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Abstract. In a classical problem in scheduling, one has n unit size jobs with a precedence order
and the goal is to find a schedule of those jobs on m identical machines as to minimize the makespan.
It is one of the remaining four open problems from the book of Garey & Johnson whether or not this
problem is NP-hard for m = 3.

We prove that for any fixed ε and m, an LP-hierarchy lift of the time-indexed LP with a slightly
super poly-logarithmic number of r = (log(n))Θ(log logn) rounds provides a (1 + ε)-approximation.
For example Sherali-Adams suffices as hierarchy. This implies an algorithm that yields a (1 + ε)-
approximation in time nO(r). The previously best approximation algorithms guarantee a 2− 7

3m+1
-

approximation in polynomial time for m ≥ 4 and 4
3

for m = 3. Our algorithm is based on a
recursive scheduling approach where in each step we reduce the correlation in form of long chains.
Our method adds to the rather short list of examples where hierarchies are actually useful to obtain
better approximation algorithms.

1. Introduction. One of the landmarks in the theory of scheduling is the paper
of Graham [Gra66] from 1966, dealing with the following problem: suppose we have
a set J of n jobs, each one with a running time pj along with m identical parallel
machines that we can use to process the jobs. Moreover, the input contains a prece-
dence order on the jobs; we write j ≺ j′ if job j has to be completed before job j′

can be started. The goal is to schedule the jobs in a non-preemptive fashion so that
the makespan is minimized. Here, the makespan gives the time that the last job is
finished. In the 3-field notation1, this problem is abbreviated as P | prec | Cmax.
Graham showed that the following list schedule gives a (2 − 1

m )-approximation on
the makespan: compute an arbitrary topological ordering of the jobs and whenever a
machine becomes idle, select the first available job from the list. It had been known
since the late 70’s that it is NP-hard to approximate the problem better than within
a factor of 4/3 due to Lenstra and Rinnooy Kan [LK78] and Schuurman and Woeg-
inger [SW99] prominently placed the quest for any improvement on their well known
list of 10 open problems in scheduling. Finally in 2010, Svensson [Sve10] showed
that assuming a variant of the unique games conjecture [BK09], there is no (2 − ε)-
approximation algorithm for P | prec, pj = 1 | Cmax. However, for unit size jobs, Lam
and Sethi [LS77] analyzed an algorithm of Coffman and Graham and showed that it
provides a slighly better guarantee of 2− 2

m for P | prec, pj = 1 | Cmax. Later, Gangal
and Ranade [GR08] gave an algorithm with a 2− 7

3m+1 guarantee for m ≥ 4.

In a typical scheduling application, the number of jobs might be huge compared
to the number of machines, which does justify to ask for the complexity status of
such problems if the number m of machines is a constant. Even under the additional
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1In the 3-field notation, the first field specifies the available processors, the 2nd field the jobs
and the last field the objective function. In our case, Pm means that we have m identical machines;
pj = 1, prec indicates that the jobs have unit length and precedence constraints and the last field
Cmax specifies that the objective function is to minimize the maximum completion time.
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restriction of unit size jobs, no better approximation result is known. In fact, it is
one of the remaining four open problems from the book of Garey and Johnson [GJ79]
whether P3 | prec, pj = 1 | Cmax is even NP-hard. Also Schuurman and Woegin-
ger [SW99] list under “Open Problem 1” the question whether there is a PTAS for
this problem (recall that for m = 2, the result of [LS77] gives an optimum schedule).

To understand where the lack of progress is coming from, one has to go back
to the list scheduling algorithm of Graham. If we schedule the jobs in a greedy
manner, then one can argue that there is always a chain of jobs j1 ≺ j2 ≺ . . . ≺ jk
so that at any point in time either all m machines are fully busy or a job from that
chain was processed. Since both quantities, the load 1

m

∑

j∈J pj and the length of
any chain are lower bounds on any schedule, we can conclude that the schedule has
length at most 2 · OPT . One can shave off a factor of 1

m even for general running
times, by observing that the processing times of the jobs in the longest chain do not
need to be again counted in the load bound. Also the papers [LS77] and [GR08]
effectively rely on those two lower bounds. In fact, [Cha95] showed that a large class
of algorithms including the ones of [Gra66, GR08] cannot beat a bound of 2 − 2√

m
;

moreover Graham’s algorithm is indeed not better than a (2− 2
m )-approximation for

unit size jobs, see [GR08].
Of course, one always has the option to study the strength of linear programs

for an optimization problem. The most natural one for Pm | prec, pj = 1 | Cmax is
certainly the following time-indexed LP : For a parameter T that denotes the length
of the time horizon, we define a set K(T ) as the set of fractional solutions to:

T∑

t=1

xj,t = 1 ∀j ∈ J(1.1)

∑

j∈J

xj,t ≤ m ∀t ∈ [T ]

∑

t′<t

xi,t′ ≥
∑

t′≤t

xj,t′ ∀i ≺ j ∀t ∈ [T ]

0 ≤ xj,t ≤ 1 ∀j ∈ J ∀t ∈ [T ]

Here xj,t is a decision variable that is supposed to tell whether job j ∈ J is scheduled
in time slot t ∈ [T ], where [T ] := {1, . . . , T}. The constraints guarantee that in an
integral solution each job is assigned to one time slot; no time slot receives more than
m jobs and for a pair of jobs i ≺ j, job i has to be scheduled before j.

Unsurprisingly, this LP has a constant integrality gap as one can see from the
following construction: take k blocks J1, . . . , Jk of |Ji| = m + 1 jobs each and define
the precedence order so that all the jobs in Ji have to be finished before any job in
Ji+1 can be started. Any integral schedule needs two time units per block, hence
OPT = 2k. On the other hand, the LP solution can schedule the m+ 1 jobs of each
block “in parallel”, each at a rate of m

m+1 and finish the schedule after k · m+1
m time

units in which each machine has always been fully busy. This results in an integrality
gap of at least 2− 2

m+1 .
It has been long known, that in principle one can take the linear program for

any optimization problem and strengthen it automatically by applying an LP or SDP
hierarchy lift. We will provide formal definitions later, but basically these operators
ensure that for any set of at most r variables, the LP solution indeed lies in the
convex hull of integral combinations. Here, r is the number of levels or rounds and
one typically needs time nO(r) to solve an r-level hierarchy.
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Some known approximation results have been reinterpreted in hindsight in this
framework, for example a constant number of Lasserre rounds applied to a basic LP
suffices for the Goemans-Williamson algorithm for MaxCut [GW95] and also a con-
stant number of Lasserre rounds implies the triangle inequalities in the O(

√
log n)-

approximation algorithm by Arora, Rao and Vazirani [ARV09]. Moreover, the sub-
space enumeration component in the subexponential time algorithm of Arora, Barak
and Steurer [ABS10] for Unique Games could be replaced with a Lasserre SDP. How-
ever, there are relatively few results where hierarchies have been genuinely useful (at
least fewer than researchers have hoped for). For example Chlamtáč [Chl07] used
SDP hierarchies to find better colorings in 3-colorable graphs and Raghavendra and
Tan [RT12] apply them to obtain approximation algorithms for CSPs with cardinality
constraints. An application to color hypergraphs can be found in [CS08]. Hierarchies
also turned out to be the right approach for Sparsest Cut in bounded tree width
graphs, see the paper by Chlamtáč, Krauthgamer and Raghavendra [CKR10] and the
2-approximation by Gupta, Talwar and Witmer [GTW13]. For an application of the
Lasserre hierarchy in the context of scheduling, see the recent work of Bansal, Srini-
vasan and Svensson [BSS16]. Throughout this paper, logarithms will be with respect
to base 2, that means log(T ) := log2(T ).

