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Abstract—We consider the problem of resource provisioning
for real-time cyber-physical applications in an open system
environment where there does not exist a global resource sched-
uler that has complete knowledge of the real-time performance
requirements of each individual application that shares the
resources with the other applications. Regularity-based Resource
Partition (RRP) model is an effective strategy to hierarchically
partition and assign various resource slices among the applica-
tions. However, RRP model does not consider changes in resource
requests from the applications at run time. To allow for the run
time adaptation to change resource requirements, we consider in
this paper the issues in online resource partition reconfiguration,
including semantics issues that arise in configuration transitions
that may cause application failures. Based on the reconfiguration
semantics, we study the online resource reconfigurability problem
under the RRP model where the availability factors of resource
partitions may be reconfigured during run time. We formalize the
Dynamic Partition Reconfiguration (DPR) problem and provide
a solution to this problem. Extensive experiments have been
conducted to evaluate the performance of the proposed approach
in different scenarios. We also present a case study using the
autonomous F1/10 model car; the controller of the F1/10 car
requires resource adaptation to satisfy the computing needs of
its PID controller and vision system under different operating
conditions. Our implementation demonstrates the effectiveness
and benefit of online resource partition reconfiguration using the
DPR approach in a real system.

I. INTRODUCTION

A cyber-physical system (CPS) may consist of multiple

applications that share resources from the same resource pool.

In an open system environment [1], [2], there is no global

scheduler that has full knowledge of the real-time performance

requirements of each individual application. Each application

tenders a request and is allocated a fraction of the shared

resource to meet its own need. It is up to the application-level

scheduler to schedule the tasks in each application to meet

the task-level timing constraints. In the literature [3]–[7], the

problem of resource allocation in the open system environment

assumes the application resource requirements do not change

during application execution. In many real applications, this

assumption may not hold as the application may respond to

changes in the operating environment in real time. In this

paper, we introduce the Dynamic Partition Reconfiguration
(DPR) problem that addresses the issues of dynamic resource
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Fig. 1: Overview of the hierarchical scheduling model.

reconfiguration under the Regularity-based Resource Partition

(RRP) model [3]. Other works have investigated the dynamic

reconfiguration problem but as far as we know there is no

previous work that addresses the precise semantics of resource

reconfiguration that may cause system instability issues in the

open system environment. To illustrate this problem, consider

an autonomous car control system which operates in two

operational contexts: “Straight Ahead” and “Turn Corner”.

In the Straight Ahead context, the car runs straight along a

corridor toward a corner while keeping itself in the middle of

the corridor. In the Turn Corner context, the car makes a turn

around the corner it has detected. The application computation

requirement of the CPU is different in the two contexts1. If

the resource allocation changes abruptly from one context to

the next, then instability may occur that results in the car

crashing into the side of the corridor. In this paper, we shall

address the resource provisioning semantics during context

changes. Explicit and precise semantics of system behavior

during a context change will prevent unexpected results at run

time. Based on the semantics, we shall present a three-stage

algorithm to ensure the context changes will not incur system

instability and discuss the associated scheduling results.

The RRP model is an abstraction of a component-based

hierarchical scheduling system where each component is an

application providing the functionality that is required by a

CPS with real-time performance constraints [3], [8], [9]. For

example, an autonomous car may have an application task for

keeping the car in a traffic lane and another application task

for detecting obstacles ahead. A component/application may

1The application demo can be found in the following link:
http://www.youtube.com/watch?v=8b-MMP3-cug
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Fig. 2: (a) and (b): two possible schedules for a resource

interface with a bandwidth of 1
4 . (c): resource supply from

the application’s point of view.

consist of several sub-components (sub-tasks). A parent com-

ponent distributes its share of resource to its sub-components

each of which in turn distributes it to its sub-components in a

hierarchical fashion. Fig. 1 gives an overview of the hierarchi-

cal resource scheduling model by taking the CPU resource as

an example. In this example, the CPU resource is distributed

to N resource interfaces and each resource interface is utilized

by an application. Given a resource interface, each application

distributes its resource share to its task group according to

self-defined policies. In past work on hierarchical scheduling

systems, there is another popular approach to characterize the

resource usage interface of each component besides our RRP

model: the Periodic Resource Model (PRM) [5] (or its variant

the Explicit Deadline Periodic (EDP) model [7]). The main

difference between these two resource models is illustrated

in Fig. 2 which shows the possible schedules of a resource

allocation with a bandwidth assignment of 1/4 of the resource.

In the EDP model, there is an interval of length 5 from

time 1 to 6 where the resource supply is zero. In contrast,

the length of such a zero-supply interval can be limited by

an interface which explicitly specifies the allowable resource

supply jitter in the RRP model. Ideally, from the application’s

point of view, the resource should be supplied uniformly over

any time interval as if it is dedicated to the application, but

at a slower rate ( 14 ) as depicted in Fig. 2 (c). Taking the

resource supply jitter into consideration, the resource supply

specified by the resource interface under the RRP model better

approximates the ideal supply which is uniform over any time

interval. Hence, changes to the task group can be more easily

accommodated by the application’s own task scheduler by

rescheduling tasks within its allocated resource partition. This

is possible as long as the application’s task utilization remains

below the assigned availability factor, thus avoiding the need

to change the resource interface [3], [10].

Although the resource interface can be used to adapt to

resource requirement changes in the RRP model, the re-

configuration may be performed at run time, and the real-

time performance guarantee during such reconfiguration is,

however, not well studied in the literature. In particular,

there may exist temporary utilization overload or performance

degradation during the reconfiguration. In this paper, we study

the online dynamic resource reconfigurability problem in the

RRP model. We first discuss the key challenges to address

this problem, and then propose the performance semantics

for resource partitions during the reconfiguration by intro-

ducing the concept of reconfiguration supply regularity. To

handle each reconfiguration request, a three-stage algorithm is

proposed to construct both the transition schedule during the

reconfiguration and the new schedule after the reconfiguration.

Extensive simulation-based experiments have been conducted

to evaluate the performance of the proposed approach in

different scenarios. A case study will be presented on a real-

life autonomous car control system which requires dynamic

resource reconfiguration. This application demonstrates the ne-

cessity for online resource reconfigurability to prevent system

instability and the effectiveness of our approach.

In the rest of this paper, Section II summarizes the related

work, and Section III reviews the RRP model. Section IV

describes the main challenge of online resource partition re-

configuration, defines the semantics of performance guarantee

during reconfiguration and gives the precise definition of the

corresponding scheduling problem. The detail of our three-

stage algorithm is provided in Section IV. The performance

evaluation results and a real-life case study are presented in

Section V. Section VI concludes this work.

II. RELATED WORK

There are several related research areas on scheduling tasks

with varying timing requirements such as mixed-criticality

systems [11], multi-mode systems [12], [13] or both [14]–[19].

