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Abstract 
Advances in technology have given us the ability to create 

and manipulate robots for numerous applications at the 

molecular scale. At this size, fabrication tool limitations 

motivate the use of simple robots. The individual control of 

these simple objects can be infeasible. We investigate a 

model of robot motion planning, based on global external 

signals, known as the tilt model. Given a board and initial 

placement of polyominoes, the board may be tilted in any of 

the 4 cardinal directions, causing all slidable polyominoes to 

move maximally in the specified direction until blocked. 
We propose a new hierarchy of shapes and design a 

single configuration that is strongly universal for any w×h 

bounded shape within this hierarchy (it can be reconfigured 

to construct any w×h bounded shape in the hierarchy). This 

class of shapes constitutes the most general set of buildable 

shapes in the literature, with most previous work consisting 

of just the first-level of our hierarchy. We accompany this 

result with a O(n4 logn)time algorithm for deciding if a given 

hole-free shape is a member of the hierarchy. For our second 

result, we resolve a long-standing open problem within the 

field: We show that deciding if a given position may be 

covered by a tile for a given initial board configuration is 

PSPACEcomplete, even when all movable pieces are 1 × 1 

tiles with no glues. We achieve this result by a reduction 

from Non-deterministic Constraint Logic for a one-player 

unbounded game. 

1 Introduction 

Advances in technology have given us the ability to 

create and manipulate robots for numerous 

applications at the molecular scale. At this size, 

fabrication tool limitations often make precise 

construction of the objects infeasible and thus self-

assembly methods have been employed. This allows 

the creation of simple primitives that come together 

algorithmically to form the desired objects [11]. 

Similarly, the individual control of these simple nano-

scale objects can be infeasible due to the cost or the 
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desired simplicity of the building blocks. Thus, a growing 

area of interest is robot motion planning based on global 

external signals, known as the tilt model [4,5]. This simple 

model gives all robots the same movement signal, which 

means all robots can be identical, and only their location 

and the geometry of the board need to be considered for 

fabrication. 

The tilt self-assembly model consists of a 2D grid 

board with “open” and “blocked” spaces, as well as a 

set of slidable polyominoes placed on the board. The 

model uses a global external force to give all movable 

particles the same movement instruction. This may be 

done through any external force such as a magnetic 

field or gravity. This model has a history of assuming 

gravity as the external global force, hence the term tilt. 

In this model, a board may be tilted (an application of 

the global external force) in any of the four cardinal 

directions, causing all slidable polyominoes to slide 

maximally in the respective direction until reaching an 

obstacle. Various puzzle games exist which utilize the 

mechanics of this model; the maximal movement of [1] 

and the global movement signals in [2]. 

1.1 Related Work. In [8], the authors introduced a 

class of shapes constructed by “dropping” pixels on a 

fixed seed from any of the four cardinal directions. 

Along with this new class of “drop-shapes”, they 

presented a polynomial-time algorithm to check if a 

given hole-free shape is in this drop class (i.e., it can be 

constructed via this pixel dropping method). Given a 

hole-free shape, they showed how to construct a tilt 

model micro-factory which can build the shape. In [10] 

the authors provide an algorithm to determine if any 

given shape is in the class of drop shapes with the run 

time being exponential in the number of holes. 
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The efficient construction of drop-shapes in the 

tilt model was explored in [12]. The authors present a 

construction which efficiently builds a particular set of 

shapes in sublinear time through the use of 

parallelization. They introduce a hierarchical process 

whereby multi-tile subassemblies may be successively 

combined in a drop fashion. They define two classes of 

shapes 2-cuttable and straight 2-cuttable as any 

polyomino that can be decomposed into monotone 

subpolyominoes using valid 2-cuts and valid straight 

2-cuts respectively. They also give a polynomial time 

algorithm for determining if a given simple polyomino, 

or one with convex shaped holes, is straight 2-cuttable. 

They also have a polyomial time algorithm for finding 

if a valid 2-cut exists in the same two types of shapes. 

Given a shape in their buildable class, a tilt model 

configuration could be generated to assemble that 

shape through a sequence of tilts. 

This drop-shape construction work was extended 

in [3]. Rather than focusing on designing 

configurations for specific drop-shapes, the authors 

create a general drop-shape constructor. They 

introduced the concept of universal constructors in the 

tilt model. These are constructors which, starting from 

one initial configuration, can construct any shape from 

a particular set. In this work, a configuration that is 

universal for the set of drop-shapes was created. 

These construction results are usually paired with 

complexity results to decide what can be constructed. 

One of the most natural questions in the tilt model asks 

if a particular location on a board may ever be 

occupied by a particle from the starting configuration. 

This problem, known as the occupancy problem, was 

first introduced in [4]. The authors proved the 

problem was NP-hard, even when considering the 

restricted case of a configuration with only 1×1 tiles. 

The authors also showed that a dualrail logic fanout 

was not possible with only 1×1 tiles, which seemed to serve 

as 

evidence that this problem was not PSPACE-complete. 

Following, in [3] the authors proved that the occupancy 

problem is PSPACE-complete if a single “large” polyomino 

is allowed (they used a single 2×2 polyomino along with 1 × 

1 tiles). 

1.2 Our Contributions. In this paper, we formalize 

the notion of hierarchical construction (first started in 

[12]) by presenting a hierarchy of shape classes. In 

Section 3, we formally define a dropshape hierarchy. 

We also present a O(n4 logn)-time algorithm for 

determining if a given hole-free shape is in this 

hierarchy. To accompany this result, we present the 

design for a configuration that is strongly universal for 

any shape within the hierarchy in Section 4. This result 

constitutes the most general set of buildable shapes in 

the literature, with previous work consisting of just 

the first level of our hierarchy. The second main result 

of this paper is in Section 5, where we resolve an open 

problem from [4] by showing that the occupancy 

problem, contrary to expectation, is PSPACE-complete 

even when restricting all polyominoes to be 1 × 1 tiles. 

Shape Class Result Theorem 

Hole-free Level-1 Drop Shapes (D1) O(nlogn) Thm. 5 in [8] 

Level-1 Drop Shapes (D1) O(n2h!) Alg. 1 in [10] 

Straight 2-Cuttable Hole-free Shape O(n3 logn) Thm. 2 in [12] 

Straight 2-Cuttable Shape with Convex Holes O(n4 logn) Thm. 2 in [12] 

Hole-free Drop Shapes (D) O(n4 logn) Thm. 3.1 

Table 1: Known results for deciding membership in the drop-shape hierarchy of a size-n shape (We refer to 

size as the number of tiles.). h denotes the number of holes in the shape. Previous results only decided shapes 

in D1. With holes, no polynomial time algorithm is known even for D1. 

Class Universal Tilts Board Size Theorem 

Drop Shapes (D1) 
No O(hw) O(h3w3) Thm. 6 in [8] 

Yes O(h2w) O(h2w) Thm. 4.1 in [3] 

Drop Shape Hierarchy (D) 
No O(hw) O(h2w2) Thm. 3 in [12] 

Yes O(h3w2) O(h2w2 log2(hw)) Thm. 4.1 

Table 2: Construction results for shapes with a h × w bounding box. 
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2 Model Preliminaries 

Board. A board (or workspace) is a rectangular 

region of the 2D square lattice in which specific 

locations are marked as blocked. Formally, an m × n 

board is a partition B = (O,W) of {(x,y)|x ∈ {1,2,...,m},y ∈ 

{1,2,...,n}} where O denotes a set of open locations, and 

W denotes a set of blocked locations- referred to as 

“concrete” or “walls.” We classify the different possible 

board geometries according to the following 

hierarchy: 

• Connected: 1  A board is said to have connected 

geometry if the set of open spaces O for a board is 

a connected shape. 