1.1. Our Contribution. Our main result is that an LP lift with

(log(n))O((m2/ε2)·log logn)

rounds closes the integrality gap of LP (1.1) to at most 1 + ε. This implies:
Theorem 1.1. For the problem Pm | prec, pj = 1 | Cmax one can compute

a (1 + ε)-approximate solution in time nO(r) where r := (log(n))O((m2/ε2)·log logn).
This gives a partial answer to one of the questions under “Open Problem 1” in [SW99]
which asked whether there is a PTAS for this problem. In a Dagstuhl workshop,
Mathieu [Dag10] asked the more specific question whether the Sherali-Adams hierar-
chy gives a (1+ ε)-approximation after c(ε,m) rounds. We also make progress on the
question from the book of Garey and Johnson [GJ79] by improving the 4

3 -polynomial
time approximation for m = 3 [LS77] to a 1+ε in slightly more than quasi-polynomial
time. In particular, this implies that Pm | prec, pj = 1 | Cmax is not APX-hard, as-

suming that NP 6⊆ DTIME(nlog(n)O(log log n)

).

2. An Explicit LP Hierarchy for Makespan Scheduling. In principle, our
result can be obtained by applying the well-known Sherali-Adams hierarchy to the
linear program in (1.1) — of course the same still holds true for even more powerful
hierarchies such as the Lasserre SDP hierarchy. While this may be the preferable
option for experts, we will work with an explicit strengthening of the above linear
program that hopefully will be more accessible to non-experts in LP hierarchies. For
a set K ⊆ R

m we denote

cone(K) :=
{ k∑

i=1

λixi | k ∈ N; xi ∈ K ∀i ∈ [k]; λi ≥ 0 ∀i ∈ [k]
}

as the convex cone that is spanned by K.
Let us fix a parameter r. Let σ : J → [T ] ∪ {∗} be a partial assignment that

assigns slots only for a subset of jobs. All the jobs with σ(j) = ∗ are unassigned. Let
supp(σ) := {j ∈ J | j is assigned in σ} be the support of that partial assignment. We
denote ∅ as the partial assignment that assigns no job at all. Moreover for a partial
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assignment σ and j /∈ supp(σ) and t ∈ [T ], let σ ∪ (j, t) be the partial assignment
augmented by σ(j) = t.

We say that a solution to SA(K(T ), r) is a set of vectors x := {xσ}|supp(σ)|≤r,

where we define x := x∅ satisfying the following program:

xσ =
∑

t∈[T ] x
σ∪(j,t) ∀σ : |supp(σ)| < r and j /∈ supp(σ) (I)

xσ ∈ cone
(
K(T ) ∩ {x | xj,σ(j) = 1 ∀j ∈ supp(σ)}

)
∀σ : |supp(σ)| ≤ r (II)

x ∈ K(T ) (III)

In other words, x is a collection of nO(r) many vectors xσ that each has dimension
|J | · T . Note that if xσ is a non-zero vector, then it can be scaled to be a fractional
solution in K(T ) that has all assignments of the partial assignment σ integral. Notice
that we have a variable for each σ with |supp(σ)| ≤ r, so one can find a feasible
solution of the program in nO(r) time.

One can think of this system as basically being the Sherali-Adams system, just
that we do include more redundant variables that will make it easy to prove the
needed properties. First, we claim that if there exists a valid schedule σ∗, then
SA(K(T ), r) 6= ∅. Here we can build a valid solution by simply choosing xσ as the
characteristic vector of σ∗ if σ and σ∗ agree. We set xσ = 0 if there is a job j ∈ supp(σ)
so that σ(j) 6= σ∗(j). We give the following useful properties:

Lemma 2.1. Fix some r. Let x ∈ SA(K(T ), r). Let2 λσ :=
∑T

t=1 x
σ
j,t. Then the

following holds
a) If λσ > 0, then xσ

λσ
∈ K(T ) ∩ {x | xj,σ(j) = 1 ∀j ∈ supp(σ)}.

b) If r = n, then x ∈ conv
(
K(T ) ∩ {0, 1}J×[T ]

)
.

c) Let j∗ ∈ J and t∗ ∈ [T ] so that ρ := xj∗,t∗ > 0. Then taking yσ := 1
ρ ·xσ∪(j∗,t∗)

for each σ, one has y = {yσ}|supp(σ)|≤r−1 ∈ SA(K(T ), r − 1) and yj∗,t∗ = 1.
Moreover, xj,t = 0 ⇒ yj,t = 0 for all j ∈ J and t ∈ [T ].

Proof. We prove the following:
a) Follows from (II) and the definition of λσ.
b) We can iteratively apply (I) to obtain

x =
∑

σ:J→[T ]

xσ =
∑

σ:J→[T ]:λσ>0

λσ · x
σ

λσ
.

By a), xσ

λσ
are 0/1 vectors.

c) From the definition we can see that (I), (II) are just inherited. (III) and
yj∗,t∗ = 1 follow from the scaling. The implication xj,t = 0 ⇒ yj,t = 0 follows

from yj,t =
1
ρ · x(j∗,t∗)

j,t ≤ 1
ρxj,t.

If we have solution x ∈ SA(K(T ), r) and variables j∗, t∗ with xj∗,t∗ > 0, then
conditioning on xj∗,t∗ = 1 means to replace the solution x with the solution y =
{yσ}|supp(σ)|≤r−1 ∈ SA(K(T ), r − 1) described in Lemma 2.1.c.

3. An Overview. In this section, we will give an overview over the different
steps in our algorithm; the detailed implementation of some of the steps will be given
in Section 4, Section 5 and Section 6. For a given time horizon T , a feasible schedule
is an assignment σ : J → {1, . . . , T} with |σ−1(t)| ≤ m for all t ∈ [T ] and for all

2Here j ∈ J is any fixed job. But note that this definition does not depend on the choice of j.
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j, j′ ∈ J one has j ≺ j′ ⇒ σ(j) < σ(j′). Formally, our main technical theorem is as
follows:

Theorem 3.1. For any solution x ∈ SA(K(T ), r) with r := (log n)O((m2/ε2)·log logn),
one can find a feasible schedule σ : J → N of the jobs in time nO(r) so that

max
j∈J

σ(j) ≤ (1 + ε) · T.