In such systems, the task parameters may change, or new/old

tasks may be added/removed to/from the system depending on

the current state of the system. Systems with mode changes

require the design of new protocols such as [13], [20]–[24] to

ensure that the mode switch is performed in a timely and safe

manner in response to both internally or externally generated

events. The key challenge in these protocol designs is how

to ensure the schedulability of the system not only in each

mode but also during the mode transition. In this paper,

we focus on online resource interface reconfiguration instead

of designing a new task-level mode change protocol. More

specifically, a resource partition is characterized by its resource

availability factor and its supply jitter bound, whereas a task

is often specified by its execution time, period and deadline.

The semantics of performance guarantee during the resource

partition reconfiguration is also different from that of the mode

switch. The existing task-level mode change protocols cannot

be directly applied to resource interface reconfiguration under

the RRP model. The resource interface to be studied in this

paper is assigned to a group of tasks which may change their

mode at runtime.

There have been some research work on the multi-mode

resource interface [13], [25]–[27] where the resource interface

may change. For instance, Evripidou and Burns [13] used a

two-level scheduler or a hyper-visor to handle the criticality

mode change. Phan et al. [25] proposed a compositional anal-

ysis of the multi-mode resource interface. Li et al. [26] used

virtual machine (VM) to support multi-mode virtualization

where the parameters of VM change with minimum transition

latency. Nikolov et al. [27] presented a solution from task-

level to application-level scheduling and mode optimization.

However, none of those work studies 1) the precise perfor-

mance semantics of resource interfaces during reconfiguration

where performance degradation may happen and 2) how to
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Fig. 3: Physical resource Π is allocated to resource partition

P in a collection of resource slices.

schedule a set of resource partitions to meet the performance

requirements.

III. RRP MODEL

This section revisits the regularity-based resource partition

(RRP) model which is the foundation for the online resource

partition reconfiguration problem to be elaborated in Sec-

tion IV. In this paper, we assume the algorithms and models

are applied to uniform resources where the size of resource

slices is the same.

A. Regularity-based Resource Partition

We assume that a physical resource Π is allocated non-

preemptively to one task at a time for some minimum time

interval. Each of these minimum time intervals is called a

resource slice and the physical resource is allocated in units

of resource slices, as shown in Fig. 3. Each resource slice

starts and ends at integral time boundaries. In this paper, we

refer time to be these boundaries as t depicted in Fig. 3.

Definition III.1: A resource partition P on a physical resource

Π is a tuple (S, p), where S = {s1, s2, · · · , sn : 0 ≤
s1 < s2 < · · · < sn < p} is a set of n time points that

denote the start times of the resource slices (called the offsets)

allocated to the partition, and p is the partition period with

the following semantics. The physical resource Π is available

to the application tasks to which the partition P is allocated

only during the time intervals [sk + x· p, sk + 1 + x· p),
x ∈ N, 1 ≤ k ≤ n.

Definition III.2: The supply function S(t) of resource partition

P is the number of allocated resource slices in interval [0, t).

S(t) represents the amount of resource supply for resource

partition P from time 0 to t. For example in Fig. 3, the

resource partition is P = ({s1 = 0, s2 = 2, s3 = 4}, 5) and

the supply function of P has S(1) = 1, S(2) = 1, S(3) =
2, S(4) = 2, and so on.

Definition III.3: The availability factor α of a resource partition

P = (S, p) is defined as
|S|
p where |S| is the number of

elements in S.

The RRP model characterizes the resource supply in two

dimensions: (1) the resource supply rate and (2) the deviation

of the resource supply from the ideal resource supply which

allocates the resource evenly to the application over any time

interval (zero jitter). The resource supply rate is defined as

the availability factor α, and we introduce the concept of

regularity to capture the jitter in the resource supply. In the

ideal case, for any time interval of length l, the ideal resource

supply to the application should be equal to l·α. The maximum

supply deviation from this amount over any time interval is

defined as the supply regularity.

Definition III.4: The instant regularity I(t) for a resource

partition P at time t is defined as I(t) = S(t)− α· t.
Definition III.5: Let a, b, k be non-negative integers. The supply

regularity R of resource partition P is defined as the smallest

k such that |I(b)− I(a)| < k, ∀b ≥ a.

Definition III.6: A regular partition is a resource partition with

supply regularity of 1 and an irregular partition is a resource

partition with supply regularity larger than 1.

For example in Fig. 3, the availability factor α of resource

partition P is 3
5 . The instant regularity I(t) has I(1) =

2
5 , I(2) = − 1

5 , I(3) = 1
5 and so on. The supply regularity

R is 1 and P is regular.

B. RRP Scheduling Algorithms

Several algorithms have been developed to construct the

schedule of regular and irregular resource partitions. For the

single uniform resource case, the Adjusted Availability Factor

(AAF) algorithm allocates resource partitions with availability

factor of power of 1
2 to each application [3]. By limiting the

choice of availability factor, the schedule can be easily con-

structed if the sum of the availability factors is less than 1. This

however introduces some resource utilization overhead. For the

uniform multi-resource environment, the use of a combination

of Magic7, PFair algorithms, and various forms of availability

factors was proposed to construct the runtime schedule and

greatly improves the resource utilization overhead [9], [28].

For the non-uniform multi-resource environment, the Acyclic

Regular Composite Resource Partition Scheduling algorithm

was proposed to schedule acyclic regular composite resource

partitions where a composite resource partition is a collection

of multiple resource partitions [4]. All these algorithms were

designed for static resource partition construction.

IV. RESOURCE RECONFIGURABILITY IN RRP MODEL

Different from the aforementioned work on the RRP model,

this paper studies the resource partition reconfigurability prob-

lem in a dynamic environment. In Section IV-A, we first

present the main challenges of maintaining regularity-based

resource partition in the run time and then define the perfor-

mance semantics for online resource partition reconfiguration

in Section IV-B. We give the formal scheduling problem

formulation in Section IV-C and finally present a novel three-

stage algorithm in Section IV-D for constructing the resource

partitions during and after the reconfiguration.

A. Challenges

In the RRP model, there may be multiple applications

running on any physical resource and each application may

request to reconfigure its resource partitions on demand. An

application can issue a Reconfiguration Request of Resource
Partition (R3P) to request new resource partitions or reconfig-

ure the existing ones. As illustrated in Fig. 4, the application

can request to reconfigure its resource supply curve by issuing

an R3P. The system then enters the Resource Partition Tran-
sition (RPT) stage where resource partitions are reconfigured

and performance degradation or temporary over supply may
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Fig. 4: The dotted line illustrates that the requested availability

factor changes from 1
4 and 1 to 1 and 1

4 in (a), (b), respectively,

at the time of R3P. The arrow shows the supply deviation dur-

ing the reconfiguration where there is performance degradation

in (a) and resource over supply in (b), respectively.

happen as shown in Fig. 4 (a) and (b), respectively. After the

RPT stage is over, the reconfigured resource partitions will

supply the resource to applications in accordance with the new

availability factor and new supply regularity by approximating

the new ideal supply curve in a staircase function as depicted

in Fig. 4 (a) (lower dotted supply curve) and (b) (upper dotted

supply curve).

There are multiple challenges to handling R3P appropriately.

First of all, during the RPT stage, there could exist a temporary

overload or schedule conflict such that the system cannot

reconfigure the availability factors of some resource partitions.