• Simple:2 A connected board is said to be simple if 

O has genus-0. 

• Monotone: A simple board is monotone if O is 

either horizontally monotone or vertically 

monotone. 

• Convex: A monotone board is convex if O is both 

horizontally monotone and vertically monotone. 

• Rectangular: A convex board is rectangular if O is 

a rectangle. 

Our board definitions have changed since [3] in 

order to create the hierarchy shown above. 

Tiles. A tile is a labeled unit square centered on a 

non-blocked point on a given board. Formally, a tile is 

an ordered pair (c,a) where c is a coordinate on the 

board, and a is an attachment label. Attachment labels 

specify which types of tiles will stick together when 

adjacent, and which have no affinity. For a given 

alphabet of labels Σ, and some affinity function G : Σ × 

Σ → {0,1} which specifies which pairs of labels attract 

(G(a,b) = 1) and which do not (G(a,b) = 0), we say two 

adjacent tiles with labels a and b are bonded if G(a,b) = 

G(b,a) = 1. 

Slidable Polyominoes. A slidable polyomino 

is a finite set of tiles P = {t1,...tk} that is 1) 

connected with respect to the coordinates of the 

tiles in the slidable polyomino and 2) bonded in 

that the graph of tiles in P with edges connecting 

 
1 In [3], this hierarchy level was known as complex. We modify 

this class to allow for a proper hierarchy of shape classes. 

bonded tiles is connected. When the context is clear, 

we often refer to these simply as polyominoes. A 

slidable polyomino that consists of a single tile is 

informally referred to as a “tile”. 

Configurations. A configuration is an 

arrangement of polyominoes on a board such that 

there are no overlaps among polyominoes, or with 

blocked board spaces. Formally, a configuration C = 

(B,P = {P1 ...Pk}) consists of a board B, along with a set 

of non-overlapping polyominoes P that each do not 

overlap with the blocked locations of board B. 

Step. A step is a way to turn one configuration into 

another by way of a global signal that moves all 

polyominoes in a configuration one unit in a direction 

d ∈ {N,E,S,W} when possible without causing an 

overlap with a blocked location, or another polyomino. 

Formally, for a configuration C = (B,P), consider the 

translation of all polyominoes in P by 1 unit in 

direction d. If no overlap with blocked board spaces 

occurs, then the new configuration is derived by first 

performing this translation, and then merging each 

pair of polyominoes that each contain one tile from a 

now (adjacently) bonded pair of tiles. If an overlap 

does occur, for each polyomino for which the 

translation causes an overlap with a blocked space, 

temporarily add these polyominoes to the set of 

blocked spaces and repeat. Once the translation 

induces no overlap with blocked spaces, execute the 

translation and merge polyominoes based on newly 

bonded tiles to arrive at the new configuration. If all 

polyominoes are marked as blocked spaces, then the 

step transition does not change the initial 

configuration. If a configuration does not change 

under a step transition for direction d, we say the 

configuration is d-terminal. In the special case that a 

step causes a polyomino (or subpolyomino) to leave 

the board, we remove the polyomino from the 

configuration. 

2 In [3], they define simple geometry based on the connectivity of W. 

We also modify the concept for hierarchical purposes. 

Problem Polyominoes Result Theorem 

 

 

  

Table 3: Known complexity results in the full tilt model. All current results for occupancy also imply hardness 

for relocation. Reconfiguration Minimization is finding the minimum length tilt sequence. Each of the results 

that use a 2 × 2 polyomino only uses a single one and multiple 1 × 1s. 



 

 

Figure 1: Tilt Example 

Tilt. A tilt in direction d ∈ {N,E,S,W} for a 

configuration is executed by repeatedly applying a 

step in direction d ∈ {N,E,S,W} until a d-terminal 

configuration is reached. We say that a configuration C 

can be reconfigured in one move into configuration C0 

(denoted C →1 C0) if applying one tilt in some direction 

d to C results in C0. We define the relation →∗ to be the 

transitive closure of →1. Therefore, C →∗ C0 means that 

C can be reconfigured into C0 through a sequence of 

tilts. 

Tilt Sequence. A tilt sequence is a series of tilts 

which can be inferred from a series of directions D = 

hd1,d2,...,dki; each di ∈ D implies a tilt in that direction. 

For simplicity, when discussing a tilt sequence, we just 

refer to the series of directions from which that 

sequence was derived. Given a starting configuration, 

a tilt sequence corresponds to a sequence of 

configurations based on the tilt transformation. An 

example tilt sequence hS,W,N,W,S,W,Si and the 

corresponding sequence of configurations can be seen 

in Figure 1. 

Universal Configuration. A configuration C0 is 

universal to a set of configurations C = {C1,C2,...,Ck} if 

and only if C0 →∗ Ci ∀ Ci ∈ C. 

Configuration Representation. A configuration 

may be interpreted as having constructed a “shape” in 

a natural way. Define a shape to be a connected subset 

S ⊂ Z2. A configuration strongly represents S if the 

configuration consists of a single polyomino whose tile 

coordinates are exactly the points of some translation 

of S. A weaker version allows for some “helper” 

polyominoes to exist in the configuration and not 

count towards the represented shape. In this case, we 

say a configuration weakly represents S. 

Universal Shape Builder. Given this 

representation, we say a configuration C0 is 

universal for a set of shapes U if and only if there 

exists a set of distinct configurations C such that 

1) each u ∈ U is represented by some C ∈ C and 2) 

C0 is universal for C. If each u ∈ U is strongly 

represented by some C ∈ C, we say C0 is strongly 

universal for U. Alternately, if each u ∈ U is weakly 

represented by some C ∈ C, we say C0 is weakly 

universal for U. In a similar way, a configuration can be 

universal for a set of patterns. 

3 Drop-Shape Hierarchy 

We utilize the same definitions for polyominoes and cuts 

as used in [12]. 

Polyomino. For a set P ⊂ Z2 of grid points in the 

plane, let the graph GP be the induced grid graph in 

which two vertices p1,p2 ∈ P are connected if they are 

unit distance apart. For any set P with connected grid 

graph GP, a polyomino may be induced by replacing 

each point p ∈ P with a unit square centered at p. A 

polyomino is said to be hole-free or simple if the 

induced graph Z2 \ P is connected. We say that 

polyominoes which are equal up to translation have 

the same shape. We often use these terms 

interchangeably. 

Cuts. A cut is an orthogonal curve moving between 

points of Z2. A p-cut is a cut that splits a polyomino P 

into p subpolyominoes. We say that a cut is valid if all 

of the induced subpolyominoes may be partitioned 

into two nonempty groups which may be pulled apart 

in opposite directions without blocking each other. A 

polyomino A is blocked by another polyomino B in 

direction d if A cannot be pulled in direction d without 

colliding with B (note that A sliding adjacent to tiles in 

B is also considered as a collision). See Figure 2 for 

examples of valid and invalid cuts. 