To obtain a (1 + ε)-approximation, we can find the minimum value of T so that
SA(K(T ), r) 6= ∅ with binary search and then compute a solution x ∈ SA(K(T ), r).
In particular, by virtue of being a relaxation, that value of T will satisfy T ≤ OPT ,
where OPT is the makespan of the optimum schedule. For the sake of a simpler
notation, we will assume that T is a power of 2 — if 2z−1 < T ≤ 2z for some integer
z, then one can add m · (2z − T ) many dummy jobs that all depend on each original
job so that the algorithm will schedule the dummy jobs at the very end. Moreover we
will assume that 1

ε ,m ≤ log(n) as otherwise the bound is meaningless.
The main routine of our algorithm will schedule jobs only within the time horizon

T of the LP-hierarchy solution, but we will allow it to discard jobs. Formally this
means, we will find an assignment σ : J \ Jdiscarded → [T ] that will not have assigned
slots to jobs in Jdiscarded. Such an assignment will still be called “feasible” if apart
from the load bound, the condition j ≺ j′ ⇒ σ(j) < σ(j′) is satisfied for all j, j′ ∈
J \ Jdiscarded. In particular dependencies with discarded jobs play no role in this
definition.

The reason for this definition is that one can easily insert the discarded jobs at
the very end of the algorithm:

Lemma 3.2. Any feasible schedule

σ : J \ Jdiscarded → {1, . . . , T}

can be modified in polynomial time to a feasible schedule

σ∗ : J → {1, . . . , T + |Jdiscarded|}

which also includes the previously discarded jobs.
Proof. Select any job j∗ ∈ Jdiscarded. Since σ is a valid schedule which respects

all precedence constraints in J \ Jdiscarded, there must be a time t∗ so that all jobs
j ≺ j∗ have σ(j) ≤ t∗ and all jobs j with j∗ ≺ j have σ(j) > t∗. Then we insert an
extra time unit after time t∗; in this extra time slot, we only process j∗. We continue
the procedure with inserting the next job from Jdiscarded \ {j∗}.

Now, let us introduce some notation: We can imagine the precedence order “≺”
as a directed transitive graph G = (J,E) with the nodes as jobs and edges (j, j′) ∈
E ⇔ j ≺ j′. In that view, let δ+(j) := {j′ ∈ J | j ≺ j′} be the jobs depending
on j and let δ−(j) := {j′ ∈ J | j′ ≺ j} be the jobs on which j depends. Note
that δ+(j) and δ−(j) are always distinct. We abbreviate δ(j) := δ+(j) ∪ δ−(j) as
the jobs that have any dependency with j. Finally, for a subset of jobs J ′ ⊆ J , let
∆(J ′) := max{|δ(j) ∩ J ′| + 1 | j ∈ J ′} be the maximum degree of a node in the
subgraph induced by J ′, counting also the node itself.

We partition the time horizon [T ] into a balanced binary family I of intervals
of lengths T, T

2 ,
T
22 , . . . , 2, 1. Let I := I0∪̇ . . . ∪̇Ilog(T ) be the binary laminar family

of intervals that we obtain by repeatedly partitioning intervals into two equally-sized
subintervals. Recall that each level Iℓ contains 2ℓ many interval I ∈ Iℓ; each one
consisting of |I| = T

2ℓ
many time units. For each job j ∈ J and each interval I,
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we now define xj,I :=
∑

t∈I xj,t, which denotes how much of job j will be scheduled
somewhere within that interval I.

Our algorithm will schedule the jobs in a recursive manner. The main claim is
that for any interval I∗, LP-hierarchy solution x

∗ and a set of jobs J∗ with x∗
j,I∗ = 1

we can schedule almost all jobs from J∗ within I∗ while respecting all precedence
constraints.

We use parameters k := c1m
ε log log(T ) where c1 > 0 is a large enough constant

that we will choose in Section 6, and δ := ε
8k2m22k2 log(T )

. To get some intuition for the

parameters, considering ε and m as fixed constants, one would have k = Θ(log log n)
and δ = 1/ log(n)Θ(log logn). Formally, the main technical lemma is the following:

Lemma 3.3. Fix ε > 0. Let I∗ ∈ I be an interval from the balanced family of
length T ∗ := |I∗|. Let x∗ ∈ SA(K(T ), r∗) be an LP-hierarchy solution with

r∗ ≥ log(T ∗) · 2mk2 · 2k2

/δ.

Let J∗ ⊆ {j ∈ J : x∗
j,I∗ = 1}. Then one can find a feasible assignment σ : J∗ \

J∗
discarded → I∗ that discards only

|J∗
discarded| ≤

ε

2
· log(T

∗)

log(T )
· T ∗ +

ε

2m
· |J∗|

many jobs.
Before we move on to explain the procedure behind Lemma 3.3, we want to argue

that it implies our main result, Theorem 3.1:
Proof. We set I∗ := {1, . . . , T} and x

∗ := x, then J∗ := J is a valid choice as
trivially xj,{1,...,T} = 1 for any job. To satisfy the requirement of Lemma 3.3 we need

log(T ) · 2mk2 · 2k2

δ
≤ (log(n))O((m

ε
)2 log log(n))

many levels of the hierarchy. Here we use that k = Θ(mε log log T ), hence 2k =

(log(T ))Θ(m/ε) and 2k
2

= (2k)k = (log(T ))Θ((m
ε
)2 log log T ) (we want to point out that

many of the lower order terms are absorbed into the O-notation of the exponent
and we assume that 1

ε ,m ≤ log(n)). Then Lemma 3.3 returns a valid assignment
σ : J \ Jdiscarded → [T ] that discards only

|Jdiscarded| ≤
ε

2
· log(T )
log(T )

· T +
ε

2m
· |J | ≤ ε · T

many jobs. Inserting those discarded jobs via Lemma 3.2 then results in a feasible
schedule of makespan at most (1 + ε) · T .

The rest of the manuscript will be devoted to proving Lemma 3.3. We fix a
constant ε > 0 as the target value for our approximation ratio and denote T ∗ := |I∗|
as the length of our interval.

Let us first argue how to handle the base case, which for us is if log(T ∗) ≤ k2.

