PDF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio

C +Go-=
An Alternate Approach Toward the Linux Programming Course

Saverio Perugini
saverio@udayton.edu
University of Dayton

Dayton, Ohio

ABSTRACT

The use of the C programming language in a Linux program-
ming course—common in most undergraduate computer science
programs—has been the standard practice for nearly thirty years.
The use of C is appropriate because Linux is written in C and, thus,
programming with the system (i.e., accessing operating system
structures and making calls to the kernel) is natural in C. How-
ever, this seamless integration of Linux and C can inhibit student
assimilation of course concepts—through conflation of concepts
with language (e.g., system calls with C, or libraries with gcc,
respectively)—and, ultimately, student learning outcomes for a va-
riety of reasons. We challenge the idea of the exclusive use of C in
the Linux programming course and alternatively propose the use
of the Go programming language, in strategic conjunction with C,
to both achieve student learning outcomes and address some of the
issues with an exclusive C approach. We explored and studied this
approach—the use of Go in the Linux course—over the course of
seven consecutive offerings of it. We present our experience with
this approach including a collection of desiderata resulting from it
as well as student survey data as an evaluation of its use in practice.
Overall, the results indicate this approach is feasible, is no worse
than an exclusive C approach, and yields advantages. We anticipate
this experience report will inspire adoption of the use of Go in
similar Linux programming courses.

CCS CONCEPTS

« Social and professional topics — Computer science edu-
cation; Computer engineering education; - Software and its
engineering — General programming languages; Operating
systems; Concurrent programming languages;

KEYWORDS

C programming language; filters; Go programming language; Linux
kernel; Linux programming; Linux programming course; pipes;
system calls; toolchains

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366944

Brandon M. Williams

brandonwilliamscs@gmail.com

ACM Reference Format:

Saverio Perugini and Brandon M. Williams. 2020. C + Go = An Alternate
Approach Toward the Linux Programming Course. In The 51st ACM Tech-
nical Symposium on Computer Science Education (SIGCSE ’20), March 11—
14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3328778.3366944

1 INTRODUCTION

The use of the C programming language in a Linux program-
ming course—common in most undergraduate computer science
programs—has been the standard practice for nearly thirty years.
The undergraduate Linux Programming course at the University of
Dayton is a three-credit hour, programming-intensive course that
introduces students to programming within the Linux environment
and programming with the Linux kernel (e.g., using the system call
interface and interprocess communication mechanisms). It is not a
course on elementary Linux usage (e.g., file management and ma-
nipulation), which is covered in our Operating Systems course—the
prerequisite for Linux Programming. While the use of C is appropri-
ate because Linux is written in C and, thus, programming with the
system (i.e., accessing os structures and making calls to the kernel)
is natural in C, it can also be a vice because this seamless integration
of Linux and C can inhibit student assimilation of course concepts—
through conflation or over-association of concepts with language
(e.g., system calls with C, or libraries with gcc)—and, ultimately,
student learning outcomes for a variety of reasons. Three student
learning outcomes in a typical Linux course of this nature are:

(1) An understanding of Linux system calls, their residence in
the kernel, and programming with them.

(2) An understanding of toolchains (i.e., compiling, statically-
and dynamically-linking, library/Ap1 construction, shell vari-
ables controlling their behavior), how to use them, and their
role in software development.

(3) An understanding of the Linux filter style of concurrent pro-
gramming as a composition of multiple atomic processes
dynamically connected through interprocess communica-
tion mechanisms (e.g., FIFos/pipes) (see Fig. 1—right):

If you give me the right kind of Tinker Toys, I can imag-
ine the building. I can sit there and see primitives and
recognize their power to build structures a half mile
high, if only I had just one more to make it functionally
complete. — Ken Thompson, creator of UNIX and the
1983 ACM A.M. Turing Award Recipient, quoted in IEEE
Computer, 32(5), 1999.

Approaches to realizing these three student learning outcomes have
traditionally included, respectively:

https://doi.org/10.1145/3328778.3366944
https://doi.org/10.1145/3328778.3366944
https://doi.org/10.1145/3328778.3366944

(1) The use of the system call interface provided by C (e.g.,
unistd.h: fork/wait/execvp, read/write; open/close).

