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Linear Size Sparsifier and the Geometry of the Operator
Norm Ball

Victor Reis * Thomas Rothvoss

Abstract

The Matrix Spencer Conjecture asks whether given n symmetric matrices in R™*"
with eigenvalues in [-1,1] one can always find signs so that their signed sum has
singular values bounded by O(y/n). The standard approach in discrepancy requires
proving that the convex body of all good fractional signings is large enough. How-
ever, this question has remained wide open due to the lack of tools to certify mea-
sure lower bounds for rather small non-polyhedral convex sets.

A seminal result by Batson, Spielman and Srivastava from 2008 shows that any
undirected graph admits a linear size spectral sparsifier. Again, one can define a
convex body of all good fractional signings. We can indeed prove that this body is
close to most of the Gaussian measure. This implies that a discrepancy algorithm
by the second author can be used to sample a linear size sparsifer. In contrast to
previous methods, we require only a logarithmic number of sampling phases.

1 Introduction

Discrepancy theory is a subfield of combinatorics with several applications to theoreti-
cal computer science, see for example the books [Mat99, Cha00]. In the classical set-
ting one is given a family of sets S = {Sy,...,S;,} with S; € {1,...,n} and the goal is to
find a coloring y : [n] — {~1,+1} so that the maximum imbalance maxgses|Y jes x(j)I
is minimized. This minimum value is called the discrepancy of the family, denoted by
disc(S). A seminal result of Spencer [Spe85] says that for any set family one has disc(S) <
O(y/nlog(2m/n)), assuming that m = n. It is instructive to observe that for m = n,
Spencer’s result gives the bound of O(y/n), while a uniform random coloring will have
a discrepancy of O(y/nlog(n)). Moreover, one can show that for some set systems, only
an exponentially small fraction of all colorings will indeed have a discrepancy of O(y/n).
This demonstrates that in fact, Spencer’s result provides the existence of a rather rare
object.
The cleanest approach to prove Spencer’s result is due to Giannopoulos [Gia97], which

we sketch for m = n: Consider the set K = {x e R": |Zjes,- xjl < vavienl}=Niem Qi a
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symmetric convex body which denotes the set of good-enough fractional colorings. Here
Q; is the strip of colorings that are good for set S;. The Lemma of Sidak-Khatri [Kha67,
Sid67] allows us to lower bound the Gaussian measureof K asy,(K) = [, yn(@Q) =e™"
for some constant ¢ > 0 using that each strip Q; has a constant width. This rather weak
bound on the measure is sufficient to use a pigeonhole principle argument and conclude
that ¢'K must contain a partial coloring x € {—1,0,1}" with |supp(x)| = 7. Then one can
color the elements in supp(x) accordingly and repeat the argument for the remaining
uncolored elements. The overall O(y/n) bound follows from the fact that the discrep-
ancy of the partial colorings decreases geometrically as the number of elements in the
set system decreases.

While the pigeonhole principle based argument above is non-constructive in na-
ture, Bansal [Ban10] designed a polynomial time algorithm for finding the coloring guar-
anteed by Spencer’s Theorem. Here, [Ban10] exploits that it suffices to obtain a good
enough fractionalpartial coloring x € [—1,1]" with a constant fraction of entries in {—1, 1}
to make the argument work. Later, Lovett and Meka [LM12] found a Brownian motion-
type algorithm that — despite being a lot simpler — works for more general polyhedral
settings. Finally, the random projection algorithm of Rothvoss [Rot14] works for arbi-
trary symmetric convex bodies that satisfy the measure lower bound. Another remark-
able result is due to Bansal, Dadush, Garg and Lovett [BDGL18]: for any symmetric body
K with v, (K) = % and any vectors vy, ..., v, € R"” of length || v;]l2 < 1, one can find signs
x € {—1,1}"" in randomized polynomial time so that Z;’il x;v; € O(1) - K. This was known
before by a non-constructive convex geometric argument due to Banaszczyk [Ban98].

There are two possible strengthenings of Spencer’s Theorem that are both open at
the time of this writing: suppose that the set system is sparse in the sense that every
element is in at most ¢ sets. It is known that disc(S) < 2t [BF81] as well as disc(S) <
O(4/tlog(n)) [Ban98, BDGL18], while the Beck-Fiala Conjecture suggests that disc(S) <
O(v/1) is the right bound. For the second generalization — the one that we are follow-
ing in this paper — it is helpful to define A; as the m x m diagonal matrix with (j, j)
entry 1if i € S; and 0 otherwise. If | - [lop denotes the maximum singular value of a ma-
trix, then Spencer’s result can be interpreted as the existence of a coloring x € {—1,1}"
so that || Zl’.’zl X;iAillop < O(y/nlog(2m/n)). A conjecture raised by Meka! is whether for
m = n, this bound is also possible for arbitrary symmetric matrices A,,..., A, € R**"
that satisfy [|A;llop = 1. One can prove using matrix concentration inequalities that a
random coloring x will lead to || 2?21 XiAillop = O(y/nlog(n)), and the same bound can
also be achieved deterministically using a matrix multiplicative weight update argu-
ment [Zoul2]. An excellent overview of matrix concentration can be found in the mono-
graph of Tropp [Tro15].

To understand the difficulty of proving Meka’s conjecture, assume m = n and revisit
the approach of Giannopoulos for Spencer’s Theorem. We can again define a set

K::{xE[R?”:

|éXiAi||0P =Viif = {reR": le (Aiyy")=Vn Yy eR": |yl =1}

1See the blog posthttps: //windowsontheory. org/2014/02/07/discrepancy-and-beating-the-union-bound/
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of good enough fractional colorings. Since | - ||op is a norm, K will indeed be symmetric
and convex. It would hence suffice to prove that y,(K) = 27" for some constant ¢ > 0.
However, it is open whether this inequality holds. The issue is that K is non-polyhedral
and applying Sidak-Khatri’s bound over infinitely? many vectors y is way too inefficient.
While matrix concentration inequalities are fantastic at proving that likely events are in-
deed likely, they seem to be unable to prove that unlikely events are not too unlikely.
With a scaling argument, they can still be used to prove that v, (K) = (log(n))~¢" for some
constant ¢ > 0, assuming m = n, though better bounds seem out of reach.