Tangled Polyomino. A tangled polyomino is one 

which does not have a valid 2-cut. That is, any cut 

either splits the polyomino into two subpolyominoes 

which cannot be pulled apart (invalid), or it splits the 

polyomino into more than two subpolyominoes (p-cut 

where p > 2). Figure 3a provides an 

 

 

Figure 2: Examples of valid and invalid cuts for a given 

polyomino. It is important to note that along with direct 

collision, we consider a cut to be invalid if the resulting 

( a)Valid2-cut ( b)Invalid2-cut 

( c)Valid3-cut ( d)Invalid3-cut 
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polyominoes must slide past adjacent squares. 

example of a tangled polyomino. 

 

 (a) (b) 

Figure 3: (a) A tangled polyomino for which no 2cut 

exists. (b) An abstract representation of tangled 

polyomino S from Lemma 3.2 which depicts the 

required properties as stated in the proof. 

Drop Construction Step. A drop construction 

step is described by a direction {N,E,S,W} and a 

latitude or longitude l representing the column/row 

that a shape is placed. The shape arrives from (l,∞) for 

north, (l,−∞) for south, (∞,l) for east, and (−∞,l) for 

west. The shape moves along the row/column until it 

reaches the first grid position adjacent to to an existing 

tile. We will refer to this as dropping a tile or shape. 

Drop-Shape Hierarchy. Here we define the 

hierarchy of drop-shapes (denoted D). We use 

notation Dh to denote level-h of the drop-shape 

hierarchy. Beginning with level-1, the levels of our 

hierarchy are defined recursively, containing the 

specified elements and nothing else: 

• Level-0 (D0). The single tile. 

• Level-1 (D1). The set of shapes in D1 is defined 

recursively: 

– (Base) D0 ⊂ D1 

– (Drop Combinations) For any A ∈ D1, any 

polyomino C that is produced by dropping 
a single tile onto A is also in D1. 

• Level-h (Dh). In general, the set of shapes in Dh 

is defined recursively: 

– (Base) Dh−1 ⊂ Dh 

– (Drop Combinations) For any A ∈ Dh−1 and 

B ∈ Dh, any polyomino C that is produced 

by dropping A onto B is also in Dh. 

• Strict Level-h (Dbh): The set of shapes that are 

in Dh, but not in Dh−1. Formally,  

Dh−1. 

• The Hierarchy (D): The hierarchy is defined as 

the union of all levels. Formally, D  

Since tangled polyominoes cannot be decomposed, no 

tangled polyomino is in the hierarchy. 

Decomposition Tree. A decomposition tree for a 

given polyomino P is a rooted binary tree of 

polyominoes with root node being P, each leaf being 

either a single tile or a tangled polyomino, and all non-

leaf nodes having two children consisting of two 

polyominoes that make a valid 2-cut for the polyomino 

at the given node. A decomposition tree is said to be 

atomic if all leaves are single tiles. 

Strict Decomposition Tree. A decompostion tree 

is said to be a Strict Decomposition Tree if for every 

node p,either p ∈ D0, or for some and has 

children pi ∈ Dh and pj ∈ Dh−1. 

Singly-Connected Tile. A tile t in polyomino P is 

said to be singly-connected w.r.t. P if and only if it is 

connected to P −t on only one of its four edges. 

3.1 Membership in the Drop-Shape Hierarchy. A 

key contribution of this paper is a board configuration 

that is universal for all shapes in the dropshape 

hierarchy of up to a given size n. This leads to the 

natural question of how efficiently can we decide if a 

given polyomino is a member of the drop-shape 

hierarchy D. D is equivalent to the set of 2-cuttable 

shapes defined in [12]. There, the authors present an 

algorithm for determining if a shape is in the set of 

straight 2-cuttable shapes, which is known to be a 

subset of D. It is currently unknown if the set of 

straight 2-cuttable shapes is equivalent to D. In this 

section we develop an efficient algorithm for deciding 

membership in D for the case of genus-0 polyominoes. 

We first formally define the drop-shape hierarchy 

membership problem. We then prove two technical 

lemmas (Lemmas 3.1, 3.2) that will be used to 

establish the correctness of an efficient algorithm for 

deciding membership, provided in Theorem 3.1. 

Drop-Shape Hierarchy Membership Problem. The 

drop-shape hierarchy membership problem asks: Given a 

polyomino P, is P ∈ D? 

Lemma 3.1. Given a hole-free polyomino P, P ∈ D if and only if 

there exists an atomic decomposition tree for P. 

Proof. This proof builds off of Theorem 2 from [7], where 

they show that decomposition is the reverse of 

construction. Clearly, P is in the drop-shape hierarchy if 

such a decomposition tree exists, as the reverse drop 

construction step sequence can be performed to yield P. If 

no such decomposition tree exists, this means that all 

decomposition trees contain at least one leaf which is a 

tangled polyomino. Since a tangled polyomino cannot be in 

the hierarchy (as there are no valid 2-cuts), there must 

always exist a drop construction step which uses a 

polyomino that is not in the hierarchy.  

 

 

    

  



 

Lemma 3.2. If there exists a decomposition tree for hole-

free polyomino P which has a tangled polyomino S as a 

leaf, S must be a leaf in every decomposition tree of P. 

Proof. Given that there exists a decomposition tree TA 

which has tangled shape S as a leaf, assume that some 

other decomposition tree TB exists which does not 

have S as a leaf. This implies that TB uses some 

decomposition sequence which involves a polyomino 

P0 such that S ⊂ P0 ⊆ P and there exists a 2-cut for P0 

which also goes through subpolyomino S. 

Let c be a valid 2-cut for P0 which also cuts through 

S. Since we know that S by itself is tangled, one of the 

following must be true: 1) c was an invalid 2-cut 

through S which is now valid because of the additional 

tiles introduced by P0−S. 2) c was a valid p-cut (with p 

> 2) through S which has now become a valid 2-cut 

because of the additional tiles introduced by P0 −S. 

Since the addition of more tiles can never unblock a 

cut, we see that the first case cannot be true. The 

second case is not so straightforward, and requires 

more investigation. 

First, consider the stand-alone polyomino S. 

We know c was a valid p-cut through S (with p > 

2) which has now become a valid 2-cut through 

P0. For now, let it suffice to assume that c was a 

valid 3-cut through S. We will generalize to p 

later. This means that c cuts S into 3 

subpolyominoes {Sa,Sb,Sc} that can be partitioned 

into two sets which may be pulled apart in 

opposite directions without blocking each other. 

W.l.o.g., let that partition be {{Sa},{Sb,Sc}}. Figure 

3b shows a sketch that highlights the essential 

properties S must have. Since c is a 3-cut through 

S, we know that there must exist a path of empty 

spaces which separates Sb from Sc and begins at 

an empty space x along c which is adjacent to Sa. 

Furthermore, we know that subpolyominoes Sb 

and Sc must both block each other in the direction 

that {Sb,Sc} is pulled apart from {Sa}; otherwise, a 

valid 2-cut would have existed in S (by pulling Sb 

or Sc off of S by itself). 

Now, consider the polyomino P0 with 

subpolyomino S. If location x contained a tile in 

polyomino P0, we know that said tile would be 

blocked in each of the four directions by one of 

S’s three subpolyominoes (there would be no 

way to remove the tile without also removing 

some portion of S). This, along with the fact that 

S is a node in the decomposition tree Ta, shows 

that location x must be empty in polyomino P0. In 

order for c to be a 3-cut through S and a 2-cut 

through P0, the induced subpolyominoes Sb and Sc 

must be connected via a path of tiles in P0−S. 