(2) The use of the gcc toolchain and associated shell variables
(e.g., C_INCLUDE_PATH and LIBRARY_PATH) controlling its
behavior.

(3) The use of unnamed pipes (i.e., FIFOs) as provided by the
shell (i.e., |) in conjunction with a variety of built-in Linux
tools (e.g., detex paper.tex | aspell list |sort |uniq]|
we -1).

In teaching this course for sixteen consecutive offerings of it, save
one, we have experienced the following phenomena, respectively:

(1) Students associate system calls with calls to a C library rather
than calls to the Linux kernel for a core os service. In other
words, students tend to think that system calls are a ser-
vice provided by a C language library rather than a service
provided by the Linux kernel. This is primarily because the
mechanics of using the system call interface provided by C
are the same as a library call. As a result, the idea of context
switching between user mode and kernel mode tends to get
lost.

(2) Students perceive both the decomposition of a (systems)
program into an interface (.h), implementation (.a), and
client application (.c) and the toolchain associated with
packaging and installing the library and Ap1 as features of
gcc rather than sound software engineering supported by
multiple languages from Java and Python to Racket.

(3) Students view the Linux filter style of concurrent
programming as a pattern of programming exclusive
to the Linux environment rather than an incarna-
tion of a more general, recurring style of program-
ming with connections to pipelines from functional pro-
gramming (e.g., in Elixir, expr |> f >| g(a) |> h(b,c) =
h (g (f (expr), a), b, c)) and the generate-filter pro-
gramming approach made possible through the use of the
lazy evaluation parameter-passing mechanism [4] in, e.g.,
Haskell.

There are two general themes embedded into these three specific
issues:

e Conflating or inseparably associating a concept (e.g., system
calls, a toolchain) with a language/tool (e.g., C, gcc, respec-
tively).

e Over-learning or inability to abstract away the details. Stu-
dents tend to think that these ideas encountered in the Linux
programming course are specific to Linux and C rather than
general computing principles applicable in a variety of soft-
ware development environments and contexts.

These more general issues are really two sides of the same coin.
In this paper, we challenge the idea of the exclusive use of C
in the Linux programming course and alternatively propose the
complementary use of the Go programming language, especially as
an avenue toward addressing the aforementioned issues. Go was
developed by Robert Griesemer, Rob Pike, and Ken Thompson—
the latter two were involved in the original work on UNIX and
C—as an improved C (see http://golang.org/) [10]. In Fall 2015 we
started using Go for a set of programming assignments in the Linux
programming course. We explored and studied this approach—the

PDF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio

use of Go in the Linux course—over the course of the next seven
consecutive offerings of the course (Fall 2015-Spring 2019). We posit
that using Go, in strategic conjunction with C, not only achieves
the student learning outcomes given above, but also ameliorates
the problematic issues associated with the traditional, exclusive
C approach. We present our multi-semester experience using this
hybrid C/Go approach, including desirable consequences of its use
(§ 2) and student feedback (§ 3).

2 ADVANTAGES TO THE USE OF GO

Using this approach for seven consecutive offerings of the course,
we have experienced the following desirable consequences of it:

¢ Reinforces the idea that Linux system calls are pro-
vided by the Linux kernel, not C. Thus, system calls to
the kernel can be called from any programming language,
not just C.

e Contrasts Linux pipes vis-a-vis Go channels. This ap-
proach fosters a salient contrast between concurrent pro-
gramming with one process and multiple threads of control
(see Fig. 1—left) and multiple processes each with one thread
of control (see Fig. 1—right) as employed in the Linux filter
style of programming. This reinforces the idea that the con-
cept of a Linux pipe is an extension of a Go channel applied
to multiple processes, and a precursor to a network socket
across multiple computers.

e No compromise in purity necessary. This approach in-
volves the use of Go in conjunction with, not in replacement
of, C. Thus, students continue to gain experience with the
traditional systems programming language.