This will inevitably violate the performance guarantee of some

resource partitions that may result in unexpected application

failures. To address this issue, a formal definition of the

performance semantics during the resource partition recon-

figuration is needed. Secondly, even if a temporary overload

does not happen during the reconfiguration, resource provi-

sioning may suffer a serious performance degradation if we

naively reschedule the resource without considering the current

resource supply state of individual resource partitions. This

unexpected performance degradation may cause an application

utilizing this partition to miss a deadline during the transition.

An example is shown in Fig. 5 (a) where a new regular

resource partition P3 joins the system at time 5. To fulfill the

performance requirement of P3, there are only two options

to schedule P3’s partitions, as depicted in Fig. 5 (b) and (c),

respectively. Unfortunately, P3 will conflict with P2 in (b) and

conflict with P1 in (c). In these two cases, even though the total

utilization does not exceed 1, the system still cannot schedule

the three resource partitions owning to the conflict. One can

naively reschedule the resource to accommodate this change

such as using the AAF or Magic7 algorithm, as described

in Section III-B to compute a completely new schedule and

switch to this schedule at time 5 as depicted in Fig. 5

(d). However, naively rescheduling resource may cause some

resource partitions to suffer serious performance degradation

and the violation of supply regularity. As illustrated in Fig.5

(d), P2 will suffer a serious starvation interval during time 2

to 8.

P1(α1 = 1
4 ) :

4 5 6 7 8 9 10 11 12
(a)

(b)

(c)

R3P

(d)

(e)

P2(α2 = 1
4 ) :

P3(α3 = 1
2 ) :

0 1 2 3

Fig. 5: There is a R3P at time 5 requesting to add a new

resource partition P3. (a) shows the schedule without R3P . (b)

and (c) shows the R3P will inevitably cause P3 to conflict with

either P1 or P2. (d) shows a naive rescheduling approach that

results in a serious performance degradation in P2 during time

2 to 8. (e) shows a schedule such that P1, P2 and P3 do not

suffer performance degradation and they are all reconfiguration

regular.

B. RRP Model Extension for Online Reconfiguration

To address the aforementioned challenges, we now extend

the RRP model to take the online reconfiguration of resource

partitions into consideration and define the semantics of per-

formance guarantee during the reconfiguration. The precise

scheduling problem formulation and key ideas of the proposed

algorithm will be presented in the next section.

Definition IV.1: Reconfiguration Request of Resource Partition

(R3P) is defined as a tuple λ = {Pt,Rr, T} where Pt is the

target set of resource partitions after the request; each resource

partition Pi ∈ Pt has an associated reconfiguration supply

regularity (see Def. IV.3) of Rr
i ∈ Rr; T is the maximum

time allowed for the reconfiguration to complete.

Recall that a resource partition P is a tuple (S, p). The value

of the tuple changes as the resource partition is reconfigured

at run time. We denote the value of the tuple of a resource

partition P as P o, P d and P t before, during and after the

reconfiguration, respectively. Notice that P is assigned to the

same application during these different stages except that its

schedule and partition specifications (availability factor and

supply regularity) can vary from stage to stage. We now

categorize the resource partitions during a reconfiguration into

the following four categories.

Inserted Partition: P o has an availability factor of 0 and P t

has an availability factor larger than 0. The R3P requests to

add this resource partition P into the system.

Deleted Partition: P t has an availability factor of 0 and P o

has an availability factor larger than 0. The R3P requests to

remove this resource partition P from the system.

Unchanged Partition: P o and P t have the same availability

factor (larger than 0) and the same supply regularity.

Reconfigured Partition: P o and P t have different availability

factors and/or different supply regularity (all larger than 0).

We now extend the definition of instant regularity to accom-

modate the change of availability factor during reconfiguration.
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Fig. 6: Dotted line shows the ideal amount of resource supply

which is 1
4 from time 0 to 4 and 1 after time 4. I(1), I(8)

illustrates the instant regularity at time 1 and 8, respectively.

I(t)−I(1) illustrates the deviation of resource supply for time

interval [1, t).

Definition IV.2: The instant regularity I(t) of a resource par-

tition P at time t ≥ tr is defined as I(t) = S(t) − αo · tr −
αt(t − tr) where tr is the time of a reconfiguration request

λ;αo/αt are its availability factor before/after the request.

As an example shown in Fig. 6 (a), I(1) indicates that there

is resource over supply at time 1 while I(8) indicates that there

is resource under supply at time 8. Moreover, the difference of

the instant regularity between any two time instants indicates

the supply deviation for that time interval. As shown in Fig. 6

(b), S(t) − S(1) indicates the resource supply during time

interval [1, t) and the dotted line illustrates the requested

resource supply for time interval [1, t). I(8) − I(1) indicates

the supply deviation for time interval [1, 8).
Based on the extended definitions of the instant regularity,

we now define the reconfiguration supply regularity as follow.

Definition IV.3: Let a, b, k be non-negative integers. The

reconfiguration supply regularity of resource partition P is

defined as Rr which equals to the smallest k ≥ 1 such that

I(b)− I(a) > −k, ∀b ≥ a.

The reconfiguration supply regularity only defines the max-

imum supply shortfall while the normal supply regularity re-

stricts both the maximum supply shortfall and surplus supply.

This relaxation provides more flexibility when resolving the

schedule conflicts during the reconfiguration. Based on this

definition, the semantics of the performance guarantee for a

resource partition during the reconfiguration can be illustrated

in Fig 4. For any resource partition P , the amount of its supply

shortfall will never exceed the reconfiguration supply regular-

ity Rr for any time interval within or across the reconfiguration

boundary. For all the other time intervals, the resource supply

deviation is bounded by its normal supply regularity. In Fig. 4

(a) and (b), the resource supply deviation before/after the

RPT is bounded by the normal supply regularity as the actual

supply will follow the ideal supply curves. On the other hand,

the resource supply may deviate for any time interval across

the transition boundary which depends on its reconfiguration

regularity Rr. In Fig 4 (a), the resource supply suffers a

performance degradation bounded by Rr while the resource

supply gets a temporary surplus in Fig 4 (b).

Similar to the definition of regular partition, we define the

reconfiguration regular partition as follows.

Definition IV.4: Resource partition P is reconfiguration regular

if and only if its reconfiguration supply regularity Rr = 1, and

it is regular partition before and after the reconfiguration.

A reconfiguration regular partition P supplies the resource

no less than requested fraction of resource over any time

interval. To illustrate the concept, we give a numerical example

in Fig. 5, where we construct two partition schedules as

shown in Fig. 5 (d) and (e). In Fig. 5 (d), the maximum

supply shortfall happens at time interval [2, 8) for P2 which is

I(8)−I(2) = α2×(−8+2) = − 3
2 < −1 and this extra supply

deviation makes P2 not reconfiguration regular. In Fig. 5 (e),

P1 gets surplus supply while the schedule of P2 is unchanged.

This makes P1, P2 and P3 all reconfiguration regular between

P3 and one of P1 or P2.

