Hierarchical Shape Construction and Complexity for Slidable Polyominoes
under Uniform External Forces?!

Jose Balanza-Martinez? David Caballerot Angel A. Cantut Mauricio Florest
Timothy Gomezt Austin Luchsingert Rene Reyesf Robert Schwellert
Tim Wyliet
Abstract desired simplicity of the building blocks. Thus, a growing

Advances in technology have given us the ability to create
and manipulate robots for numerous applications at the
molecular scale. At this size, fabrication tool limitations
motivate the use of simple robots. The individual control of
these simple objects can be infeasible. We investigate a
model of robot motion planning, based on global external
signals, known as the tilt model. Given a board and initial
placement of polyominoes, the board may be tilted in any of
the 4 cardinal directions, causing all slidable polyominoes to
move maximally in the specified direction until blocked.

We propose a new hierarchy of shapes and design a
single configuration that is strongly universal for any wxh
bounded shape within this hierarchy (it can be reconfigured
to construct any wxh bounded shape in the hierarchy). This
class of shapes constitutes the most general set of buildable
shapes in the literature, with most previous work consisting
of just the first-level of our hierarchy. We accompany this
result with a O(n*logn)time algorithm for deciding if a given
hole-free shape is a member of the hierarchy. For our second
result, we resolve a long-standing open problem within the
field: We show that deciding if a given position may be
covered by a tile for a given initial board configuration is
PSPACEcomplete, even when all movable pieces are 1 x 1
tiles with no glues. We achieve this result by a reduction
from Non-deterministic Constraint Logic for a one-player
unbounded game.

1 Introduction

Advances in technology have given us the ability to
create and manipulate robots for numerous
applications at the molecular scale. At this size,
fabrication tool limitations often make precise
construction of the objects infeasible and thus self-
assembly methods have been employed. This allows
the creation of simple primitives that come together
algorithmically to form the desired objects [11].
Similarly, the individual control of these simple nano-
scale objects can be infeasible due to the cost or the

area of interest is robot motion planning based on global
external signals, known as the tilt model [4,5]. This simple
model gives all robots the same movement signal, which
means all robots can be identical, and only their location
and the geometry of the board need to be considered for
fabrication.

The tilt self-assembly model consists of a 2D grid
board with “open” and “blocked” spaces, as well as a
set of slidable polyominoes placed on the board. The
model uses a global external force to give all movable
particles the same movement instruction. This may be
done through any external force such as a magnetic
field or gravity. This model has a history of assuming
gravity as the external global force, hence the term tilt.
In this model, a board may be tilted (an application of
the global external force) in any of the four cardinal
directions, causing all slidable polyominoes to slide
maximally in the respective direction until reaching an
obstacle. Various puzzle games exist which utilize the
mechanics of this model; the maximal movement of [1]
and the global movement signals in [2].

1.1 Related Work. In [8], the authors introduced a
class of shapes constructed by “dropping” pixels on a
fixed seed from any of the four cardinal directions.
Along with this new class of “drop-shapes”, they
presented a polynomial-time algorithm to check if a
given hole-free shape is in this drop class (i.e., it can be
constructed via this pixel dropping method). Given a
hole-free shape, they showed how to construct a tilt
model micro-factory which can build the shape. In [10]
the authors provide an algorithm to determine if any
given shape is in the class of drop shapes with the run
time being exponential in the number of holes.

1 This research was supported in part by National Science Foundation Grant CCF-1817602.
2 Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX 78539-2999, USA

as

Copyright 2020 by SIAM Unauthorized Was not possible with only 1x1 tiles, which seemed to serve
reproduction of this article is prohibited
Shape Class Result Theorem
Hole-free Level-1 Drop Shapes (D1) O(nlogn) Thm. 5 in [8]
Level-1 Drop Shapes (D1) 0(n2h!) Alg. 1in [10]
Straight 2-Cuttable Hole-free Shape O(n3logn) Thm. 2 in [12]
Straight 2-Cuttable Shape with Convex Holes O(n*logn) Thm. 2 in [12]
Hole-free Drop Shapes (D) O(n*logn) Thm. 3.1

Table 1: Known results for deciding membership in the drop-shape hierarchy of a size-n shape (We refer to
size as the number of tiles.). h denotes the number of holes in the shape. Previous results only decided shapes
in D1. With holes, no polynomial time algorithm is known even for D1.

Class Universal Tilts Board Size Theorem
No 0(hw) 0(h3w3) Thm. 6 in [8]
D Sh D
rop Shapes (D1) Yes 0(h?w) 0(hw) Thm. 4.1 in [3]
D sh Hi hy (D) No O(hw) 0(h2w?) Thm. 3 in [12]
ro ape Hierarc
p>hap y Yes o(hw?) | o(h*w2log?(hw)) Thm. 4.1

Table 2: Construction results for shapes with a h x w bounding box.
The efficient construction of drop-shapes in the evidence that this problem was not PSPACE-complete.
Following, in [3] the authors proved that the occupancy
problem is PSPACE-complete if a single “large” polyomino
is allowed (they used a single 2x2 polyomino along with 1 x

tilt model was explored in [12]. The authors present a
construction which efficiently builds a particular set of
shapes in sublinear time through the use of
parallelization. They introduce a hierarchical process
whereby multi-tile subassemblies may be successively
combined in a drop fashion. They define two classes of
shapes 2-cuttable and straight 2-cuttable as any
polyomino that can be decomposed into monotone
subpolyominoes using valid 2-cuts and valid straight
2-cuts respectively. They also give a polynomial time
algorithm for determining if a given simple polyomino,
or one with convex shaped holes, is straight 2-cuttable.
They also have a polyomial time algorithm for finding
if a valid 2-cut exists in the same two types of shapes.
Given a shape in their buildable class, a tilt model
configuration could be generated to assemble that
shape through a sequence of tilts.

This drop-shape construction work was extended
in [3]. Rather than focusing on designing
configurations for specific drop-shapes, the authors
create a general drop-shape constructor. They
introduced the concept of universal constructors in the
tilt model. These are constructors which, starting from
one initial configuration, can construct any shape from
a particular set. In this work, a configuration that is
universal for the set of drop-shapes was created.

