utilization: This is the tile, buffer, connection,
and input and output bandwidth utilization on the
hardware for each application.

7 Results and Discussion
7.1 Performance
Figure 13 reports throughput obtained on the DYNAP-SE
neuromorphic hardware of each of our application for each
of the evaluated techniques normalized to SpiNeMap. We
make the following three observations.
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Figure 13. Throughput, normalized to SpiNeMap.

First, throughput obtained using SpiNeMap is the low-
est among all the evaluated techniques. This is because
SpiNeMap places SNN clusters on tiles to minimize the num-
ber of inter-tile spikes. Therefore, some tiles need to execute
many SNN clusters. As cluster ordering on a tile is not ad-
dressed in SpiNeMap, throughput is significantly low. Second,
throughput obtained using PYCARL is better than SpiNeMap
by an average of 41%. Although PYCARL also orders clus-
ter execution on a tile randomly, throughput of PYCARL is
higher than SpiNeMap. This is due to PYCARL’s strategy to
balance the load on each tile, resulting in lower number of
clusters mapped per tile than SpiNeMap. Third, throughput
obtained using our approach is the highest (78% higher than
SpiNeMap and 28% higher than PYCARL). This improvement
is due to our static-order schedule, which we analyze and
construct at design-time for every tile of the hardware to
decide the exact order in which clusters mapped to the same
tile need to be executed to improve performance.

7.2 Cluster Binding
We reason that balancing the load on the tiles of a hardware
is essential to achieving high throughput. Figure 14 reports
throughput of each of our application on the DYNAP-SE
hardware. We compare our proposed approach against base-
line SpiNeMap with random cluster order on each tile and
SpiNeMap with static-order schedule on each tile. Through-
put results are normalized to SpiNeMap. We make the fol-
lowing two observations. First, throughput of SpiNeMap
improves by an average of 39% when static-order scheduling
is enabled for each tile of the hardware. Second, our approach
improves throughput further by an average of 27%. Although
the static-order scheduling remains the same, our proposed
approach, which balances the load on each tile improves
throughput compared to SpiNeMap.
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Figure 14. Throughput, normalized to SpiNeMap.

7.3 Compilation Time
Figure 15 reports the fraction of total compilation time of
each of our application using our proposed approach for the
DYNAP-SE hardware, distributed into time to bind clusters to
tiles and the time to construct static-order schedule on each
tile. The number on each bar reports the absolute time in ms
to compile these applications on the DYNAP-SE hardware.
We observe that the time consumed to create static-order
schedule on each tile is on average 75% of the total time
to compile these applications on the hardware. For some
applications such as HeartEstm, the scheduling time is over
95% of the total time to compile the application. These results
suggest that for run-time use, the schedule construction
time needs to be reduced, which justifies our fast self-timed
execution based scheduling (see Section 7.6).
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Figure 15. Fraction of total compile time, distributed into
binding and scheduling time.

7.4 Resource Utilization
Table 2 reports the utilization of hardware resources (tile
resources, buffer size, connections, and input and output
bandwidth) on the DYNAP-SE neuromorphic hardware for
each application. The average utilization of hardware re-
sources are 92.5% for the crossbar IOs on each tile, 9.0% for
buffer space, 42.6% for connections, and 15% for input and
output tile bandwidth. Since we perform hardware-aware
analysis, resource utilization never exceeds 100%.

These results illustrate that our approach can also be used
for designing neuromorphic hardware, not only in terms of
number of tiles, but all other resources such as buffer space,
connections, and input and output bandwidth.

7.5 Performance Scalability
Figure 16 reports throughput of each of our application for
our proposed approach normalized to SpiNeMap. We com-
pare throughput obtained on three hardware models: 4 tiles
(baseline), 9 tiles (arranged in a 3 × 3), and 16 tiles (arranged
in a 4 × 4). We make the following two observations.

Application
Utilization (%)

Tile Buffer Connections
Bandwidth

Input Output
ImgSmooth 87.5 8.39844 37.5 17.0898 17.0898
EdgeDet 87.5 11.2305 68.75 22.7864 22.7865
MLP-MNIST 81.25 9.375 46.875 22.7865 22.7864
HeartEstm 96.875 9.61914 62.5 4.70197 4.70197
HeartClass 93.75 7.91015 25 9.76564 9.76562
CNN-MNIST 100 7.42188 15.625 6.51041 6.51041
LeNet-MNIST 93.75 8.78906 37.5 20.3451 20.345
LeNet-CIFAR 100 9.17967 46.875 17.0898 17.0898

Table 2. Resource utilization on DYNAP-SE.
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Figure 16. Throughput, normalized to SpiNeMap.

First, throughput generally increases with increasing the
number of neuromorphic tiles. With 9 and 16 tiles, the av-
erage throughput is higher than the baseline configuration
by 11% and 15%, respectively. This improvement is because
with more tiles in the hardware, a tile is shared among fewer
clusters, which improves throughput. Second, for applica-
tions such as ImgSmooth, four tiles are sufficient to map the
application. There is therefore no significant improvement in
throughput when the number of tiles in the hardware is in-
creased. For other applications such as EdgeDet, throughput
increases with increase in the number of tiles.

