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Abstract. Multiple known algorithmic paradigms (backtracking, local
search and the polynomial method) only yield a 2n(1−1/O(k)) time algo-
rithm for k-SAT in the worst case. For this reason, it has been hypothe-
sized that the worst-case k-SAT problem cannot be solved in 2n(1−f(k)/k)

time for any unbounded function f . This hypothesis has been called the
“Super-Strong ETH”, modeled after the ETH and the Strong ETH. We
give two results on the Super-Strong ETH:
1. It has also been hypothesized that k-SAT is hard to solve for ran-

domly chosen instances near the “critical threshold”, where the
clause-to-variable ratio is 2k ln 2−Θ(1). We give a randomized algo-
rithm which refutes the Super-Strong ETH for the case of random
k-SAT and planted k-SAT for any clause-to-variable ratio. For exam-
ple, given any random k-SAT instance F with n variables and m
clauses, our algorithm decides satisfiability for F in 2n(1−Ω(log k)/k)

time, with high probability (over the choice of the formula and the
randomness of the algorithm). It turns out that a well-known algo-
rithm from the literature on SAT algorithms does the job: the PPZ
algorithm of Paturi, Pudlák and Zane [17].

2. The Unique k-SAT problem is the special case where there is at most
one satisfying assignment. Improving prior reductions, we show that
the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent.
More precisely, we show the time complexities of Unique k-SAT and
k-SAT are very tightly correlated: if Unique k-SAT is in 2n(1−f(k)/k)

time for an unbounded f , then k-SAT is in 2n(1−f(k)(1−ε)/k) time for
every ε > 0.

1 Introduction

The k-SAT problem is the canonical NP-complete problem for k ≥ 3. Tremen-
dous effort has been devoted to finding faster worst-case algorithms for k-SAT.
Because it is widely believed that P �= NP, the search has been confined to super-
polynomial-time algorithms. Despite much effort, there are no known algorithms
for k-SAT which run in (2− ε)n time for a universal constant ε > 0, independent
of k. This inability to find algorithms has led researchers to the following two
popular hypotheses, which strengthen P �= NP:
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– Exponential Time Hypothesis (ETH) [14] There is an α > 0 such that
no 3-SAT algorithm runs in 2αn time.

– Strong Exponential Time Hypothesis (SETH) [5] There does not exist
a constant ε > 0 such that for all k, k-SAT can be solved in (2 − ε)n time.

The present situation for worst-case k-SAT algorithms looks even worse than
hypothesized. The current best known algorithms for k-SAT all have running
time bounds of the form 2n(1−Ω( 1

k )), i.e., 2n(1− c
k ) for some constant c > 0.

It is a very interesting phenomenon that the same running time upper bound
is achieved by radically different algorithmic paradigms, such as randomized
backtracking [16,17], local search [19], the polynomial method [6] and linear
programming based methods [3]. Even for simpler variants such as unique-k-
SAT, no significantly faster algorithms are known (with a better dependence on
k in the exponent). Hence it is possible that the runtime behavior of 2n(1−Ω( 1

k ))

is actually optimal for k-SAT algorithms. This was termed the Super-Strong
ETH in a 2015 talk by the second author [24]. We state the Super-SETH as
follows:

Super-SETH: Super Strong Exponential Time Hypothesis
For every unbounded function f : N → N, there is no (randomized) algo-
rithm for k-SAT running in 2n(1− f(k)

k ) time.

Intuitively, Super-SETH says that the Ω(1/k) “savings” in the exponent is
optimal: not even an f(k)/k savings can be achieved, for any unbounded f . In
this paper, we study Super-SETH in two natural restricted scenarios:

– Random/Planted k-SAT. We consider two general cases: (a) finding solu-
tions to random k-SAT instances where each clause is drawn uniformly and
independently from all possible k-width clauses, and (b) finding solutions to
planted k-SAT instances, where a random (hidden) solution σ is sampled,
then each clause is drawn uniformly and independently from all possible k-
width clauses that satisfy σ.
Random k-SAT has a well-known threshold behaviour in which, for αsat =
2k ln 2 − Θ(1) and for all constant ε > 0, random k-SAT instances are SAT
w.h.p. (with high probability) for m < (αsat − ε)n and UNSAT w.h.p.
for m > (αsat + ε)n. Note that, as far as decidability is concerned, for
instances below (respectively, above) the threshold we may simply output
“SAT” (respectively, “UNSAT”) and we will be correct whp. It has been
conjectured [10,20] that random instances at the threshold m = αsatn are
the hardest random instances, and it is difficult to determine their satisfi-
ability. We are motivated by the following strengthening of this conjecture:
Are random instances near the threshold as hard as the worst-case
instances of k-SAT?

– Unique k-SAT. This is the special case of finding a SAT assignment to a k-
CNF, when one is promised that there is at most one satisfying assignment.
It is well-known to be NP-complete under randomized reductions [22]. As
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mentioned earlier, the best known algorithms for Unique-k-SAT have the
same running time behaviour of 2n(1−O( 1

k )) as k-SAT. In fact some of the
best-known k-SAT algorithms [16,17] have an easier analysis when restricted
to the case of Unique-k-SAT. PPSZ [16], the current best known algorithm for
k-SAT (when k ≥ 5) has only been derandomized for Unique-k-SAT. Could
worst-case algorithms for Unique k-SAT be marginally faster than
those for k-SAT?