These construction results are usually paired with
complexity results to decide what can be constructed.
One of the most natural questions in the tilt model asks
if a particular location on a board may ever be
occupied by a particle from the starting configuration.
This problem, known as the occupancy problem, was
first introduced in [4]. The authors proved the
problem was NP-hard, even when considering the
restricted case of a configuration with only 1x1 tiles.
The authors also showed that a dualrail logic fanout

1 tiles).

1.2 Our Contributions. In this paper, we formalize
the notion of hierarchical construction (first started in
[12]) by presenting a hierarchy of shape classes. In
Section 3, we formally define a dropshape hierarchy.
We also present a O(n* logn)-time algorithm for
determining if a given hole-free shape is in this
hierarchy. To accompany this result, we present the
design for a configuration that is strongly universal for
any shape within the hierarchy in Section 4. This result
constitutes the most general set of buildable shapes in
the literature, with previous work consisting of just
the first level of our hierarchy. The second main result
of this paper is in Section 5, where we resolve an open
problem from [4] by showing that the occupancy
problem, contrary to expectation, is PSPACE-complete
even when restricting all polyominoes to be 1 x 1 tiles.

Problem | Polyominoes

Result | Theorem

Table 3: Known complexity results in the full tilt model. All current results for occupancy also imply hardness
for relocation. Reconfiguration Minimization is finding the minimum length tilt sequence. Each of the results
that use a 2 x 2 polyomino only uses a single one and multiple 1 x 1s.

2 Model Preliminaries

Board. A board (or workspace) is a rectangular
region of the 2D square lattice in which specific
locations are marked as blocked. Formally, an m x n
board is a partition B = (O,W) of {(xy)|x € {1,2,...m},y €
{1,2,..,n}} where O denotes a set of open locations, and
W denotes a set of blocked locations- referred to as
“concrete” or “walls.” We classify the different possible
board geometries according to the following
hierarchy:

e Connected:! A board is said to have connected
geometry if the set of open spaces O for a board is
a connected shape.

e Simple:Z A connected board is said to be simple if
O has genus-0.

e Monotone: A simple board is monotone if O is
either horizontally monotone or vertically
monotone.

e Convex: A monotone board is convex if O is both
horizontally monotone and vertically monotone.

¢ Rectangular: A convex board is rectangular if O is
arectangle.

Our board definitions have changed since [3] in
order to create the hierarchy shown above.

Tiles. A tile is a labeled unit square centered on a
non-blocked point on a given board. Formally, a tile is
an ordered pair (c¢,a) where c is a coordinate on the
board, and a is an attachment label. Attachment labels
specify which types of tiles will stick together when
adjacent, and which have no affinity. For a given
alphabet of labels Z, and some affinity function G : £ x
¥ - {0,1} which specifies which pairs of labels attract
(G(a,b) = 1) and which do not (G(a,b) = 0), we say two
adjacent tiles with labels a and b are bonded if G(a,b) =
G(ba)=1.

Slidable Polyominoes. A slidable polyomino
is a finite set of tiles P = {ti..tx} that is 1)
connected with respect to the coordinates of the
tiles in the slidable polyomino and 2) bonded in
that the graph of tiles in P with edges connecting

1In [3], this hierarchy level was known as complex. We modify
this class to allow for a proper hierarchy of shape classes.

bonded tiles is connected. When the context is clear,
we often refer to these simply as polyominoes. A
slidable polyomino that consists of a single tile is
informally referred to as a “tile”.

Configurations. A configuration is an
arrangement of polyominoes on a board such that
there are no overlaps among polyominoes, or with
blocked board spaces. Formally, a configuration C =
(B,P = {P1...P«}) consists of a board B, along with a set
of non-overlapping polyominoes P that each do not
overlap with the blocked locations of board B.

Step. A step is a way to turn one configuration into
another by way of a global signal that moves all
polyominoes in a configuration one unit in a direction
d € {NESW} when possible without causing an
overlap with a blocked location, or another polyomino.
Formally, for a configuration C = (B,P), consider the
translation of all polyominoes in P by 1 unit in
direction d. If no overlap with blocked board spaces
occurs, then the new configuration is derived by first
performing this translation, and then merging each
pair of polyominoes that each contain one tile from a
now (adjacently) bonded pair of tiles. If an overlap
does occur, for each polyomino for which the
translation causes an overlap with a blocked space,
temporarily add these polyominoes to the set of
blocked spaces and repeat. Once the translation
induces no overlap with blocked spaces, execute the
translation and merge polyominoes based on newly
bonded tiles to arrive at the new configuration. If all
polyominoes are marked as blocked spaces, then the
step transition does not change the initial
configuration. If a configuration does not change
under a step transition for direction d, we say the
configuration is d-terminal. In the special case that a
step causes a polyomino (or subpolyomino) to leave
the board, we remove the polyomino from the
configuration.

2n [3], they define simple geometry based on the connectivity of W.

We also modify the concept for hierarchical purposes.

Figure 1: Tilt Example

Tilt. A tilt in direction d € {N,ESW} for a
configuration is executed by repeatedly applying a
step in direction d € {N,E,S,W} until a d-terminal
configuration is reached. We say that a configuration C
can be reconfigured in one move into configuration C°
(denoted C —1C?) if applying one tilt in some direction
d to Cresults in C°. We define the relation —.to be the
transitive closure of —1. Therefore, C —+ C® means that
C can be reconfigured into C° through a sequence of
tilts.

Tilt Sequence. A tilt sequence is a series of tilts
which can be inferred from a series of directions D =
hd1,d>,...,dki; each d; € D implies a tilt in that direction.
For simplicity, when discussing a tilt sequence, we just
refer to the series of directions from which that
sequence was derived. Given a starting configuration,
a tilt sequence corresponds to a sequence of
configurations based on the tilt transformation. An
example tilt sequence hS,W,N,W,SW,Si and the
corresponding sequence of configurations can be seen
in Figure 1.

Universal Configuration. A configuration C° is
universal to a set of configurations C = {C1,C5,...,Cx} if
and only if C°—. CiV Ci€ C.