In terms of discrepancy in spectral settings, a different line of techniques has been
arguably more successful. A beautiful and influential paper by Batson, Spielman and Sri-
vastava [BSS09] proves that for any undirected graph on n nodes one can take a weighted
subgraph with just a linear number of edges that approximates every cut within a con-
stant factor. Translated into linear algebra terms, [BSS09] show that given any vectors
vy,..., Uy € R" that are in isotropic position, i.e. Y1, viviT = I,;, one can find weights
s € RZ,, with [supp(s)| < O(nl/€®) so that (1—¢)- I, < Zl’.’il s,-v,-vl.T < 1+¢)-I,, and in-
deed Lee and Sun showed this can be done in nearly linear time [LS17]. In a more recent
celebrated paper, Marcus, Spielman and Srivastava [MSS15] resolved the Kadison-Singer
Conjecture, a problem that has appeared independently in different forms in many ar-
eas of mathematics. In a simple-to-state version, their result says that for any vectors
vi,..., Uy € R" with Z;?il vivl.T = I, and ||v;||ly < € for all i € [m], there are signs x €
{—1,1} so that IIZ;Z1 XiV; vl.TIIOp < O(g). On a very high level view, both methods of
[BSS09] and [MSS15] control a carefully chosen potential function, though we note there
is still no known polynomial time algorithm for the latter.

The goal of this paper will be to connect the classical discrepancy theory and the
spectral discrepancy theory of [BSS09, MSS15] and develop arguments that prove large-
ness of non-polyhedral bodies. We remark that we made no attempt at optimizing con-
stants but rather prefer to keep the exposition simple.

Notation. Fora (not necessarily symmetric) matrix M € R”*" the operator norm can be
formally defined as | M||op := max{|| Mx||> : x € R” with | x]> = 1}. For a symmetric matrix
A € R™" with eigendecomposition A = Y7, A;v; vl.T, we write |A| := X7, [A;|v; vl.T as
the matrix where all eigenvalues have been replaced by their absolute values. In this
notation, [ Allop := max{|A;|: i € [n]} is the maximum singular value. We abbreviate B}’ :=
{xeR"||xll, <1} and S" !:={x e R" | | x|l» = 1}. Given symmetric matrices A, B € R"*",
we write A< Bif x" Ax < x" Bx for all x € R".

A convex body is a closed convex set K ¢ R"” with nonempty interior. We denote
d(y,K) := mingeg | x — yll2 as the distance from y to K. Let K5 = {x e R" | d(x, K) < 6} be
the set of points that have distance at most ¢ to K (in particular, K € K5). The Minkowski
sum of sets A and B is defined as A+ B:={a+ b | ac A b e B}. A halfspace is a set of
the form H := {x € R"|(v,x) < A} for some v € R" and A € R. The Gaussian measure of K

20ne can use an e-net of 2007 many vectors y but the bound is still too weak.



is defined as y,(K) := Pry-n(o,1,)[y € K. Here N(0, I,;) is the distribution of a standard
Gaussian in R".

1.1 Our contribution

A possible way to approach the setting of Batson, Spielman, Srivastava [BSS09] from a
classical discrepancy perspective is to take vectors vy, ..., V,, in isotropic position and
consider the body K = {x € R™ | [ X", x;v; vl.TIIOp < vn/m}. If we could prove that
Ym(K) = 27¢™ then the algorithm of [Rot14] would be able to find a partial coloring.
While we still do not know whether the inequality y,,(K) = 27°" holds, we can prove
that a weaker condition that suffices for the algorithm of [Rot14] is satisfied:

Theorem 1. Let Ay, ..., Ay, € R"™*" be symmetric matrices with " | |A;| < I, and select
€ €(0,1) so that m = % 2 100. Then for any 0 < a < 1, the set

<l
op

satisfies ym(%OK+ a\/EBZ’”) > % That is, Pryn,1,,) [d(y,%OK) < a\/ﬁ] > %

m
K::{xeRm|’|leiAi
i=

Note that in particular the rank-1 matrices A; = v; vl.T with Z;’i L Vi vl.T < I, satisfy
the premise of Theorem 1. A quantity that is often used in the convex geometry litera-
ture is the mean width of a body K, which is defined as w(K) := E,ecgn-1 [maXyex (@, X) —

mingeg (a, x)]. The above result implies the following:
Theorem 2. A body K as defined in Theorem 1 has mean width w(K) = Q(y/m).

A rather immediate consequence of this insight is that the following sampling algo-
rithm will work with very high probability:

SPECTRAL SPARSIFICATION ALGORITHM
¢ Input: PSD matrices Aj,..., Ay € R with Z;’il A;j=I,ande>0
* Output: s € RZ; with supp(s) < 7 and (1 -0 I, < XL, 5;A; = (1+ 01,

(1) Sets;:=1forie€[m]
(2) WHILE |supp(s)| > Eﬂz DO

(3) Let K :={x € RPPY) - || ¥ s XiSiAillop < 10008} with [supp(s)| = %.
(4) Draw a Gaussian y* ~ N(0, Isypp(s))-

(5) Compute x* := argmin{|x — y*|l»: x € [-1,1]5%PP®) £ K},

(6) If#(i:x; =—1) <#(i:x; =1) thenreplace x* by —x*.

(7) Update s;:=s;-(1+ x;‘).

In fact we will prove:



Theorem 3. With probability at least 1 — 27" a run of the SPECTRAL SPARSIFICATION
ALGORITHM satisfies all of the following properties: (a) the algorithm runs in polyno-
mial time; (b) the while loop is iterated at most O(logm) times; (c) at the end one has
|supp(s)| < E% and (1-0(@) I, < ?il SiA; =1+ 0E)I,.