C. Scheduling Problem Statement and Algorithm Overview

With the above model extension, we are now ready to for-

malize the dynamic resource partition reconfiguration problem.

We first make the following assumptions.

• Only one R3P is allowed during each RPT stage.

• For each resource partition P , P o and P t are both

regular but P t can be reconfiguration irregular, i.e., the

reconfiguration regularity of P can be larger than one.

• The availability factor of P is restricted to be power of
1
2 , but can be relaxed to 1

x , x ∈ N.

• Resources are assumed to be uniform, i.e., the length of

resource slices is the same for all resources.

Problem IV.1: Dynamic Partition Reconfiguration (DPR):
Given a reconfiguration request λ = {Pt,Rr, T} and the

tuples of the resource partitions before the request {P o
i |

∃P t
i ∈ Pt}, compute the schedule of P d

i , P t
i for each resource

partition P t
i ∈ Pt such that the following three conditions are

satisfied:

C-1: P t
i meets the required regularity and availability factor;

C-2: the reconfiguration regularity of Pi is Rr
i ;

C-3: the length of the RPT stage is no longer than T .

By satisfying condition C-1, the resource partition Pi suc-

cessfully reconfigures its capability to supply resource accord-

ing to the updated availability factor and supply regularity;

condition C-2 bounds the maximum performance degradation

of individual partitions during the reconfiguration by speci-

fying the reconfiguration regularity; condition C-3 specifies

the maximum length of the reconfiguration transition during

which the system may suffer performance degradation.

The key challenge of the DPR problem is to ensure that each

resource partition is constructed in a way that it can supply

enough resources (defined by its availability factor, supply

regularity and reconfiguration regularity) both during and after

the reconfiguration. For this purpose, every time a resource

slice is allocated to a resource partition, the next resource

slice to the resource partition must be allocated to satisfy the

performance requirement as specified by the conditions C-1
and C-2. The conditions of C-1 and C-2 together impose a

deadline for allocating the next resource slice to the resource

partition. The problem of scheduling resource partitions is
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Fig. 7: An example of a unit-size transition task: its first

instance is released at time r0 with deadline e0. Given different

finish times, the release time and deadline of the next instance

is computed accordingly. The schedule of the task is cyclic

with period of p after the RPT stage.

akin to scheduling a set of tasks, where (1) a task instance

is immediately released after the execution of its previous

instance, (2) the relative deadline of the new instance is a

function of the maximum supply shortfall indicator (to be

defined later), and (3) each task follows a cyclic schedule after

the RPT stage.

Fig. 7 depicts an example of such a task system. We assume

that the task has a fixed maximum supply shortfall indicator

of 5 and its deadline is the same as the indicator. It also has a

period of 4 after the RPT stage. The first instance has release

time r0 = 0 and relative deadline e0 = 5. If this instance

is scheduled at time 2, it will release the second instance

with release time r′1 = 3 and deadline e′1 = 3 + 5 = 8.

This instance can also be scheduled at time 3. In this case,

the second instance will be released at time r′′1 = 4 with its

deadline e′′1 = 4+5 = 9. After the RPT stage is over, the task

should be scheduled following a cyclic schedule with a period

of 4 as illustrated in Fig. 7.

Before describing such a task system, we first define the

maximum supply shortfall indicator di used for such a task

system.

Definition IV.5: The maximum supply shortfall at any time t of

a resource partition P is defined as d(t) = min
b≤t

(I(t)−I(b)) =

I(t)−max
b≤t

(I(b)).

As illustrated in Fig. 6 (b), I(t) − I(b) indicates the supply

deviation of partition P in time interval [b, t), and d(t) defines

the maximum supply shortfall for any time interval [b, t), b ≤
t.

We shall convert a partition system based on the offsets

of P o
i , performance requirement of P t

i and reconfiguration

regularity of Pi into a unit-size transition task system. A unit-

size transition task system T is a set of tasks {τ1, τ2, . . . , τn},

where each task τi has execution time of one unit, a maximum

supply shortfall di, a relative deadline ei which is a function

of di, and a period pi
2. In a unit-size transition task system,

an instance of τi is immediately released after the execution

of its previous instance. We will discuss how to convert the

DPR problem into the unit-size transition task system and use

the information from the latter to help solve the DPR problem

in Section IV-D.

2Period of a transition task will be the same as the period of P t
i .

Algorithm 1: Algorithm Overview for the DPR Problem

Input: The R3P λ and the R3P requesting time tr
Output: Transition schedule Sd

i and cyclic schedule St
i

for all Pi ∈ P . Reject if no feasible schedule.

1 T 0 = Transformation(λ, tr)
2 for tb ← 0 to T do
3 ({Sd

i | ∀Pi}, T tb) = TransitionSchedule(T 0, tb)
4 if T tb �= Null then
5 {St

i | ∀Pi} = CyclicSchedule(T tb)
6 end
7 if {St

i | ∀Pi} �= Null then
8 return Sd

i and St
i , ∀Pi

9 end
10 end
11 return NULL

To solve the DPR problem, we need to compute the transi-

tion schedule for the RPT stage and the cyclic schedules for all

partitions after the reconfiguration. We propose a three-stage
algorithm to break down the DPR problem into three sub-

problems. An overview of the algorithm is presented in Alg. 1.

Stage-1 of the algorithm transforms the partition system in the

RPT into a unit-size transition task system (Alg. 2). We use

T t to denote the state of the task system at time t including

release time ri and deadline ei, both are relative to t, of each

task instance. In Stage-2, the algorithm searches for a feasible

solution with an RPT duration of tb ≤ T and constructs the

transition schedule for each P d
i within that duration (Alg. 3).

Based on the state information of the task system at the end

of the RPT stage, Stage-3 computes the cyclic schedules for

individual P t
i to meet their corresponding supply regularity

and availability factor requirements (Alg. 4). The correctness

of the algorithm is proved in Theorem IV.3.

D. Details of the Three-Stage Algorithm

We now present the details of the proposed algorithm.

1) Stage 1: Partition to Task Transformation: We present

the details of the algorithm for transforming the partition

system into a unit-size transition task system in this section.

We first describe how to compute di and the relative deadline

ei for each instance of a task τi based on Def. 2.

Theorem IV.1: Given the reconfiguration request time tr > soi ,

where soi is the resource slice offset of P o
i , the maximum

supply shortfall of resource partition P o
i at time tr, di(tr),

can be computed as di(tr) = αo
i (s

o
i + 1− t1) where

t1 =

{
tr mod poi + poi tr mod poi ≤ soi
tr mod poi o.w.

Proof. P o
i (before the reconfiguration) is assumed to be reg-

ular and has an availability factor of the power of 1
2 , it has a

single schedule offset soi and will repeat with a period of poi .

Thus, we have S(tr) = S(t1) + (tr − t1)/p
o
i . Further by the

definition of instant regularity (see Def. III.4) and the fact that
1
po
i
= αo

i , we have

I(tr) = I(t1) (1)
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Algorithm 2: Partition-to-Task-System Transformation

Input: The R3P λ and the R3P requesting time tr
Output: T 0, the state of the constructed unit-size

transition task system at time 0.