Configuration Representation. A configuration
may be interpreted as having constructed a “shape” in
a natural way. Define a shape to be a connected subset
S < Z2. A configuration strongly represents S if the
configuration consists of a single polyomino whose tile
coordinates are exactly the points of some translation
of S. A weaker version allows for some “helper”
polyominoes to exist in the configuration and not
count towards the represented shape. In this case, we
say a configuration weakly represents S.

Universal Shape Builder. Given this
representation, we say a configuration C° is
universal for a set of shapes U if and only if there
exists a set of distinct configurations C such that

represented by some C € C, we say (9 is weakly
universal for U. In a similar way, a configuration can be
universal for a set of patterns.

3 Drop-Shape Hierarchy

We utilize the same definitions for polyominoes and cuts

as used in [12].

Polyomino. For a set P C 72 of grid points in the
plane, let the graph Grbe the induced grid graph in
which two vertices p1,pz € P are connected if they are
unit distance apart. For any set P with connected grid
graph Gp, a polyomino may be induced by replacing
each point p € P with a unit square centered at p. A
polyomino is said to be hole-free or simple if the
induced graph 72 \ P is connected. We say that
polyominoes which are equal up to translation have
the same shape. We often use these terms
interchangeably.

Cuts. A cutis an orthogonal curve moving between
points of Z2. A p-cut is a cut that splits a polyomino P
into p subpolyominoes. We say that a cut is valid if all
of the induced subpolyominoes may be partitioned
into two nonempty groups which may be pulled apart
in opposite directions without blocking each other. A
polyomino A is blocked by another polyomino B in
direction d if A cannot be pulled in direction d without
colliding with B (note that A sliding adjacent to tiles in
B is also considered as a collision). See Figure 2 for
examples of valid and invalid cuts.

Tangled Polyomino. A tangled polyomino is one
which does not have a valid 2-cut. That is, any cut
either splits the polyomino into two subpolyominoes
which cannot be pulled apart (invalid), or it splits the
polyomino into more than two subpolyominoes (p-cut
where p > 2). Figure 3a provides an

(a)Valid2-cut

(b)Invalid2-cut

(c)Valid3-cut (d)Invalid3-cut

1) each u € Uis represented by some € € C and 2) Figure 2: Examples of valid and invalid cuts for a given

C° is universal for C. If each u € U is strongly
represented by some C € C, we say Cis strongly
universal for U. Alternately, if each u € Uis weakly

polyomino. It is important to note that along with direct

collision, we consider a cut to be invalid if the resulting

polyominoes must slide past adjacent squares.

example of a tangled polyomino.
[TTTTT
[T

(a)

)\

(b)

Figure 3: (a) A tangled polyomino for which no 2cut
exists. (b) An abstract representation of tangled
polyomino S from Lemma 3.2 which depicts the
required properties as stated in the proof.

Drop Construction Step. A drop construction
step is described by a direction {N,ESW} and a
latitude or longitude I representing the column/row
that a shape is placed. The shape arrives from (I, o) for
north, ([,—o0) for south, (oo,l) for east, and (-oo,l) for
west. The shape moves along the row/column until it
reaches the first grid position adjacent to to an existing
tile. We will refer to this as dropping a tile or shape.

Drop-Shape Hierarchy. Here we define the
hierarchy of drop-shapes (denoted D). We use
notation Dn to denote level-h of the drop-shape
hierarchy. Beginning with level-1, the levels of our
hierarchy are defined recursively, containing the
specified elements and nothing else:

e Level-0 (Do). The single tile.

e Level-1 (D1). The set of shapes in D1 is defined
recursively:

- (Base) Doc D1

- (Drop Combinations) For any A € D1, any
polyomino C that is produced by dropping
a single tile onto A4 is also in D1.

e Level-h (Ds). In general, the set of shapes in D
is defined recursively:

- (Base) Dn-1C Da

- (Drop Combinations) For any A € Ds-1and
B € Dy, any polyomino C that is produced
by dropping A4 onto B is also in Dx.

e Strict Level-h (Dbn): The set of shapes that are

in Dp, but not in Ds-1. Formally, _

Dn-1.
e The Hierarchy (D): The hierarchy is defined as
the union of all levels. Formally, D_

Since tangled polyominoes cannot be decomposed, no
tangled polyomino is in the hierarchy.

Decomposition Tree. A decomposition tree for a
given polyomino P is a rooted binary tree of
polyominoes with root node being P, each leaf being
either a single tile or a tangled polyomino, and all non-
leaf nodes having two children consisting of two
polyominoes that make a valid 2-cut for the polyomino
at the given node. A decomposition tree is said to be
atomic if all leaves are single tiles.

Strict Decomposition Tree. A decompostion tree
is said to be a Strict Decomposition Tree if for every

node p,either p € Dy, or for some and has
children pi € Drand pj € Dh-1.

Singly-Connected Tile. A tile ¢ in polyomino P is
said to be singly-connected w.r.t. P if and only if it is

connected to P -t on only one of its four edges.

3.1 Membership in the Drop-Shape Hierarchy. A
key contribution of this paper is a board configuration
that is universal for all shapes in the dropshape
hierarchy of up to a given size n. This leads to the
natural question of how efficiently can we decide if a
given polyomino is a member of the drop-shape
hierarchy D. D is equivalent to the set of 2-cuttable
shapes defined in [12]. There, the authors present an
algorithm for determining if a shape is in the set of
straight 2-cuttable shapes, which is known to be a
subset of D. It is currently unknown if the set of
straight 2-cuttable shapes is equivalent to D. In this
section we develop an efficient algorithm for deciding
membership in D for the case of genus-0 polyominoes.
We first formally define the drop-shape hierarchy
membership problem. We then prove two technical
lemmas (Lemmas 3.1, 3.2) that will be used to
establish the correctness of an efficient algorithm for
deciding membership, provided in Theorem 3.1.

Drop-Shape Hierarchy Membership Problem. The
drop-shape hierarchy membership problem asks: Given a
polyomino P, is P € D?