Note that our algorithm produces sparse vector s by iteratively finding low discrep-
ancy colorings. This technique has appeared before in the literature. For example for a
set system with bounded VC dimension, one can prove the existence of small e-nets in
this manner. We refer to Chapter 4 of Chazelle’s book [Cha00] for details.

2 Preliminaries

In this section, we discuss several tools from probability and linear algebra that we will
be using in the proofs.

Concentration. We need two concentration inequalities. For the first one, see [vH14].

Theorem 4. If F : R — R is 1-Lipschitz, then for t = 0 one has

—12/2
y~]\}3«r’,1m)[F(y) >E[F(Y)]+tl<e .

For the proof of the following Corollary, see Appendix A.
Corollary 5. For m = 7 we have

" [ >m] <2™™ and E 2 <m|>=1-2"")-m.
g 112 A (FEA Y

We also need Azuma'’s inequality for Martingales with bounded increments, see [AS16].

Theorem 6 (Azuma’s Inequality). Let 0 = Xy, ..., X7 be a Martingale with | X; — X;—1| < a
forallt=1,...,T. Then for any A = 0 we have

Pr{Xy > AVT] < e V124

Gaussians. In order to increase the measure from 1 to 1 272" we use the following
key theorem, see [LT11].

Theorem 7 (Gaussian Isoperimetric Inequality). Let K < R" be a measurable set and H
be a halfspace such thaty, (K) =y,(H). Theny;(Ks) = y,(Hs) for all 5 > 0.

The following simple result is useful for dealing with dilations, see [Tko15].

Theorem 8. Let K « R" be a measurable set and B be a closed Euclidean ball such that
Yn(K) =7v,(B). Theny,(tK) = v,(tB) forall t € [0,1].



For (not neccesarily symmetric) matrices A, B € R"*" we define the Frobenius inner
product (A,B)p := trf[A" B] = o ;’:1 A;;Bj; and the corresponding Frobenius norm
IAllF := /(A A g = (Z?zl ;’:1 A?].)” 2, Generalizing earlier notation, for a PSD matrix
X e R™™ we define N (0, X) as the distribution of a centered Gaussian with covariance
matrix X. Note that there is a canonical way to generate such a distribution: let X;; =
(v;, v;) be the factorization of that matrix for some vectors v; € R". Then draw a stan-
dard Gaussian y ~ N(0, I,), so that ({g,v1),...,{&, Vm)) ~ N(0, X). In particular we will be
interested in drawing a standard Gaussian restricted to a subspace H < R™. The distri-
bution of such a Gaussian is exactly N(0, X) where X = Z?i:nll(H) u; ulT and uy,..., Udim(H)
is an orthonormal basis of H. The following properties are well known:

Lemma 9. Let H € R™ be a subspace and let N(0,X) be the distribution of a standard
Gaussian restricted to that subspace. Then for y ~ N(0,X) one has (i) y € H always;
(i) Ellyl13] = Tr{X] = dim(H); (iii) E[y?] < 1 for all i € [m]; (iv) Varl(y, b)] = E[y, b)*] <
IBlI for all b € R™; (v) for any matrices W',...,W™ € R™" one has E[| ¥/, y;W'||2] <
T IWE.

The only property that is non-standard is (v). But note that we can use (iv) to jus-
tify that for each entry (k, ¢) of the matrices one has E[(X]?, y; W,ié)z] <y (W]&)Z; the

=
claim then follows by linearity of expectation and summing over all entries (k, ¢) € [n]2.

Linear Algebra. For the analysis, we need an estimate on the trace of the product of
symmetric matrices. The proof takes some care due to the non-commuting matrices. To
get some intuition, consider the case when A, A,, B are all diagonal matrices. In this
case one can write Ay B = diag(a;) and A, B = diag(a,) for some vectors a;, a, € R" and
the inequality simplifies to tr[A;BA2B] = (a;,ay) < ||all; - llazll; = tr[A1|B]] - tr[A2|B|]
which is obviously true. Note that in the setting of [BSS09] we would apply Lemma 10
with rank(B) = 2, in which case the inequality can be tight up to constant factors. But in
a different application with higher-rank matrices one could imagine a Cauchy-Schwarz
or Holder-type inequality yielding improved bounds.

Lemma 10. Let Ay, Ay, B € R™*" be symmetric matrices with A;, A, = 0. Then

trl/A; BA,B] < tr{A;|B|] - tr{ A>| BI].



Proof. Write the spectral decomposition B =} ¢, 1 v; vl.T. Then

tr[A1BA:Bl = Y. Midj-(v] Arv))(v] A2v))
i,jel(n]
< X I IAY ol - LAY P il - LAY P 0 - 1145 2 w1
i,jel(n]
1
=y |A,~|-|Aj|-5(||Ai’2vi||§-||A§’2vj||2+||A}’2vj||§-||A§’2vi||§)
i,jeln]
1
= > Iitillitjl-—((viTAlvi)~(vaA2vj)+(viTszi)~(v]TA1vj))
i,je(n] 2
1
= > (irlAVBI - tr{A; BI) + tr[ 4B - tr{ A, B
=tr[A;|B]] - tr[A2|BI],
where the first inequality is Cauchy-Schwarz and the second is AM-GM. O

We also need a Taylor approximation for the trace of the inverse of a matrix. Again, it
takes some care to handle the non-commutativity:

Lemma 11. Let A, B € R"*"* be symmetric matrices with A > 0 and ||6A‘lB||op < % Then
there is a value ¢ := c(A, B,d) € [-2,2] so that

tr{(A-6B) N =trl[A 1 +6tr{A"'BA™ Y + c6%trfA ' BA ' BA™].