o There are benefits to learning multiple languages, in-
cluding increased versatility [2], adaptability to change [9],
and improved alignment with industrial requirements for
employee professional skills and knowledge. Moreover, an
environment where student experience concepts through
multiple languages inhibits student (over-)association of a
concept with a particular language. This approach facili-
tates student abstraction of the particular details of each
individual language from the concept they are experiencing
through that language. Lastly, and perhaps most importantly,
it is widely believed that one’s capacity to express ideas
about computation is limited by the programming language
through which one describes that computation—the analog
of the Sapir-Whorf Hypothesis in the context of programming
languages [8].

e Supports ABET Accreditation. The Accreditation
Board for Engineering and Technology (ABET), in its
program criteria necessary for accreditation, explicitly
lists learning multiple programming languages as a
requirement necessary for program accreditation (see
http://www.abet.org/accreditation/accreditation-criteria/
criteria-for-accrediting-computing-programs-2016-2017/).
Introducing Go into a Linux programming course is a way
to meet this requirement.

Other approaches. There are multiple approaches to a course
on Linux programming. One standard approach involves student
modifications to the Linux kernel [3]. On the other hand, the use

http://golang.org/
http://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2016-2017/
http://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2016-2017/

PDF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio

iea
Ly 1

. _ _ single-threaded _ goroutine
Legend: D = process ~ process ~ (i.e., lightweight thread)

stdin Ly

stdout

— = message or data

—=1— = pipe or channel

Figure 1: Conceptual differences between the csp model of concurrent programming/problem solving (depicted left) and the
Linux model of concurrent programming/problem solving (depicted right). (left) re-compile threads vs. (right) re-configure

processes. © Saverio Perugini.

of interactive learning and assessment tools such as uAsssign [1] is
effective. Lastly, the incorporation of cybersecurity and/or mobile
devices/os into the course is increasing [5].

3 EXPLORATORY STUDY

To explore how the use of Go in this manner works in practice
we collected data in a longitudinal study over the course of seven
consecutive offerings of the course (Fall 2015-Spring 2019).

3.1 Demographics of Participants

The Linux Programming course at the University of Dayton is a
cross-listed undergraduate and graduate course taken primarily
by senior-level computer science and computer engineering ma-
jors, and is a required course for all computer engineering students.
The survey data collected (in all semesters save for Fall 2017 and
Fall 2018) is from 70 students (i.e., 62 senior-level undergraduate
students and 8 graduate students; 48 computer-engineering stu-
dents and 22 computer science students). Individual n’s for student
participants from which the survey data for each semester was
collected are given in Tables 1-3. The webpage for the course—the
central location for all items course related—is available at http:
//perugini.cps.udayton.edu/teaching/courses/Spring2019/cps444/.

3.2 Programming Assignments Studied

Four (of approximately ten) programming assignments in this
course provide scope from which to observe the use of Go for the
benefits outlined above. The assignments are i) a modified version
of the Linux diff file comparison utility; ii) the env command used
in shell scripts (e.g., #! /usr/bin/env ksh); iii) ‘library/toolchain’:
developing a message logging library and application; and iv) build-
ing a synchronization barrier as a client/server application with
named pipes as the interprocess communication mechanism.

The env, library/toolchain, and client/server barrier assignments
are programming exercises from [7], albeit to be programmed in Go
here, with other minor modifications. The env, library/toolchain,
and client/server barrier assignments involve the use of Linux sys-
tem calls and the system call interface in Go (i.e., package syscall)
and give students experience with spawning and executing pro-
cesses. For a detailed description of both the anatomy of the course

and the homeworks assigned therein, see [6]. Most students had
some programming experience in Go from their os course, but that
was limited to concurrent programming using the Communicating
Sequential Processes (CSP) model of concurrency used in Go, and
did not involve any type of programmer interaction with the Linux
kernel, the Go toolchain, or packages.

3.3 Methods

After the completion of each course, we solicited feedback from
student participants through questionnaires to ascertain the effect
of the use of Go on self-reported student learning and preference.
Questionnaires solicited both quantitative, ordinal ratings (on a
scale of 1-5) and follow-up, free-form responses explaining some
of those ratings.