1 Procedure Transformation(λ, tr)
2 for Pi ∈ P do
3 di = 0
4 if Pi is a reconfigured or unchanged partition

then
5 if tr ≤ soi then
6 di = −αo

i · tr
7 else
8 tt = tr mod poi
9 if tt ≤ soi then

10 tt = tt + poi
11 end
12 di = αo

i (s
o
i + 1− tt)

13 end
14 end
15 ri = 0; ei = 	(Rr

i + di)/α
t
i
; pi = pti

16 end
17 return T 0

For the same reason, we have S(t) = S(soi +1)+ 	(t− (soi +
1))/poi 
, ∀t > soi . Again by the definition of instant regularity

and the fact that 1
po
i
= αo

i , we have

I(soi + 1 + t) ≤ I(soi + 1) ∀t ∈ N (2)

By the definition of the maximum supply shortfall, Eq. 1, Eq. 2

and the fact that S(t1) = 1, we have di(tr) = I(t1)− I(soi +
1) = αo

i (s
o
i + 1− t1). This completes the proof.

Alg. 2 transforms each resource partition Pi to a task τi
by computing its maximum supply shortfall indicator di and

relative deadline ei at the reconfiguration request time tr.

It computes di(tr) for each task (Line 7–12) according to

Theorem IV.1. The release time and relative deadline of the

first instance of τi is set as ri = 0 and ei = 	(Rr
i + di)/α

t
i
,

respectively. Its period pi is set equal to the period pti of Pi.

2) Stage 2: Transition Schedule Computation: Given a unit-

size transition task system that is transformed from a partition

system in Stage 1 and with a time budget tb to complete the

reconfiguration, this stage computes the transition schedule for

P d
i by following two heuristic principles: (1) we employ the

deferrable scheduling (DS)-EDF algorithm [29] where tasks

are scheduled according to their earliest deadlines but each

task is scheduled as late as possible to reduce the total number

of instances during the RPT stage; and (2) if the deadline

of a task instance calculated through the DS-EDF algorithm

is larger than the time budget tb, the algorithm will try to

schedule it in an idle slice before tb so that the deadline of the

next instance of that task can be further deferred when entering

Stage 3. This will significantly increase the schedulibility of

the cyclic schedule construction in Stage 3.

Algorithm 3: Transition Schedule Computation

Input: The R3P λ, the time budget tb and T 0, the state

of transition task system at the time of R3P

Output: Transition schedule {Sd
i | ∀i} and the state of

transition task system at the end of RPT stage

T tb . Reject if no feasible schedule.

1 Procedure TransitionSchedule(T 0, tb)
2 for tt ← 0 to tb do
3 m[tt] = 0 //initialize the data structure for

schedules

4 end
5 Enqueue all task τi into a queue Q in the ascending

order following (1) deadline ei and (2) period pi
6 while Q �= ∅ do
7 Dequeue τi from Q
8 l = DS-EDF(ri, ei,m, tb)
9 if l = NULL then

10 if ei ≤ tb then
11 return NULL // Deadline will miss

12 end
13 //no idle resource slice can be utilized, update

the task state for Stage 3

14 ri = 0
15 ei = ei − tb
16 else
17 Add l to Sd

i

18 di = min(0, di + 1− αt
i(l + 1− ri))

19 ri = l + 1
20 ei = 	(Rr

i + di)/α
t
i
+ l + 1

21 Enqueue τi to Q
22 end
23 end
24 return ({Sd

i | ∀Pi}, T tb)

25 Procedure DS-EDF(r, e,m, tb)
26 if e > tb then
27 e = tb
28 end
29 for tt ← e− 1 to r do
30 if m[tt] = 0 then
31 m[tt] = 1
32 return tt
33 end
34 end
35 return NULL

Fig. 8 gives an example to illustrate the two heuristic

principles. We use rji and eji to denote the release time and

deadline of the j-th instance of task τi, respectively. Each task

has a relative deadline of 4. The algorithm first schedules the

first instance of task 1 and 2 at time 3 and 2, respectively,

as late as possible but before their deadlines by following

principle (1). The derived deadline of the second instance of

each task is larger than the time budget tb = 6. The algorithm

then utilizes the idle slices at time 4 and 5 to further defer

their deadlines following principle (2). The second instance
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Fig. 8: An example of the transition schedule computation.

of task τ2 is first scheduled, due to its smaller deadline, at

time 5; task τ1 is then scheduled at time 4. This defers the

deadlines of task 1 and 2 further to e31 and e32 (instead of e21
and e22), respectively.

Note that for each new released task instance, its maximum

supply shortfall indicator di and relative deadline ei need to

be recomputed. The next theorem shows how to update di.

Theorem IV.2: If there is exactly one resource slice scheduled

at time t+ δ− 1 in the interval [t, t+ δ) for resource partition

Pi, then di(t+δ), the maximum supply shortfall at time t+δ,

can be computed from di(t) as follows.

di(t+ δ) = min(0, di(t) + 1− αt
i · δ) (3)

Proof. According to Definition IV.5, there exists b ≤ t such

that I(b) ≥ I(b′) ∀b′ ≤ t and di(t) = I(t) − I(b). Either (1)

I(t+ δ) ≤ I(b) or (2) I(t+ δ) > I(b) is true.

For case (1), by definition of instant regularity, we have

di(t+ δ) = S(t+ δ)− αo
i · tr − αt

i(t+ δ − tr)− I(b) (4)

Since there is only one resource slice scheduled at time t+δ−1
during the time interval [t, t+δ), we have S(t+δ) = S(t)+1.

By substituting S(t + δ) in Eq. 4, the definitions of instant

regularity and maximum supply shortfall, we have

di(t+ δ) = 1 + di(t)− αt
i · δ (5)

For case (2) where I(b) < I(t + δ), we have di(t + δ) =
I(t + δ) − I(t + δ) = 0. By combining the two cases, we

complete the proof.

Alg. 3 summarizes the procedure for computing the tran-

sition schedule. At each scheduling decision, the algorithm

schedules the task with the earliest deadline using the DS-EDF

procedure (Line 8). The procedure constructs the transition

schedule by (1) scheduling tasks as late as possible and (2)

utilizing the idle slice before the time budget is used up. After

each instance is scheduled, the indicator di, release time ri
and deadline ei of the task are updated based on Theorem IV.2

(Line 18-20). If all task instances have deadlines larger than

the time budget tb and no more idle resource slice can be

utilized, the algorithm updates the state of the task system

and enters Stage 3 (Line 9-15).

Algorithm 4: Cyclic Schedule Computation

Input: T tb , the sate of the task system after the RPT.

Output: Cyclic schedule {St
i | ∀i}. Otherwise, reject.