Proof. We abbreviate M := 6 A'B. As |M llop < %, the matrix I, — M is non-singular and
by direct computation one can verify that its inverse is given by (I,, - M)™' = I,, + (I,, —
M)~ M. Using this formula twice at (x), we obtain

(A-6B)! = (AU, -56A7'B)™
=I,-M'A™!
YA, - MA!
YAl MAT U, - M) T MMAT
=A'+6A7'BA ' + 62T, -M)'AT'BAT'BATL.
Taking the trace on both sides gives

trl(A-6B) 1 =tr[A 1 +6tr[A" ' BA™ Y +8%tr[(I,— M) ' A"'BA"'BA7!].

Since A™! > 0, we have A”'BA"'BA~! = 0, hence we can bound the absolute value of
the last term as

ltrl(L,— M) 'AT'BAT'BA | < (L, = M) Hlop - trlA"'BAT'BAT!].



Finally, note that

o0 oo
I =M My = | X ME| <> i, <2
k=0 P =0

3 Main technical result

We now show our main result, Theorem 1. Fix symmetric matrices Ay, ..., A;, € R"*" with
Y 14| = I, and set € > 0 so that m = . Let K be the body as defined in Theorem 1
and fix a parameter a > 0. Ideally, the goal would be to prove that a random Gaussian
from N(0, I;;) is on average close to K. Instead, we prove that there is a random variable
x that is close to a Gaussian and ends up in K with high probability. The strategy is to
generate such a near-Gaussian random variable x by performing a Brownian motion that
adds up independent Gaussians y'? with a tiny step size §. The key ingredient is that in
each iteration ¢ we walk inside a subspace of dimension at least (1 — @?)m, meaning that
we draw y ~ N(0, XY) with tr[X'”] = (1 — @®)m. This can be understood as blocking
the movement in a?m dimensions that are “dangerous”. Then the expected Euclidean
distance of the outcome x = 6 ¥.1/%" y¥ to an unrestricted Gaussian is at most ay/m. It
remains to argue that the subspace can be chosen so that at the end of the Brownian
motion, x ends up in K. For this sake we define a potential function

m
Acp(®):=(C+Dlx[3) I, Y xiA; and ®@cpx):=tr[Acpx) ]
i=1

We initialize the random walk with x := 0 so that Ac p(x) > 0. If the update steps are
small and we keep the potential function ®¢ p(x) bounded, we can infer that Z:’i 1 XiA; =
(C+ D||x||§) - I, at any given time. More precisely we show that, for a particular choice
of parameters C, D > 0 (later we will choose C = O(£) and D = ©(35,)), an update of x' =
x+0y¥ in expectation does not increase the value of the potential function — assuming
that the current value of the potential function is small enough and y'¥ is taken from the
aforementioned subspace.

In order to get some more intuition behind the potential function, let us discuss why
a potential function ®¢(x) = tr[Ac(x) ™! = tr[(C- I, — X7, x;A;)'] with a fixed barrier
term would be problematic: if we update x' = x + 8y'? so that E[x'] = x, then by strict
convexity of the function z — ﬁ, one has in general E[®¢(x")] > ®¢(x). This is where the
additional “variance term” || x||5 comes into play. We know that ||x'[3 = | x[|3 + 62y |13
(assuming we pick the update direction orthogonal to x). Then in every update step, the
barrier is shifted a bit. It remains to show that the decrease from the barrier shift can
compensate for the increase due to strict convexity.

There is the technical issue that the potential function goes up to oo as the minimal
eigenvalue of A¢ p(x) approaches 0. We solve this problem by defining another distribu-
tion N<;;,(0, X) that draws y ~ N(0, X), but if || yll» > m, then y is replaced with 0. Recall



that by Corollary 5 one has Pry_n,x) [l yll2 > m] < 27" for any X < I,,. A second prob-
lem is that keeping the potential function low in expectation is not sufficient — if the
potential function ever crosses a certain threshold, the analysis stops working. However,
a single step in the Brownian motion can be analyzed as follows:

Lemma 12. FixO0 < a <1 and m = max{lOO, 1—8} Let x € R™ and suppose Ac,p(x) > 0,

Dmo’" aswellas0< 6 <

(I)CD(x)< _5D Do *

Define S(y) as the unique value for which

@y 425(y),p(X +0y) = Pc,p(x).

Then there is a covariance matrix X € R with0 < X < I,;, and Tr{X] = (1 - a?) - m so
thatEy-n.,,0,x [S(y)] < 0 while always |S(y)| < 4Dm*. Further, Acis25(y),0(X+0y) > 0.

We postpone the proof of this lemma to Section 4. First, we show how we can use it
to obtain the main theorem:

Proof of Theorem 1. Let Ay, ..., Ap, € R"*" be symmetric matrices with ¥ | [A;| < I, so
that m = 2 > 100. Fix a parameter 0 < @ < 1 and keep in mind that the goal is to prove

that ym(%K + a\/mBZm) > % Note that the potential function ®¢ p(x) is one-sided in
the sense that it only controls the maximum eigenvalue of 7" | x;A;. For this sake we

abbreviate
1. A; 0 2nx2n
A; = ( 0 _Ai) eR

Note that this allows us to rewrite K = {x eR™| XM, x;iA; < 8[2,,}. In wise foresight we

choose D := 2= and define C so that 2" — Dm’a? which results in C = 105 . We define a

10
small enou h ste size of § := = and choose T := 2 as the number of iterations.
g p

5DmS
Note that by definition ®¢ p(0) = 22 = 2 m « Consider the following (hypothetical)
algorithm:
(1) Setx®:=0

(2) Fort=1TO T do

(3) Apply Lemma 12 for x~Y and let XV’ be the obtained covariance matrix.
4) Sample y'¥ ~ N(0,X") and z'¥ ~ N(0, I,,, - X').
If [y @l < mthen (yi?n,y(!ﬂn) = (y",0), otherwise (y),, y{) := (0, y®).

