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Abstract

Hares (genus Lepus) provide clear examples of repeated and often massive introgressive hybridization and striking local adaptations.
Genomic studies on this group have so far relied on comparisons to the European rabbit (Oryctolagus cuniculus) reference genome.
Here, we report the first de novo draft reference genome for a hare species, the mountain hare (Lepus timidus), and evaluate the
efficacy of whole-genome re-sequencing analyses using the new reference versus using the rabbit reference genome. The genome
was assembled using the ALLPATHS-LG protocol with a combination of overlapping pair and mate-pair lllumina sequencing (77x
coverage). The assembly contained 32,294 scaffolds with a total length of 2.7 Gb and a scaffold N50 of 3.4 Mb. Re-scaffolding based
on the rabbit reference reduced the total number of scaffolds to 4,205 with a scaffold N50 of 194 Mb. A correspondence was found
between 22 of these hare scaffolds and the rabbit chromosomes, based on gene content and direct alignment. We annotated
24,578 protein coding genes by combining ab-initio predictions, homology search, and transcriptome data, of which 683 were solely
derived from hare-specific transcriptome data. The hare reference genome is therefore a new resource to discover and investigate
hare-specific variation. Similar estimates of heterozygosity and inferred demographic history profiles were obtained when mapping
hare whole-genome re-sequencing data to the new hare draft genome or to alternative references based on the rabbit genome. Our
results validate previous reference-based strategies and suggest that the chromosome-scale hare draft genome should enable
chromosome-wide analyses and genome scans on hares.
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Introduction group have primarily relied on comparisons to the high-quality

The ability to sequence whole genomes has revolutionized
our power to study the evolution of non-model organisms.
Hares (genus Lepus) have recently emerged as useful evolu-
tionary models to understand introgressive hybridization and
local adaptation (Alves et al. 2008; Jones et al. 2018; Seixas
et al. 2018; Giska et al. 2019). Genomic analyses on this

reference genome of another leporid, the more extensively
studied European rabbit (Oryctolagus cuniculus) (Carneiro
et al. 2014), estimated to share a most recent common an-
cestor with hares ~12 million years ago (Matthee et al. 2004).
Although these studies have generally used iterative mapping
approaches to reduce divergence and increase mapping
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efficiency (e.g., Jones et al. 2018; Seixas et al. 2018), it
remains unclear to what extent reliance on an outgroup ref-
erence may have limited genomic inferences.

We extend the genomic resources of Leporids by assem-
bling the first draft genome of a hare species, the mountain
hare (Lepus timidus). The mountain hare is an arcto-alpine
species widely distributed in the northern Palearctic, from
western Europe to eastern Asia, with some isolated popula-
tions, as in the Alps, Poland, Great Britain, and Ireland. The
current distribution of the species reflects the colonization of
previously glaciated areas in the north, and the retreat from
southernmost regions in the south (Waltari and Cook 2005;
Hamill et al. 2006; Melo-Ferreira et al. 2007; Smith et al.
2018). The species has been implicated in recurrent events
of introgressive hybridization with other hare species from
Europe (Thulin et al. 1997; Alves et al. 2003; Melo-Ferreira
et al. 2009; Seixas et al. 2018; Giska et al. 2019), and displays
important locally adapted traits, such as varying ecologies
(Caravaggi et al. 2017), size differences among regions, or
distinctive coat color (Smith et al. 2018; Giska et al. 2019).
Furthermore, genus Lepus is distributed worldwide with more
than 30 classified species, which show adaptions to contrast-
ing environments, from arctic to arid regions. Detailed inves-
tigation of relevant evolutionary processes in the genus can
benefit from the availability of hare-specific genomic resour-
ces (Fontanesi et al. 2016).