In that case, we have at most mT ∗ ≤ m2k
2

jobs. Hence, the LP-hierarchy lift has
r∗ ≥ mT ∗ many levels and one can repeatedly condition on events xj,t = 1 for j ∈ J∗

and t ∈ I∗ until one arrives at an LP hierarchy solution x
∗∗ with x∗∗

j,t ∈ {0, 1} for all
j ∈ J∗. This then represents a valid schedule of jobs J∗ in the interval I∗ without
the need to discard any jobs.
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We now come to a high-level description of the algorithm. Let I∗
0 , . . . , I∗

log(T∗) be

the family of subintervals of I∗, where I∗
ℓ contains 2ℓ intervals of length T∗

2ℓ
each, see

Figure 1. For a job j ∈ J∗, we define ℓ(j,x∗) := max{ℓ : ∃I ∈ I∗
ℓ with

∑

t∈I x
∗
j,t = 1}

as the level that owns the job in the current LP-hierarchy solution. We also abbreviate
J(ℓ,x∗) := {j ∈ J∗ | ℓ(j,x∗) = ℓ} as all jobs owned by level ℓ. The algorithm is as
follows:

• Step 1: Starting with the LP-hierarchy solution x
∗, we can iteratively con-

dition on events until we arrive at a solution x
∗∗ that has the property

that for any interval I ∈ I∗
0 ∪ . . . ∪ I∗

k2−1, the jobs owned by that inter-
val have small dependence degree, that means ∆(J(I,x∗∗)) ≤ δ|I|, where
J(I,x∗∗) := {j ∈ J∗ | I minimal with

∑

t∈I x
∗∗
j,t = 1}. If we then consider

the set of jobs J∗∗ := {j ∈ J∗ | 0 ≤ ℓ(j,x∗∗) < k2} owned by the first k2

levels, the longest chain in J∗∗ will contain at most k2δT ∗ jobs. We will show
in Section 4 that the number of required conditionings can be upperbounded
by 2mk2 · 2k2

/δ, which implies that x
∗∗ ∈ SA(K(T ), r∗ − 2mk2 · 2k2

/δ).
• Step 2: From now on, we work with the modified LP-hierarchy solution x

∗∗.
We select a level index ℓ∗ ∈ {k, . . . , k2} and partition the jobs in J∗ in three
different groups:

– The jobs on the top levels: Jtop := J(0,x∗∗) ∪ . . . ∪ J(ℓ∗ − k − 1,x∗∗)
– The jobs on the k middle levels: Jmiddle := J(ℓ∗ − k,x∗∗) ∪ . . . ∪ J(ℓ∗ −

1,x∗∗)
– The jobs on the bottom levels: Jbottom := J(ℓ∗,x∗∗)∪. . .∪J(log(T ∗),x∗∗)

Then we discard all jobs in Jmiddle. In Section 6 we will describe how the
index ℓ∗ is chosen and in particular we will provide an upper bound on the
number of discarded middle jobs.

• Step 3: In this step, we will find a schedule for the bottom jobs. For this
purpose, we call Lemma 3.3 recursively for each interval I ∈ Iℓ∗ with a copy
of the solution x

∗∗ and jobs JI := {j ∈ Jbottom | x∗∗
j,I = 1}. Here it is crucial

that the intervals are disjoint but also the sets JI are disjoint for different
intervals I ∈ Iℓ∗ . Then Lemma 3.3 returns a valid schedule of the form
σI : JI \ JI,discarded → I for each interval I ∈ Iℓ∗ . Let Jbottom-discarded :=
⋃

I∈Iℓ∗
JI,discarded ⊆ Jbottom be the union of jobs that were discarded in those

calls. The partial schedules σI satisfy |σ−1
I (t)| ≤ m for t ∈ I and |σ−1

I (t)| = 0
for t /∈ I. We combine those schedules to a schedule

σ : Jbottom/Jbottom-discarded → I∗.

From the disjointness of the intervals, it is clear that again |σ−1(t)| ≤ m for
all t ∈ I∗. Moreover, if j ≺ j′ and j, j′ ∈ JI for some interval I ∈ Iℓ∗ , then
by the inductive hypothesis σ(j) < σ(j′). On the other hand, if j ∈ JI and
j′ ∈ JI′ then we know by Lemma 2.1.c that I had to come before I ′ since
x∗∗
j,I = 1 = x∗∗

j′,I′ .
• Step 4: We continue working with the previously constructed schedule σ

that schedules the non-discarded bottom jobs. In this step, we will extend
the schedule σ and insert the jobs of Jtop in the remaining free slots. We
will prove in Section 5 that this can be done without changing the position of
any scheduled bottom job and without violating any precedence constraints.
Again, we allow that the procedure discards a small number of additional jobs
from Jtop that we will account for later. Eventually, the schedule σ satisfies
the claim for Lemma 3.3.

7



.

.

.

I∗
0

...
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I∗
ℓ∗−k−1

I∗
ℓ∗−k

...
I∗
ℓ∗−1

I∗
ℓ∗

...
I∗
k2−1

I∗
k2

J∗∗

1 2 . . . T ∗ time

Jtop

Jmiddle

Jbottom

Figure 1. Binary dissection of the interval I∗ used in the algorithm behind Lemma 3.3.

The intuition behind the algorithm is as follows: When we call the procedure
recursively for intervals I ∈ I∗

ℓ∗ we cannot control where the jobs JI will be scheduled
within that interval I. In particular the decisions made in different intervals I, I ′ ∈ I∗

ℓ∗

will in general not be consistent. But the discarding of the middle jobs creates a gap
between the top jobs and the bottom jobs in the sense that the intervals of the top
jobs are at least a factor 2k longer than intervals of the bottom jobs. For a top job
j ∈ Jtop we will be pessimistic and assume that all the bottom jobs that j depends
on will be scheduled just at the very end of their interval. Still, as those intervals are
very short, we will be able to argue that the loss in the flexibility is limited and most
of the top jobs can be processed. As a second crucial ingredient, the conditioning had
the implication that the top jobs do not contain any long chains any more. This will
imply that a greedy schedule of the top jobs will leave little idle time, resulting in
only few discarded top jobs.

A high-level pseudo-code description of the whole scheduling algorithm can be
found in Figure 2:

4. Step (1) — Reducing Dependence. In this section we will implement
“Step (1)” and show that we can reduce the maximum dependence degrees of the jobs
owned by the first k2 levels in order to bound the length of chains. We will do this by
conditioning on up to 2mk2 · 2k2

/δ many variables. We are considering an interval I∗

and a subset of jobs J∗ ⊆ J that the vector x∗ from the current LP-hierarchy solution
x
∗ fully schedules within I∗. Recall that for one of the subintervals I ∈ I∗

ℓ below I∗,
we write J(I,x∗) = {j ∈ J(ℓ,x∗) | x∗

j,I = 1} as the jobs owned by that particular
interval.