7.6 Run-time Performance
Figure 17 reports throughput of each of our application
for our proposed approach normalized to SpiNeMap. We
compare throughput obtained at design-time where cluster
schedules are independently constructed for each tile against
throughput obtained at run-time using our proposed single-
tile schedule. We make the following three observations.
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Figure 17. Throughput, normalized to SpiNeMap.
First, throughput obtained at run-time from a single-tile

static-order schedule is on average 15% lower than the case
when schedules are constructed independently — that is, by
using our design-time analysis method. This verifies Lemma
1. Second, for some application such as HeartEstm and Her-
atClass, throughput obtained at run time is exactly the same



as that obtained at design time. Third, throughput at run
time is still higher than SpiNeMap by an average of 51.4%.

Table 3 compares the compilation time for each application
using our approach at design time against that at run time.
On average, the run-time approach achieves an average 67.5%
reduction in compilation time. This is due to the reduction of
schedule construction overhead using the single-tile static-
order schedule along with the self-timed execution approach.

Application
Compilation time (ms)

Application
Compilation time (ms)

Design-time Run-time Design-time Run-time
ImgSmooth 42.203 17.3685 EdgeDet 60.872 12.1011
MLP-CNN 243.862 77.0835 HeartEstm 51.73 6.6567
HeartClass 9.939 5.0043 CNN-MNIST 10.005 4.072
LeNet-MNIST 45.829 15.1356 LeNet-CIFAR 172.203 52.635

Table 3. Compilation time at design time vs. at run time.

7.7 Accuracy Impact
Table 1 column 6 reports the model accuracy for each of the
evaluated applications obtained on DYNAP-SE. The accuracy
is within 5% of the top accuracy reported in literature. We
observe that there is no accuracy loss for applications that are
built directly in spiking domain (EdgeDet and ImgSmooth).
For all other applications converted from the analog domain,
accuracy loss is less than 5% of the accuracy reported in
literature. This loss is attributed to the N2D2 tool.

8 Related Works
8.1 State-of-the-art Neuromorphic Hardware
In SpiNNaker [34], each ARM9 core can implement multi-
ple neuron functionality, with the local memory serving as
the synaptic storage. TrueNorth is a million-neuron digital
CMOS chip from IBM [30]. The chip has 4,096 tiles, with each
tile hosting 12.75 kilobytes of local SRAM memory to store
the synapses. Loihi is a 128-tile neuromorphic chip from
Intel, with each tile having 1,024 spiking neurons and 2 Mb
of SRAM to store synapses[28]. There are also many other
neuromorphic chips such as Neurogrid [10], BrainScaleS
[57], Braindrop [53], and ODIN [33]. These architectures are
similar to DYNAP-SE [51], which we evaluate.

8.2 Mapping SNNs to Neuromorphic Hardware
Corelet is a proprietary tool from IBM to map SNNs to
TrueNorth [2]. PACMAN is used to map SNNs to SpiN-
Naker [35]. Beyond these hardware-specific tools, there are
also general-purpose ones. For instance, PyNN [29] is used to
map SNNs on Loihi, BrainScaleS, SpiNNaker, and Neurogrid
by balancing the load on each tile. The PSO-based technique
developed in Das et al. is used to map SNNs to a hardware, re-
ducing the energy consumption between tiles[27]. SpiNeMap
reduces the communication between tiles [8]. PYCARL is
proposed to perform hardware-software co-simulation of
SNNs [5]. We compare our approach against PYCARL and
SpiNeMap, and found it to perform significantly better.

There are also other approaches that use a single large
crossbar to map SNNs [3, 46, 68–71].

8.3 Non-volatile Memory
Recently, NVMs are used to lower the energy consump-
tion of von-Neumann computing [59–61] and neuromorphic
computing. To this end, Ramasubramanian et al. use STT-
MRAM [55], Burr et al. use PCM [16], and Mallik et al. use
OxRAM [49] to design neuromorphic tiles.

8.4 Similar Concept in Related Domain
SDFGs are widely used for predictable mapping of appli-
cations to multiprocessor systems. Numerous approaches
to throughput analysis of SDFGs have been previously pro-
posed [20, 65, 67, 73]. Bonfietti et al. evaluated mappings of
SDFG to multiprocessor system, maximizing the through-
put [14]. Stemmer et al. propose to use probabilistic analy-
sis to allocate and schedule SDFGs on multiprocessor sys-
tems [64]. Das et al. evaluated the fault-tolerant mapping of
SDFGs to multiprocessor systems [23–25]. Recently, SDFG-
based analysis is also proposed for analyzing machine learn-
ing applications [4, 7, 17, 22, 39]. However, none of these
approaches address application analysis with limited hard-
ware resources, both at design-time and at run-time.

9 Conclusions
We introduce an approach for predictable compilation of
SNN-based applications on state-of-the-art neuromorphic
hardware. Prior works have only addressed design-time map-
ping, considering unlimited resources in the underlying hard-
ware. These approaches present significant limitations when
used to compile and execute machine learning applications
on a resource-constrained hardware. Our approach makes
three contributions. First, we propose a technique to gen-
erate neuron and synapse clusters, where each cluster can
fit on to the resources of a tile of the hardware. Second, we
exploit the rich semantics of SDFG to model SNN clusters
and analyze performance on a resource-constrained hard-
ware. Finally, we propose a scheduling approach based on
self-timed execution to reduce the time to compile and ad-
mit an application to a hardware at run-time, adjusting to
dynamic resource availability. We conducted experiments
with standard SNN-based applications and demonstrate a
significant increase in performance over current practices.
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