1 Procedure CyclicSchedule(T tb)
2 Enqueue all task τi into a queue Q in the ascending

order following (1) period pi and (2) deadline ei
3 for tt ← 0 to pmax do
4 m[tt] = 0
5 end
6 while Q �= ∅ do
7 Dequeue τi
8 l = DS-EDF(0, ei,m, pi)
9 if l = NULL then

10 return NULL

11 end
12 Add l to St

i

13 for tt ← 0 to pmax/pi − 1 do
14 m[l + tt × pi] = 1
15 end
16 end
17 return {St

i | ∀i}

v2,0 = {0, 0}

Level
0

1

2

0 1 2 3 4 5 6 7 8

{0, 1} {1, 0}{1, 1}

v1,0 = {0} v1,1 = {1}

Root

P1/τ1 :

P2/τ2 :

Fig. 9: The schedules can be encoded as a tree where each

resource partition is assigned a sub-tree exclusively.

3) Stage 3: Cyclic Schedule Computation: Based on tran-

sition schedule computation from Alg. 3, this stage computes

the cyclic schedule {St
i | ∀i} for every partition to meet its

required regularity and availability factor after the reconfigu-

ration. Before presenting the details of the algorithm, we first

introduce a tree representation of the cyclic schedule. In this

work, we encode a regular resource partition schedule as a

tree structure called Index Schedule (IS)-tree as depicted in

Fig. 9. At each level i ≥ 0 in the IS-tree, there are 2i number

of nodes and each node represents a schedule assignment of

a resource partition. Each node vi,j at level i > 0 represents a

tree and is indexed as vi,j = {x1, . . . , x2i} where xk ∈ {0, 1},

and the root node is indexed as {}. Each node vi,j has one left

node and one right node indexed as vli,j = {0, x1, · · · , x2i}
and vri,j = {1, x1, · · · , x2i}, respectively. The binary coding

of vi,j can be converted into a numerical value as |vi,j |. A

resource partition P with its schedule encoded as vi,j has

access to resource in [|vi,j |+k×2i, |vi,j |+k×2i+1) ∀k ∈ N

. For example, as illustrated in Fig. 9, resource partition P1

assigned with node v2,0 in the IS-tree has access to the

resource slices in [0+k×22, 0+k×22+1) ∀k ∈ N. The value
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of largest period pmax among all the partitions is denoted as

maxi (pi) where pi is the period of τi.
Given the state of the transition task system at the end of the

RPT, Alg. 4 assigns a node in the IS-tree for each task using

the DS-EDF procedure in Alg. 3. For a task with period pi
the procedure schedules the task as late as possible at level x
where 2x = pi. This procedure repeats until all the tasks have

been assigned with an appropriate tree node. As an example

in Fig. 9, the DS-EDF procedure will search for an available

node at level 1 of the IS-tree for τ2 which has a deadline of 2

and a period of 2. Suppose that v1,1 is available and assigned

to τ2, Alg. 4 will then mark all its child nodes (v2,1 and v2,3)

as unavailable (Line 13-14). Note that for simplicity we use

an array to implement the IS-tree structure in the algorithm.

E. Properties of the DPR Algorithm

This section presents some important properties of the DPR

algorithm, including its time complexity, correctness of the

algorithm and some feasibility analysis.

Time complexity: We begin with the time complexity analysis

of the DPR algorithm. In Stage 1, Alg. 2 has a complexity

of O(N), where N is number of resource partitions, as the

transformation of a partition to a unit-size transition task is

an O(1) operation by Theorem IV.1. In Stage 2, Alg. 3 has a

complexity of O(NlogN), which is for building up the queue,

plus O((2T + N) · logN) for dequeue and enqueue 2T +
N times, and plus the complexity of the DS-EDF procedure

which is O(T 2). In Stage 3, Alg. 4 has a time complexity

of
∑

i(pi +
pmax

pi
) to search available nodes for each task at

level x with 2x = pi and mark the unavailable nodes. Alg. 4

also involves O(2NlogN) the enqueue (dequeue) operations.

This brings the total time complexity of the DPR algorithm to

O(N + T (4NlogN + 2T logN + T 2 +
∑

i(
pmax

pi
+ pi))).

Correctness: We now show the correctness of DPR algorithm.

Theorem IV.3: If the DPR algorithm terminates successfully,

then the solution will satisfy all three conditions C-1 to C-3
as specified in the dynamic partition reconfiguration problem.

Proof. In Stage 3, Alg. 4 computes a schedule for each regular

partition Pi with its targeted availability factor. This satisfies

condition C-1. In Stage 2, Alg. 3 computes the transition

schedule with a time budget bt ≤ T and hence condition C-3
is satisfied. We only need to prove that condition C-2 is also

satisfied where the reconfiguration regularity of Pi is Rr
i .

Step (1) To show that min(I(b)− I(a)) > −Rr
i , ∀b ≥ a, we

only need to consider time intervals [a, b), where b is at the

start of a scheduled slice. For any other time interval [a, b′),
we can always find a b such that there is no slice scheduled in

time interval [b′, b) and this implies S(b′) = S(b), and I(b) ≤
I(b′) by the definition of instant regularity (Def. IV.2). Hence,

I(b′) − I(a) > −Rr
i if I(b) − I(a) > −Rr

i . Furthermore,

by the definition of maximum supply shortfall (Def. IV.5), we

only need to prove di(b) > −Rr
i for all such b. Because P o

i is

regular and −Rr
i ≤ −1 < di(b), ∀b ≤ tr where tr is the time

of R3P request, we can prove by induction that di(b) > −Rr
i

for all such time instant b > tr.

Step (2) Assume that b0 > tr is at the start of first resource

slice after the time of R3P request tr. By the definition of

maximum supply shortfall (Def. IV.5) and the fact that P o
i is

regular, there exists x ≤ tr such that

di(tr) = I(tr)− I(x) > −1 (6)

By Def. IV.2 and S(tr) = S(b0), I(b0) = I(tr) − αt
i(b0 −

tr). Also, I(x) ≥ I(tr) ≥ I(x′) ∀x′ ≤ b0 and x′ ≥ tr by

the definition of maximum supply shortfall (Def. IV.5) and

S(tr) = S(b0). It follows that di(b0) = I(tr)−αt
i(b0 − tr)−

I(x). Furthermore by Eq. 6, we have

di(b0) = di(tr)− αt
i(b0 − tr) (7)

According to the computation of deadline in Alg. 2, we have

b0−tr ≤ (Rr
i +di(tr))/α

t
i−1. From Eq. 7, we have di(b0) ≥

−Rr
i + αt

i > −Rr
i . We hence assume di(bk) > −Rr

i , where

bk is at the start of some scheduled slice. We proceed to show

that di(bk+1) > −Rr
i where S(bk+1) = S(bk + 1).

Step (3) By the same reason in Step (2) to get Eq. 7, we have

di(bk+1) = di(bk + 1)− αt
i(bk+1 − (bk + 1)) (8)

From Alg. 4 and Alg. 3, consecutive resource slices are sched-

uled before their relative deadlines. We have bk+1−(bk+1) ≤{
pti − 1 = 1

αt
i
− 1 or

(Rr
i + di(bk + 1))/αt

i − 1

Substituting bk+1 − (bk + 1) in Eq. 8, we have di(bk+1) ≥{
di(bk + 1)− 1 + αt

i or

−Rr
i + αt

i

We hence have di(bk+1) > −Rr
i because di(bk+1) > −Rr

i +
1− αt

i by Thm. IV.2 and the fact that di(bk) > −Rr
i .