(5) Update x¥ := x*=1 45y

Atthe end, let Y := xT) = 62{21 yWand Z:=6% ], 2. Note that Y + Z ~ N(0, I,,)).
Claim. The following events all hold simultaneously with probability at least %:

(@) Onehasym =0forallt=1,...,T
(b) Onehass?y ! S(y(t) )&

(c) One has ||Z||255a m

(d) Onehas|Y|%<5m



Proof of claim. By Corollary 5, and recalling that m = max]I 100, ;2 )22 azg } we can bound

D? = 4 < Land T = —2 < 25mY, so that the failure probability for (a) is bounded by

atm? —

T-27"< 25m 27" < m For (b), note that for every step ¢, the conditional expectation

of S(ym ) is nonpos1t1ve and IS(y<m)| <4Dm*. Then usmg Azuma’s inequality, one has
P62y Sy ) > Sl exp(-1 - (£6)2/(62 - 4Dm*)?) < 5 20 since C = 12 > 10qe = 2.

For (c) note that [E 1Z1I5] = ZTzltr[cS2 (I, — X)] < a’m, so by Markovs inequality

Pr[||Z||2 >5a2m] < Similarly, [||Y|| ] <m,so ||Y||2 > 5m with probability at most %
1

The total failure probab1llty is therefore at most m + 30 + <3 o

If the events in the claim hold, we have || Z||» < a\/ A1.1c, p(Y)>0and

- 'IZn-

10¢e 105) 21e
a

YiA; = (L1C+DIYI3)- by = 1.1- e

'[\’JS

Il
—

1

It remains to finish the arguments behind the proof strategy. By a slight abuse of
notation, let ¥, (x) := G e ~IxI3/2 he the density of the Gaussian at a point x. We de-
fine p(x) as the conditional probability that the properties (a)-(d) are satisfied, condi-
tioned on the event that ¥ + Z = x. Then our reasoning above has proven that fm ¥ (%)
px)dx = % Now define the set Q := {x € R | p(x) > 0}. As 0 < p(x) < 1 we must
have y,,(Q) = % By construction, for every x € Q, there is at least one witness out-
come Y+Z =xsothatY € lefK and | Z|l, < av5m. Then a slight reparametrization
of a' := v/5a gives the claim as 21v/5 < 50.

One final detail is that in Lemma 12 we assume m = (11—2. We now deal with smaller
values of a. Recall from the proof of Claim I that || Zl’.’il x;Aillop < %]l for any x € R™. In
particular since || x|l < I|x|l2 we have e B)" € K, so B)" < vnBJ' < v/mK and we find, say
fora = \/Lm, Ym(15v/mK) = ym((% + am)K) > ym(%K+ a\/ﬁBZ’”) > % The conclusion

is that Theorem 1 for m < % holds as we even have v, (22K) =y, (15y/mK) = 3. O

4 Analysis of a single step

In this section, we prove Lemma 12 and some variants that will be needed later.

Proof of Lemma 12. To simplify notation, we abbreviate matrices
~ m ~
A:=Acp(x), B:=) yjA;, and B:=B ~3(DIyl5+ SN I,
i=1
Next, we define an index set
2
=4 . -114. . -1
T:={ieim:u[aa] < A I}

Here [m]\Z are the “dangerous” indices in the sense that updating x in these coordinates
might disproportionally change the potential function. Note that by Markov’s inequality,
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we have |Z|=(1- %z)m. Consider the subspace

m m
H:= {ye R™: (x,y)=0,) y;-trlA2A;1=0,Y y;-tr[A3A;1 = 0,y; =0 Vi eI}
i=1 i=1

so that dim(H) = |Z| -3 = (1 - a®)m for m = %. Further, dim(H) = |Z| -3 = 0.47m for
m = 100. We choose X so that N(0, X) is the standard Gaussian restricted to H.

The remaining proof is organized in 4 claims, where Claim I-III justify that the Taylor
approximation is well behaved while Claim IV contains a very crucial upper bound. We
begin by showing a rather crude upper bound on |S(y)| for ||yl < m.

Claim I. For every y with ||yll, < m, one has|S(y)| < 22, | Bllop < 4m and |6A"' Bllop < 3.
Proof of Claim I. Note that in order for the potential functions ®¢,s25(,),p(* +dy) and
®¢ p(x) to be identical, we know that the difference matrix

m
Acis25(),px+0Y) = Ac,p®) =8° DIyl +SW) - In-8 Y yiA;
i=1

m
=62(Dm* + S(y) - In+81Yloo ) |Ail
i=1

<I,

< (6DmM* +8S(y)+m)-6-1,

must have one eigenvalue at least 0 and one eigenvalue at most 0. There would be no
positive eigenvalues if §S(y) < —2m < —§ Dm? — m, and similarly no negative eigenvalues
if 6S(y) > 2m. Hence we conclude |S(y)| = sz_ This bound is good enough to show that

IBllop < ” gyiAi ”Op +6(DIlyIE + 27'”) <3m+6Dm? < 4m.
N —

=m

since | A" lop < e, p (%) < 222 it follows [6A™" Bllop < SIlA™ lopll Bllop < 1. o
Now we can apply the matrix Taylor approximation from Lemma 11 and use that
for every y € H with | yll» < m, there exists some |c| < 2 such that the difference in the

potential function is

Def S(y)
=Y @cs25(),0X +6y) —Pc,p (%)
=  t[(A-6B)7]-tr[A7]
el 5 A BA™ + 6% tr[A ' BAT'BA™Y]
m
= =8*DIyl3+Sy) - tr[A2L,)+8 ) yitrlAT A; A +c6% - tr[A"'BAT'BA™]
i=1
=0
yeH

= 52( — DIyl +Sy)-trlA?] + c-tr[A_lBA_lBA_l]). (%%)

11



Observe that in the last equation we have conveniently used that due to the linear con-
straints defining H, we have trffA"'BA™!] = 0 for all y € H. Now we can show that the
quantity S(y) is a lot smaller than we have proven so far — in fact its maximum length is
independent of the step size o:

Claim II. For everyy € H with | y|l, < m one has |S(y)| < 4Dm*.

Proof of Claim II. We rearrange (* *) for S(y) and obtain

lc|-tr[A"'BA"1BA™!]