Since rating data is typically not normally distributed, median
most likely represents the center of the distribution of the data. For
these reasons, we use non-parametric tests, which do not rely on
any underlying assumptions about the probability distribution of
the sample, can handle ordinal data, and are not seriously affected
by outliers. The non-parametric statistical test we used is the y?
test.

3.4 Quantitative Results: Student Ratings

The independent variables are the use of Go and C. We explored
two dependent variables: improved learning (in the Spring 2018 and
Spring 2019 offerings) and preference (in the Fall 2015, Fall 2016,
and Spring 2017 offerings).

Improved learning. The results in Table 1 (top) reveal that both
C and Go had an approximately similar effect on students’ self-
reported improvement in learning in cumulative frequency, with
Go experiencing a slightly larger frequency. Table 1 (bottom) re-
veals that of the four combinations of languages for learning and
programming all, save for ‘learning in Go, homeworks in C, are
approximately similar in effect on students’ self-reported improve-
ment in learning in cumulative frequency, with ‘learning in C,
homeworks in Go’ experiencing a slightly larger frequency. Aggre-
gating languages across learning and programming reinforces this
result (see the bottom-most row of Table 1).

http://perugini.cps.udayton.edu/teaching/courses/Spring2019/cps444/
http://perugini.cps.udayton.edu/teaching/courses/Spring2019/cps444/

PDF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio

Table 1: Results of y? tests regarding improved learning from Spring 2018 and Spring 2019. Legend: number* = ‘statistically
significant result (p < 0.05).

| Semester | Question | n | Language | Freq. | x° | P |
Spring 2018 13 ¢ 7 0.08 | 0.78
pring Which of the follow two languages improved your Go 6| ’
learning more? C 2
Spring 2019 ‘ 12 5.33 | 0.02%
PHNg Go 10
Cumulative 25 ¢ o 1.96 | 0.16
Go 16 | ’
Semester Question \ n \ Learning/Homework Language \ Freq. \ X’ \ P
This semester, class lectures primarily focused on Learning in C, homeworks in C. 6
. C, but implementation in homeworks was often in Learning in C, homeworks in Go. 3
Spring 2018 Go, especially since systems calls are an aspect of 13 Learning in Go, homeworks in C. 1 392 | 0.27
the Linux OS and not specific to a particular Learning in Go, homeworks in Go. 3
programming language (i.e., system calls can be Learning in C, homeworks in C. 2
. called from any language). Which of the following Learning in C, homeworks in Go. 7 A
Spring 2019 did improve or would have improved your learning 12 Learning in Go, homeworks in C. 0 8.67 1 0.03
more? Learning in Go, homeworks in Go. 3
Learning in C, homeworks in C. 8
. Learning in C, homeworks in Go. 10
Cumulative Learning in Go, homeworks in C. 1 7.16 1 0.07
Learning in Go, homeworks in Go. 6
25 —
Learning in C 18
. Learning in Go 7
Cumulative (aggregate) Homeworks in C. 9
Homeworks in Go. 16

Preference. The results in Table 2 (top) reveal that there is no
strong preference for either C or Go as used to learn in class (i.e., 13
to 13). However, the data reveals that students prefer to program in
Go for homeworks (13 to 5). Table 2 (bottom) reveals that of the four
combinations of languages for learning and programming, again,
all, save for ‘learning in Go, homeworks in C, are approximately
similar in effect on students’ self-reported preference in cumulative
frequency, with ‘learning in C, homeworks in C’ experiencing a
slightly larger frequency.

3.5 Qualitative Results: Student Comments

In our post-course questionnaires, we also solicited free-form, open-
ended explanations from students of their responses to each of the
questions in Tables 1-3. The following are a sampling of those
qualitative responses supporting the effectiveness of the approach
as well as those identifying issues associated with it:

Supportive Comments. “Go was always light[-]years easier to
implement the concepts in. It may have been helpful to learn in Go
or at least have access to more Go examples dealing with the topic
but I also think it’s important to be exposed to different solutions
in different languages”

“Giving examples in C allowed the students to have a decent
idea of what the software will look like without giving them the
code. It was tough but fair”

“Go is very simple once you get past the learning curve and C is
never really that simple. Go has really good documentation. C has
a lot of examples.”