From Step (1) and by mathematical induction using Step
(2) and (3), we show min(I(b)− I(a)) > −Rr

i , ∀b ≥ a. This

completes the proof.

Completeness and feasibility analysis: The following two

theorems prove the completeness of Alg. 4 to compute the

cyclic schedule in Stage 3 of the DPR algorithm and present

a sufficient condition to perform a feasible R3P.

Theorem IV.4: Given the state of a transition task system T tb

at the end of the RPT stage, Alg. 4 can compute a feasible

cyclic schedule if and only if T tb has feasible cyclic schedules

starting at time tb.

Proof. We prove this theorem by showing that any feasible

cyclic schedule s of T tb can be systematically transformed

to an equivalent schedule s′ computed by Alg. 4 and the

intermediate schedule is feasible in each step of the transfor-

mation. We note that a schedule with the following property

is equivalent to the schedule computed by Alg. 4. For any task

τ1 having schedule encoded as v1 = vi,j and any other node

at the same level v2 = vi,k, one of the following conditions

must be true: (1) |v2| ≥ e1; (2) v2 is assigned to a task τ2
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with e2 ≤ e1. (3) v2 is a child of a node assigned to a task

with smaller period. (4) |v2| < |v1|.
The proof proceeds by transforming any feasible schedule

s into a schedule conforming the aforementioned property by

adjusting the schedule of each task τi. The tasks are sorted

according to their (1) period pi and (2) deadline ei in an

ascending order. For each task τi in this queue which is

assigned node vi = vj,k, we check whether there is a nodes

v′i = vj,k′ invalidating all of the 4 conditions. If there exists

such node v′i, we swap the entire sub-tree vi with sub-tree

v′i and none of the deadlines will be violated. Any task τ ′

assigned on the sub-tree v′i must either have pi < p′i or

pi = p′i and ei < e′i. Suppose a task τ ′i is at node v′ki on the

original sub-tree v′i and will be placed at the corresponding

position vki on the new sub-tree vi. Because |vi| < |v′i|, we

have |vki | < |v′ki | and the τ ′i ’s deadline e′i will not be violated

after the swap. For example in Fig. 9, task τ2 on sub-tree v1,1
can be swapped to v1,0 without violating its deadline.

After each swapping step, the schedule remains valid. After

adjusting all the tasks, any pair of nodes will conform to one

of the 4 conditions resulting an equivalent schedule computed

by Alg. 4. This completes the proof.

Theorem IV.5: An R3P is always feasible if every partition

Pi ∈ Pt has reconfiguration regularity Rr
i no less than 2.

Proof. One can simply set the time budget of reconfigura-

tion to zero and perform the DPR algorithm. By Def. III.5,

Def. III.6, Def. IV.5 and fact that resource partition has

reconfiguration regularity Rr
i > 1, we have di(tr) > −1. The

deadline of each task τi will be ei = 	(Rr
i + di(tr))/α

t
i
 ≥

1
αt

i
= pi. If ei ≥ pi holds for every task τi and the total

utilization of task is no greater than 1, Alg. 4 can compute

the feasible schedule by allocating schedule in the ascending

order of the periods.

V. PERFORMANCE EVALUATION

In this section, we provide an experimental evaluation of

the performance of the DPR algorithm. The simulation results

are presented in Section V-A. We also applied the resource re-

configurability model to a real-life autonomous control system

and demonstrate its effectiveness in Section V-B.

A. Simulation-based experiments

We first study the performance of the DPR algorithm using

simulation with different settings. In the experiments, the

availability factors of each individual partition before and

after R3P are randomly sampled from 1
2i (1 ≤ i ≤ 7).

The reconfiguration supply regularity Rr
i of each resource

partition is randomly sampled from [1, 5] and the transition

budget T is randomly sampled from [0, 20]. The number of

partitions is randomly sampled from [1, 15]. We also compare

the performance of the DPR algorithm with the optimal results

which are computed by using an integer linear programming

solver [30]. The solver is encoded to search for one valid

schedule given the requirement of each R3P for 600 seconds

on a machine with Core(TM) i-5 3.5 GHz CPU.
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Fig. 10: R3P schedulability with different utilization settings
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Fig. 11: Comparison of R3P schedulability between different

reconfiguration regularity and budget.

In the first set of experiments, we configure each resource

partition to be reconfiguration regular and set the transition

budget to be 0. These experiments aim to provide insights on

the schedulability of R3P with different partition utilization

changes as the general case. From Fig. 10, it can be observed

that the schedulability greatly depends on the before-utilization

(the total utilization before R3P) while the after-utilization (the

total utilization before R3P) has little effect.

From the general case, we can see that the schedulability of

DPR algorithm is low when both after-utilization and before-

utilization are high. Next we explore the schedulability of

the DPR algorithm under heavy before-utilization and after-

utilization settings. In the second set of experiments, they are

both set to be 0.9 but the reconfiguration supply regularity and

transition budget can be higher than 1 for the R3P requests

in these experiments. In Fig. 11 (a), each line represents a

different fraction of partitions that have Rr
i > 1 and the x-

axis denotes the transition budget. Line D20% (D80%, re-

spectively) illustrates the results with 20% (80%, respectively)

resource partitions having Rr
i > 1 from the DPR algorithm

while line O20% illustrates the results with 20% resource

partition having Rr
i > 1 from the integer linear programming

solver. In Fig. 11 (b), each line represents a different budget
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Application Task Context RT Req. (ms)
PID Controller Control Loop Straight Ahead (0.4, 128)
PID Controller LIDAR Sensor Straight Ahead (0.4, 128)
Vison Controller Image Recog. Straight Ahead (110, 200)
Vison Controller Camera Straight Ahead (50, 200)
Communication Send Signal Both (0.3, 128)
PID Controller Control Loop Turn Corner (0.4, 64)
PID Controller LIDAR Sensor Turn Corner (0.4, 64)

TABLE I: The autonomous control system has three applica-

tions. Each application consists of multiple tasks along with

their real-time requirements in different contexts.

while the x-axis denotes the fraction of partitions that have

Rr
i > 1. We make three important observations here: (1)

the transition budget can help improve the schedulability

but it has its limitation and only works for some extreme

cases. Providing more budget does not necessarily improve

schedulability. (2) The DPR algorithm performs comparably to

any optimal approach in terms of schedulability. However, the

solver takes 113 seconds on average while the DPR algorithm

takes 0.00038 seconds to compute the schedule for budget

equals to 20. (3) In Fig. 11 (b), it can be observed that

the increase of Rr
i can significantly improve schedulability.

Moreover, when all partitions have Rr
i > 1, the schedulability

is 100% as proved in Thm. IV.5.

B. Case Study on the Autonomous F1/10 Model Car

We implemented the RRP resource model and the DPR

approach on an F1/10 autonomous model car system to

demonstrate the benefit of resource partitioning and reconfigu-

ration in dynamic environment and compared the effectiveness

of the DPR approach with a naive approach.