ISyl = CAZ]

+Diyl5<2-1A7 lop- IBI, + Dm® < 4Dm?,
——
<m?

. . - —2
using the estimates || Bllop <4m and [| A7} |op < 22 M

Next, we justify that trff A"'BA"'BA™'] =~ trfA"' BA"'BA~'] up to lower order terms.
Claim I11. For any y € H with | yll» < m one has

J 5
|ttfA”'BAT'BA™ - tr[AT'BAT'BAT| = 6% - r[A 2] 5Dsml"

Proof of Claim III. Since B = B - §(D|| yll% + S(y)) I, the difference in the left side equals

_ 2 —351 ., 82 -3 2 2 2 a2, DM 452
' 26(Dliylls + Sy tr[A™"B] +6°tr[A"1(Dl yll5 + S(y) |S5 tr(A ]-W-(SDm )
=0

Here we use tr[A73] < Dl—’(')lz -tr[A72], as well as (Dllyl3 + S(»))? < (56Dm™*)?. In particular
we have also made use of the linear constraint Z:’i 1 y,~tr[A‘3A,~] = 0 in the choice of the
subspace H. ¢

Now we prove the central core of this theorem: in expectation for a Gaussian y from
the subspace H, the quadratic term trfA"' BA"' BA™!] is bounded by a term that we can
offset in the potential function by the length increase of x.
Claim IV, One hasEy-n.,,0.x [fTA'BAT'BA™"]| < £ 1r{A7'] - r[A72].
Proof of Claim IV. The argument for this claim needs some care, as we have in general
Ely:y;] # 0 since we draw y from a subspace H. We abbreviate W; := A™1/24; A~ e R™"

12



(note that these matrices will in general not be symmetric). Then

“'BAT'BA” @ -1 -1 -1
E |ola”BAT BAT| = E yitr[aa;a7 4,47 |
Y~N<n (0,X) Y~Nem(0,X) ie%]%yl Vi [ i i ]

= E XX vy ow, wp, |

y~N<p, (0,X) i€T jeT

= a5yl

¥~N<p(0,X)

= Y Iwili=)Y ula'4,47'4,47"

ieZ ieZ
L 10
WY w2444 2 Y u[A A w[ATN A
ieZ ieZ
e A Y r[A21A]
a*m ieZ
2
= ——ula |2 Y 4]
a“m i€l
——
<I,
A7%>0
< tr[A™Y] - tr[A72].

a’m

In (i), we use that y; =0 for i ¢ Z. In (ii) we use Lemma 9 with the subtlety that re-
placing y ~ N(0, X) by the capped sample y ~ N<,,(0,X) can only decrease the length
1Y ieTyiW; II%. In (iii) we use cyclicity of the trace and in (i v) we use that we have se-
lected the indices Z so that tr[A7}A;|] < ﬁtr[A‘l] foranyieZ. o

Now we have everything to finish the analysis. Taking expectation over y ~ N<,(0, X)
on both sides of (**) gives

0 @ _DENyIA+ESW)) trlA Y +c-Eltr[AT'BAT'BA™Y]
Claim 111 9 ) s el a1 o, D
= —(DENYIS+EIS))-tlA7) + 2E(tr[ A BAT BA™ ) + (A% —
“2Y (~04sDm-EIS(RI+ tr[A‘1]+9)-tr[A‘21
- ’ a’m 5
m=20

4 -1 -2
= (-044Dm-EIS + 5 —trlA™)] - tlA7)

a

In the first inequality we have used Claim III with the fact that §2 < m. Here we also
use that by Corollary 5 one has E[||yl|3] = dim(H) - (1 -2~ 4m5) > 0.45m as dim(H) =
0.47m and m = 10. Combining the two above inequalities, we conclude

EISO)] < ——tr{A"Y] —0.44Dm < ——q(a™) - 22 <,
azm a’m 10

making use of the assumed bound on ®¢ p(x).

13



It remains to argue A:= A¢, 5 s,p > 0. Recall from the proof of Claim I we have

m
A-A=5*DIyl3+SW) 1,8 yiAi = 6Dm* +5S(y)—m) -6 -1, = -3m-5- I,
i=1

10

where we have used 6 S(y) = —2m. Remark that the least eigenvalue of A is atleast 7.

2
10 3 _ 10m*-0.6 > 0.

It follows that the least eigenvalue of A is at least D~ 5Dt = — Do

|

For later, it will be useful to consider the intersection of K with linear constraints that
force a constant fraction of variables to be 0:

Lemma 13. Let Ay,..., Ay, € R"™" be positive semidefinite matrices with Y. | |A;| < I,.
Leta, B,e € (0,1) withm= 7, % > a? =58 and J c [m] with|]| < Bm. Then the set

m
K::{xeRm|’|leiAi
i=

<l
op

also satisfies ym(%K(]) +aymB)") = %, where K(J) =Kn{x:x;=0VjeJ}.

Proof. We can reuse the proof of Theorem 1 unchanged, but we revisit the proof of
Lemma 12 and in particular the choice of the subspace H. Suppose we modify the def-
inition of H and add the linear constraints y; = 0 for all j € /. The dimension of the
subspace will still be dim(H) = (1~ % — f)m -3 = (1 - a®)m for m = Basp< @ The
dimension is also at least (0.47 — B)m for m = 100. The remaining proof of Lemma 12
applies as we still have E[S(y)] < ﬁtr[A‘l] —(0.44-B)Dm < (0.04m - B)Dm < 0. O

The attentive reader may have noticed that the proof of Theorem 1 allows to handle
a concentration that should be a lot tighter than just the factor of 1/2 that we obtained.
But it is a well-known insight that Gaussian measures can be boosted using the Gaussian
Isoperimetric inequality.