In principle, in this “ultra fine-grained” setting we are studying (where the
exponential dependence on k matters), both above special cases could potentially
be just as hard as k-SAT, or both of them could be easier. In this paper, we prove
that Super-SETH is false for Random k-SAT, and the Super-SETH for Unique
k-SAT is equivalent to the general Super-SETH: the dependence on k in the
exponent is the same for the two problems.

1.1 Prior Work

As mentioned earlier, many algorithmic paradigms have been introduced for
solving k-SAT in the worst case, but none are known to run in 2n(1−ωk(1/k)) time.
There also has been substantial work on polynomial-time algorithms for random
k-SAT that return solutions for m below the threshold. Note that even though
we know that these instances are satisfiable whp, that does not immediately
give a way to find a solution. Chao and Franco [7] first proved that the unit
clause heuristic (the same key component of the PPZ algorithm) finds solutions
with high probability for random k-SAT when m ≤ c2kn/k for some constant
c > 0. The current best known polynomial-time algorithm in this regime is
by Coja-Oghlan [8] and it can find a solution whp for random k-SAT when
m ≤ c2kn log(k)/k for some constant c > 0. Interestingly, we also know of
polynomial time algorithms for large m. Specifically, it is known that for a certain
constant C0 = C(k) and m > C0 · n there are polynomial-time algorithms
finding solutions to planted k-SAT instances by Krivelevich and Vilenchik [15]
and random k-SAT (conditioned on satisfiability) by Coja-Oghlan, Krivelevich
and Vilenchik [9]. However, both of these results require that m ≥ 4kn/k [23].
To our knowledge, no improvements over worst-case k-SAT algorithms have yet
been reported for random k-SAT very close to the threshold.

Valiant and Vazirani [22] gave poly-time randomized reductions from SAT
instances F on n variables to Unique-SAT instances F ′ on n variables such that,
if F is SAT then F ′ a unique satisfying assignment with probability at least
Ω(1/n), and if F is UNSAT then F ′ is UNSAT. This reduction is not applicable
to convert k-SAT instances to Unique-k-SAT instances, as they do not preserve
the clause width (and when we perform a reduction to reduce the clause width,
the number of variables blows up too much for exponential-time algorithms). To
address this, Calabro, Impagliazzo, Kabanets and Paturi [4] gave a randomized
polynomial-time reduction with one-sided error from k-SAT to Unique-k-SAT
which works with probability 2−O(n log2(k)/k). The probability bound was further
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improved by Traxler [21] to 2−O(n log(k)/k). Both of these reductions imply that k-
SAT and Unique k-SAT either both have 2δn time algorithms for some universal
δ < 1, or neither of them do (i.e., the SETH and the SETH for Unique-k-SAT
are equivalent). However these results are not sufficient for an equivalence w.r.t.
Super-SETH: for example, from these results it is still possible that k-SAT has
no 2n(1−ωk(1/k)) time algorithms, while Unique-k-SAT has a 2n(1−Ω(log k/k)) time
algorithm.

1.2 Our Results

Average-Case k-SAT Algorithms. First we present an algorithm which
breaks the Super-Strong ETH for random k-SAT. In particular, we give a
2n(1−Ω( log k

k ))-time algorithm which finds a solution whp for random-k-SAT (con-
ditioned on satisfiability) for all values of m. In fact, our algorithm is an old one
from the SAT algorithms literature: the PPZ algorithm of Paturi, Pudlak and
Zane [17].

In order to show that PPZ breaks Super-Strong ETH in the random case,
we first show that PPZ yields a faster algorithm for random planted k-SAT for
large enough m.

Theorem 1. There is a randomized algorithm that, given a planted k-SAT
instance F sampled from P (n, k,m)1 with m > 2k−1 ln(2), outputs a satisfying
assignment to F in 2n(1−Ω( log k

k )) time with 1 − 2−Ω(n( log k
k )) probability (over

the planted k-SAT distribution and the randomness of the algorithm).

Next, we give a reduction from random k-SAT (conditioned on satisfia-
bility, we denote this distribution by R+) to planted k-SAT. Similar reduc-
tions/equivalences have been observed before in [1,2].

Theorem 2. Suppose there is an algorithm A for planted k-SAT P (n, k,m), for
all m ≥ 2k ln 2(1 − f(k)/2)n, which finds a solution in time 2n(1−f(k)) and with
probability 1 − 2−nf(k), where 1/k < f(k) = ok(1). Then for any m′, given a
random k-SAT instance sampled from R+(n, k,m′), a satisfying assignment can
be found in 2n(1−Ω(f(k))) time whp.

Combining Theorems 1 and 2 yields:

Theorem 3. Given a random k-SAT instance F sampled from R+(n, k,m), we
can find a solution in 2n(1−Ω( log k

k )) time whp.

Remark 1. We obtain a randomized algorithm for random k-SAT which always
reports UNSAT on unsatisfiable instances, and finds a SAT assignment whp on
satisfiable instances. Feige’s Hypothesis for k-SAT [12] conjectures that there are
no efficient refutations for random k-SAT near the threshold, i.e., there are no

1 See “Three k-SAT Distributions” in Sect. 2 for formal definitions of different k-SAT
distributions.
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efficient algorithms which always report SAT on satisfiable instances, and report
UNSAT on unsatisfiable instances with probability at least 1/2. Refuting Feige’s
hypothesis in our setting remains an intriguing open problem.

Theorems 1 and 3 imply that at least one of the following are true:

– Either the random instances of k-SAT at the threshold are not the hardest
instances of k-SAT, or

– Super-Strong ETH is false.