Materials and Methods
DNA Sampling, Extraction, and Sequencing

One female mountain hare (Lepus timidus hibernicus) speci-
men (NCBI BioSample ID SAMN12621015) was captured
from the wild for scientific research purposes by the Irish
Coursing Club (ICC) at Borris-in-Ossory, County Laois under
National Parks & Wildlife (NPWS) license no. C 337/2012 is-
sued by the Department of Arts, Heritage and the Gaeltacht
(dated October 31, 2012). Genomic DNA was extracted from
kidney, muscle, and ear tissue using the JETquick Tissue DNA
Spin Kit (GENOMED), with RNAse and proteinase K to remove
RNA and protein contamination. Genomic libraries of differ-
ent insert lengths were generated following the standard
ALLPATHS-LG protocol (Gnerre et al. 2011): one lllumina
TruSeq DNA library of 180bp fragments was sequenced
with overlapping paired-end (OPE) reads, and three lllumina
TruSeq DNA mate-pair (MP) libraries of 2.5, 4.5, and 8.0kb
insert sizes. Whole-genome sequencing was performed at
The Genome Analysis Center (TGAC, currently Earlham
Institute, Norwich, UK)—seven HiSeg2000 lanes (five OPE
and two 4.5 kb MP)}—and CIBIO’s New-Gen sequencing plat-
form—three HiSeq1500 lanes (2.5 and 8.0kb MP). Raw se-
guencing reads were deposited in the Sequence Read Archive
(details in supplementary table S1, Supplementary Material
online).

Read Quality Assessment and Filtering

Exact duplicates were removed both from OPE and MP librar-
ies using PRINSEQ v0.20.4 (Schmieder and Edwards 2011b).
PhiX sequences were identified using Bowtie2-v2.2.3
(Langmead and Salzberg 2012) and removed. Adapter
sequences were removed using Cutadapt v1.4.1 (Martin
2011) for OPE reads and Skewer v1.3.1 (Jliang et al. 2014)
for mate-pairs. For the latter, only pairs in the correct orien-
tation determined by the presence of the junction adapter
were retained.

Genome Size Estimation

Genome size was estimated using a k-mer-based approach
(Marcais and Kingsford 2011). First, the frequency distribution
of 17 bp k-mers was obtained using jellyfish v2.2.6 (Marcais
and Kingsford 2011) based on the OPE raw reads—supple-
mentary figure S1, Supplementary Material online. The se-
guencing depth was then calculated following M=N * (L —
k+ 1)L, where M is the peak of the k-mer depth frequency
distribution, L is the read length, and k is the chosen k-mer
length in bp. Finally, the genome size was estimated by divid-
ing the total number of bases sequenced by the sequencing
depth.

Genome Assembly and Annotation

De novo assembly was performed using ALLPATHS-LG
(Gnerre et al. 2011) with default parameters using OPE and
mate-pair reads. The resulting assembly was evaluated with
REAPR v1.0.18 (Hunt et al. 2013) to break incorrect scaffolds,
by mapping the paired-end and the 4.5 kb mate-pair reads on
the assembled genome. Another round of scaffolding was
then performed using SSPACE v3.0 (Boetzer et al. 2011),
with a minimum overlap of 32 bp and supported by a mini-
mum of 20 reads. Finally, we leveraged the existence of the
high-quality assembly of the genome of the European rabbit
(Oryctolagus cuniculus—Ensembl OryCun2.0), to improve the
contiguity of the assembly using the reference-based scaf-
folder MeDuSa v.1.6 with five iterations (Bosi et al. 2015).
This re-scaffolding orders and re-orientates scaffolds without
affecting intra-scaffold sequence. Quality control of the as-
sembly at different stages was assessed based on metrics
obtained with QUAST v.3.2 (Mikheenko et al. 2016). The
completeness of the L. timidus re-scaffolded genome was
evaluated using BUSCO v.3.0.2 (Simao et al. 2015), based
on the presence and absence of core single-copy genes
(from mammalia_odb9 database). We then checked consis-
tency of gene content in the larger chromosome-like scaffolds
and rabbit chromosomes using blastp from NCBI BLAST
v2.7.1+ (Camacho et al. 2009), considering the best hit per
gene with similarity above 90% over 500 bp. The 22 rabbit
chromosomes were aligned against inferred corresponding
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L. timidus re-scaffolded scaffolds using D-Genies v. 1.2.0
Mashmap (Cabanettes and Klopp 2018).