Lemma 3.1. Given a hole-free polyomino P, P € D if and only if
there exists an atomic decomposition tree for P.

Proof. This proof builds off of Theorem 2 from [7], where
they show that decomposition is the reverse of
construction. Clearly, P is in the drop-shape hierarchy if
such a decomposition tree exists, as the reverse drop
construction step sequence can be performed to yield P. If
no such decomposition tree exists, this means that all
decomposition trees contain at least one leaf which is a
tangled polyomino. Since a tangled polyomino cannot be in
the hierarchy (as there are no valid 2-cuts), there must
always exist a drop construction step which uses a

polyomino that is not in the hierarchy. O

Lemma 3.2. If there exists a decomposition tree for hole-
free polyomino P which has a tangled polyomino S as a
leaf, S must be a leaf in every decomposition tree of P.

Proof. Given that there exists a decomposition tree T4
which has tangled shape S as a leaf, assume that some
other decomposition tree Tp exists which does not
have S as a leaf. This implies that Tz uses some
decomposition sequence which involves a polyomino
POsuch that § € P°C P and there exists a 2-cut for P°
which also goes through subpolyomino S.

Let c be a valid 2-cut for P°which also cuts through
S. Since we know that S by itself is tangled, one of the
following must be true: 1) ¢ was an invalid 2-cut
through S which is now valid because of the additional
tiles introduced by P9-S. 2) ¢ was a valid p-cut (with p
> 2) through S which has now become a valid 2-cut
because of the additional tiles introduced by PO -S.
Since the addition of more tiles can never unblock a
cut, we see that the first case cannot be true. The
second case is not so straightforward, and requires
more investigation.

First, consider the stand-alone polyomino S.

We know ¢ was a valid p-cut through S (with p >
2) which has now become a valid 2-cut through
PO, For now, let it suffice to assume that ¢ was a
valid 3-cut through S. We will generalize to p
later. This means that ¢ cuts S into 3
subpolyominoes {54,555} that can be partitioned
into two sets which may be pulled apart in
opposite directions without blocking each other.
W.lo.g., let that partition be {{Sa},{SsSc}}. Figure
3b shows a sketch that highlights the essential
properties S must have. Since c is a 3-cut through
S, we know that there must exist a path of empty
spaces which separates Sy from Scand begins at
an empty space x along ¢ which is adjacent to Sa.
Furthermore, we know that subpolyominoes Sy
and Scmust both block each other in the direction
that {S,,Sc} is pulled apart from {Sq}; otherwise, a
valid 2-cut would have existed in S (by pulling S»
or Scoff of S by itself).

Now, consider the polyomino P9 with
subpolyomino S. If location x contained a tile in
polyomino PY we know that said tile would be
blocked in each of the four directions by one of
S’s three subpolyominoes (there would be no
way to remove the tile without also removing
some portion of S). This, along with the fact that
S is a node in the decomposition tree Tq, shows
that location x must be empty in polyomino P°. In
order for ¢ to be a 3-cut through S and a 2-cut
through P9, the induced subpolyominoes Syand Sc
must be connected via a path of tiles in P9-S.
Clearly, this path cannot exist on Sq’s side of ¢, as

it would make c an invalid 2-cut for PO. So, this path
must connect Spand Scon their side of c. Since location
X cannot contain a tile in P® we see that the connection
between Sy and Sc must cut off x’s connection to the
outside plane. This cannot be the case, however,
because PYis a hole-free polyomino.

So, ¢ could not have simultaneously been a valid
valid 2-cut through PO and valid 3-cut through S. It is
easy to observe that any valid p-cut through S (which
is also a valid 2-cut through P%) must have at least one
pair of induced polyominoes with the same properties
as Spand S, and all others may be considered as S for
the purposes of this proof. Thus, no valid 2-cut through
POmay cut through S. This implies that decomposition
tree Tp must not exist, as was originally assumed, and

every decomposition tree must contain S as a leaf. O

Theorem 3.1. A hole-free size-n polyomino P can be checked
for membership in the drop-shape hierarchy in O(n* logn)
time.

Proof. This algorithm is straightforward. Given holefree
polyomino P, perform the following steps:

1. Base Case: If Pis a single tile, return yes. If P is tangled,
return no. Otherwise, continue to step 2.

2. Select a valid 2-cut which cuts P into subpolyominoes
A and B. Continue to step 3.

3. Recurse on 4 and B by performing to step 1 for each of
them. If both return yes, return yes; otherwise, return
no.

We see that this algorithm creates a decomposition tree for
polyomino P. The proof of correctness follows from the
previous lemmas. If all leaves in the decomposition tree are
single tiles, Lemma 3.1 tells us that P is in the hierarchy. If
the decomposition tree contains a leaf which is a tangled
polyomino, Lemmas 3.1 and 3.2 together show that P is not
in the hierarchy.

The runtime is achieved as follows: Since a
decomposition tree for a size-n hole-free polyomino P has
at most n leaves, we know the tree has at most 2n - 1 nodes.
Therefore, we can say that our algorithm is called at most
2n -1 times. Step 1 of the algorithm checks if the polyomino
is tangled (i.e., it checks if P has a valid 2-cut). Theorem 5
from [12] shows that a valid 2-cut can be found for a
holefree size-n polyomino in O(n3 logn) time. So, our
algorithm is called at most 2n - 1 times, with each call
spending at most O(n3logn) time to find a valid 2-cut. Thus,
we achieve a runtime of O(n*logn) to determine if P is in the

drop-shape hierarchy.O

3.2 Hierarchy Characteristics. In this section we derive
some key properties of the drop-shape hierarchy. In

particular, in Theorem 3.2 we show that any member
of the hierarchy of size-n must be a member of level
Dblogiple- This result allows us to efficiently bound the
size of the board needed to assembly size-n
polyominoes in Section 4. Next, in Theorem 3.3 we
establish that the drop-shape hierarchy is a true
hierarchy, i.e. that each level h of the hierarchy
contains shapes that are not members of any level
lower than h.

Lemma 3.3. For any polyomino P € Dbnu there exists

a Strict decomposition Tree, for any H = 0.