For the PPZ algorithm (randomized branching with unit propagation), time
lower bounds of the form 2n(1−O( 1

k )) are in fact known [18]. Thus we can say
that, with respect to the PPZ algorithm, random k-SAT instances are provably
more tractable than worst-case k-SAT instances. On the other hand, for the
PPSZ algorithm (randomized branching with limited resolution on small sets of
clauses) which gives the current best known running time for k-SAT (when k ≥ 4)
we only know 2n(1−O( log k

k )) lower bounds [18], matching our upper bounds for
the random case. Hence it is possible that PPSZ actually runs in 2n(1−Ω( log k

k ))

time for worst-case k-SAT.
We observe that our techniques can be used to get algorithms running faster

than 2n(1−Ω( log k
k )) for planted k-SAT and random k-SAT (conditioned on sat-

isfiability), depending on how large m/n is compared to the threshold density.
These results appear in the full version.

Unique k-SAT Equivalence. In Sect. 5 we give a “low exponential” time
reduction from k-SAT to Unique-k-SAT, which proves that the two problems
are equivalent w.r.t. Strong-SETH: i.e., there is a 2n(1−ωk(1/k)) time algorithm
for Unique-k-SAT if and only if there is a 2n(1−ωk(1/k)) time algorithm for k-SAT.
In fact, our reduction has the following stronger property:

Theorem 4. If Unique k-SAT is solvable in 2(1−f(k)/k)n time for some
unbounded function f , then k-SAT is solvable in 2(1−f(k)/k+O(log(f(k))/k))n time.

As mentioned earlier, the current best algorithm for k-SAT PPSZ [16] has a
much easier analysis for Unique k-SAT, and in fact it was an open question to
show that its running time on general instances of k-SAT matches the running
time for Unique k-SAT; this was eventually resolved by Hertli [13]. Theorem 4
implies that, in order to obtain faster algorithms for k-SAT which break Super-
Strong ETH, it would be sufficient to restrict ourselves to Unique k-SAT, which
might simplify the analysis as in the case of PPSZ.

2 Preliminaries

Notation. In this paper, we generally assume k ≥ 3 is an arbitrarily large
integer. Throughout the paper, we compare time bounds that have the form
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2n(1−Ω(log k)/k) with 2n(1−O(1/k)) time, where the big-Ω and the big-O hide mul-
tiplicative constants; such notation only makes sense when k can grow unbound-
edly.

We use the terms “solution”, “SAT assignment”, and “satisfying assignment”
interchangeably. For an n-variable assignment s ∈ {0, 1}n and an index set
I ⊆ [n], we use s|I to denote the length-|I| substring of s projected on the
index set I. We use the notation x ∈r χ to denote that x is randomly sampled
from the distribution χ. By poly(n), we mean some function f(n) which satisfies
f(n) = O(nc) for a universal constant c ≥ 1. Letting n be the number of variables
in a k-CNF, a random event about k-CNF holds whp (with high probability)
if it holds with probability 1 − f(n), where f(n) → 0 as n → ∞. We use log
and ln to denote the logarithm base-2 and base-e respectively, and H(p) =
−p log(p) − (1 − p) log(1 − p) denotes the binary entropy function, and Õ(f(n))
denotes O(f(n) log(f(n))).

Three k-SAT Distributions. We consider three distributions for random k-
SAT:

– R(n, k,m) is the distribution over formulas F of m clauses, where each clause
is drawn i.i.d. from the set of all k-width clauses. This is the standard k-SAT
distribution.

– R+(n, k,m) is the distribution over formulas F of m clauses where each clause
is drawn i.i.d. from the set of all k-width clauses and we condition F on being
satisfiable i.e. R(n, k,m) conditioned on satisfiability.

– P (n, k,m, σ) is the distribution over formulas F of m clauses where each
clause is drawn i.i.d. from the set of all k-width clauses which satisfy σ.
P (n, k,m) is the distribution over formulas F formed by sampling σ ∈ {0, 1}n

uniformly and then sampling F from P (n, k,m, σ).

Note that an algorithm solving the search problem (finding SAT assign-
ments) for instances sampled from R+ is stronger than deciding satisfiability
for instances sampled from R: given an algorithm for the search problem on R+,
we may run it on a random instance from R, returning SAT if and only if the
algorithm returns a valid satisfying assignment.

2.1 Structural Properties of Planted and Random k-SAT

A few structural results about planted and random k-SAT will be useful in
analyzing our algorithms. In particular, we consider bounds on the expected
number of solutions of planted k-SAT instances and random k-SAT instances
(conditioned on satisfiability).

A well-known conjecture is that the satisfiability of random k-SAT displays
a threshold behaviour for all k. The following lemma which states that the
conjecture holds for all k (larger than a fixed constant) was proven by Ding, Sly
and Sun [11].
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Lemma 1 ([11]). There is a constant k0 such that for all k > k0, there exists
an αsat = 2k ln 2 − Θ(1) and for all constant ε > 0, we have that:

For m < (1 − ε)αsatn, lim
n→∞ Pr

F∈rR(n,k,m)
[F is satisfiable] =1

For m > (1 + ε)αsatn, lim
n→∞ Pr

F∈rR(n,k,m)
[F is satisfiable] =0

We will also need the fact that, whp, the ratio of the number of solutions
and its expected value is not too small, as long as m is not too large.

Lemma 2 (Achlioptas, Lemma 22 of [1]). For F ∈r R(n, k,m), let S be
the set of solutions of F . Then E[|S|] = 2n(1 − 1

2k
)m. Furthermore, for αd =

2k ln 2 − k and m < αdn we have

lim
n→∞ Pr[|S| < E[|S|]/2O(nk/2k)] = 0.