Lemma 14. With the notation from Lemma 13, for any § > 0 we have
50 —nm -82m/2
ym(;K(])+(a+6)\/mBz J=1-e7mi2,

Proof. It suffices to apply the Gaussian Isoperimetric inequality with Lemma 13 to get

50 © 1
Ym(;K(]) + (a+5)\/m‘35”) >1 —f(w_ﬁe_lezdx >1-e M2,
m
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5 Mean width and Gaussian measure

One of the standard quantities that are studied in the context of convex bodies K is the
mean width w(K) = Egegn-1[maxy yex | (@, x — y)|]. The wonderful textbook of Artstein-
Avidan, Giannopoulos and Milman [AAGM15] contains many applications. Additionally,
the analysis of Eldan and Singh [ES18] of a modification of the algorithm of [Rot14] also
makes use of the width of a body. We can prove that the mean width of the body K arising
in our spectral setting is indeed high.

Theorem 15. Let Ay, ..., A, € R be symmetric matrices with Z?il |A;| < I, and select
€€ (0,1) so thatm = E—’é > 100. Then the set

m
K:= {xe[Rzm | ” Y xiA;
i=1

<)
op

has mean width w(K) = Q(v/m).

Proof. Let a > 0 be a small constant that we determine later. Consider the body Q :=
%K +ay/mBj". Then by Theorem 1 we know that y,,(Q) = % We want to first show that
Q has a high mean width. One can check that Pry.n(,1,,) [ Yll2 < 0.9y/m] < i for m = 100.
Then,

y y
wQ = E max<(——,x):X€ > E (——»-1
< YN, L) [max{ Iyll2 o YEN®©, L) | iyl rec]
1 1 1
> 0.9\/m~y€NI(’(1)r'Im) [lyll2>0.9vmand y€ Q] =0.9vm- (1 1 5) >Zvm.
Observe that the mean width is additive and scales with the body, hence
1 50 50
SV < w(Q) = w(>K+avmBy) = 2= w(K) + aym- w(B})
5 a a N——
=2
This can be rearranged to
w(K) > e, (1\/m—2a\/m) az% ;\/m
50 5 10000
O

Note that one could certainly obtain a tighter constant using heavier machinery. In
particular Urysohn’s inequality states that the mean width of any body is at least that of
an Euclidean ball with equal volume.

We also conjecture that the following bound on the Gaussian measure holds:

Conjecture 1. Using the same notation from Theorem 1, we have y,,(K) = 27" for a
universal constant c > 0.
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Note that Conjecture 1 would also imply Theorem 1. In fact, from the Gaussian
Isoperimetric Inequality one can derive that any set K with y,,(K) = 27" also satis-
fies y (K +4ycm-B)") = % We comment that a lower bound of y,,(K) = 27" would
be best possible in general. To see this, consider the case where A; = e,-el.T for i = nand

2m )—cn,
n
indeed 27¢" for m = n. The best lower bound on v, (K) that we are aware of comes from

0 otherwise, so that K = {x € R™ : |x;| < €,i < n} which has Gaussian measure (

[—€,€]™ € K, so that we get v, (K) =y ([—¢,€]™) = (27’") ™ One difficulty for proving
a lower bound on y,,(K) is that the Gaussian measure is in some sense a more brittle
property than mean width — the intersection of K with a single hyperplane brings the
measure down to 0 while the mean width is little affected. Of course, the body K in our
setting is full-dimensional but it is less clear that it is sufficiently fat in enough direc-
tions. Another observation is that we have indeed proven that y(%[( + a\/ﬁBZ’”) = % for
the whole range of @ > 0. In fact, we do not know any convex symmetric body K < R
with measure y,,(K) = log(m)~“", such that the conclusion of Theorem 1 holds, that is,
ym(%K + a\/ﬁBg”) > % for all @ > 0. As an exercise, it is not hard to verify any cylinder

of the form C = {xf +eeet xfi < r} for d < m and r > 0 that satisfies the conclusion of
Theorem 1 will indeed have y,,(C) = 27",

6 From high mean width to efficient algorithms

In this section, we prove the correctness of the spectral sparsification algorithm from
Section 1.1. The algorithm runs logarithmically many iterations of a routine due to
[Rot14]. Consider an arbitrary symmetric convex set K < R” with measure v,,(K) =
27¢" for a small enough constant ¢ > 0. Then one can sample a random Gaussian
x* ~ N(0,I,,) and compute the point y* € Kn[-1,1]" that minimizes the distance
| x* — y* 2. Then [Rot14] shows that with probability 1 —27%™  the point y* has at least
Bm many entries in {—1, 1}, where £ is a small enough constant. We reproduce a picture
of [Rot14]:
-1,11"

0\
y*

The paper uses the property y,,(K) = 27" to derive that in particular for every index set
J with |J| = Bm, the random point x* would be far from K intersected with coordinate
slabs |x;| = 1 for all i € J. While in our setting, we do not know whether the premise
of Y, (K) = 27" is true, we prove that the intermediate property is satisfied (even for

16



intersections with hyperplanes x; = 0 instead of slabs). We provide the details of the
analysis below:

Lemma 16. Let a,f € (0,1) with a < % and 0 > 6’ := %ﬁlog(%). Suppose K < R™ is a
symmetric convex body withy ,,(K(J) +ay/mBJ") = 1—e 9" forall J < [m] with |J| < Bm.
Sample x* ~ N(0, I,;,) and let y* be the point in KN [—1,1]" that minimizes ||x* — y*||,.
Then with probability 1 - 27" y* has at least fm coordinates i with y; € {~1,1}.

Proof. First note that Pry- (o, 1,0 [1X7] = 2] =2 f5° \/%e‘”zlzdt > 5, so with probability

1-2790" we have d(x*,[-1,1]") > /% -(2-1)2 = +/m. Recall that K(J) = Kn{x €
R™ | x; = 0 Vi € J}. We also define the set Kgpips(J) := KN{x € R™ | |x;| < 1Vie .
Consider the index set J* := {i € [m] : y; € {—1,1}} and note that d(x*,Kn[-1,1]") =
d(x*, Ksrrips(J*)) since J* defines the tight constraints for y*.