Clearly, this path cannot exist on Sa’s side of c, as 

it would make c an invalid 2-cut for P0. So, this path 

must connect Sb and Sc on their side of c. Since location 

x cannot contain a tile in P0 we see that the connection 

between Sb and Sc must cut off x’s connection to the 

outside plane. This cannot be the case, however, 

because P0 is a hole-free polyomino. 

So, c could not have simultaneously been a valid 

valid 2-cut through P0 and valid 3-cut through S. It is 

easy to observe that any valid p-cut through S (which 

is also a valid 2-cut through P0) must have at least one 

pair of induced polyominoes with the same properties 

as Sb and Sc, and all others may be considered as Sa for 

the purposes of this proof. Thus, no valid 2-cut through 

P0 may cut through S. This implies that decomposition 

tree TB must not exist, as was originally assumed, and 

every decomposition tree must contain S as a leaf.  

Theorem 3.1. A hole-free size-n polyomino P can be checked 

for membership in the drop-shape hierarchy in O(n4 logn) 

time. 

Proof. This algorithm is straightforward. Given holefree 

polyomino P, perform the following steps: 

1. Base Case: If P is a single tile, return yes. If P is tangled, 

return no. Otherwise, continue to step 2. 

2. Select a valid 2-cut which cuts P into subpolyominoes 

A and B. Continue to step 3. 

3. Recurse on A and B by performing to step 1 for each of 

them. If both return yes, return yes; otherwise, return 

no. 

We see that this algorithm creates a decomposition tree for 

polyomino P. The proof of correctness follows from the 

previous lemmas. If all leaves in the decomposition tree are 

single tiles, Lemma 3.1 tells us that P is in the hierarchy. If 

the decomposition tree contains a leaf which is a tangled 

polyomino, Lemmas 3.1 and 3.2 together show that P is not 

in the hierarchy. 

The runtime is achieved as follows: Since a 

decomposition tree for a size-n hole-free polyomino P has 

at most n leaves, we know the tree has at most 2n − 1 nodes. 

Therefore, we can say that our algorithm is called at most 

2n − 1 times. Step 1 of the algorithm checks if the polyomino 

is tangled (i.e., it checks if P has a valid 2-cut). Theorem 5 

from [12] shows that a valid 2-cut can be found for a 

holefree size-n polyomino in O(n3 logn) time. So, our 

algorithm is called at most 2n − 1 times, with each call 

spending at most O(n3 logn) time to find a valid 2-cut. Thus, 

we achieve a runtime of O(n4 logn) to determine if P is in the 

drop-shape hierarchy.  

3.2 Hierarchy Characteristics. In this section we derive 

some key properties of the drop-shape hierarchy. In 
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particular, in Theorem 3.2 we show that any member 

of the hierarchy of size-n must be a member of level 

Dblog|P|c. This result allows us to efficiently bound the 

size of the board needed to assembly size-n 

polyominoes in Section 4. Next, in Theorem 3.3 we 

establish that the drop-shape hierarchy is a true 

hierarchy, i.e. that each level h of the hierarchy 

contains shapes that are not members of any level 

lower than h. 

Lemma 3.3. For any polyomino P ∈ DbH there exists 

a Strict decomposition Tree, for any H ≥ 0. 

Proof. We will prove this by induction on the size 
of the shape. For our base case we know any 
single tile has a strict decomposition tree. 

Now for our inductive step assume that 

there exists a strict decomposition tree for any 

polyomino p where 1 ≤ |p| ≤ n for some n. 

Consider a polyomino  where |P| = (n + 

1). We know that since 

P ∈ DH there exists two polyominoes Pa ∈ DH and 

Pb ∈ DH−1 that can be dropped onto each other to 

build P. We know that since both Pa and Pb are 

subpolyominoes of P, n ≥ |Pa| and n ≥ |Pb|. From 

our inductive step we can assume that both Pa 

and Pb have strict decomposition trees and the 

only new node we add is P which has the 

properties required by a strict decomposition 

tree. 

From here we see that every polyomino in a strict 

level H ≥ 0 has a strict decomposition tree.  

Lemma 3.4. For any polyomino  such that 

H > 0, any strict decomposition tree of P must have 
a node P0 with two children Pl and Pr such that 

 and both  and Pr ∈ DbH−1. 

Proof. First we will prove there must exist a node 

P0 with two children Pl and Pr such that P0 ∈ DbH 

and both Pl ∈ DH−1 and Pr ∈ DH−1, then we will show 

why they both must be strict. 

Let us first look at the root P. If both children 

of P are in DH−1 than P is the node we are 

describing. Now consider the case where p is a 

child of P and p /∈ DH−1. Since we are looking at a 

strict decomposition tree we know that p ∈ DbH. 

Since the tree rooted at p is also a strict 

decomposition tree we have the same two cases. 

However since a strict tree is also an atomic tree 

all the leaves of the tree must be single tiles so 

eventually the first case must be true. 

Now we will show Pl ∈/ DH−2 and Pr ∈/ DH−2. 

Without loss of generality assume Pl ∈ DH−2, this 

would mean that P0 can be built by dropping a 

shape in DH−2 onto a shape in DH−1 which by definition 

would mean P0 ∈ DH−1 which we know is not true since 

P0 ∈ DbH. 

Since Pl ∈ DH−1 and Pr ∈ DH−1, and Pl ∈/ DH−2 and

DH−2 we can see that Pl ∈ DbH−1 and Pr ∈ DH−1. 

Therefore there must exist a node P0 ∈ DbH with both 

children in DbH−1.  

Lemma 3.5. For any polyomino P ∈ DbH, |P| ≥ 2H Proof. We 

prove this by induction on H. For the base case we can see 

that the only strict level-0 shape is the single tile. We can see 

that 1 ≥ 20 is true. For the inductive step assume for any p ∈ 

DbH, |p| ≥ 2H. Consider a polyomino P ∈ DbH+1. We know from 

lemma 3.3 there must exist a strict decomposition tree and 

from lemma 3.4 that there must exist a node in a strict 

decomposition tree P0 that has two children . 

We can also see that since Pl and Pr are children of P0, 

|P0| = |Pr| + |Pl| 

From our assumption since both  

2H and |Pl| ≥ 2H 

|P0| ≥ 2H + 2H 

|P0| ≥ 2H+1 

Finally, since P0 is a subpolyomino of P, |P| ≥ 

|P0|. 

|P| ≥ 2H+1 

 

Theorem 3.2. For any polyomino P ∈ D, P ∈ 

Dblog|P|c 

Proof. We can see from lemma 3.5 for any , log|P| ≥ 

h. We also know that for any H ≥ h,P ∈ DH. Let H = blog|P|c, 

we can see that 

P ∈ Dblog|P|c.  

Lemma 3.6. For all positive integers h, given a holefree 

polyomino P ∈ Dh, for any singly-connected, non-blocked tile 

t ∈ P, P − t ∈ Dh. 

Proof. We will prove this is true by induction on h. Lemma 3 

of [8] showed that given a hole free polyomino P1 ∈ D1, for 

any tile t1 ∈ P1 that is noncut (P1 − t1 is connected), non-

blocked, and convex (there exists a 2 × 2 square that solely 

contains t1), P1 −t1 ∈ D1. For simplicity we will refer to a 

singlyconnected, non-blocked tile as a candidate tile. A 

candidate tile is convex and non-cut. In general, we will say 



 

that C(Dh) is true if and only if for all polyominoes Ph ∈ 

Dh, for any candidate tile t ∈ Ph, 

P − t ∈ Dh. 