Together, the above two results have the following useful consequence. Intu-
itively, the below lemma states that if our random k-SAT instance is slightly
below the threshold, then (conditioned on being satisfiable) we can fairly tightly
bound the expected number of SAT assignments.

Lemma 3. For F ∈r R+(n, k,m) let Z denote the number of solutions of F .
For all constant δ > 0, if m < (1 − ε)αsat for some constant ε > 0, then
2n(1 − 1

2k
)m ≤ E[Z] ≤ (1 + δ)2n(1 − 1

2k
)m. Furthermore, for αd = 2k ln 2 − k

and m < αdn,
lim

n→∞ Pr[Z < E[Z]/2O(nk/2k)] = 0.

Proof. Let F ′ ∈r R(n, k,m) and let Z ′ denote the number of solutions of F ′.
Letting pn denote the probability that F ′ is unsatisfiable, we have E[Z ′] =
(1 − pn)E[Z]. By Lemma 1, limn→∞ pn → 0, hence 2n(1 − 1

2k
)m ≤ E[Z] ≤

(1 + δ)2n(1 − 1
2k

)m.
Observe that Pr[Z < E[Z]/2O(nk/2k)] ≤ Pr[Z ′ < E[Z]/2O(nk/2k)], as Z is

just Z ′ conditioned on being positive. Furthermore Pr[Z ′ < E[Z]/2O(nk/2k)] ≤
Pr[Z ′ < E[Z ′]/2O(nk/2k)] as E[Z] ≤ 2E[Z ′]. By Lemma 2, Pr[Z ′ <

E[Z ′]/2O(nk/2k)] tends to 0. 	

We will use a planted k-SAT algorithm to solve random k-SAT instances con-

ditioned on their satisfiability. The basic idea was introduced in an unpublished
manuscript by Ben-Sasson, Bilu, and Gutfreund [2]. We will use the following
lemma therein.

Lemma 4 (Lemma 3.3 of [2]). For a given F in R+(n, k,m) with Z solutions,
it is sampled from P (n, k,m) with probability Zp, where p only depends on n, k,
and m.

Corollary 1. For F ∈r R+(n, k,m) and F ′ ∈r P (n, k,m) let Z and Z ′ denote
their number of solutions respectively. Then for αd = 2k ln 2−k and for m < αdn,
limn→∞ Pr[Z ′ < E[Z]/2O(nk/2k)] = 0.
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Proof. We have limn→∞ Pr[Z < E[Z]/2O(nk/2k)] = 0 by Lemma 3. Lemma 4
shows that the planted k-SAT distribution P (n, k,m) is biased toward sat-
isfiable formulas with more solutions. The distribution R+(n, k,m) instead
chooses all satisfiable formulas with equal probability. Hence limn→∞ Pr[Z ′ <

E[Z]/2O(nk/2k)] = 0. 	

So far, our lemmas have only handled the case where m > αsatn. Next we

prove a lemma bounding the number of expected solutions when m > αsatn.

Lemma 5. For m ≥ (αsat − 1)n, the expected number of solutions of F ∈r

R+(n, k,m) and F ′ ∈r P (n, k,m) is at most 2O(n/2k) in both cases.

Proof. Lemma 4 shows that the planted k-SAT distribution P (n, k,m) is biased
toward satisfiable formulas with more solutions. In particular, the expected num-
ber of solutions of F ′ ∈r P (n, k,m) upper bounds the expected number for
F ∈r R+(n, k,m). So it suffices to upper bound the expected number of solu-
tions of F ′ ∈r P (n, k,m).

Let Z be the random variable denoting the number of solutions of F ′. Let
σ denote the planted solution in F , and let x be some assignment which has
hamming distance i from σ. For a clause C satisfied by σ but not by x, all of
C’s satisfied literals must come from the i bits where σ and x differ, and all its
unsatisfied literals must come from the remaining n − i bits. Letting j denote
the number of satisfying literals in C, the probability that a randomly sampled

clause C is satisfied by σ but not by x is
∑k

j=1
(kj)
2k−1

( i
n )j(1− i

n )k−j = 1−(1− i
n )k

2k−1
.

We will now upper bound E[Z].

E[Z] =
∑

y∈{0,1}n

Pr[y satisfies F ′]

=
n∑

i=1

(
n

i

)

Pr[Assignment x that differs from σ in i bits satisfies F ′]

=
n∑

i=1

(
n

i

)

Pr[A random clause satisfying σ satisfies x]m

=
n∑

i=1

(
n

i

)

(1 − Pr[A random clause satisfying σ does not satisfy x])m

=
n∑

i=1

(
n

i

)(

1 − 1 − (1 − i/n)k

2k − 1

)m

[As shown above]

≤
n∑

i=1

(
n

i

)

e
−m

(
1−(1−i/n)k

2k−1

)
[As 1 − x ≤ e−x]

≤
n∑

i=1

(
n

i

)

e
−(αsat−1)n

(
1−(1−i/n)k

2k−1

)
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≤ 2O(n/2k)
n∑

i=1

(
n

i

)

e
−((2k−1) ln 2)n

(
1−(1−i/n)k

2k−1

)
[As m ≥ (2k ln 2 − O(1))n]

≤ 2O(n/2k)
n∑

i=1

(
n

i

)

2−n(1−(1−i/n)k)

≤ 2O(n/2k)
n∑

i=1

2n(H(i/n)−1+(1−i/n)k) ≤ 2O(n/2k) max
0≤p≤1

2n(H(p)−1+(1−p)k).