Our F1/10 autonomous car is built on the Traxxas Slash

model car with the following major hardware components [31]

as shown in Fig. 12 (a): 1) NVIDIA Jetson Tx2 embedded AI

computing platform [32] running the software stack, 2) LIDAR

sensor to measure the distance to surrounding objects, and 3)

Zed stereo camera to capture front image. For the software

stack, we integrated the LitmusRT framework [33], [34], a

real-time extension of Linux kernel 4.9.30, with the NVIDIA

downstream kernel 4.4 to provide the resource partitioning

function using the P-RES scheduler. To support applications in

user space, we also implemented a library based on the Robot

Operating System (ROS) framework [35] to enable the ROS

applications to (1) operate as sets of periodic processes and

(2) request static and online resource reconfiguration.

We now explain how our F1/10 model car system achieves

dynamic resource reconfiguration. Suppose that the car control

system aims to race in a 35m by 8m rectangular track as

fast as possible while avoiding any obstacles. The control

system has three applications running: PID Controller, Vision

Controller, and Communication. As summarized in Table I,

each application contains a set of tasks and each task is asso-

ciated with the corresponding real-time requirements (worst-

case execution time, task period). The requirement of each

application on this car system is specified by its developer and

can vary on different hardware platforms. The PID Controller

generates control signals to the motor and steering system

to avoid obstacles, and it coordinates the control loop task

with the LIDAR sensor task. The Vision Controller identifies

the traffic signs (red circles) that are used to indicate that

there exists a corner ahead. The Communication application

couples the control system and the motor and steering system

by exchanging sensing and control messages. The environment

of our case study can be classified into two contexts: “Straight

Ahead” and “Turn Corner”. In the Straight Ahead context, the

system allocates most resources to the Vision Controller for

detecting the traffic sign while moving as fast as possible in

our laboratory corridor (Fig. 12 (b)). After the traffic sign is

detected, the system enters the Turn Corner context where it

slows down and makes the turn (Fig. 12 (c)). After the car goes

around the corner, the system enters the Straight Ahead context

again. During these context switch, the car control system will

adapt its application and reconfigure the resource interfaces

accordingly so that the requirement of each application in

different contexts can be satisfied3.

Our case study uses a simple application transition model.

We demonstrate the PID Controller and Communication ap-

plications cannot tolerate any extra latency while the Vision

Controller application can tolerate an extra delay less than

100ms during context transitions. The system enters the “Turn

Corner” context when the Vision Controller detects a traffic

sign, and it enters the “Straight Ahead” context when the PID

Controller finishes executing the “Turn Corner” operation. The

relationships between the behavior and requirement of each

task in every context is summarized in Table I. The last column

in the table gives the real-time requirement of each task in

milliseconds which represents the worst-case execution time

and the period of the task. Note that the execution time of the

Vision Controller varies a lot in the test scenarios and depends

on the speed of the image processing application. When the

goal is to finish the race as fast as possible, the faster the

Vision Controller can finish processing and identify the traffic

signs ahead, the faster the car can run. In the experiments, we

scheduled all the three applications on one Denver core on Jet-

son Tx2 [32] and run all other non-real time tasks on the other

cores. This minimizes the impact of the resource slice blocked

by the kernel interrupt handling to avoid failures of the control

system. Based on the requirement of each application, the

system allocates resource partition P1 to the PID Controller,

P2 to the Vision controller and P3 to the Communication. Each

application runs a round-robin scheduler to schedule its own

task group. The control system issues a reconfiguration request

when entering each context. When entering the Straight Ahead

context, λs = {Pt
s,Rr

s, 100} where P s
1 , P

s
3 ∈ Pt

s are regular

with availability factor αs
1 = αs

3 = 1
128 while P s

2 ∈ Pt
s

has αs
2 = 63

64 . The reconfiguration regularity of P1, P2, P3 is

1, 1, 100, respectively. When entering the Turn Corner context,

λc = {Pt
c,Rr

c , 100} where P c
1 , P

c
3 ∈ Pt

c are regular partitions

with availability factor αc
1 = 1

64 , α
c
3 = 1

128 while P c
2 is

a deleted partition which has αc
2 = 0. The reconfiguration

3A demonstration video can be found on Youtube in the following link:
http://www.youtube.com/watch?v=8b-MMP3-cug
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Fig. 12: A case study of dynamic partition reconfiguration on the autonomous F1/10 model car: (a) hardware components, (b)

the “Straight Ahead” context, (c) the “Turn Corner” context, and (d) a system failure observed using the naive algorithm.
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Fig. 13: The response time (ms) of each application at each

time point (seconds) using the DPR algorithm (a), (b) and

using the naive algorithm (c), (d).
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Fig. 14: The schedules computed by the DPR and Naive

algorithms.

regularity of P1, P3 is 1 for the Turn Corner R3P. Each

reconfiguration request has a response time of 50ms in the

experiments.

We capture the performance of the system by measuring

the response time of every task instance of the PID Controller

and Communication applications. Failure to guarantee enough

resource supply to these applications may result in system

failure. For system running the DPR algorithm, it not only

considers the current supply shortfall of each resource partition

but also the response time of a reconfiguration. The operation

of a reconfiguration is considered as a single instance transition

task which has both execution time and deadline of 50ms
released at the time of each reconfiguration request. For the

case where system running a naive algorithm, the system

simply computes two schedules for each context and swaps

them during each reconfiguration.

Fig. 13 shows the response time and deadline of each

task instance. When the system runs the DPR algorithm, the

response time of most task instances are stable and below

the corresponding deadline as shown in Fig. 13 (a) and (b).

There may be unusual response time spikes such as around

time 25. The activity and scheduling traces indicate that it

is because the reconfiguration operation takes longer than the

estimated 50ms. On the other hand, a naive algorithm will

be more likely to under-supply the resource partitions during

reconfiguration as shown in Fig.13 (c) (d). Spikes of response

time are often close to the time of reconfiguration and the

spikes indicate that P1 and P3 are reconfiguration irregular.

The performance degradation at time 32 causes the car to

fail in avoiding obstacles as illustrated in Fig. 12 (d). Fig. 14

illustrates the different schedules computed by DPR and naive

algorithm in this condition where the context changes from

the Turn Corner to the Straight Ahead. One can see that there

is a huge starvation interval between time 2 and 193 for the

Communication application in the naive approach. This results

in the extra latency and eventually causes the car to crash.

Note that the spike at time 28 in Fig. 13 (d) is caused by the

fact that the ROS library is not a hard real-time library which

sometimes takes longer to execute certain functionality.

VI. CONCLUSION

In this paper, we study the dynamic partition reconfiguration

(DPR) problem by: (1) Proposing a precise semantics of

resource provisioning during resource reconfiguration for CPS

in the open system environment; this helps to avoid unexpected

system instability problems. (2) Presenting a novel DPR

algorithm to satisfy the performance requirements of partition

reconfiguration requests. (3) Demonstrating the benefit of the

DPR approach on a real-life open system application.
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