The base case C(D1) was shown to be true by 

Becker et al. in [8]. Assume C(Dh) holds. We will prove 

by contrapositive that C(Dh) =⇒ C(Dh+1). 

Assume ¬C(Dh+1). Consider a polyomino P ∈ Dh+1, a 

candidate tile t ∈ P, and a polyomino P − t = P0 ∈/ Dh+1. 

Let T be a strict decomposition tree of P. The first cut 

in T is not solely removing t, since that would result in 

P0 ∈/ Dh+1 (violating the strict decomposition tree), so 

we will also consider T0, a decomposition tree for P0 

that initially makes the same cuts as T. Since T is a 

strict decomposition tree, for the children of its root, pl 

and pr, one is in Dh+1 and the other is in Dh. W.L.O.G., let 

t exist in the child node pl. Now, consider the nodes 

derived from making equivalent cuts in  and . 

Since t only existed in . There are two 

cases. First, if pl ∈ Dh. We know because

 and pr ∈ Dh+1, but P0 ∈/ Dh+1. 

This means that pl ∈ Dh and t ∈ pl was a candidate tile, 

and , and therefore ¬C(Dh). 

The second case is pl ∈/ Dh, but since it is a strict 

decomposition tree it must then be in . If 
this is the case, then consider pl as the root 

polyomino. Repeat the same process to pl and  
that we did to P and P0. Since all leaves in a strict 

decomposition tree are single tiles, we eventually 

arrive at a child node p in Dh, where t ∈ p is a 

candidate tile, and a p−t = p0 ∈/ Dh. Therefore, 

¬C(Dh+1) =⇒ ¬C(Dh), and by contrapositive: C(Dh) 

=⇒ C(Dh+1).  

Theorem 3.3. For all positive integers h, there exists a 

polyomino in Dbh. 

Proof. Polyominoes in  have previously been 

labeled as drop shapes. This is the set of shapes 

that can be built by dropping only single tiles, 

excluding the singleton tile itself. A polyomino in 

 can be seen in Figure 4b. We will call this 
polyomino P2. We can use a method we will refer 

to as fractalization to generate a polyomino in  

from P2. See Figure 4c. 

To show existence of a polyomino for every 

strict level of the hierarchy, we will show how a 

polyomino  that was generated 

through repeated fractalization to P2 can be used 

to create a polyomino . This method 

takes 2 copies of p, which we will label p1 and p2, 

and places them horizontally adjacent to each 

other 2 unit spaces apart (without loss of 

generality, assume p1 is to the left of p2). Then, 

two tiles are added; one above the north-most right-

most tile of p1 and the other above the north-most left-

most tile of p2. A string of single tiles is then wrapped 

around both polyominoes such that there is 1 unit 

space between the border and the bounding boxes of 

the inner polyominoes. This border polyomino 

connects the two tiles that were added from above. 

The border polyomino blocks both p1 and p2 in all 

directions, creating polyomino p0, See Figure 4a. 

We know that p0 ∈ Dh+1, as it can clearly be 2-cut across 

the border resulting in two polyominoes in Dh that can be 

built by dropping single tiles onto p. This cut is shown in 

Figure 4. We must now show that p0 is not in Dh. If p0 was in 

Dh, there would exist a valid 2-cut in which at least one of 

the resulting polyominoes derived from that cut was in Dh−1. 

This cut can not occur solely across the border connecting 

the two polyominoes, as the two resulting polyominoes 

derived from that cut are polyominoes that can be turned 

into p by repeatedly removing non-blocked, singly-

connected tiles. Therefore by 

Lemma 3.6, since  we can see that these 

polyominoes can not be in Dg for g < h. It is also clear that 

this cut can not occur solely within p1 and/or p2, as they are 

are now both blocked in all directions. It is also not possible 

for the cut to cross both the border and p1 or p2. First 

observe that due to the way these polyominoes are 

connected, there will never be 2 × 2 square fully occupied 

by tiles. Since there are also no holes, there is never a choice 

of which path to take to get from one tile to another. This 

means there is a single path of connectivity between any 

two tiles in p0, and therefore a single path of connectivity 

between any tile in p1 and any tile in p2. This path will 

always include the border that connects the two. If the cut 

occurs within the border, then this path is removed, 

meaning there are now 2 disconnected polyominoes. 

W.l.o.g., assume this cut also occurs within p1, splitting it 

into pl and pr. Since there is only one path between any two 

tiles, there is now no path between pl and pr. There is also 

no path between p2 and pl or pr. It follows that there are now 

3 disconnected polyominoes as a result of this cut, leaving 

this cut an n-cut, where n = 3. If the cut continued through 

p1 or into p2, n could increase, but never decrease. This 

shows that the 2-cut in question does not exist, meaning p0 

∈/ 

Dh. Since p0 ∈ Dh+1 and p0 ∈/ Dh, p0 ∈ Dbh+1. This shows that 

the fractalization method can be repeated to generate a 

polyomino in Dbh for all positive integers h. Figure 4 shows 

the fractalization method being used to create a polyomino 

in Db3 and a polyomino in 

Db4.  
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4 Drop-Shape Hierarchy Constructor 

This section presents a construction that builds any 

shape in the drop-shape hierarchy. The construction is 

a direct extension of [3]. In that work, a universal 

p 

 (c) Polyomino in  (d) Polyomino in  

Figure 4: Fractalization method used to reach 

higher strict levels of the hierarchy. The gray tiles 

represent the single tile border created, while the 

red tiles represent the polyominoes in  used. 

The green dashed line represents the 2-cut that 

shows this shape is in Dh+1. 

constructor was given for drop-shapes (D1 of our 

hierarchy) which fit in a w × h bounding box. At a 

high-level, we can extend the construction with 

larger chambers that are functionally identical to 

the D1 constructor, but are scaled to allow the 

dropping of large polyominoes. 

D1 Constructor. This construction (shown in 

Figure 5a) was introduced in [3] and is capable of 

building any polyomino P ∈ D1, provided P fits 

within a given w × h bounding box. The high level 

idea for this constructor is that tiles can be 

extracted from the fuel chambers and dropped 

onto any row or column of a shape in the center 

construction area. For the reader, we have included a 

descriptions of the tile selection, direction selection, 

and column selection process from [3] in Figures 6 and 

5b, as well as the tilt sequences for these commands in 

Table 4. This constructor uses a modified tilt selection 

gadget which allows for the disposal of fuel tiles once 

the desired polyomino has been built. 

Di Constructor Gadget. This gadget (shown in 

Figure 5b) is an extension to the D1 constructor. 

Overall, this gadget is similar to the D1 constructor, but 

scaled to allow the dropping of w×h polyominoes 

rather than single tiles. Because we are dropping two 

multi-tile polyominoes together, we need to double 

the dropping area to account for any drop that might 

be blocked by the adjacent wall in the dropping area. 

However, the dimensions of the polyomino built after 

the drop cannot exceed the w × h bounding box. The 

same tilt sequences used in the D1 constructor are used 

in this constructor. This allows for a large polyomino 

to be dropped onto another in the same fashion as a 

tile is dropped in the other constructor. By attaching a 

series of these constructors onto a D1 constructor, we 

can build polyominoes which are in higher levels of the 

hierarchy. 