Let f(p) = H(p) − 1 + (1 − p)k. Then f ′(p) = − log
(

p
1−p

)
− k(1 − p)k−1 and

f ′′(p) = −1
p(1−p) +k(k−1)(1−p)k−2. Thus f ′′(p) = 0 ⇐⇒ p(1−p)k−1 = 1

k(k−1) .
Note that f ′′(p) has only two roots in [0, 1], hence f ′(p) has at most 3 roots in
[0, 1]. It can be verified that for sufficiently large k, f ′(p) indeed has three roots
at p = Θ(1/2k), Θ(log k/k), and 1/2 − Θ(k/2k). At all these three values of p,
f(p) = O(1/2k). Hence E[Z] ≤ 2O(n/2k). 	


3 Planted k-SAT and the PPZ Algorithm

In this section, we establish that the PPZ algorithm solves random planted k-
SAT instances faster than 2n−n/O(k) time.

Reminder of Theorem 1. There is a randomized algorithm that given a planted
k-SAT instance F sampled from P (n, k,m) with m > 2k−1 ln(2), outputs a sat-
isfying assignment to F in 2n(1−Ω( log k

k )) time with 1 − 2−Ω(n( log k
k )) probability

(over the planted k-SAT distribution and the randomness of the algorithm).
We will actually prove a stronger claim:

For any σ and F sampled from P (n, k,m, σ), we can find a set S of
2n(1−Ω( log k

k )) variable assignments in 2n(1−Ω( log k
k )) time, such that σ ∈ S

with probability 1 − 2−Ω(n( log k
k )) (the probability is over the planted k-

SAT distribution and the randomness of the algorithm).

Theorem 1 yields an algorithm that (always) finds a solution for k-SAT instance
F sampled from P (n, k,m), and runs in expected time 2n(1−Ω( log k

k )). In fact,
the algorithm of Theorem 1 is a simplification of the PPZ algorithm [17], a
well-known worst case algorithm for k-SAT. PPZ runs in polynomial time, and
outputs a SAT assignment (on any satisfiable k-CNF) with probability p ≥
2−n+n/O(k). It can be repeatedly run for O(n/p) times to obtain a worst-case
algorithm that is correct whp. We consider a simplified version which is sufficient
for analyzing planted k-SAT:
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Algorithm 1. Algorithm for planted k-SAT
1: procedure Simple-PPZ(F )
2: while i ≤ n do
3: if there is a unit clause C in the formula then
4: Assign the variable in C so that C is true
5: else if xi is unassigned then
6: Assign xi randomly. Set i ← i + 1
7: else
8: Set i ← i + 1

9: Output the assignment if it satisfies F .

Our Simple-PPZ algorithm (Algorithm1) only differs from PPZ in that PPZ
also performs an initial random permutation of variables. For us, a random per-
mutation is unnecessary: a random permutation of the variables in the planted
k-SAT distribution yields the same distribution of instances. That is, the orig-
inal PPZ algorithm would have the same behavior as Simple-PPZ on random
instances.

We will start with a few useful definitions.

Definition 1 ([17]). A clause C is critical with respect to variable xi and SAT
assignment σ if xi is the only variable in C whose corresponding literal is satisfied
by σ.

Definition 2. A variable xi in F is good for an assignment σ if there is a
clause C in F which is critical with respect to xi and σ, and i is the largest
index among all variables in C. We say that xi is good with respect to C in
such a case. A variable which is not good is called bad.

Observe that for every good variable xi, if all variables xj for j < i are
assigned correctly with respect to σ, then Simple-PPZ sets xi correctly, due to
the unit clause rule. As such, given a formula F with z good variables for σ, the
probability that Simple-PPZ finds σ is at least 2−(n−z): if all n−z bad variables
are correctly assigned, the algorithm is forced to set all good variables correctly
as well. Next, we prove a high-probability lower bound on the number of good
variables in a random planted k-SAT instance.

Lemma 6. For m > n2k−1 ln 2, a planted k-SAT instance sampled from
P (n, k,m, σ) has Ω(n log k/k) good variables with respect to σ, with probabil-
ity 1 − 2−Ω(n log k

k ).

Proof. Let F ∈r P (n, k,m, σ) and let L be the last (when sorted by index)
n ln k/(2k) variables. Let Lg, Lb be the good and bad variables respectively,
with respect to σ, among the variables in L. Let E be the event that |Lg| ≤
n ln k/(500k). Our goal is to prove a strong upper bound on the probability that
E occurs. For all xi ∈ L, we have that i ≥ n(1 − ln k/(2k)). Observe that if a
clause C is such that xi ∈ Lb is good with respect to C, then C does not occur
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in F . We will lower bound the probability of such a clause occurring in F , with
respect to a fixed variable xi ∈ L. Recall that in planted k-SAT, each clause is
drawn uniformly at random from the set of clauses satisfied by σ. Fixing σ and
a variable xi and sampling one clause C, we get that

Pr
C which satisfies σ

[xi ∈ L is good with respect to C]

=
number of clauses for which xi ∈ L is good

total number of clauses satisfying σ
=

(
i−1
k−1

)

(
n
k

)
(2k − 1)

≥ 1

2

(
i

n

)k−1
k

2kn
[As i ≥ n(1 − ln k/(2k))]

≥ 1

2

(
i

n

)k
k

2kn
≥ 1

2

(
1 − ln k

2k

)k
k

2kn
[As i ≥ n(1 − ln k/(2k))]

≥ 1

2

(
e− ln k/k

)k k

2kn
[As k is large, and e−w ≤ 1 − w/2 for small enough w > 0]