“C is very basic and useful and I learned it before. It is easy to
understand C. Then I can practice with Go”

“Go is similar to C but Go is easier than C to learn and can help
[one] understand C”

“Learning another language to put on a resume and now I have
a more diverse career path.”

“I felt that by doing projects in Go, it was a lot easier to under-
stand the information rather than trying to work our way around
the tricky C implementation.”

“I think Go is a much more developer[-]friendly language and for
the things we developed in class, Go would be the obvious choice
for most programmers. However, I believe understanding the lower
level on which C operates makes you a better programmer”

Identified Issues. “Something that I struggled with this semester
was taking what I learned in C and applying it to Go. I think I got a
lot better as the semester went on, but it wasn’t a skill I picked up
on within the first few weeks. It took me most of my time in the
class to start getting good at it”

“Learning a concept in both languages made it harder for me to
understand the concepts”

PDF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio

Table 2: Results of y? tests regarding preference from Fall 2015, Fall 2016, and Spring 2017.

| Semester | Question | n |Language | Freq.| x° | p |
Fall 2016 20 ¢ 10 0.00 | 1.00

Did you prefer studying/learning C or Go? 80 1(3)
Spring 2017 6 Go 3 0.00 | 1.00

C 13
C lati 26 0.00 | 1.00
umulative Go 13

Would you have preferred to complete homeworks 18 C 5 356 | 0.06

1-4 (i.e., diff, env, lib, client/server) in C or Go? Go 13
Semester \ Question \ n \ Learning/Homework Language \ Freq. \ X

Fall 2015

Z\P

Learning in C, homeworks in C.
Fall 2016 20 Learning in C, homeworks in Go.
This semester class lectures primarily focused on C, Learning in Go, homeworks in C.
but implementation on homeworks was often in Learning in Go, homeworks in Go.
Go. Which of the following did/would you have Learning in C, homeworks in C.
preferred? Learning in C, homeworks in Go.
Learning in Go, homeworks in C.
Learning in Go, homeworks in Go.

7.60 | 0.06

Spring 2017 0.67 | 0.88

=N N O N >

—_
(=)

Learning in C, homeworks in C.

Learning in C, homeworks in Go.
Learning in Go, homeworks in C.
Learning in Go, homeworks in Go. 6
Learning in C 19
Learning in Go 7
Homeworks in C. 11
Homeworks in Go. 15

Cumulative 7.54 | 0.06

_ 0

26

Cumulative (aggregate)

Table 3: Results of y? tests regarding the use of Go (top) and C (bottom) from Fall 2015, Spring 2018, and Spring 2019. Legend:
number™* = ‘statistically significant result (p < 0.05).

l Semester [Question [n [Rating [Freq. [X [x [X [P ‘
1 0
. . 2 1
On a scale of 1-5, please rate the use of Go in this o
Fall 2015 . . 18 3 6| 372] 4] 12.56 | 0.01
class (5 being the highest). 4 8
5 3
1 0
2 2
Spring 2018 13| 3 31369 4| 508 |0.28
On a scale of 1-5, indicate how much the use of C 4 5
in lectures, on homework 9 (1ex), and on the final 5 3
project (lex and yacc) improved your learning in 1 0
this class (5 being the highest). 2 1
Spring 2019 12 3 1| 442 | 5] 17.17 | 0.00%
4 2
5 8

PDF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio

Table 4: Student homework scores from Fall 2015, Fall 2016, Spring 2017, Fall 2017, Spring 2018, Fall 2018, and Spring 2019.

Semester Modified diff utility env command Library/toolchain Client/server barrier