Bit String Tunnels. To connect the constructor 

chambers, we use bit string tunnels (Figure 8) which 

require a unique move sequence to move a polyomino from 

a constructor Di to a constructor Di+1. These tunnels require 

a sequence of up/down tilts, which can be thought of as 0 or 

1 bits. It’s easy to see that a construction which builds level 

h shapes requires logh many up/down selectors. At the end 

of every bit string tunnel there is a reset gadget as shown in 

Figure 7b section 3 which enforces all subpolyominoes to 

be in their launch configurations once a subpolyomino has 

traversed from constructor to constructor. 

 

Figure 5: (a) The universal drop-shape constructor from [3] which builds any shape in D1. (b) The Di constructor 

gadget which allows the dropping of large polyominoes, it also depicts the sequence for selecting a direction to 

drop from. The paths from Di constructor gadget look the same in the D1. 



 

D4 Constructor. Figure 9 shows a complete 

constructor which can build any polyomino P s.t. P ∈ 

D4 and P fits in a 4 × 4 bounding box. Since P can have 

at most 16 tiles, Theorem 3.2 tells us that P ∈ D4, i.e., 

the largest hierarchy level needed is four. Thus, the bit 

string tunnel only needs two up/down choice to 

encode all of the possible tunnel transitions. 

Theorem 4.1. Given positive integers w,h ∈ Z+, there 

exists a configuration which is strongly universal for the 

set of shapes U = {u | u ∈ 

D,u fits in a w × h bounding box}. This configura- 

 

Figure 8: This Figure demonstrates a 2-bit string 

tunnel. Notice that the tilt sequence 

hW,N,W,S,W,S,W,N,Wi would only allow a shape 

to completely traverse bit string tunnel 01. 

tion has size O(h2w2 log2(hw)) and uses O(h3w2) tilts to 

move into a configuration which strongly represents 

any shape u ∈ U. 

Proof. This is a proof by construction. We begin with a 

configuration C where the chambers of all Di gadgets 

are empty except for the fuel chambers in D1. We know 

from [3] that the D1 gadget can build any level-1 drop 

shape. The building process follows the flowchart in 

Figure 7a using the tilt sequences in Table 4. This 

allows building any i-level shape bounded by h and w 

where i ≤ loghw (by Theorem 

3.2). While building the desired polyomino, all 

subpolyominoes follow the same sequence and thus reach 

the same position in their respective constructors 

simultaneously. Once a subpolyomino needs to move from 

a Di to a Di+1 constructor, all subpolyominoes are sent to 

their corresponding bit string tunnel. The uniqueness of 

each tunnel guarantees only one subpolyomino successfully 

traverses towards the next constructor while the others are 

held back in the bit selector tunnel. The reset gadget at the 

end of each bit string tunnel enforces sequence R in Table 4 

which sets every polyomino to its launch position. 

Once the desired polyomino has been built and is 

located in the Di constructor, we can perform sequence D 

until there is no more fuel pieces in the fuel chamber. We 

then have configuration C0 from C by performing a series of 

tilts. Consequentially, C →∗ C0. The overall process of 

transitions from the starting configuration to the 

 

 (a) D1 Column Selection (b) Di Column Selection (c) Di Tile Selection Gadget 

Figure 6: (a) The column selection gadget for D1 shapes. Assuming the shape to build is at a fixed location, this 

gadget allows any column to be selected to drop the new tile onto. The number of columns to drop from in this 

gadget determines the size of the shape we can build. Thus, this is for a drop shape within a 4 × 4 bounding box. 

This gadget is repeated on each of the four sides of the drop-shape constructor (with a slightly modified one on 

the south side in order to allow a non-conflicting move sequence.). (b) The column selection gadget for a 4× 4 

Di constructor. Notice that the tunnels are large enough to accommodate shapes that fit in a 4 × 4 bounding box, 

and the attachment area is twice as big as the D1 version. This is to allow large polyominoes to be dropped onto 

any row/column of another large polyomino. (c) The fuel selection gadget for D1. Each tile is pulled out with 

the sequence hE,N,W,S,E,Si, and stops at the first square. Then the left tile type (blue) is either pulled out of the 

gadget or put back in the storage area. This shows it being added back to the storage with hE,S,W,N,W,Si. This 

sequence puts the next tile type (red) in a decision location. The red tile is selected with the sequence 

hW,N,W,S,W,Si. Once the desired shape has been built, one can remove the remaining fuel tiles off the board 

with hE,N,W,S,E,S,W,S,E,S,W,S,E,Wi. This sequence extracts both tile types off the storage area, and then removes 

them off the board. 
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configuration that represents shape u ∈ U, is shown in 

Figure 7a.  

5 Occupancy, Relocation, and 

Reconfiguration Complexity 

Here, we prove that the occupancy, relocation, and 

reconfiguration problems are PSPACE-complete when 

limited to only 1×1 tiles by a polynomial time 

reduction from Non-Deterministic Constraint Logic. 

The occupancy problem asks whether a given 

position within a given board configuration can 

be occupied by a polyomino for some tilt 

sequence. Relocation asks whether a given 

position may be occupied by a specific given 

polyomino. And Reconfiguration asks if a given 

initial board configuration may be converted into 

a second given board configuration. The 

occupancy problem was originally defined by 

Becker et al. using only 1 × 1 tiles. They showed 

it is NPhard and the minimum move sequence for 

reconfiguration is PSPACE-complete [4,6]. The 

authors also showed the impossibility of a fan out 

with dual rail logic which could be viewed as 

evidence against the problem being PSPACE-

complete. However, recent work showed that 

with even a single additional 2×2 polyomino, the 

relocation and reconfiguration problems are 

PSPACE-complete [3]. In this section we 

definitively answer the question with only 1 × 1 

tiles and show all three problems to be PSPACE-

complete with only 1×1 tiles. To achieve this result we 

provide a polynomial time reduction from Non-

Deterministic Constraint Logic [9]. The formal 

problem definitions are as follows. 

Occupancy Problem. The occupancy problem asks 

whether or not a given location can be occupied by any tile 

on the board. Formally, given a configuration C = (B,P) and 

a coordinate e ∈ B, does there exist a tilt sequence such that 

C →∗ C0 where C0 = (B,P0) and ∃p ∈ P0 that contains a tile 

with coordinate e? 

Relocation. The relocation problem asks whether a 

specified polyomino can be relocated to a particular 

position. That is, given a configuration, a polyomino within 

that configuration, and a translation of that polyomino, does 

there exist a sequence of tilts which moves the original 

polyomino to its translation? 

Reconfiguration. The reconfiguration problem asks 

whether a configuration can be reconfigured into another. 

Formally, given two configurations C = (B,P) and C0 = (B,P0), 

does there exist a tilt sequence such that C →∗ C0? 