Since there are at most e? 7 sets J < [m] with |J| < fm, using the union bound gives

Yo mgm (R™\ k() + avmB)) < m;ﬁmym(u@m \(K(J) +ay/mBY) < e?=0m.

So with probability 1 — 27" one has
1
dx",K(J") =z d(x",Ksrries ™)) =d(x*, KN [-1,11"") = d(x*,[-1,1]"") = g\/%

whereas d(x*, K())) < ay/m < /m for all J with |J| < m. It follows |J*| > fm. O

More specifically for our spectral setting we can find fractional partial colorings with
the following guarantee:

Corollary 17. Let Ay,..., A, € R™" be symmetric matrices with Z?il |A;| < I,,. Select
£€(0,1) so thatm = E—’é > 100, and define the set

m
K:= {xERm | ” ;xiAi”OpSE}.

_m_

There is a polynomial time algorithm that returns y* € 500K n [-1,1]™ with at least 5455

coordinates y? in {-1,1}, with probability 1 — 27",

15

Proof. 1t suffices to choose f = Wloo’ @ =155 and 6 = %, so that % > a? = 56 and we
50
<

may apply Lemma 14 to get a lower bound on the Gaussian measure. We also have 2-
500, a +06 = % and 572 > % ,Blog(%), thus applying the previous lemma gives the corollary.
Finally note that finding the point y* € 500K n [-1,1]" that minimizes ||x* — y*||, is a
convex optimization problem and can be solved in polynomial time for example with the
help of the Ellipsoid method [GLS88]. Here, for a given y* ¢ 500K n[—1,1]™, a separating
hyperplane can be derived from the eigendecomposition of the matrix ¥ | y} A;. O
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Finally, we can prove Theorem 3 and give an analysis of the full algorithm from Sec-
tion 1.1. The basic intuition is that we start with a weight vector s := (1,...,1) so that
Zg’i 1 SiA; = I,. Then in each iteration we find a partial coloring according to Corollary 17
and we use the partial coloring to update the weights so that at least a constant fraction
of the weights drop to 0.

Proof of Theorem 3. Consider one iteration of the algorithm where the current weights
are s € R, The body defined in step (3) is K := {x € RS"PPS) | | ¥, 0000 XiSiAillop <
1000&}. Hence, by Corollary 17 applied to matrices A’ := %A,-, we know that after line

(6), we have a point x* € [-1,1]"PP®) with | 217, x} 5;A; [lop < 1000, / wuppcy and at least

X 's‘;%gg)l coordinates equal to —1. Thus, at line (7), |supp(s)| is reduced by a factor of
x :=1-1/18000 < 1. It follows that the algorithm terminates after O(log(szm)) = O(logm)
loop iterations. Further, at each iteration, we add Z;?i 1 x;.“ s;A; to the matrix Z?i 1SiAi,
which is originally I,,. So by triangle inequality, at the end of the algorithm we have an

additive error of at most
n n
1000 —— =0l|y/—| =0(e),
;’) kim ( m) (©)

thatis, (1-0() I, < l”i 18i4; = (14 O(e)) I,. Note that the argument also provides that
in every single iteration we had Y.!", s; A; < 2I,, for small enough ¢ > 0, which justifies
the application of Corollary 17 in the first place. The error probability is dominated by
2790m0) where myg = n is the support in the last iteration. O

7 Open questions and conjectures

We close this paper by presenting a range of open questions that did arise in the context
of this work. We begin by reiterating a question that we had mentioned earlier in the
form of a conjecture, but specialize it here to rank-1 to keep it as simple as possible:

Question 1. Is it true that there is a universal constant ¢ > 0 so that for any vectors
Vi,..., U €R" with Y w;v] = I, the body K := {x € R™ | [ x;v;v] l|op < €} has
n

measure Y, (K) = 27", where ¢ is chosen so that m = 2.

We also restate the conjecture popularized by Meka:

Question 2 (Matrix Spencer Conjecture). Is it true that there is a universal constant C > 0
so that for all symmetric matrices Ay, ..., Ay € R"*" with || A;|lop < 1 for i € [n], there are
signs x € {~1,1}" satisfying | " | x; Ajllop < Cy/n.

A statement that would allow at least a good partial coloring can be formalized as
follows:

18



Question 3. Is it true that there is a universal constant ¢ > 0 so that for all symmetric
matrices Ay, ..., A, € R"" with ||A;llop<1forie€[n], K:={xeR"| IIZ?ZIxiAillop </n}
has Gaussian measure y,(K) = 27°".

One can again ask an even weaker question that according to our experience might
have a simpler answer:

Question 4. Does the body K from Question 3 always satisfy w(K) = cv/n, where ¢ > 0 is
a universal constant.
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A Missing Proofs for Preliminaries
Proof of Cor. 5. Since E[[lyll2] <E[llyl2]'/? = /m, we apply Theorem 4 to get, for m = 7,

2
Pr [||y||2 > m] < g~ (m=VmI2 < p=m
yNN(orIm)

2
Since the function y — —y? +log(y?) is concave, we can upper bound it with any
tangent line; in particular,

2 2
Y o (2 _ )., ™ 2y_
5 +log(y)s(m m) v+ 5 +log(m~) -2,

so that using the standard estimate Py,_n,1)[y > m] = \/%e‘mzl 2 we have

0 2 m2 )
, fm exp((%—m)-y+7+log(m )—Z)dy m2+l  m
E [y'ly>m]= < —
y~NQO,1 V2 Ply > m] m  me=2

3

and therefore, for m =7,

2 2 3
> <m- > <2m’.
Ellyls | lyllz>m]<m ) [E(O'D[y ly>m]<2m

Now, since

m=E[Iy13] = Pr[iylo>m| -E[IyI311ylz>m|+Pr[Iylo<m|-E[1y13 1 1yl2=< m],

g

<exp(—(m—vm)?/2) =2md <1

it follows that E [||y||§ iyl < m] >(1-2"") . mform=17. O
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