Repetitive regions were identified using RepeatModeler
v.1.0.11 (Smit and Hubley 2008) and masked using
RepeatMasker v.4.0.7 (Smit et al. 2013). The masked ge-
nome was used as input for gene prediction in MAKER
v.3.01.02 (Cantarel et al. 2008), using ab-initio predictions,
L. timidus transcriptome data, and rabbit protein annotations
(O. cuniculus) (supplementary text, Supplementary Material
online). Functional inference for genes and transcripts was
performed using the translated CDS features of each coding
transcript. Each predicted protein sequence was based on
blastp searches against the Uniprot-Swissprot database to
retrieve gene name and function, and InterProscan v5.30-
69 (Jones et al. 2014) to retrieve Interpro, Pfam v31.0 (Finn
et al. 2016), GO (Mi et al. 2017), KEGG (Kanehisa et al.
2016), and Reactome (Fabregat et al. 2018) information.

Analyses of Whole-Genome Re-Sequencing Data

To compare the performance of using the L. timidus genome
or other strategies based on the rabbit genome for whole-
genome analyses, we analysed re-sequencing data from the
mountain hare and another hare species, the Iberian hare,
L. granatensis, mapping the reads to 1) the new L. timidus
re-scaffolded genome, 2) the rabbit reference genome (avail-
able from Ensembl—OryCun2.0, release 80), and 3) a hare
pseudo-reference genome built through iterative mapping of
hare sequence reads on the rabbit genome, followed by ref-
erence updating (from Seixas et al. 2018). For the re-
sequencing data (NCBI Sequence Read Archive Biosamples
SAMNO07526960 and SAMNQ7526963; Seixas et al. 2018),
adapters were removed using cutadapt version 1.8 (Martin
2011) and low quality bases (quality < 20 at the end of reads,
and 4 consecutive bp with average quality < 30) were
trimmed using Trimmomatic v0.33 (Bolger et al. 2014).
Mapping was done using BWA-MEM v0.7.15 (Li 2013).
Mapped reads were sorted with samtools v1.3.1 (Li et al.
2009) and read duplicates removed using Picard
Markduplicates (Picard toolkit 2019). Realignment around
INDELs was performed using GATK v3.2-2 (Van der Auwera
et al. 2013). Genotype calling was performed for each species
independently using bcftools v.1.5 (Li 2011), with minimum
site (QUAL) and RMS mapping (MQ) qualities of 20, coverage
(FMT/DP) between 6X and twice the average genomic cover-
age, and minimum genotype quality (FMT/GQ) of 20. Indels
and flanking 10bp were coded as missing data. Only sites
covered in the two analysed individuals were retained.
Heterozygosity was calculated in sliding windows of 50 kb,
using the popgenWindows.py script available at https://
github.com/simonhmartin/genomics_general, and 500 win-
dows were randomly sampled per references and species.

The Pairwise Sequentially Markovian Coalescent (PSMC)
model (Li and Durbin 2011) was then used to compare
single-genome demographic inferences of the mountain
hare using alternative genome references (L. timidus assem-
bled genome, prior to re-scaffolding, was also included, to
control for potential biases arising from the reference-based
re-scaffolding process), and to infer the demographic profiles
of L timidus and L. granatensis using the L. timidus re-
scaffolded reference (as in Seixas et al. 2018, who used the
hare pseudo-reference). Changes in the density of called var-
iants among references should cause important differences in
the inferred profiles. Diploid consensus sequences were built
using samtools v1.3.1 mpileup and call modules, and only
sites with minimum base and mapping qualities of 20, and
coverage between 8X and twice the average depth were
considered  (atomic time intervals were set to
4 4+50%2 4244 asin Seixas et al. 2018). Results were scaled
using a generation time of 2years (Marboutin and Peroux
1995) and a mutation rate (u) of 2.8 x 102 substitutions/
site/generation (Seixas et al. 2018). The variance of effective
population size (N,) estimates was assessed by 50 bootstraps
in randomly sampled segments with replacement.

