DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Revitalizing the Linux Programming
Course with Go*

Saverio Perugini
Department of Computer Science
University of Dayton
Dayton, Ohio 45469

saverio@udayton. edu

Abstract
We present the design of a contemporary Linuz Programming course,
which includes the use of the Go programming language. To foster course
adoption and adaptation, we discuss the design of the course, which
includes progressive and thematic content modules, a series of supportive
programming assignments, and a culminating, final project experience.
The goal of this article is to revitalize the Linux Programming course
with the use of Go, generate discussion in the community around it, and

inspire and facilitate a similar use of Go.

1 Introduction

Nearly thirty years have passed since J. Wolfe published on the topic of re-
viving systems programming [10]. Given recent trends in big data and cloud
computing, web frameworks, and concurrent programming models, we believe
the time is ripe to revisit and revitalize the Linux Programming course—an en-
abling and support course for those and similar areas of computing in science
and engineering. While many of the concepts and topics in this course have
remained stable over the past thirty years, we have attempted to revitalize
the course through a focus on concept and tool integration, coverage of Git
as version control software, and, particularly, the use of the Go programming
language! [9] as an improved C, especially to reinforce that Linux system calls

*Copyright (©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

IDeveloped by Robert Griesemer, Rob Pike, and Ken Thompson, the latter two of which
were involved in the original work on UNIX and C; see http://golang.org/.

59



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

can be called from any programming language.

Linux Programming is a course that provides an accessible introduction to
programming in the Linux environment, especially in C and Go, and prepares
students for developing software in that environment using those languages.
Topics include libraries and system calls, shells, operating system structures
and internals, concurrency, interprocess communication (pipes and signals),
the client-server model, configuration and compilation management, regular
expressions, pattern matching and filters, shell programming, and automatic
program generation. The course distills these topics and concepts through
a survey of various software tools supporting Linux programming, including
gcc, gdb, make, git, sed and awk, and lex and yacc, with a thematic focus
on the programming environment that these tools collectively foster which is
calibrated toward productivity. The course does not aim to be comprehensive
and focuses more on breadth than depth. Assignments are designed to provide
students with a pragmatic exposure to these tools as well as issues faced by
modern practitioners.

Linuz Programming is a programming-intensive course. The prerequisite
for the course is an operating systems course. The course assumes no prior
experience with Linux, C, Go, or any other language used in the course, but
expects that students are familiar with programming in some block-structured
language.

The Linux Philosophy

Among the multiple themes constituting the Linux philosophy we simply men-
tion the following two; it is our hope that students acquire an appreciation for
Linux through observation of these recurring themes, and others, of Linux in
this course.

Concurrency and Communication: Often in Linux programming we com-
pose a solution to a problem by combining several small, atomic programs in
creative ways through interprocess communication mechanisms such as pipes.
Atomic programs are the building blocks; communication mechanisms are the
glue. Such programs are easier to develop, debug, and maintain than large,
all-encompassing, monolithic systems.

If you give me the right kind of Tinker Toys, I can imagine the building. I
can sit there and see primitives and recognize their power to build struc-
tures a half mile high, if only I had just one more to make it functionally
complete. — Ken Thompson, creator of UNIX and the 1983 ACM A.M.
Turing Award Recipient, in IEEE Computer, 32(5), 1999.

60



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Uniform style of I/0: For instance, the function fprintf and the system
call write can be used to write to standard output, a file, or a pipe.

The Student Learning Outcomes are:

e Establish a comfort with and proficiency in Linux and C/Go as a pro-
gramming language/environment.

e Survey various important system-oriented software tools (gcc), including
debuggers (gdb), and compilation (make) and configuration (git) man-
agers.

e Establish an understanding of the power of a programmable shell.

e Establish an understanding of the power of the Linux filter style of con-
current system construction as a composition of atomic processes using
pipes as the glue in stark contrast to the construction of a monolithic
sequential program.

e Establish an understanding of the design and development of systems
software, such as command interpreters (ksh) and compilers (gcc),
through the study of system libraries (1ibc), pattern matching and fil-
ters (grep, sed, and awk), interprocess communication (pipes and FIFOs),
automatic program generation (lex and yacc), and signals (SIGINT).

e Establish a competency in Linux internals (e.g., inodes) and establish
an understanding of Linux system calls (e.g., open, close, read, write,
fork, wait, exec).