Proof. We will prove this by induction on the size
of the shape. For our base case we know any
single tile has a strict decomposition tree.

Now for our inductive step assume that
there exists a strict decomposition tree for any
polyomino p where 1 < |p| < n for some n.

Consider a polyomino -where |P| = (n +
1). We know that since

P € Dy there exists two polyominoes P; € Dy and
Py € Du-1that can be dropped onto each other to
build P. We know that since both P, and P» are
subpolyominoes of P, n = |Pq| and n = |Pp|. From
our inductive step we can assume that both Pq
and P» have strict decomposition trees and the
only new node we add is P which has the
properties required by a strict decomposition
tree.

From here we see that every polyomino in a strict

level H = 0 has a strict decomposition tree.

Lemma 3.4. For any polyomino - such that

H >0, any strict decomposition tree of P must have
a node P° with two children Piand Pr such that

- and both _ and Pr€ DbH-1.

Proof. First we will prove there must exist a node

POwith two children Prand Prsuch that P° € Dbu
and both P;€ Du-1and Pr€ Du-1, then we will show
why they both must be strict.

Let us first look at the root P. If both children
of P are in Dy-1 than P is the node we are
describing. Now consider the case where p is a
child of P and p /€ Du-1. Since we are looking at a

strict decomposition tree we know that p € Dbs.
Since the tree rooted at p is also a strict
decomposition tree we have the same two cases.
However since a strict tree is also an atomic tree
all the leaves of the tree must be single tiles so
eventually the first case must be true.

Now we will show P1 €/ Du-z2 and Pr€/ Dy-2.
Without loss of generality assume P; € Dy-2, this
would mean that P° can be built by dropping a

shape in Dy-2 onto a shape in Dy-1 which by definition
would mean P? € Dy-1 which we know is not true since

PY€ Dpn.
Since P; € Du-1 and Pr € Dy-1, and P; €/ Dy-2 and

-DH—z we can see that P; € Dby-1 and Pr € Dy-1.
Therefore there must exist a node P9 € Dpx with both

children in Dbx-1.0

Lemma 3.5. For any polyomino P € Dbs, |P| 2 2 Proof. We

prove this by induction on H. For the base case we can see
that the only strict level-0 shape is the single tile. We can see
that 1 = 2%is true. For the inductive step assume for any p €

Db, |p| = 2". Consider a polyomino P € Dbu+1. We know from
lemma 3.3 there must exist a strict decomposition tree and
from lemma 3.4 that there must exist a node in a strict

decomposition tree P° that has two children _
We can also see that since P;and P-are children of P9,

|POl = |Pr| + ||

From our assumption since both_

2Hand |Pi| 2 2H
|PO| = 2H + 2H
|Po| 2 2H+1

Finally, since P?is a subpolyomino of P, |P| =
|POl.
|P| > 2H+1

Theorem 3.2. For any polyomino PE D, P €

Dblog|P|c

Proof. We can see from lemma 3.5 for any -, log|P| 2
h. We also know that for any H = h,P € Du. Let H = blog|P|c,
we can see that

P € Dblog|P)c. 0

Lemma 3.6. For all positive integers h, given a holefree
polyomino P € D, for any singly-connected, non-blocked tile
teP,P-teDn

Proof. We will prove this is true by induction on h. Lemma 3
of [8] showed that given a hole free polyomino P: € D1, for
any tile t1 € P1 that is noncut (P1 - t1 is connected), non-
blocked, and convex (there exists a 2 x 2 square that solely
contains ti1), P1 —t1 € D1. For simplicity we will refer to a
singlyconnected, non-blocked tile as a candidate tile. A
candidate tile is convex and non-cut. In general, we will say

that C(Dg) is true if and only if for all polyominoes Pr €
D, for any candidate tile t € Py,
P -t € Dp.

The base case C(D1) was shown to be true by
Becker et al. in [8]. Assume C(Dx) holds. We will prove
by contrapositive that C(Dn) == C(Dn+1)-

Assume =C(Dn+1). Consider a polyomino P € Dp+1, a
candidate tile t € P, and a polyomino P - t = P €/ Dp1.
Let T be a strict decomposition tree of P. The first cut
in T is not solely removing ¢, since that would result in
PO €/ Dp+1 (violating the strict decomposition tree), so
we will also consider 79 a decomposition tree for P°
that initially makes the same cuts as T. Since T is a
strict decomposition tree, for the children of its root, p:
and pr, one is in Ds+1 and the other is in Ds. W.L.0.G., let
t exist in the child node p. Now, consider the nodes
derived from making equivalent cuts in/ 2nad L
Since t only existed in B e are two
cases. First, if pi € Dn. We know
I g Pr€ Dh+1, but PO €/ Dp+1.

This means that p;€ Drand t € prwas a candidate tile,
and_, and therefore =C(Dn).

The second case is pi €/ Dy, but since it is a strict

because

decomposition tree it must then be in - If
this is the case, then consider p; as the root
polyomino. Repeat the same process to p1ar1d.
that we did to P and PY. Since all leaves in a strict
decomposition tree are single tiles, we eventually
arrive at a child node p in Ds, where t € p is a
candidate tile, and a p—t = p® €/ Dpn. Therefore,
=1C(Dn+1) == ~C(Dn), and by contrapositive: C(Dn)
== ((Dn+1).0

Theorem 3.3. For all positive integers h, there exists a
polyomino in Dbp.

Proof. Polyominoes in . have previously been
labeled as drop shapes. This is the set of shapes
that can be built by dropping only single tiles,
excluding the singleton tile itself. A polyomino in
. can be seen in Figure 4b. We will call this
polyomino P2. We can use a method we will refer
to as fractalization to generate a polyomino in .
from P-. See Figure 4c.

To show existence of a polyomino for every
strict level of the hierarchy, we will show how a
polyomino - that was generated
through repeated fractalization to Pz can be used

to create a polyomino-. This method
takes 2 copies of p, which we will label p1and p2,
and places them horizontally adjacent to each
other 2 unit spaces apart (without loss of
generality, assume p1 is to the left of p2). Then,

two tiles are added; one above the north-most right-
most tile of p1and the other above the north-most left-
most tile of p2. A string of single tiles is then wrapped
around both polyominoes such that there is 1 unit
space between the border and the bounding boxes of
the inner polyominoes. This border polyomino
connects the two tiles that were added from above.
The border polyomino blocks both p1 and p: in all
directions, creating polyomino p?°, See Figure 4a.