Results and Discussion

De Novo Reference Genome Assembly and Annotation

Genome assembly and sequencing metrics are in table 1 and
supplementary table S1, Supplementary Material online. The
assembly length, 2.70 Gb, was consistent with the k-mer es-
timate (~2.75Gb) and the assembled length of the rabbit
genome (~2.74 Gb; Carneiro et al. 2014). The L. timidus re-
scaffolded genome contained 4,205 scaffolds, being 99.9%
of the total assembly size comprised in 605 scaffolds with a
minimum length of 35kb. Of the 4,104 mammalian core
genes, 3,793 (92.4%) were present in our assembly, 3,445
of which (90.8%) were found as complete single copies. The
number of predicted and annotated genes (29,238 and
24,578, respectively—table 1 and supplementary fig. S2,
Supplementary Material online) are in line with several pub-
lished mammalian genomes that used similar sequencing
approaches (Keane et al. 2015; Li et al. 2017; Koepfli et al.
2019; Ming et al. 2019), and with the extrapolation from the
BUSCO completeness assessment, suggesting that the major-
ity of genes present in our draft genome was covered by the
annotation process. A total of 683 predicted genes were
uniguely annotated based on the hare transcriptome and pos-
sibly represent hare-specific genes (supplementary fig. S2,
Supplementary Material online).

Through the characterization of gene content (supplemen-
tary fig. S3, Supplementary Material online) and
chromosome-scaffold alignment (supplementary Figs. S4
and S5, Supplementary Material online), we were able to es-
tablish correspondence between the rabbit chromosomes
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Table 1

Summary Statistics of the L. timidus Genome Assembly, Curation and Annotation

Value

Raw reads
Clean reads

Raw de novo assembly (ALL-PATHS)
Number of scaffolds

Largest (bp)

Total length (bp)

Contig N50 (bp)

Scaffold N50 (bp)

GC content (%)

Post assembly curation (REAPR)
Number of scaffolds

Largest (bp)

Total length (bp)

N50 (bp)

GC content (%)

Scaffolding (SSPACE >1 kb)—L. timidus assembled genome
Number of scaffolds

Largest (bp)

Total length (bp)

N50 (bp)

GC content (%)

Reference-based scaffolder—L. timidus re-scaffolded genome
Number of scaffolds

Largest (bp)

Total length (bp)

N50 (bp)

GC content (%)

L. timidus re-scaffolded genome characteristics and annotation statistics

Haploid chromosome number
Estimated genome length
Sequencing coverage
Total assembly length
Gaps
Repeats
BUSCO genes present (estimation of genome completeness)
Ab-initio gene prediction
Gene space (exons, introns, etc.)
Gene length (median)
Gene fragmentation
Exon space
Exon length (median)
Homology-based gene annotation
(details in supplementary fig. S2, Supplementary Material online)

Uniprot-Swissprot

O. cuniculus transcriptome

L. timidus transcriptome
Functional annotation

Pfam domains

Gene ontology (GO)

Interpro

KEGG

Reactome

3,396,221,990
2,084,055,186 (61%)

30,212
4,384,173
2,741,083,031
11,800
347,000
43.54

70,707
1,921,307
2,662,248,649
156,456
43.54

32,294
3,358,433
2,703,715,767
3,358,433
43.54

4,205 (83% on the 22 scaffolds corresponding to the 22 rabbit chromosomes)
194,083,885