≥ 1

2k+1n

If the event E is true, then |Lb| > n ln k/(4k). Therefore, every time we sample
a clause C, the probability that C makes some variable xi ∈ Lb good is at least
ln k

k2k+3 , as the sets of clauses which make different variables good are disjoint sets.
Now we upper bound the probability of E occurring:

Pr[E] ≤
n ln k/(500k)∑

i=1

Pr[exactly i vars among the last n ln k/(2k) vars are good]

≤
n ln k/(500k)∑

i=1

(
n ln k/(2k)

i

)(

1 − ln k

k2k+3

)m

≤ n

(
n ln k/(2k)

n ln k/(500k)

)(

1 − ln k

k2k+3

)n2k−1 ln 2

.[As m > n2k−1 ln 2]

Applying the inequality 1 − x ≤ e−x for x > 0, the above is at most

n

(
n ln k/(2k)

n ln k/(500k)

)(
e− ln k

k2k+3

)n2k−1 ln 2

≤ n

(
n ln k/(2k)

n ln k/(500k)

)(
2−n ln k

16k

)
≤ 2−δ n ln k

k

for appropriately small but constant δ > 0, which proves the lemma statement.
	


We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 6, we know that with probability at least 1−p for
p = 2−Ω(n( log k

k )), the number of good variables with respect to a hidden planted
solution σ in F is at least γn log k/k for a constant γ > 0. For such instances, a
single run of PPZ outputs σ with probability at least 2−n(1−γ log k/k). Repeating
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PPZ for poly(n)2n(1−γ log k/k) times implies a success probability at least 1−1/2n.
Hence the overall error probability is at most p + 1/2n ≤ 2−Ω(n( log k

k )). 	

We proved that PPZ runs in time 2n(1−Ω( log k

k )) when m is “large enough”,
i.e., m > n2k−1 ln 2. When m ≤ n2k−1 ln 2, we observe that the much simpler
approach of merely randomly sampling assignments already works, whp! This is
because by Corollary 1 (in the Preliminaries), the number of solutions of F ∈r

P (n, k,m) for m ≤ n2k−1 ln 2 is at least 2n/22−O(nk/2k) whp. When this event
happens, randomly sampling poly(n)2n/22O(nk/2k) assignments will uncover a
solution whp.

4 Reducing from Random k-SAT to Planted Random
k-SAT

In this section we observe a reduction from random k-SAT to planted k-SAT,
which yields the desired algorithm for random k-SAT (see Theorem3). The fol-
lowing lemma is similar to results in Achlioptas [1], and we present it here for
completeness.

Lemma 7 ([1]). Suppose there exists an algorithm A for planted k-SAT
P (n, k,m), for some m ≥ 2k ln 2(1 − f(k)/2)n, which finds a solution in time
2n(1−f(k)) and with probability 1 − 2−nf(k), where 1/k < f(k) = ok(1)2. Then
given a random k-SAT instance sampled from R+(n, k,m), we can find a satis-
fiable solution in 2n(1−Ω(f(k))) time with 1 − 2−nΩ(f(k)) probability.

Proof. Let F be sampled from R+(n, k,m), and let Z denote its number of
solutions with s its expected value. As f(k) > 1/k and m ≥ 2k ln 2(1−f(k)/2)n,
Lemmas 3 and 5 together imply that s ≤ 2 · 2nf(k)/2.

We will now run Algorithm A. Note that if Algorithm A gives a solution
it is correct hence we can only have error when the formula is satisfiable but
algorithm A does not return a solution. We will now upper bound the probability
of A making an error.

Pr
F∈R+(n,k,m),A

[A returns no solution]

≤
∑

σ∈{0,1}n

Pr
F∈R+(n,k,m),A

[σ satisfies F but A returns no solution]

≤
∑

σ∈{0,1}n

Pr
F∈R+(n,k,m),A

[A returns no sol | σ satisfies F] Pr
F∈R+(n,k,m)

[σ satisfies F]

≤
∑

σ∈{0,1}n

Pr
F∈P (n,k,m,σ),A

[A returns no solution] Pr
F∈R+(n,k,m)

[σ satisfies F]

where the last inequality used the fact that R+(n, k,m) conditioned on
having σ as a solution is the distribution P (n, k,m, σ). Now note that

2 Note we can assume wlog that f(k) > 1/k, as we already have a 2n(1−1/k) algorithm
for worst-case k-SAT.
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PrF∈R+(n,k,m)[σ satisfies F] = s/2n, and P (n, k,m) = P (n, k,m, σ), where σ
is sampled uniformly from {0, 1}n. Hence the expression simplifies to

s

2n

(

2n Pr
F∈P (n,k,m),A

[A does not return a solution]
)

= s Pr
F∈P (n,k,m),A

[A does not return a solution].

Since s ≤ 2·2nf(k)/2, the error probability is ≤ 2·2nf(k)/22−nf(k) ≤ 2·2−nf(k)/2 =
2−Ω(nf(k)). 	


Next, we give another reduction from random k-SAT to planted k-SAT. This
theorem is different from Lemma 7, in that, given a planted k-SAT algorithm
that works in a certain regime of m, it implies a random k-SAT algorithm for
all values of m.

Reminder of Theorem 2. Suppose there is an algorithm A for planted k-SAT
P (n, k,m), for all m ≥ 2k ln 2(1 − f(k)/2)n, which finds a solution in time
2n(1−f(k)) and with probability 1 − 2−nf(k), where 1/k < f(k) = ok(1). Then for
any m′, given a random k-SAT instance sampled from R+(n, k,m′), a satisfying
assignment can be found in 2n(1−Ω(f(k))) time whp.