Lemma 4.1. Let x
∗ ∈ SA(K(T ), r∗). Then one can find an induced solution

x
∗∗ ∈ SA(K(T ), r∗∗) with r∗∗ := r∗ − 2mk2 · 2k2

/δ so that ∆(J(I,x∗∗)) ≤ δ · |I| for
all intervals I ∈ I∗

0 ∪ . . . ∪ I∗
k2−1.

Proof. We set initially x
∗∗ := x

∗. If there is any interval I = I1∪̇I2 ∈ I0 ∪
. . . ∪ Ik2−1 with ∆(J(I,x∗∗)) > δ · |I|, then we must have a job j ∈ J(I,x∗∗) that
has either |δ+J(I,x∗∗)(j) ∪ {j}| ≥ δ

2 · |I| or |δ−J(I,x∗∗)(j) ∪ {j}| ≥ δ
2 · |I|. We assume

8



QPTAS for Makespan Scheduling

• Input: Scheduling instance (J,≺), parameters m ∈ N and ε > 0
• Output: (1 + ε)-approximate schedule σ

(1) Compute a solution x = (xσ)|supp(σ)|≤r ∈ SA(K(T ), r) with r :=

(log(n))O(m2/ε2)·log log(n) and T minimal
(2) Call RecursiveScheduling(J,x, [T ]) → σ
(3) Insert discarded jobs into schedule σ

RecursiveScheduling

• Input: Jobs J∗, LP lift x
∗, interval I∗ with

∑

t∈I∗ x∗
j,t = 1 for j ∈ J∗

• Output: Schedule σ with some jobs discarded

(1) Build binary family of intervals I∗

(2) Call Breaking Long Chains → x
∗∗

(3) Select partition into top, middle, bottom jobs. Pick ℓ∗.
(4) Discard middle jobs.
(5) For each I ∈ Iℓ∗ set JI := {j ∈ J∗ | x∗∗

j,I = 1} and
call RecursiveSchedule(JI ,x

∗∗, I) → σI

(6) Combine σI ’s to one schedule σ
(7) Call two-phased algorithm based on matching and EDF to insert top

jobs into σ

Figure 2. High-level description of main algorithm.

that |δ+J(I,x∗∗)(j) ∪ {j}| ≥ δ
2 · |I| holds and omit the other case, which is symmetric.

Then we pick a time t ∈ I2 with x∗∗
j,t > 0 and replace x

∗∗ by the LP-hierarchy
solution conditioned on the event “x∗∗

j,t = 1”. Note that this means that all jobs in

δ+J(I,x∗∗)(j)∪{j} will be removed from J(I,x∗∗). In fact, each such job will be moved

to J(I ′,x∗∗) where I ′ ⊆ I2 is some subinterval. The conditioning can also change the
owning interval of other jobs, but for each job j, the set of times t such that x∗∗

j,t > 0
can only shrink if we condition on any event, see Lemma 2.1.c. Hence jobs only move
from intervals to subintervals.

Since in each iteration, at least δ
2 · |I| ≥ δ

2 · T∗

2k2 many jobs “move” and each job

moves at most k2 many times out of an interval in I∗
0 ∪ . . . ∪ I∗

k2−1, we need to
condition at most

2mT ∗ · k2
δ T∗

2k2

= 2mk2 · 2
k2

δ

many times.
The implication of Lemma 4.1 is that the set of jobs owned by intervals I ∈

I∗
0 ∪ . . .∪I∗

k2−1 will not contain long chains, simply because we have only few intervals
and none of jobs owned by a single interval contain long chains anymore.

Lemma 4.2. After applying Lemma 4.1, the longest chain within jobs owned by
intervals I ∈ I∗

0 ∪ . . . ∪ I∗
k2−1 has length at most k2δT ∗.

Proof. First, let us argue how many jobs a chain can have that are all assigned
to intervals of the same level ℓ. From each interval I, the chain can only include
δ|I| = δ · T∗

2ℓ
many jobs. Since |Iℓ| = 2ℓ, the total number of jobs from level ℓ is

bounded by δT ∗. The claim follows from the pigeonhole principle and the fact that

9



we have k2 many levels in I∗
0 ∪ . . . ∪ I∗

k2−1.
We can summarize the algorithm from Lemma 4.1 as follows:

Breaking long chains

Input: Scheduling instance with jobs J∗, a precedence order, an LP-hierarchy
solution x

∗ ∈ SA(K(T ), r∗), an interval I∗

Output: An LP-hierarchy solution x
∗∗ with maximum chain length k2δT ∗ in

⋃k2−1
ℓ=0 J(ℓ,x∗∗)

(1) Make a copy x
∗∗ := x

∗

(2) WHILE ∃I = (I1∪̇I2) ∈
⋃k2−1

ℓ=0 I∗
ℓ WITH ∆(J(I,x∗∗)) > δ|I| DO

(3) Choose a job j ∈ J(I,x∗∗) with |δJ(I,x∗∗)(j) ∪ {j}| ≥ δ|I|.
(4) If |δ+J(I,x∗∗)(j) ∪ {j}| ≥ δ

2 · |I| THEN condition in x
∗∗ on x∗∗

j,t = 1

for some t ∈ I2
ELSE condition on x∗∗

j,t = 1 for some t ∈ I1.

Note that after each conditioning in step (6), the solution x
∗∗ will change and the set

J(I,x∗∗) will be updated.

5. Step (4) — Scheduling Top Jobs. Consider the algorithm from Section 3
and the state at the end of Step 3. At this point, we have a schedule σ that schedules
most of the bottom jobs. The main argument that remains to be shown is how to add
in the top jobs which are owned by intervals in I∗

0 ∪ . . . ∪ I∗
ℓ∗−k−1.

This is done in two steps. First, we use a matching-based argument to show
that most top jobs can be inserted in the existing schedule so that the precedence
constraints with the bottom jobs are respected. In this step, we will be discarding
up to 4m · 2−k · T ∗ many jobs. More crucially, the schedule will not have satisfied
precedence constraints within Jtop. In a 2nd step, we temporarily remove the top
jobs from the schedule and reinsert them with a variant of the Earliest Deadline
First (EDF) scheduling. As we will see later in Theorem 5.2, this results in at most

ε
8 log T · T ∗ additionally discarded jobs.

5.1. A Preliminary Assignment of Top Jobs. Let us recall what we did so
far. In Step 3, we applied Lemma 3.3 recursively on each interval I ∈ Iℓ∗ to schedule
the bottom jobs. We already argued that the resulting schedules could be combined to
a schedule σ : Jbottom/Jbottom-discarded → I∗ that respects all precedence constraints.