We know that p? € Dp+1, as it can clearly be 2-cut across
the border resulting in two polyominoes in Dx that can be
built by dropping single tiles onto p. This cut is shown in
Figure 4. We must now show that p?is not in Dx. If p was in
Dn, there would exist a valid 2-cut in which at least one of
the resulting polyominoes derived from that cut was in Ds-1.
This cut can not occur solely across the border connecting
the two polyominoes, as the two resulting polyominoes
derived from that cut are polyominoes that can be turned
into p by repeatedly removing non-blocked, singly-
connected tiles. Therefore by

Lemma 3.6, since - we can see that these
polyominoes can not be in Dy for g < h. It is also clear that
this cut can not occur solely within p1 and/or p2, as they are
are now both blocked in all directions. It is also not possible
for the cut to cross both the border and pi or p2. First
observe that due to the way these polyominoes are
connected, there will never be 2 x 2 square fully occupied
by tiles. Since there are also no holes, there is never a choice
of which path to take to get from one tile to another. This
means there is a single path of connectivity between any
two tiles in p° and therefore a single path of connectivity
between any tile in p1 and any tile in p2. This path will
always include the border that connects the two. If the cut
occurs within the border, then this path is removed,
meaning there are now 2 disconnected polyominoes.
W.l.o.g,, assume this cut also occurs within p1, splitting it
into prand p-. Since there is only one path between any two
tiles, there is now no path between p;and pr. There is also
no path between pzand pior pr. It follows that there are now
3 disconnected polyominoes as a result of this cut, leaving
this cut an n-cut, where n = 3. If the cut continued through
p1or into pz, n could increase, but never decrease. This
shows that the 2-cut in question does not exist, meaning p°

€/
Ds. Since p° € Di+1 and pO €/ Dp, p° € Dbhr+1. This shows that
the fractalization method can be repeated to generate a

polyomino in Dbx for all positive integers h. Figure 4 shows
the fractalization method being used to create a polyomino

in Dbz and a polyomino in
Dba. |

4 Drop-Shape Hierarchy Constructor

This section presents a construction that builds any
shape in the drop-shape hierarchy. The construction is
a direct extension of [3]. In that work, a universal

onto any row or column of a shape in the center
construction area. For the reader, we have included a
descriptions of the tile selection, direction selection,
and column selection process from [3] in Figures 6 and
5b, as well as the tilt sequences for these commands in
Table 4. This constructor uses a modified tilt selection
gadget which allows for the disposal of fuel tiles once
the desired polyomino has been built.

D: Constructor Gadget. This gadget (shown in
Figure 5b) is an extension to the D1 constructor.
Overall, this gadget is similar to the D1 constructor, but
scaled to allow the dropping of wxh polyominoes

Figure 5: (a) The universal drop-shape constructor from [3] which builds any shape in D1. (b) The D;constructor
gadget which allows the dropping of large polyominoes, it also depicts the sequence for selecting a direction to
drop from. The paths from D;constructor gadget look the same in the D1.

p
(c) Polyomino in. (d) Polyomino in.

Figure 4: Fractalization method used to reach
higher strictlevels of the hierarchy. The gray tiles
represent the single tile border created, while the

red tiles represent the polyominoes in .used.
The green dashed line represents the 2-cut that
shows this shape is in Da+1.

constructor was given for drop-shapes (D1 of our
hierarchy) which fitin a w x h bounding box. At a
high-level, we can extend the construction with
larger chambers that are functionally identical to
the D1 constructor, but are scaled to allow the
dropping of large polyominoes.

D1 Constructor. This construction (shown in
Figure 5a) was introduced in [3] and is capable of
building any polyomino P € D1, provided P fits
within a given w x h bounding box. The high level
idea for this constructor is that tiles can be
extracted from the fuel chambers and dropped

rather than single tiles. Because we are dropping two
multi-tile polyominoes together, we need to double
the dropping area to account for any drop that might
be blocked by the adjacent wall in the dropping area.
However, the dimensions of the polyomino built after
the drop cannot exceed the w x h bounding box. The
same tilt sequences used in the D1 constructor are used
in this constructor. This allows for a large polyomino
to be dropped onto another in the same fashion as a
tile is dropped in the other constructor. By attaching a
series of these constructors onto a D1 constructor, we
can build polyominoes which are in higher levels of the
hierarchy.

Bit String Tunnels. To connect the constructor
chambers, we use bit string tunnels (Figure 8) which
require a unique move sequence to move a polyomino from
a constructor D;to a constructor Di+1. These tunnels require
a sequence of up/down tilts, which can be thought of as 0 or
1 bits. It’s easy to see that a construction which builds level
h shapes requires logh many up/down selectors. At the end
of every bit string tunnel there is a reset gadget as shown in
Figure 7b section 3 which enforces all subpolyominoes to
be in their launch configurations once a subpolyomino has
traversed from constructor to constructor.