2,703,257,129

117,222,600

43.40

22 (constrained by the rabbit reference)
2.75 Gb

77x

2.70 Gb

18.8% (supplementary fig. S6, Supplementary Material online)
28.0%

3,793 (92%)

29,238 genes

196.6 Mb (7.3% of assembly)

5.8 kb

137,913 exons

26.6 Mb (1.0% of the assembly)

193 bp

24,578 proteins

23,375
18,678
15,418 (683 hare transcriptome specific)

28,803 (5,068 unique)
14,530 (1,382 unique)
25,395 (4,740 unique)
748 (391 unique)
5,066 (1,050 unique)
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Fic 1.—PSMC inference of demographic profiles. (a) Lepus timidus demographic profile inferred using different reference genomes: L. timidus re-
scaffolded genome, L. timidus assembled genome (prior to re-scaffolding), hare pseudo-reference genome, and the (European) rabbit reference genome. (b)
PSMC inference of the demographic profiles of two European hare species—L. timidus and L. granatensis, using the L. timidus re-scaffolded genome
(replicating the analysis by Seixas et al. 2018, which used a hare pseudo-reference). Each bold line represents a full run for each species and thin lines
represent 50 randomly sampled fragments bootstrap. A rate of 2.8 x 10" substitutions per site per generation and a generation time of two years were
assumed. Inflection points are denoted by the gray vertical bars, as in Seixas et al. (2018).

(2N =44) and 22 scaffolds of the re-scaffolded version of the
L. timidus assembly. The 22 scaffolds correspond to 83% of
the total length of the assembly (2.24 Gb). It should be noted
that hares have 24 chromosomes, since rabbit’'s chromo-
somes 1 and 2 are each split into two in hares (presumably
resulting from two fusions in the rabbit lineage; Robinson
et al. 2002). This karyotype difference was naturally not re-
covered in our re-scaffolded assembly, which highlights the
inherent shortcomings of reference-guided scaffolding. While
the new genome should be accurate in resolving small-scale
structural variation (small insertions—deletions, repeats, and/
or inversions as recovered by the original assembled contigs/
scaffolds; Salzberg et al. 2012), larger genomic rearrange-
ments, should be missed due to the assumption of synteny
with the reference.

The Impact of Alternative Reference Mapping Strategies
on Genomic Analyses

The proportion of mapped reads from whole-genome re-se-
guencing was higher using the hare pseudo-reference, but
the number of uniquely mapped reads was larger using the
L. timidus reference genome (supplementary table S2,
Supplementary Material online). These statistics suggest that
the hare pseudo-reference increases both mapping propor-
tion and efficiency, but the new hare reference allows in-
creased confidence in mapping, measured as the proportion
of uniquely mapped reads. The distributions of heterozygosity
estimated in 50 kb windows along the genome did not differ
significantly across analyses with different references
(P>0.05, Wilcoxon Ranked-sum test; supplementary fig.
S7, Supplementary Material online). In agreement, the
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PSMC demographic profiles also displayed similar shapes
across references, with only slight differences of inferred effec-
tive population sizes (fig. 1a). Also, the demographic profiles of
both L. timidus and L. granatensis inferred using the new
L. timidus re-scaffolded genome are similar to those inferred
by Seixas et al. (2018) using the hare pseudo-reference
(fig. 1b). These results suggest that the use of the alternative
tested references does not impact heterozygosity tract pat-
terns, and thus that approaches based on hare pseudo-
references has not limited evolutionary inference and genome
scans on hares. It also shows that re-scaffolding our de novo
assembly using the rabbit genome enables the use of the new
hare genome reference for genomic scale scans, where the
ordering along the chromosome is important. Finally, the new
hare draft genome can be useful to reveal hare-specific varia-
tion, reflected for example in the putative hare-specific genes
annotated here, which needs to be evaluated and investigated.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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