Let the intervals in I∗
ℓ∗ be called I1, . . . , Ip, so that the time horizon T ∗ is par-

titioned into p equally sized subintervals with p = 2ℓ
∗

. After reindexing the time
horizon, let us assume for the sake of a simpler notation that I∗ = {1, . . . , T ∗}.
If we abbreviate ti := i · T∗

p for i ∈ {0, . . . , p}, then the ith interval contains the

time periods Ii := {ti−1 + 1, . . . , ti}. Each time t has an available capacity of
cap(t) = m − |σ−1(t)| ∈ {0, . . . ,m} many machines, which is the number of ma-
chines not used by jobs in Jbottom. We abbreviate cap(Ii) :=

∑

t∈Ii
cap(t) as the

capacity of interval Ii.
The available positions of jobs in Jtop are constrained by the scheduled times of

jobs in Jbottom. As we had no further control over the exact position of the bottom
jobs within their intervals Ii, we want to define for each job j ∈ Jtop a release time rj
and a deadline dj determined by the most pessimistic outcome of how σ could have
scheduled the bottom jobs. For all j ∈ Jtop, we define

rj := min {ti + 1 | σ(j′) ≤ ti ∀j′ ∈ Jbottom : j′ ≺ j}(5.1)

dj := max {ti | σ(j′) ≥ ti + 1 ∀j′ ∈ Jbottom : j ≺ j′}
10



t0 1 2 t1 tir(j) tid(j) tp
= T ∗

I1 Iir(j) Iid(j) Ip

rj dj

Figure 3. Visualization of interval I∗ = I1∪̇ . . . ∪̇Ip and possible release times and deadlines
for a job j ∈ Jtop. Note that x∗∗ might schedule j over the whole hatched area, while our choice of
rj and dj will force us to process j inside the black-hatched area (or to discard the job).

In particular, the release time will be the first time unit of an interval Ii and the
deadline will be the last time unit of an interval Ii. Let ir(j) and id(j) be the
corresponding indices, so that the release time is of the form rj = tir(j)−1+1 and the
deadline is dj = tid(j). Then our goal is to show that most top jobs j can be scheduled
somewhere in the time frame Iir(j) ∪ . . . ∪ Iid(j). This would imply that at least all
precedence constraints between bottom and top jobs are going to be satisfied.

Notice here that the existing fractional assignment that x∗∗ provides for j ∈ Jtop

might also be using the slots in the two intervals coming right before and right after
the range [rj , dj ] (see Figure 3). This is due to our rounding of release times and
deadlines to interval beginnings and ends. Let J ′

bottom := Jbottom \Jbottom-discarded be
the bottom jobs scheduled by the recursive calls of the algorithm.

Lemma 5.1. A valid schedule σ : J ′
bottom → I∗ of bottom jobs can be extended to

a schedule σ : J ′
bottom ∪ J ′

top → I∗ with J ′
top ⊆ Jtop that includes most of the top jobs.

The schedule satisfies (i) |σ−1(t)| ≤ m for t ∈ I∗; (ii) rj ≤ σj ≤ dj for all j ∈ J ′
top

and (iii) one discards at most |Jtop \ J ′
top| ≤ 4m · 2−k · T ∗ many top jobs.

Proof. We want to use a matching-based argument. For this sake, we consider
the bipartite graph with jobs on one side and subintervals on the other. Formally, we
define a graph G = (V,U,E+) with V = Jtop, U = {1, . . . , p} where the nodes i ∈ U
have capacity cap(Ii), and edges

E+ = {(j, i) ∈ V × U | max{ir(j)− 1, 1} ≤ i ≤ min{id(j) + 1, p}}.

We say that a matching M is V -perfect if it covers every node in V . Then the neigh-
borhood of each top job includes every interval in which it is fractionally scheduled
in x

∗∗. Moreover, each of the bottom jobs j ∈ J ′
bottom has been assigned by σ to pre-

cisely that interval Ii with x∗∗
j,Ii

= 1. Hence x
∗∗ gives a V -perfect fractional matching

that respects the given capacities cap(Ii). In bipartite graphs, the existence of a frac-
tional V -perfect matching implies the existence of an integral V -perfect matching, see
e.g. [Sch03].

However, in order to assign the top jobs to slots within release times and deadlines
we are only allowed to use the smaller set of edges

E = {(j, i) ∈ V × U | ir(j) ≤ i ≤ idj
}.

For any J∗ ⊆ V , we let N+(J∗) be the neighborhood of J∗ along edges in E+ and let
N(J∗) be its neighborhood along edges in E. Let the magnitude of a neighborhood
|N(J∗)| be defined as the sum of capacities of the nodes it contains. By Hall’s The-
orem [Sch03], the minimum number of exposed V -nodes in a maximum matching in
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E is precisely

max
J⊆V

{|J | − |N(J)|}.

Now, fix the set J∗ ⊆ V attaining the maximum; then |J∗|− |N(J∗)| is the number of
jobs that we have to discard. Since E+ allows for a V -perfect matching, the reverse
direction of Hall’s Theorem gives that |J∗| ≤ |N+(J∗)|. Thus |J∗| − |N(J∗)| ≤
|N+(J∗)| − |N(J∗)|. Note that N(J∗) is in general not a consecutive interval of
{1, . . . , p}. We can upper bound the difference |N+(J∗)| − |N(J∗)| by 2m · T∗

p times

the number of connected components of N(J∗). This is the point where we take
advantage of the “gap” between the levels of the top and bottom jobs: for each job
j ∈ V there is an interval I ∈ I∗

0 ∪̇ . . . ∪̇I∗
ℓ∗−k−1 so that N+(j) contains the midpoint

of that interval. Due to the gap, there are at most p · 2 · 2−k such intervals3. Hence
the number of discarded jobs can be bounded by

|J∗| − |N(J∗)| ≤ 2m · T
∗

p
· 2p · 2−k = 4m · 2−k · T ∗.

Finally note that a corresponding maximum matching can be computed in polynomial
time.

5.2. Reassigning the Top Jobs via EDF. We have seen so far that we can
schedule most of the bottom and top jobs so that all precedence constraints within the
bottom jobs are satisfied and the top jobs are correctly scheduled between the bottom
jobs that they depend on. However, the schedule as it is now ignores the precedence
constraints within the top jobs. In this section, we will remove the top jobs from the
schedule and then reinsert them using a variant of the Earliest Deadline First (EDF)
scheduling policy.

For the remainder of Section 5.2, we will show a stand-alone theorem that we will
use as a black box. Imagine a general setting where we have m identical machines and
n jobs J , each one with integer release times rj and deadlines dj and a unit processing
time. The EDF scheduling rule picks at any time the available job with minimal dj
for processing. It is a classical result in scheduling theory by Dertouzos [Der74] that
for m = 1 and unit size jobs, EDF is an optimal policy. Here “optimal” means that
if there is any schedule that finishes all jobs before their deadline, then EDF does
so, too. The result extends to the case of arbitrary running times pj if one allows
preemption.

Now, our setting is a little bit different. For each time t, we have a certain number
cap(t) ∈ {0, . . . ,m} of slots. Additionally, we have a precedence order that we need
to respect. But we can use to our advantage that the precedence order has only short
chains; moreover, the number of different release times and deadlines is limited.