D+ Constructor. Figure 9 shows a complete tion has size O(h*w?log?(hw)) and uses O(h3w?) tilts to

F
JJE HELE
5

(c) D:Tile Selection Gadget

(a) D1 Column Selection (b) Di Column Selection

Figure 6: (a) The column selection gadget for D1 shapes. Assuming the shape to build is at a fixed location, this
gadget allows any column to be selected to drop the new tile onto. The number of columns to drop from in this
gadget determines the size of the shape we can build. Thus, this is for a drop shape within a 4 x 4 bounding box.
This gadget is repeated on each of the four sides of the drop-shape constructor (with a slightly modified one on
the south side in order to allow a non-conflicting move sequence.). (b) The column selection gadget for a 4x 4
Diconstructor. Notice that the tunnels are large enough to accommodate shapes that fitin a 4 x 4 bounding box,
and the attachment area is twice as big as the D1 version. This is to allow large polyominoes to be dropped onto
any row/column of another large polyomino. (c) The fuel selection gadget for D1. Each tile is pulled out with
the sequence hE,N,W,S,E,Si, and stops at the first square. Then the left tile type (blue) is either pulled out of the
gadget or put back in the storage area. This shows it being added back to the storage with hE,S,W,N,W,Si. This
sequence puts the next tile type (red) in a decision location. The red tile is selected with the sequence
hW,N,W,S,W,Si. Once the desired shape has been built, one can remove the remaining fuel tiles off the board
with hE,N,W,S,E,S,W,S,E,S,W,S,E,Wi. This sequence extracts both tile types off the storage area, and then removes

them off the board.

constructor which can build any polyomino P s.t. P €
Dsand P fits in a 4 x 4 bounding box. Since P can have
at most 16 tiles, Theorem 3.2 tells us that P € Dy, i.e.,
the largest hierarchy level needed is four. Thus, the bit
string tunnel only needs two up/down choice to
encode all of the possible tunnel transitions.

Theorem 4.1. Given positive integers w,h € Z*, there
exists a configuration which is strongly universal for the
setof shapesU={u|u€

D,u fits in a w x h bounding box}. This configura-

Figure 8: This Figure demonstrates a 2-bit string
tunnel. Notice that the tilt sequence
hW,N,W,S,W,S,W,N,Wi would only allow a shape
to completely traverse bit string tunnel 01.

move into a configuration which strongly represents
any shape u € U.

Proof. This is a proof by construction. We begin with a
configuration C where the chambers of all D; gadgets

are empty except for the fuel chambers in D1. We know
from [3] that the D1 gadget can build any level-1 drop
shape. The building process follows the flowchart in
Figure 7a using the tilt sequences in Table 4. This
allows building any i-level shape bounded by h and w
where i <loghw (by Theorem

3.2). While building the desired polyomino, all
subpolyominoes follow the same sequence and thus reach
the same position in their respective constructors
simultaneously. Once a subpolyomino needs to move from
a Dito a Di+1 constructor, all subpolyominoes are sent to
their corresponding bit string tunnel. The uniqueness of
each tunnel guarantees only one subpolyomino successfully
traverses towards the next constructor while the others are
held back in the bit selector tunnel. The reset gadget at the
end of each bit string tunnel enforces sequence R in Table 4
which sets every polyomino to its launch position.

Once the desired polyomino has been built and is
located in the D; constructor, we can perform sequence D
until there is no more fuel pieces in the fuel chamber. We
then have configuration €% from C by performing a series of
tilts. Consequentially, € —« C° The overall process of
transitions from the starting configuration to the

configuration that represents shape u € U, is shown in complete with only 1x1 tiles. To achieve this result we

Command

1. Extract blue tile (Esue)
2. Extract red tile (Ered)
3. Add from east (Ax)

4. Add from north (Ax)
5. Add from west (Aw)

6. Add from south (4s)

Tilt Sequence

hE,NW,S,ES,W,N,W,S,ES,W,N,Wi
hE,NW,S,ES,ES,W,N,ES,W,S,W,N,Wi

hN,E,S,W,Si + hS,W,N,Wi + hN,W,S,E,S,E,Si

hN,WN,ESi + hES,W,SV + hWW,S,EN,ES,ESW, S,ESESi
hN,W,S,W,N,Ei+hN,ES,Ei+hS,E,NW,N,ES,ES,E,S,ESW,S,ES,ESW,N
hN,W,S,E,S,W,Ni + hW,Ni/ + hE,N,W,S,W,N,E,S,E,Si

7. Send to BST (Szsr) hN,W,S,E,S,E,S,W,S,E,S,W,Si

8. Traverse 1-bit (T1) hW,N,W,S,Wi

9. Traverse 0-bit (7o) hW,S,W,N,Wi

10. Reset to launch (R) hW,S,E,S,W,N,Wi

11. Remove from board (D) hE,N,W,S,E,S,W,S,E,S,W,S,E, Wi

Table 4: Commands EBpiue, Ered move either a red or blue tile into launch configuration. Commands AgAn,Aw, and
Asadd a subpolyomino in the launch configuration into the shape being built. These said commands have been
slightly modified from [3] to avoid conflicting with the remaining commands. Commands Sssr, To, and T1 send
the subpolyominoes to their respective bit string tunnels (BST’s) and allow one of them to traverse through the
tunnels. Command R returns back any polyominoes to their corresponding launch configuration. Finally,
command D removes one red and blue tile from the board.

Figure 7a.0 provide a polynomial time reduction from Non-
Deterministic Constraint Logic [9]. The formal
5 Occupancy, Relocation, and problem definitions are as follows.

Occupancy Problem. The occupancy problem asks
whether or not a given location can be occupied by any tile
on the board. Formally, given a configuration C = (B,P) and
acoordinate e € B, does there exist a tilt sequence such that
C —. ("where C°= (B,PY) and 3p € PO that contains a tile

Reconfiguration Complexity

Here, we prove that the occupancy, relocation, and
reconfiguration problems are PSPACE-complete when
limited to only 1x1 tiles by a polynomial time
reduction from Non-Deterministic Constraint Logic.

The occupancy problem asks whether a given
position within a given board configuration can
be occupied by a polyomino for some tilt
sequence. Relocation asks whether a given
position may be occupied by a specific given
polyomino. And Reconfiguration asks if a given
initial board configuration may be converted into
a second given board configuration. The
occupancy problem was originally defined by
Becker et al. using only 1 x 1 tiles. They showed
itis NPhard and the minimum move sequence for
reconfiguration is PSPACE-complete [4,6]. The
authors also showed the impossibility of a fan out
with dual rail logic which could be viewed as
evidence against the problem being PSPACE-
complete. However, recent work showed that
with even a single additional 2x2 polyomino, the
relocation and reconfiguration problems are
PSPACE-complete [3]. In this section we
definitively answer the question with only 1 x 1
tiles and show all three problems to be PSPACE-

with coordinate e?