5.1 Non-Deterministic Constraint Logic. A constraint 

logic graph is a weighted directed graph with a constraint 

on each of the vertices [9]. The constraint specifies the 

minimum weight required from the edges directed in (the 

sum of the inflow) to any vertex. An example of two vertices 

can be seen in Figure 11b. When given a graph, the usual 

problem studied is whether a particular edge can be 

“flipped”- the direction of the edge changed, i.e., is there a 

sequence of edge flips that maintain the constraints on all 

Command Tilt Sequence 
1. Extract blue tile (EBlue) hE,N,W,S,E,S,W,N,W,S,E,S,W,N,Wi 
2. Extract red tile (ERed) hE,N,W,S,E,S,E,S,W,N,E,S,W,S,W,N,Wi 
3. Add from east (AE) hN,E,S,W,Si + hS,W,N,Wij + hN,W,S,E,S,E,Si 
4. Add from north (AN) hN,W,N,E,Si + hE,S,W,Sij + hW,S,E,N,E,S,E,S,W, S,E,S,E,Si 
5. Add from west (AW) hN,W,S,W,N,Ei+hN,E,S,Eij+hS,E,N,W,N,E,S,E,S,E,S,E,S,W,S,E,S,E,S,W,N 
6. Add from south (AS) hN,W,S,E,S,W,Ni + hW,Nij + hE,N,W,S,W,N,E,S,E,Si 
7. Send to BST (SBST) hN,W,S,E,S,E,S,W,S,E,S,W,Si 
8. Traverse 1-bit (T1) hW,N,W,S,Wi 
9. Traverse 0-bit (T0) hW,S,W,N,Wi 
10. Reset to launch (R) hW,S,E,S,W,N,Wi 
11. Remove from board (D) hE,N,W,S,E,S,W,S,E,S,W,S,E,Wi 

i 

Table 4: Commands EBlue,ERed move either a red or blue tile into launch configuration. Commands AE,AN,AW, and 

AS add a subpolyomino in the launch configuration into the shape being built. These said commands have been 

slightly modified from [3] to avoid conflicting with the remaining commands. Commands SBST,T0, and T1 send 

the subpolyominoes to their respective bit string tunnels (BST’s) and allow one of them to traverse through the 

tunnels. Command R returns back any polyominoes to their corresponding launch configuration. Finally, 

command D removes one red and blue tile from the board. 



 

vertices, and allows the target edge to be flipped? This 

is a one-player unbounded game. The problem is still 

PSPACE-complete when the edge weights are all 

strength 1 or 2, and vertices have max degree 3. We 

address the following equivalent problem. 

Configuration-to-Configuration Problem. 

Given two states of a constraint graph G and G0, 

does there exist a sequence of edge flips starting 

with G that results in G0 [9]. 

5.1.1 Vertex Gadget. We will assume a max 

degree of three for all vertices, which means 

there are 8 possible arrangements of in/out 

edges. Define the vertex state as a label from 0 to 

7 determined by the directions of its incident 

edges. We label each edge of a vertex Ea,Eb,Ec. The 

state is then the decimal value of a binary string 

of length three with each bit representing an 

edge (EaEbEc) where an edge directed inward is a 

0, and an edge directed outward is a 1. Thus, the 

state values go from 000 to 111. We say a vertex 

is in a legal state if the weight of all edges pointed 

inward is greater than or equal to the constraint 

of the graph. 

A vertex gadget contains a single 1 × 1 tile 

referred to as the state tile, a transition area, and 

a number of state gadgets equal to the number of 

legal states of that vertex. Since there are eight 

states, there are eight basic paths in the gadget 

that the state tile could be in representing the 

vertex’s state. Figure 11a gives an example vertex 

gadget (a CL AND vertex) and the possible paths, 

and also shows the numbering of the states and 

the corresponding orientations of the original 

edges for that state. Table 5 gives the only move 

sequences needed for the system. 

the column selection chambers for the Di constructor. 

Flipping an edge is represented by a move sequence 

performed while in a valid state that moves the state tile 

from one state path to another, which happens 

simultaneously in two vertex gadgets since an edge 

connects two vertices. This edge flip happens in all vertex 

gadgets, but if the edge is not incident to that vertex, there 

is no effect on the path of the state tile. 

5.1.2 State Transition Gadget. The state transition 

gadget is the transition area and the concrete that encode 

legal transitions from a given state. This will be unique to 

each vertex gadget. These are outlined in Figure 11a as 

states 0 − 4. Figure 11c shows one of these areas with an 

explanation of the different paths. There are |E| levels on 

the right, where each level represents an edge in the 

graph. When a hWi command moves the state tile left, the 

tile stops at the blocked spot on that level. All edges not 

incident to the vertex have no effect on the path of the 

state tile (the dotted lines in Figure 11a and white rows in 

Figure 11c). The three edges that are incident will change 

the path of the state tile when a hSi command follows. If it 

is not a valid edge flip (due to the constraints), the state 

tile will be permanently stuck in a path representing an 

invalid state. If the new state is valid, the state tile will be 

in that state path. 

Flip edge ek ∈ E hhE,Sik,hW,N,Eii 

Extraction hhE,Si|E|+1,hW,Sii 

Table 5: Move sequences for the reduction. h·iK means 

repeat the sequence K times. |E| is the number of edges 

 

 (a) (b) 

Figure 7: (a) A flowchart where each state represents a set of configurations and the symbols represent 

sequences that can move from one state to another. The sequences for each of the symbols is shown in Table 4. 

The sequence marked as Ui is a unique combination of T0 and T1 tilt sequences for each ith constructor. Note 

that after performing the SBST,Ui,R sequences one has successfully relocated the shape located in Di to Di+1 and 

can add both shapes located in constructor Di+1 with either of the AN,AE,AS,AW sequences. (b) This is an overview 

of the different sections of the hierarchy constructor. Section 1 is the D1 shape constructor as shown in [3], 

section 2 is the bit string tunnels, section 3 is the reset gadget and section 4 is 
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in the original constraint graph, as opposed to 

hEi which is the ‘east’ command. 

Note this will happen for both vertex gadgets 

representing a vertex incident to the edge 

chosen. Figure 11d shows an example of two 

state transition areas in two vertex gadgets 

representing two vertices that share an edge. 

5.1.3 Goal Area. An overview of the reduction 

layout is in Figure 11e where the goal area is 

shown at the bottom of all the vertex gadgets. 

Once all the tiles are in positions that represent 

the target configuration, the tiles can be 

extracted into the goal area. An extraction is 

made the final level in a state gadget. After 

extraction the tiles enter the goal area. The goal 

area consists of two rows. The valid row and the 

invalid row. The invalid row (top row) traps any 

tiles that enter when a vertex was not in the 

specified (in the target configuration) state. The valid 

row (bottom row) contains the goal position (g in 

Figure located in Section 1. 

11e). The goal position is |V | positions to the right of the left 

wall. Thus, |V | tiles must be in this row in order to have the 

last tile be in this location. In order to have enough tiles to 

reach the goal position, each vertex must be in the correct 

state to output the tile to the goal area. This ensures all 

vertices, and thus the entire graph, is in the specified target 

configuration. 

Lemma 5.1. After performing a move sequence to flip an edge, 

only the two vertex gadgets representing vertices incident to 

that edge will have their state tile change state paths. All 

other vertex gadgets will have their state tile stay in the same 

state path. 

Proof. Since we enumerate all the edges and make each state 

gadget have an exit point for each edge, a move sequence to 

select and flip an edge moves all tiles out of their state 

 

Figure 9: D4 Constructor. This constructor is capable of building any 4 × 4-bounded polyomino in D4. 