2 Course Design

An instructor-authored book on Linux and C, made available to students for
free, is the only required textbook. The recommended textbooks are [2, 4, 5,
7, 8, 9] and students have access to each through the University library.

This course tells a story: the first half of the course (Modules I and II)
progressively cover the fundamentals of Linux and C/Go, and Linux systems
programming, while the second half of the course demonstrates how the atomic
tools and utilities covered in Module I can be creatively combined and com-
posed with each other using the interprocess communication mechanisms, cov-
ered in Module IT and built into the shell, to solve practical programming
problems within an environment which supports software development in a
timely fashion. The main themes running throughout Modules I and II are the
uniform style of I/O in Linux, C, and Go; the interface of Linux and C/Go; and

61



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

i i i i automatic
Go library calls diff Module I: | Module IV: _Em_ﬁm.nmq & oo.:.u__o_. contruction .m::: program
N for a little logic gate language Integrative . generation
' env Fundamentals | pytting it All: using lex & yacc Growp/
“““““““““““““““““““““““ Together to generate the front end Project
building a C library scanner and parser Experience
. . towards an
HW 4 simple Makefile and automatic
man page using nroff Makefile generator
i I using lex HW9
libraries N
S N 2 L S S
Y C®
< Module lil: " S
%, . Scripting a filecount ) &
S make git _shell script S8
RO T ... lusing,e,g,ksh ) _ &
&& % » Lab token ring of processes %»0/
9 oox. R communicating via &
2 (RN . awebcrawler gy 7, &S
o, S . unnamed pipes . . $§
\o@ \o@ N filter script L
\o@ . client-server (using, e,g, e/o
S, " HW 6 application grep, sed R
: using request-reply
pattern & awk)
Module II:
Commun. &
Concurr.

RN
Linux system calls

Figure 1: Graphical view of the sequence of course content modules, conceptual topics within each module, and the

programming assignments therein.

62



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

the well-designed nature of the Linux OS and shell which fosters a powerful,
stable, programming environment which has endured for half a century. The
main theme running throughout Modules III and IV is the Linux filter style
of programming (i.e., constructing software systems, such as specialized tools
and utilities, by dynamically and creatively arranging multiple atomic existing
tools as building blocks, using pipes as the interprocess communication mech-
anism). The central focus of the course is on establishing an understanding
of these themes and ways of putting them into practice through supportive
programming assignments. In other words, helping connect themes to appli-
cations. We can think of Modules II and IV as taking Modules I and III to a
deeper level, respectively.

Homework assignments are programming exercises each of which require a
fair amount of critical thought and design, and approximately 150 lines of code.
The following is a list of sample assignment synopses, intended to relate the
content and form of assignments that might be helpful to instructors inspired to
teach a similar course. While adopters of this approach will undoubtedly tailor
assignments, the guiding theme of the assignments as a whole is to serve as an
evaluation mechanism within this course template. The series of assignments
presented here represent one particular instantiation of that template, depicted
graphically in Figure 1, and serve as a vehicle to convey the course motif. Thus,
any series of programming and conceptual assignments that fits that general,
or a similar, structure is appropriate.

(MODULE I: FUNDAMENTALS)

Homework #1 involves implementing a simplified version of the Linux file
comparison utility diff in Go, which will accept input from standard input
or file input or a combination of both. This first assignment helps (re-)orient
students to programming with standard libraries, especially for 1/0 and text
processing and manipulation.

Homework #2 has two parts—a conceptual exercise and a programming
exercise—and both deal with the process environment. The conceptual exer-
cise involves customizing the user environment through the setting and mod-
ification of shell variables (e.g., ENV, PS1, and PATH), exploring startup files
(e.g., .profile, .kshrc, and .vimrc) and adding both Linux commands and
shell-builtin commands to them (e.g., alias for creating command aliases).
This is a fun exercise for students to tailor their programming environment to
their tastes to help improve their productivity. We often spend class time as
an activity-learning exercise for this part of the assignment. The programming
exercise involves building the Linux utility env in Go (and is a modified version
of [7,§ 2.12 Exercise: An env Utility; pp. 54-55] in Go). This second part
of the assignment introduces students to Linux system calls and the system

63



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

call interface in Go (i.e., package syscall) and gives them experience with
spawning and executing processes.