n [Min] x [s [Max [n [Min] x [s [Max| n [Min|] x | s [Max| n [Min| x [s [Max
Fall 2015 19 0.00 | 75.61 | 28.81 | 100.00 19 | 58.00 | 80.53 | 12.38 100 19 | 25.00 | 91.23 | 19.76 100 19 0.00 | 80.33 | 29.49 | 100.00
Fall 2016 20 0.00 | 62.17 | 34.01 96.67 19 | 40.00 | 90.21 | 18.46 100 20 0.00 | 91.08 | 22.64 100 20 0.00 | 74.19 | 27.39 | 100.00
Spring 2017 6 0.00 | 51.77 | 44.56 95.74 6 | 60.00 | 84.33 | 17.91 100 6 0.00 | 50.00 | 31.62 100 6 0.00 | 52.08 | 42.88 87.50
Fall 2017 15 0.00 | 67.78 | 30.56 | 100.00 15 | 64.00 | 86.40 | 13.92 100 15 6.67 | 83.33 | 28.40 100 15 3.75 | 70.67 | 41.37 | 100.00
Spring 2018 13 0.00 | 60.38 | 34.58 | 100.00 12 0.00 | 59.33 | 41.85 100 13 0.00 | 71.41 | 41.11 100 13 0.00 | 59.62 | 49.19 | 100.00
Fall 2018 25 | 25.00 | 81.33 | 22.35 | 100.00 24 | 40.00 | 86.17 | 16.47 100 25 | 15.00 | 83.40 | 23.79 100 25 | 12.50 | 80.75 | 23.93 | 100.00
Spring 2019 12 0.00 | 74.86 | 32.49 96.67 12 | 76.00 | 89.50 8.14 100 12 | 66.67 | 88.89 | 12.30 100 12 | 70.00 | 87.08 | 12.10 | 100.00
Cumulative | 110 0.00 | 70.22 | 31.25 | 100.00 | 107 0.00 | 83.18 | 21.32 100 | 110 0.00 | 83.50 | 27.07 100 | 110 0.00 | 74.74 | 32.77 | 100.00

“I have no issue learning a new language, that’s part of being
in [computer science]. But, if the objective of the class is to learn
some theory that is language independent, it’s easier to focus on
that theory by sticking with one language. I can’t focus on why I'm
doing something if I can’t get my something to compile because
the new language has a few more funky rules I didn’t know”

“I spent a lot of time on the homework just struggling with Go
and learning how to do certain things in Go. Ilike Go better than C
and I think its more useful although C is very common. You should
assign homework in the same language that you teach otherwise I
end up spending time understanding the other language instead of
the homework itself”

3.6 Performance Results: Student Grades

Grades on the studied assignments were analyzed from approxi-
mately 110 students in all seven offering of the course involving
the approach described here. The number of student submissions
in each the seven course offerings studied is given in Table 4, which
also provides descriptive statistics (i.e., mean and standard devia-
tion) on the grades from the four assignments studied. These grades
establish that any difficulties identified above associated with learn-
ing and programming two languages did not have a negative impact
on performance (i.e., means/medians are in the B—C range).

3.7 Summary of Results
The following is a summary of these results.

o Observable from both the improved learning and preference
aspects of the survey data is the result that ‘learning in Go,
and programming in C’ is not a worthwhile option for further
consideration.

e Students in the Spring 2019 offering of the course were par-
ticularly supported through the use of Go. This may be due to
the particular group of students in that section or due to the
fact that Spring 2019 was the seventh consecutive offering
of this course involving this approach, which may imply a
cumulative refinement/improvement of the approach across
the semesters.

e The main take away from the quantitative survey data is
that the use of Go in the course is worthwhile, for either
learning in class or for programming on homeworks or both.

o Most of the issues that students conveyed through the quali-
tative survey data were about having to learn/use two lan-
guages rather than about the specifics of each individual
language. Quantitative survey results in Table 3 reinforced

this result—mean and median overall ratings of Go and C
are relatively similar.

4 CONCLUSIONS

We enumerate the desiderata of this approach that we have experi-
enced in § 2. We collected quantitative data, on both student self-
reported improvement in learning and preference, and qualitative
data to complement both the quantitative data and our experience
of this approach, and further ascertain how the approach operates
in practice. The survey data illustrates that students are not adverse
to the use of Go itself, but grappled with the peculiarities of learn-
ing the syntax of two languages. However, the resulting grades on
programming assignments indicate that students are successfully
able to learn in one language (in this case, C) and programming in
another (here, Go). That combination is an important result because
a strong dislike for Go could have an effect on student attitude to-
ward learning the concepts and, thus, inhibit the benefits of this
approach given in § 2. Instructors can explore a variety of options
to support students who find the use of two languages particularly
challenging, including offering Go help sessions outside of class,
providing access to helpful resources (e.g., quick references sheets),
or the use of active learning.