Formally we will prove the following:
Theorem 5.2. Let J be a set of jobs with release times rj, deadlines dj and con-

sistent precedence constraints4 with maximum chain length C. Suppose that {1, . . . , T}
is the time horizon, partitioned into equally sized intervals I1, . . . , Ip and all release
times/deadlines correspond to beginnings and ends of those intervals. Let cap : [T ] →

3It is possible that N(j) = ∅. Still N+(j) will contain a midpoint of a level 0, . . . , ℓ∗ − k − 1
interval, hence we have accounted for those jobs as well. Note that such jobs would automatically
get discarded.

4Here “consistent” means that for a pair of dependent jobs j ≺ j′ one has rj ≤ rj′ and dj ≤ dj′ .
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{0, . . . ,m} be a capacity function and assume that there exists a schedule σ̃ : J → [T ]
assigning each job to slots between its release time and deadline that respects capacities
but does not necessarily respect precedence constraints within J .

Then in polynomial time, one can find a schedule σ : J \ Jdiscarded → [T ] that
respects capacities, release times, deadlines and precedence constraints and discards
|Jdiscarded| ≤ p2mC many jobs.

We use the following algorithm, which is a variant of Earliest Deadline First,
where we discard those jobs that we cannot process in time:

Earliest Deadline First

Input: Jobs J with deadlines, release times, precedence constraints; capacity
function cap : [T ] → {0, . . . ,m}
Output: Schedule σ : J → [T ] ∪ {DISCARDED}

(1) Set σ(j) := UNASSIGNED for all j ∈ J and Jdiscarded := ∅
(2) Sort the jobs J = {1, . . . , n} so that d1 ≤ d2 ≤ . . . ≤ dn
(3) FOR t = 1 TO T DO

(4) FOR cap(t) MANY TIMES DO
(5) Select the lowest index j of a job with rj ≤ t ≤ dj that has

not been scheduled or discarded and that has all jobs in δ−(j)
already processed (or discarded).

(6) Set σ(j) := t (if there was any such job)
(7) FOR each j ∈ J with dj = t and σ(j) = UNASSIGNED, add j to

Jdiscarded and set σ(j) := DISCARDED

At the end all jobs j will be either scheduled between rj and dj (that means rj ≤
σ(j) ≤ dj) or they are in Jdiscarded.

We will say that a job j was discarded in the interval [t, t′] if j ∈ Jdiscarded and
t ≤ dj ≤ t′. We call a time t busy if |σ−1(t)| = cap(t) and non-busy otherwise. Let
us make a useful observation:

Lemma 5.3. Let I = {t′, . . . , t′′} ⊆ Ii be part of one of the subintervals. Suppose
that there is a non-busy time t∗ ∈ I and a job j with I ⊆ {rj , . . . , dj} and σ(j) ∈
{DISCARDED} ∪ {t′′ + 1, . . . , T}. Then there is a job j∗ ∈ σ−1(t∗) with j∗ ≺ j.

Proof. Consider any inclusion-wise maximal chain of jobs j1 ≺ j2 ≺ . . . ≺ jq that
ends in j = jq and otherwise has only jobs j1, . . . , jq−1 ∈ σ−1({t∗, . . . , t′′}). First
suppose that q > 1 and hence j1 6= j. It is impossible that σ(j1) > t∗ because by
assumption rj1 ≤ t∗ and hence EDF would have processed j1 already earlier at time
t∗ (by maximality of the chain, there is no job scheduled at times t∗, . . . , σ(j1)− 1 on
which j1 might depend). Hence σ(j1) = t∗ and by transitivity j1 ≺ j, which gives the
claim.

In the 2nd case, we have j1 = j, hence there is no job that j depends on scheduled
between t∗ and t′′. But we know that rj ≤ t∗. Thus EDF would have processed j at
time t∗ or earlier.

With this observation we can easily limit the number of non-busy times per in-
terval:

Lemma 5.4. Let I = {t′, . . . , t′′} ⊆ Ii be part of one of the subintervals. Suppose
that there is at least one job j with I ⊆ {rj , . . . , dj} and σ(j) ∈ {DISCARDED} ∪ {t′′ +
1, . . . , T}. Then the number of non-busy times in I is bounded by C.

Proof. By Lemma 5.3, for the latest time t∗ ∈ I with |σ−1(t∗)| < cap(t∗), there
is at least one job j∗ ∈ σ−1(t∗) with j∗ ≺ j. Then we can continue by induction,
replacing t′′ with t∗ − 1 and replacing j by j∗ to build a chain of jobs ending with j
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that includes a job scheduled at each non-busy time. Since no chains can be longer
than C, this gives the claim.

Now we come to the main argument where we give an upper bound of the number
of discarded jobs:

Lemma 5.5. One has |Jdiscarded| ≤ p2mC.

Proof. Suppose that |Jdiscarded| ≥ p ·K; we will then derive a bound on K. By
the pigeonhole principle, we can find an interval Ib so that at least K many jobs get
discarded in Ib. Let us denote the lowest priority (i.e. the latest deadline) job that
gets discarded in Ib by js. Now delete all those lower priority jobs js+1, . . . , jn. Note
that this does not affect how EDF schedules j1, . . . , js and still we would have at least
K jobs discarded in Ib, including js. By Lemma 5.4, the number of non-busy periods
in Ib is bounded by C. Now, choose a minimal index a ∈ {1, . . . , b−1} so that in each
of the intervals Ia, . . . , Ib one has at most C many non-busy periods. We abbreviate
I ′ := Ia ∪ . . . ∪ Ib. Note that by definition Ia−1 has more than C many non-busy
periods5. Define

J ′ :=
{

j ∈ {j1, . . . , js} : (σ(j) ∈ I ′) or (j discarded and dj ∈ I ′)
}

.

By Lemma 5.3, any job in J ′ has its release time in Ia or later, since otherwise we
could not have C + 1 non-busy times in Ia−1. Now, let us double count the number
of jobs in J ′. On the one hand, we have

|J ′| ≥
b∑

i=a

|σ−1(Ii)|+ |J ′ ∩ Jdiscarded| ≥
b∑

i=a

(cap(Ii)−mC) + |J ′ ∩ Jdiscarded|
︸ ︷︷ ︸

≥K

≥ cap(I ′)− pmC +K.

On the other hand, we know that there is an assignment σ̃ of jobs in J ′ to slots
in Ia, . . . , Ib. That tells us that |J ′| ≤ cap(I ′). Comparing both bounds gives that
K ≤ pmC.