Homework #3 involves building an application programming interface
(aP1) in Go (as a package) to a simple linked-list, which can be used for
purposes of issue or bug tracking in the development of a software system.
Students are given both the interface containing the signatures of the functions,
which they must define, as well as a sample application which must be linked to
their library. Neither must be modified. This assignment reinforces to students
the idea of programming with an API and the idea of factoring a system into
three components: i) a public interface (e.g., a .h header file), ii) a private
library implementation (e.g., a .a ar file archive of a collection of pre-compiled
.o object files), and iii) a client application containing the main program. This
programming exercise is a modified version of [7, § 2.12 Exercise: Message
Logging; pp. 55-56] in Go.

Homework #4 involves defining a simple Makefile for building both a
utility flip, which converts DOS to UNIX newlines and verse versa, and its
manpage using nroff. Students are given multiple requirements on both the
operation and style of the Makefile (i.e., naming conventions for targets such
as all and clean and the use of variables such as CC to render it more readable
and easily modifiable).

With this foundation in place, students are well equipped to start integrating
some of the concepts and tools they now know.

Homework #5 integrates three important topics explored in this
module: i) implementation of a library and its use in a client ap-
plication, ii) compilation management (make), and iii) configuration
management (git). Students progressively refine a Makefile for an applica-
tion that utilizes two libraries for interacting with a linked-list data structure.
Students [i)]

write and iteratively refine a Makefile for the project,

factor out some of the functions in the codebase and create a library from
them, and

maintain versions of each iteration using Git on a local repository connected
to a remote origin hosted in BitBucket.

Armed with this foundation of fundamentals, students are now ready to con-
struct concurrent systems, which are built using the fundamental concepts from
prior assignments (e.g., libraries), whose entities communicate with each other
through interprocess communication mechanisms.

(MODULE II: COMMUNICATION AND CONCURRENCY)

64



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Homework #86 involves implementing and experimenting with a
client-server application in Go. The application uses a synchronization
barrier, where the barrier is implemented as a server to which clients com-
municate through named pipes. Clients communicate with the server using a
library (i.e., a package in Go) which students implement and install (lever-
aging their experience with implementing, packaging, and linking libraries in
Go in Homework #3). This programming exercise is a modified version of |7,
§ 6.8 Exercise: Barriers; pp. 221-222] in Go.

Equipped with the knowledge of building integrated and concurrent Linux
programming structures, we turn our attention from the low-level details of
constructing those structures to harnessing off-the-shelf structures/mechanisms
to creativity solve a variety of practical programming problems—a higher-level
activity.

(MODULE III: SCRIPTING)

Homework #7 involves implementing a Linux filter script to scrape
data from a webpage and apply a series of data transformations, using Linux
filters, such as cut, paste, join, sort, uniq, tr, grep, sed, and awk, among
a suite of others, to prepare the data for importation into a database system.
Students are only given the final output; it is up to them to decide both which
transformations to apply and concomitantly which filters to use. The goal of
this assignment is to convey to students the plug-and-play flexibility (of the
atomic processes) through the Linux filter style of programming. Another goal
is to contrast the monolithic, construction of a (typically) sequential program
versus the construction of a concurrent system as a composition of atomic
processes using pipes as the glue. It is also important for students to understand
that the processes in a pipeline execute concurrently, not sequentially, while
all remain in synchronization due to the automatic blocking nature of Linux

pipes.

Homework #-8 involves building a version of the Linux find utility as
a Korn shell script which traverses a series of directories given at the command
line and reports the number of plain files, executables, directories, and sym-
bolic links encountered therein. The goal of this assignment is to convey to
students the power of a programmable shell, and to contrast (sequential) shell
programming with (concurrent) filter style programming (in Homework #7).