Proof. Let F be sampled from R+(n, k,m), and let Z denote its number of
solutions with s its expected value. The expected number of solutions of F ′

sampled from R(n, k,m′) serves as a lower bound for s. Hence if m′ ≤ 2k ln 2(1−
f(k)/2)n ≤ αdn, then s > 2nf(k)/2 and furthermore, as we have f(k) > 1/k,
Lemma 3 implies that, limn→∞ Pr[Z < s/2O(nk/2k)] = 0. So if we randomly
sample O(2n2O(nk/2k)/s) ≤ 2n(1−Ω(f(k))) assignments, one of them will satisfy
F whp. Otherwise if m′ ≥ 2k ln 2(1−f(k)/2)n then we can use Lemma 7 to solve
it in required time. 	


Finally, we combine Algorithm 1 for planted k-SAT and the reduction in The-
orem 2 to obtain an algorithm for finding solutions of random k-SAT (conditioned
on satisfiability). This disproves Super-SETH for random k-SAT.

Reminder of Theorem 3. Given a random k-SAT instance F sampled from
R+(n, k,m) we can find a solution in 2n(1−Ω( log k

k )) time whp.

Proof. By Theorem 1 we have an algorithm for planted k-SAT running in
2n(1−Ω( log k

k )) time with 1−2−Ω(n( log k
k )) probability for all m > (2k−1 ln 2)n. This

algorithm satisfies the required conditions in Theorem2 with f(k) = Ω(log k/k)
for large enough k. The implication in Theorem2 proves the required statement.

	

Just as in the case of planted k-SAT, when m < n(2k ln 2 − k) we can find

solutions of R+(n, k,m) whp, by merely random sampling assignments. The
correctness of random sampling follows from Lemma 3.



On Super Strong ETH 419

5 k-SAT and Unique k-SAT

In this section we give a randomized reduction from k-SAT to Unique k-SAT
which implies their equivalence for Super Strong ETH:

Reminder of Theorem 4. If Unique k-SAT is solvable in 2(1−f(k)/k)n time for
some unbounded f(k), then k-SAT is solvable in 2(1−f(k)/k+O((log f(k))/k))n time.

We start with a slight modification of the Valiant-Vazirani lemma.

Lemma 8 (Weighted-Valiant-Vazirani). Let S ⊆ {0, 1}k = R be a set of
assignments on variables x1, x2, . . . xk, with 2j−1 ≤ |S| < 2j. Suppose that for
each s ∈ S there exists a weight ws ∈ Z+, and let w̄ denote the average weight
over all s ∈ S. There is a randomized polytime algorithm Weighted-Valiant-
Vazirani that on input (R, j) outputs a matrix A ∈ Fj×n

2 and a vector b ∈ Fj
2

such that

Pr
A,b

[|{x | Ax = b ∧ x ∈ S}| = 1, ws ≤ 2w̄] >
1
16

.

If the condition in the probability expression is satisfied, we say Weighted-
Valiant-Vazirani on (R, j) has succeeded.

Proof. The original Valiant-Vazirani Lemma [22] gives a randomized polytime
algorithm to generate A, b such that for all s ∈ S, PrA,b[{s} = {x | Ax = b ∧ x ∈
S}] > 1

8|S| . Moreover, by Markov’s inequality, we have Prs∈S [ws ≤ 2w̄] ≥ 1/2.
Hence the set of s ∈ S with ws ≤ 2w̄ has size at least |S|/2. This implies
PrA,b[∃s, {s} = {x | Ax = b ∧ x ∈ S}, ws ≤ 2w̄] >

(
1

8|S|
)(

|S|
2

)
= 1

16 . 	


Proof of Theorem 4. Let A be an algorithm for Unique k-SAT which runs in
time 2(1−f(k)/k)n.

Let S be the set of SAT assignments to F . Suppose |S| ≥ 2nf(k)/kn. Then
the probability that the random search in lines 1 to 4 never finds a solution is

(1 − n2nf(k)/k/2n)2
n(1−f(k)/k) ≤ e−n.

Thus if |S| ≥ 2nf(k)/kn then the algorithm finds a solution whp. From now on,
we assume |S| < 2nf(k)/kn.

In line 6, we define a sequence of probabilities p1, p2, . . . , pk. Note that

k∑

i=1

pi =
f(k)∑

i=1

pi +
k∑

i=f(k)+1

pi ≤ 1/2 + 1/(2f(k))
∞∑

j=1

(1/2f(k))j/f(k)

≤ 1
2

+
1

f(k)(1 − (1/2f(k))1/f(k))
≤ 1,

as f(k) is unbounded, and limx→∞ x(1 − (1/2x)1/x) = ∞.
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Algorithm 2. Algorithm for k-SAT.
Input: k-SAT formula F

We assume that there is an algorithm A for Unique k-SAT running in time 2n(1−f(k)/k).

1: for i = 0 to 2n(1−f(k)/k) do
2: sample random solution s
3: if s satisfies F then
4: Return s
5: Divide n variables into n/k equal parts R1, R2 . . . Rn/k and let xi denote the vari-

ables in set Ri

6: Define p = p1 = p2 . . . = pf(k) = 1/(2f(k)) and pj = pj/f(k) for f(k) ≤ j ≤ k
7: F0 = F
8: for u = 1 to 2cn log(f(k))/k do
9: for i = 1 to n/k do

10: Sample zi from [k] choosing zi = j with probability pj

11: (Ai, bi) = Weighted-Valiant-Vazirani(Ri, zi)
12: Fi = Fi−1 ∧ (Aix

i = bi)

13: s = A(Fn/k)
14: Return s if it satisfies F
15: Return unsatisfiable

We will now analyze the ith run of the loop from line 9 to line 14. Let S0 = S,
and let Si be the set of solutions to the formula Fi defined in line 12.