6. Step (2) — Accounting for Discarded Jobs. In this section, we need
to argue that the level ℓ∗ can be chosen so that the total number of jobs that are
discarded in Steps (1)-(4) are bounded by

|J∗
discarded| ≤

ε

2
· log(|I

∗|)
log(T )

· |I∗|+ ε

2m
· |J∗|

as claimed. Let us summarize the three occasions in the algorithm where a job might
get discarded:

(A) In Step (3), in order to schedule the bottom jobs, we have 2ℓ
∗

many recursive
calls of Lemma 3.3 for intervals I ∈ I∗

ℓ∗ . The cumulative number of discarded
jobs from all those calls is bounded by

2ℓ
∗ · ε

2
·
log( T∗

2ℓ∗
)

log(T )
· T

∗

2ℓ∗
+

ε

2m
· |Jbottom| = ε

2
· log(T

∗)− ℓ∗

log(T )
·T ∗ +

ε

2m
· |Jbottom|

5Admittedly it is possible that a = 1 in which case one might imagine I0 as an interval in which
all times are non-busy and which does not contain any release times.
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(B) As we have seen in Section 5, the number of top jobs that need to be discarded
in Step (4) can be bounded by

4m · 2−k · T ∗ + p2mC ≤ 4m · 2−k · T ∗ + k2m22k
2

T ∗δ ≤ ε

4
· 1

log(T )
· T ∗.

Here we use that the length of the maximum chain within the top jobs is
C ≤ k2δT ∗. Moreover, we have substituted the parameters p = 2ℓ

∗ ≤ 2k
2

as well as δ = ε
8k2m22k2 log(T )

and k = c1
m
ε log log(T ) with a large enough

constant c1 > 0.
(C) In Step (2), we discard all the middle jobs. In the remainder of this section

we prove that there is an index ℓ∗ so that

|Jmiddle| ≤
ε

4
· 1

log(T )
· T ∗ +

ε

2m
· (|Jmiddle|+ |Jtop|)

Let us first assume that we can indeed find a proper index ℓ∗ so that the bound
in (C) is justified. Then the total number of jobs that the algorithm discards is

(A)
︷ ︸︸ ︷

ε

2
· log(T

∗)− ℓ∗

log(T )
· T ∗ +

ε

2m
· |Jbottom|+

(B)
︷ ︸︸ ︷

ε

4
· 1

log(T )
· T ∗

+

(C)
︷ ︸︸ ︷

ε

4
· 1

log(T )
· T ∗ +

ε

2m
· (|Jmiddle|+ |Jtop|)

≤ ε

2
· log(T

∗)

log(T )
· T ∗ +

ε

2m
· (|Jtop|+ |Jmiddle|+ |Jbottom|)
︸ ︷︷ ︸

=|J∗|

which is the bound that we claimed in Lemma 3.3.
It remains to justify the claim in (C). We abbreviate αi := |J(i · k,x∗∗) ∪ . . . ∪

J((i+ 1) · k− 1,x∗∗)| for i ∈ {0, . . . , k− 1}. In words, each number αi represents the
number of jobs owned by k consecutive levels. We observe that if there is an index
i ∈ {0, . . . , k − 1} so that

(I) αi ≤
ε

4 log(T )
· T ∗ or (II) αi ≤

ε

2m
·

i∑

j=1

αj

then we can choose ℓ∗ := (i+1) ·k and (C) will be satisfied. Here we use that for this
particular choice of ℓ∗, we will have |Jmiddle| = αi and |Jtop| = α0 + . . .+ αi−1.

So, we assume for the sake of contradiction that no index i satisfies either (I) or
(II) (or both). Then one can easily show that the αi’s have to grow exponentially.
We show this in a small lemma:

Lemma 6.1. Let q ∈ N and suppose we have a sequence of numbers α0, α1, . . . , αN

satisfying αi ≥ αmin > 0 and αi ≥ 1
q · ∑i

j=1 αj for all i = 0, . . . , N . Then αi ≥
2⌊i/(2q)⌋ · αmin.

Proof. Group the indices into consecutive blocks of 2q numbers, where α0, . . . , α2q−1

is block 0, α2q, . . . , α4q−1 is block 1 and so on. We want to prove by induction that
each αi in the jth block is at least 2j · αmin. For j = 0, the claim follows from the
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assumption. For j > 0, we use that αi is at least the sum of 2q numbers that by

inductive hypothesis are all at least 2j−1

q · αmin. The claim follows.

Applying Lemma 6.1 with αmin := ε
4 log(T ) ·T ∗ and q := 2m

ε we obtain in particular

that

αk−1 ≥ 2⌊(k−1) ε
4m ⌋ · ε

4 log(T )
· T ∗

If we set k = c1m
ε log(log(T )) for some adequately large c1, then αk−1 > mT ∗, which

is a contradiction since we only have |J∗| ≤ m · |I∗| = mT ∗ many jobs with xj,I∗ = 1.

7. Conclusion. For the proof of Lemma 3.3 we already argued that the number
of discarded jobs satisfies the claimed bound and that all precedence constraints will
be satisfied. Regarding the number of rounds in the hierarchy, recall that we started
with a solution x

∗ ∈ SA(K(T ), r∗) with r∗ ≥ log(T ∗) · 2mk2 · 2k2

/δ. Then we apply
a round of conditionings in Lemma 4.1 to obtain x

∗∗ ∈ SA(K(T ), r∗∗) with r∗∗ :=

r∗ − 2mk2 · 2k2

/δ. We use copies of the solution x
∗∗ in our recursive application of

Lemma 3.3 to intervals of size T ∗/2ℓ
∗

. Since ℓ∗ ≥ k ≥ 1, the remaining number of

LP-hierarchy rounds satisfies r∗∗ ≥ log(T ∗/2ℓ
∗

) · 2mk2 · 2k2

/δ. Thus we still have
enough LP-hierarchy rounds for the recursion.

Another remark concerns why we may assume that the precedence constraints
are consistent in Theorem 5.2. Suppose we have jobs j, j′ ∈ Jtop with j ≺ j′ and
consider the definition of release times and deadlines in Eq. 5.1. By transitivity, any
job j′′ ∈ Jbottom with j′ ≺ j′′ which limits the deadline of j′ will also limit the deadline
of j, hence dj ≤ dj′ . Similarly one can argue that rj ≤ rj′ . This concludes the proof
of Lemma 3.3 and our main result follows.

8. Follow-up work and open problems. A natural question that arises is
whether the number of O(log n)O(log logn) rounds for constant ε,m can be improved.
In fact, after the conference version of this paper appeared, Garg [Gar17] was able to
reduce the number of rounds down to O(log n)O(1), hence providing an actual QPTAS.
It remains open whether c(m, ε) many rounds suffice as well. Another tantalizing
question is whether a similar approach could give a (1 + ε)-approximation for Pm |
prec | Cmax, where the processing times pj ∈ N are arbitrary. Note that the difficulty
in this setting comes from the issue that jobs have to be scheduled non-preemptively.
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