Homework #9 involves using lex to automatically generate a filter
capable of parsing a codebase of C and C++ source files and not only extract-
ing, but also, differentiating between uncommented and commented header
files therein. This assignment is the basis of an automatic Makefile generator,
which is itself automatically generated using lex. The goal of this assignment

65



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

is to introduce students to automatic program generation and lexical analysis
as well as to expose them to yet another approach to filter construction.

(MODULE IV: PUTTING IT ALL TOGETHER)

The entire course is structured to prepare students for the final, culmi-
nating project experience, which ties many of a course concepts and themes
into a robust and compelling, yet manageable, final project. The project in-
volves building an interpreter and a compiler for a small logic language to
C++. Students are advised to factor their system into the following three
components: [i)]

a front end (i.e., a shift-reduce parser, automatically generated with lex and
yacc, which produces a parse tree);

an interpreter (i.e., an expression evaluator); and

a compiler (i.e., a translator to C++).

3 Discussion

We have used and refined the approach espoused in this article in the Linuz
Programming course at the University of Dayton for nine consecutive offer-
ings of it since Fall 2013 with documented student feedback. Feedback from
anonymous student evaluations has revealed that this approach and, especially,
the implementation-oriented nature of it, is effective at reinforcing core Linux
concepts and themes.

We maintain a set of primary and supplemental material for this course on-
line at http://academic.udayton.edu/SaverioPerugini/LCP/. The course
webpage for the most recent offering of the Linux Programming course at the
University of Dayton (Spring 2019), which contains links to the syllabus, course
notes, readings, homework assignments, and projects, is available at http:
//perugini.cps.udayton.edu/teaching/courses/Spring2019/cps444/.

There is scope for customization within the general course framework pre-
sented here in both content and delivery. For instance, an instructor can make
use of interactive learning and assessment tools such as uAsssign [1]. A focus
on the Linux kernel through which to cover system calls (as opposed to the
client-sever model as used here) is an alternate approach [3]. Similarly, more
coverage of cybersecurity or mobile devices/0s can be infused into course [6].

Acknowledgments

This material is based upon work supported by the National Science Foun-
dation under Grant Numbers 1712406 and 1712404. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of

66



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

the author(s) and do not necessarily reflect the views of the National Science
Foundation.

References

[1] J. Bailey and C. Zilles. uAssign: Scalable interactive activities for teaching
the Unix terminal. In Proceedings of the 50" ACM Technical Symposium
on Computer Science Education (SIGCSE), pages 7076, New York, NY,
2019. ACM Press.

[2] S.P. Harbison and G.L. Steele Jr. C: A Reference Manual. Prentice Hall,
Englewood Cliffs, NJ, fourth edition, 1995.

[3] R. Hess and P. Paulson. Linux kernel projects for an undergraduate op-
erating systems course. In Proceedings of the 415t ACM Technical Sym-
posium on Computer Science Education (SIGCSE), pages 485-489, New
York, NY, 2010. ACM Press.

[4] B.W. Kernighan and R. Pike. The UNIX Programming Environment.
Prentice Hall, Englewood Cliffs, NJ, second edition, 1984.

[5] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Pren-
tice Hall, Englewood Cliffs, NJ, second edition, 1988.

[6] J.-F. Lalande, V. Viet Triem Tong, P. Graux, G. Hiet, W. Mazurczyk,
H. Chaoui, and P. Berthomé. Teaching android mobile security. In Pro-
ceedings of the 50" ACM Technical Symposium on Computer Science Ed-
ucation (SIGCSE), pages 232-238, New York, NY, 2019. ACM Press.

[7] K.A. Robbins and S. Robbins. UNIX Systems Programming: Commu-
nication, Concurrency, and Threads. Prentice Hall, Upper Saddle River,
NJ, second edition, 2003.

[8] W. Schotts. The Linuz Command Line: A Complete Introduction. No
Starch Press, 2019. http://linuxcommand.org/tlcl.php [Last accessed:
12 June 2019].

[9] M. Summerfield. Programming in Go: Creating applications for the 21st
century. Addison Wesley, Boston, MA, 2012.

[10] J.L. Wolfe. Reviving systems programming. In Proceedings of the 23"%
ACM Technical Symposium on Computer Science Education (SIGCSE),
pages 255258, New York, NY, 1992. ACM Press.

67