 

Figure 10: (a) Di Constructor in Claunch configuration. Section 1 is where shapes in all Di constructors will be 

located when in Claunch configuration. Section 2 indicates where a shape outputted from a reset gadget will be 

located when in Claunch configuration. (b) D1 Constructor in Claunch configuration. Section 3 indicates where a 

single tile will be located after it is extracted from it’s corresponding storage chamber. Similarly, once a tile is 

extracted from its storage chamber all shapes throughout the constructors will be 

1 
2 3 
4 

5 6 7 
8 

(c) 

Affected edges in a state 

23 0 7 

 (a) An AND vertex gadget(e) Goal gadget overview 

Figure 11: (a) A vertex gadget with the path/transition areas 

labeled with the corresponding state numbers and the representative edge orientations in a constraint graph. 

Each state is a different color. Paths that do not change the state of a tile are dotted. The grey lines are invalid 

states. (b) The necessary vertices for a one-player unbounded game are reversible AND and OR vertices in a 

constraint graph with constraint 2 [9]. The AND vertex has two red edges (weight 1) and a blue edge (weight 

2). Directing the blue edge outward requires both red edges to be directed inward. The OR vertex has three 

blue edges. Only one edge needs to be directed inward. (c) An example of a state transition area the vertex it 

represents. White rows represent edges that do not change the state of the vertex (they are not incident). Red 

and blue rows represent the incident edges and the weights of those edges. (d) The state gadgets for two 

different vertices Vl and Vr. Both vertices share edge 3. Vl represents state 4 of an OR vertex. Vr represents state 

3 of an AND vertex. If edge 1 is selected (the red tile and line), Vl will remain in state 3 while Vr will go to state 

7. Selecting edge 3 changes the state of both gadgets. (e) An overview of the layout of the different components 

for the reduction. The dotted red lines represent the vertex gadgets (not to scale), the green boxes below denote 

the geometry specific to each vertex to force the state tile into the top row (if in the wrong state) or the bottom 

row (if in the correct state). The bottom row requires all |V | state tiles in order for a tile to get into 

( b)NCLANDandORvertices 



 

gadget to the transition area. We create the transition 

area for each vertex gadget based on the edges that are 

connected to that vertex. If flipping an edge causes a 

vertex to change states we place a concrete block to 

stop the tile in the state column of the new state. If 

flipping an edge does not affect a vertex then when 

that tile leaves the state gadget and goes to the 

transition area there will be a block of concrete to stop 

the tile in the state column of the state it was 

previously in. Since all tiles start at the top of the state 

gadget, they all move out of the same level, so only two 

vertex gadgets will have their state tile change state 

gadgets. We can see this in Figure 11d. Flipping the 

first edge will change the state of the right vertex but 

not the left. Flipping the third edge edge will change 

the state of both. the goal location g. 

Lemma 5.2. If a vertex enters an illegal state, the 

representative vertex gadget’s state tile will be trapped 

in an ‘illegal’ state path and cannot be extracted. 

Proof. If an edge flip would cause a vertex to enter an 

illegal state the tile will still be sent out of the state 

gadget into that states column. Since when we create 

the vertex gadget we block off the right of the top of 

any illegal state columns once a tile goes to the top or 

bottom of a state column it can only travel between the 

both of these. The only way this tile can be removed 

from this column is if a second tile enters this column. 

However, there is no way for another tile to enter the 

vertex gadget so there is no way to extract the tile once 

it becomes trapped in the column.  

Theorem 5.1. Occupancy is PSPACE-complete 

with only 1 × 1 tiles in the full tilt model. 

Proof. We show Occupancy is PSPACE-hard with 

only 1×1 tiles by a reduction from Non-

Deterministic Constraint Logic. Given an instance 

of a constraint graph G (with initial configuration 

Ci) and a goal configuration Cg of that graph, 

enumerate the edges and vertices of the 

configuration. For each vertex in the graph create 

a Vertex Gadget. We create the configuration in 

the tilt model, Si, as described above with the goal 

location g and vertex gadgets laid out side by side 

above the goal area as shown in Figure 11e. The 

vertex gadgets will have a state transition gadget 

for each legal state of that vertex. The transition 

area is built based on the edges of the vertex. 

Then there exists a sequence of edge flips to 

transition Ci to Cg if and only if there exists a 

sequence of tilt commands that transition board 

Si to a board configuration with some tile at 

location g. 

Given a sequence of edge flips to transition Ci to Cg in G 

= (V,E), F = hf1,...fli where fi ∈ E, we can directly translate this 

into the move sequence necessary based on Table 5. Each 

vertex has its state tile start in the starting state of the 

vertex. Lemma 5.1 shows we can select any specific edge 

and perform a move sequence to select and flip that edge to 

change the state of two vertices and leave all other state 

tiles in the same state path. Since there exist move 

sequences to flip edges and change the states of vertex 

gadgets, a series of edge flips that are a solution to an NCL 

configuration-to-configuration problem can be turned into 

a move sequence that changes all vertex gadgets to their 

goal states which can then be extracted to solve the 

occupancy problem. 

If given Si and a sequence of tilts T = ht1,...tzi, where ti ∈ 

{N,E,S,W}, that solved the occupancy problem, the edges to 

flip could be found from the sequences of Table 5. We know 

by Lemma 5.2 that any tilt sequence not corresponding to a 

legal edge flip would trap a state tile, and thus occupancy 

could not be solved. Thus, if our sequence solves the 

problem, only legal edge flips were made. Further, to solve 

occupancy, we need all |V | state tiles in the goal area, 

meaning all vertex gadgets were in the correct state, as 

specified in Cg.  

Corollary 5.1. Relocation is PSPACE-complete with only 1 × 1 

tiles in the full tilt model. 

Proof. If we ask whether we can relocate the state tile in the 

vertex gadget for vn to the goal location g, we have an 

equivalence of the Occupancy problem. 

 

Corollary 5.2. Reconfiguration is PSPACEcomplete with only 1 

× 1 tiles in the full tilt model. 

Proof. Since state tiles remain in their vertex gadget, they 

remain in the same order when extracted. The goal 

configuration is all tiles extracted from the vertex gadgets 

in the valid row ordered by vertex number. In order to 

extract all the tiles into the valid row, all gadgets must be in 

the correct state when extracted. 6 Conclusion 

In this paper we presented a hierarchy of shapes that 

are buildable within the full tilt model. We proved 

several characteristics about the drop-shape class, 

then gave an algorithm to decide membership in the 

class for hole-free shapes. We then provided a 

universal constructor that strongly builds this class of 

shapes. We then answered an open question by 

proving that the Occupancy problem in full tilt is 

PSPACE-complete even with only 1 × 1 tiles. 

We leave a number of open problems. When 

considering drop-shape membership, our algorithm 

does not consider shapes with holes. Does there exist 

an efficient algorithm to determine membership in D 

for all shapes? Also in defining membership in levels 
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of our hierarchy we only consider one tile type 

that sticks to itself in determining if a cut is valid. 

What shapes can be built in lower levels of the 

hierarchy if more tile types are allowed? Does 

there exist a tile type hierarchy and how does it 

relate to the drop shape hierarchy? In regards to 

Theorem 3.2, does there exist a tighter bound on 

the level of the hierarchy a shape must be in? 

Lastly, for complexity of the occupancy, 

relocation, and reconfiguration problems, we use 

a connected board to show PSPACE-

completeness. Is the problem easier when 

limiting the board type to simple or monotone, or 

does it remain PSPACE-complete? 
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