While the data indicates that a hybrid C/Go approach is no worse
than an exclusive C approach, the incorporation of Go brings the
advantages given in § 2. Overall, the results indicate that this ap-
proach is feasible, has benefits, and is not disliked by students and is,
thus, worthy of both additional and wider consideration and study.
The continuous learning goals, irrespective of a particular course,
are ultimately to: i) develop and improve students’ ability to gener-
alize patterns from the examples given in class; and subsequently
ii) develop their aptitude and intuition for quickly recognizing new
instances of these self-learned patterns when faced with similar
problems in domains/contexts in which they have little experience.
Our experience with this approach indicates that the use of the Go
programming language in the Linux programming course moves
us closer to the realization of these two related goals. We anticipate
this experience report will inspire adoption of a similar use of Go
in Linux programming courses.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant Numbers 1712406 and 1712404. Any
opinions, findings, and conclusions or recommendations expressed

PDF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstudio

in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

(1]

[2

[

(3]

J. Bailey and C. Zilles. 2019. uAssign: Scalable Interactive Activities for Teaching
the Unix Terminal. In Proceedings of the 50t" ACM Technical Symposium on
Computer Science Education (SIGCSE). ACM Press, New York, NY, 70-76.

K. Bouwkamp. [n. d.]. Why You Must Learn Many Coding Languages. Course
Report, 18 February 2016. Retrieved from https://www.coursereport.com/blog/
4-reasons-to-learn-multiple- programming-languages [Last accessed: 30 August
2019]. ([n. d.]).

R. Hess and P. Paulson. 2010. Linux Kernel Projects for an Undergraduate
Operating Systems Course. In Proceedings of the 415' ACM Technical Symposium
on Computer Science Education (SIGCSE). ACM Press, New York, NY, 485-489.

[4] J. Hughes. 1989. Why Functional Programming Matters. Comput. J. 32, 2 (1989),

98-107. Also in: D.A. Turner (ed.), Research Topics in Functional Programming,

[5]

Addison-Wesley, 1990, pp. 17-42.

J.-F. Lalande, V. Viet Triem Tong, P. Graux, G. Hiet, W. Mazurczyk, H. Chaoui,
and P. Berthomé. 2019. Teaching android mobile security. In Proceedings of the
50'" ACM Technical Symposium on Computer Science Education (SIGCSE). ACM
Press, New York, NY, 232-238.

S. Perugini. 2019. Revitalizing the Linux programming course with Go. Journal
of Computing Sciences in Colleges 35, 5 (2019), 59-67.

K.A. Robbins and S. Robbins. 2003. UNIX Systems Programming: Communication,
Concurrency, and Threads (second ed.). Prentice Hall, Upper Saddle River, NJ.
RW. Sebesta. 2015. Concepts of Programming Languages (eleventh ed.). Addison
Wesley, Boston, MA.

S. Smith. [n. d.]. The Advantages of Knowing Many Programming Languages.
Small Business: Chron.com. Retrieved from https://smallbusiness.chron.com/
advantages-knowing-many-programming-languages-27623.html [Last accessed:
30 August 2019]. ([n. d.]).

M. Summerfield. 2012. Programming in Go: Creating applications for the 21st
century. Addison Wesley, Boston, MA.

https://www.coursereport.com/blog/4-reasons-to-learn-multiple-programming-languages
https://www.coursereport.com/blog/4-reasons-to-learn-multiple-programming-languages
https://smallbusiness.chron.com/advantages-knowing-many-programming-languages-27623.html
https://smallbusiness.chron.com/advantages-knowing-many-programming-languages-27623.html

	Abstract
	1 Introduction
	2 Advantages to the Use of Go
	3 Exploratory Study
	3.1 Demographics of Participants
	3.2 Programming Assignments Studied
	3.3 Methods
	3.4 Quantitative Results: Student Ratings
	3.5 Qualitative Results: Student Comments
	3.6 Performance Results: Student Grades
	3.7 Summary of Results

	4 Conclusions
	Acknowledgments
	References