Let Ei be the event that:

1. 2zi−1 ≤ |{s|Ri
| s ∈ Si−1}| < 2zi . [As defined in line 10]

2. for all s ∈ Si, the restriction on Ri is the same, i.e., |{s|Ri
| s ∈ Si}| = 1.

3. |Si−1|/|Si| ≥ 2zi−2, |Si| �= 0.

In Line 11 we apply Weighted-Valiant-Vazirani to (Ri, zi) with the set
of assignments being {s|Ri

| s ∈ Si−1} where an assignment v has weight
wv = |{v = s|Ri

| s ∈ Si−1}|. For Weighted-Valiant-Vazirani to apply, we
require that zi indeed represents an estimate of number of possible assignments
to variables of Ri in a satisfying assignment i.e. 2zi−1 ≤ |{s|Ri

| s ∈ Si−1}| < 2zi

which is exactly the condition 1 in Ei. If the call to Weighted-Valiant-
Vazirani succeeds, then we have that only a unique assignment to Ri remains,
i.e, |{s|Ri

| s ∈ Si}| = 1 which is the condition 2 of Ei. Similarly condition 3 is
also implied by the success of Weighted-Valiant-Vazirani.

Let yi satisfy 2yi−1 ≤ |{s|Ri
| s ∈ Si−1}| < 2yi . Then for Ei to be true we

need that the sample zi is equal to yi, and Weighted-Valiant-Vazirani on
(Ri, zi) succeeds.

Let E =
⋂

i Ei. If event E occurs, then the restrictions of all solutions on
each Ri’s are the same, and there is a solution as |Sn/k| �= 0, hence there is
a unique satisfying assignment. We wish to lower bound the probability of E
occurring.
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Pr[E] =
∏

i

Pr[Ei |
∧

j<i

Ej ]

≥
∏

i

Pr[zi = yi |
∧

j<i

Ej ] ·
∏

i

Pr[WVV(Ri, zi) | ∀j < i,Ej ]

≥
∏

i

pyi

∏

i

(
1
16

)

[By Lemma 8]

≥ 16−n/k
∏

i

pyi

(1)

When E holds, |S| = |S0| =
∏

i |Si−1|/|Si|, as |Sn/k| = 1, Furthermore
∏

i |Si−1|/|Si| ≥ ∏
i 2yi−2, by condition 3. Since |S| ≤ 2nf(k)/kn, we have∏

i 2yi−2 ≤ 2nf(k)/kn. Taking logarithms,
∑

i yi ≤ O(n/k) + nf(k)/k ≤
O(nf(k)/k). Therefore

Pr[E] ≥ 16−n/k
∏

i

pyi
[Restating equation (1)]

≥ 16−n/k
∏

yi≤f(k)

pyi

∏

yi>f(k)

pyi

≥ 16−n/k · (1/2f(k))n/k ·
∏

yi>f(k)

(1/2f(k))(yi/f(k))

≥ 16−n/k · (1/2f(k))n/k · (1/2f(k))
∑

yi>f(k)(yi/f(k))

≥ 16−n/k · (1/2f(k))n/k · (1/2f(k))O(n/k)

≥ 16−n/k · 2−O(n log f(k)/k) ≥ 2−O(n log f(k)/k).

(2)

As mentioned earlier, if E occurs, then there is a unique SAT assignment
and it is found by our Unique k-SAT algorithm A. The probability E does
not happen over all 2cn(log f(k))/k runs of the loop on line 8 is at most 1 −
2−O(n(log f(k))/k))2

cn(log f(k))/k � 2−n, for sufficiently large c. The total running
time is 2n(1−f(k)/k) + 2cn(log f(k))/k · 2(1−f(k)/k)n ≤ 2(1−f(k)/k+O((log f(k))/k))n. 	


Theorem 4 immediately implies an “ultra fine-grained” equivalence between
k-SAT and Unique-k-SAT:

Corollary 2. Unique k-SAT is in 2(1−ωk(1/k))n time ⇔ k-SAT is in
2(1−ωk(1/k))n time.

Acknowledgement. We thank Erik Demaine for organizing an open problems session
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19. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, 17–18 October 1999, New York, NY, USA, pp. 410–414 (1999)

http://arxiv.org/abs/1904.04860
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1137/120868177
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html


On Super Strong ETH 423

20. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artif. intell. 81(1–2), 17–29 (1996)

21. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Nieder-
meier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79723-4 18

22. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor.
Comput. Sci. 47(3), 85–93 (1986). https://doi.org/10.1016/0304-3975(86)90135-0

23. Vilenchik, D.: Personal communication
24. Williams, R.: Circuit analysis algorithms. Talk at Simons Institute for Theory of

Computing, August 2015. https://youtu.be/adJvi7tL-qM?t=925

https://doi.org/10.1007/978-3-540-79723-4_18
https://doi.org/10.1016/0304-3975(86)90135-0
https://youtu.be/adJvi7tL-qM?t=925

	On Super Strong ETH
	1 Introduction
	1.1 Prior Work
	1.2 Our Results

	2 Preliminaries
	2.1 Structural Properties of Planted and Random k-SAT

	3 Planted k-SAT and the PPZ Algorithm
	4 Reducing from Random k-SAT to Planted Random k-SAT
	5 k-SAT and Unique k-SAT
	References