Relocation. The relocation problem asks whether a
specified polyomino can be relocated to a particular
position. That is, given a configuration, a polyomino within
that configuration, and a translation of that polyomino, does
there exist a sequence of tilts which moves the original
polyomino to its translation?

Reconfiguration. The reconfiguration problem asks
whether a configuration can be reconfigured into another.
Formally, given two configurations C = (B,P) and C°= (B,PY),
does there exist a tilt sequence such that € -« C°?

5.1 Non-Deterministic Constraint Logic. A constraint
logic graph is a weighted directed graph with a constraint
on each of the vertices [9]. The constraint specifies the
minimum weight required from the edges directed in (the
sum of the inflow) to any vertex. An example of two vertices
can be seen in Figure 11b. When given a graph, the usual
problem studied is whether a particular edge can be
“flipped”- the direction of the edge changed, i.e., is there a
sequence of edge flips that maintain the constraints on all

11

(@)

(b)

Figure 7: (a) A flowchart where each state represents a set of configurations and the symbols represent
sequences that can move from one state to another. The sequences for each of the symbols is shown in Table 4.
The sequence marked as Uiis a unique combination of Toand T1 tilt sequences for each ith constructor. Note
that after performing the Sgs7,U;,R sequences one has successfully relocated the shape located in Dito Di+1 and
can add both shapes located in constructor Di+1 with either of the Ay ArAs, Awsequences. (b) This is an overview
of the different sections of the hierarchy constructor. Section 1 is the D1 shape constructor as shown in [3],
section 2 is the bit string tunnels, section 3 is the reset gadget and section 4 is

vertices, and allows the target edge to be flipped? This
is a one-player unbounded game. The problem is still
PSPACE-complete when the edge weights are all
strength 1 or 2, and vertices have max degree 3. We

address the following equivalent problem.

Configuration-to-Configuration Problem.
Given two states of a constraint graph G and G°,
does there exist a sequence of edge flips starting
with G that results in G°[9].

5.1.1 Vertex Gadget. We will assume a max
degree of three for all vertices, which means
there are 8 possible arrangements of in/out
edges. Define the vertex state as a label from 0 to
7 determined by the directions of its incident
edges. We label each edge of a vertex Eq Ep Ec. The
state is then the decimal value of a binary string
of length three with each bit representing an
edge (E<E»Ec) where an edge directed inward is a
0, and an edge directed outward is a 1. Thus, the
state values go from 000 to 111. We say a vertex
isin a legal state if the weight of all edges pointed
inward is greater than or equal to the constraint
of the graph.

A vertex gadget contains a single 1 x 1 tile
referred to as the state tile, a transition area, and
a number of state gadgets equal to the number of
legal states of that vertex. Since there are eight
states, there are eight basic paths in the gadget
that the state tile could be in representing the
vertex’s state. Figure 11a gives an example vertex
gadget (a CL AND vertex) and the possible paths,
and also shows the numbering of the states and
the corresponding orientations of the original

edges for that state. Table 5 gives the only move
sequences needed for the system.
the column selection chambers for the D;constructor.

Flipping an edge is represented by a move sequence
performed while in a valid state that moves the state tile
from one state path to another, which happens
simultaneously in two vertex gadgets since an edge
connects two vertices. This edge flip happens in all vertex
gadgets, but if the edge is not incident to that vertex, there
is no effect on the path of the state tile.

5.1.2 State Transition Gadget. The state transition
gadget is the transition area and the concrete that encode
legal transitions from a given state. This will be unique to
each vertex gadget. These are outlined in Figure 11a as
states 0 - 4. Figure 11c shows one of these areas with an
explanation of the different paths. There are |E| levels on
the right, where each level represents an edge in the
graph. When a hWi command moves the state tile left, the
tile stops at the blocked spot on that level. All edges not
incident to the vertex have no effect on the path of the
state tile (the dotted lines in Figure 11a and white rows in
Figure 11c). The three edges that are incident will change
the path of the state tile when a hSi command follows. If it
is not a valid edge flip (due to the constraints), the state
tile will be permanently stuck in a path representing an
invalid state. If the new state is valid, the state tile will be
in that state path.

hhE,Six hW,N, Eii
Extraction hhE,SiE*LhW,Sii
Table 5: Move sequences for the reduction. h-i means
repeat the sequence Ktimes. |E| is the number of edges

Flip edge ex€ E

in the original constraint graph, as opposed to
hEi which is the ‘east’ command.

Note this will happen for both vertex gadgets
representing a vertex incident to the edge
chosen. Figure 11d shows an example of two
state transition areas in two vertex gadgets
representing two vertices that share an edge.

5.1.3 Goal Area. An overview of the reduction
layout is in Figure 11e where the goal area is
shown at the bottom of all the vertex gadgets.
Once all the tiles are in positions that represent
the target configuration, the tiles can be
extracted into the goal area. An extraction is
made the final level in a state gadget. After
extraction the tiles enter the goal area. The goal
area consists of two rows. The valid row and the
invalid row. The invalid row (top row) traps any
tiles that enter when a vertex was not in the

pable of building any

ve

- T Tl conn guratbgUse o2 AverExsadgstvithhopashétrarsiionamions
eorresnAnTing.Aate BuamRsT Indi e e ALV BUARE R A SonsHnt Rinnd

specified (in the target configuration) state. The valid
row (bottom row) contains the goal position (g in
Figure located in Section 1.

11e). The goal position is |V | positions to the right of the left
wall. Thus, |V | tiles must be in this row in order to have the
last tile be in this location. In order to have enough tiles to
reach the goal position, each vertex must be in the correct
state to output the tile to the goal area. This ensures all
vertices, and thus the entire graph, is in the specified target
configuration.

Lemma 5.1. After performing a move sequence to flip an edge,
only the two vertex gadgets representing vertices incident to
that edge will have their state tile change state paths. All
other vertex gadgets will have their state tile stay in the same
state path.

Proof. Since we enumerate all the edges and make each state
gadget have an exit point for each edge, a move sequence to
select and flip an edge moves all tiles out of their state

fachsirtorsn different calabhathsthasds nes shaneth i te of s arsdoited s snlinaiar sunyalid

SRS AR NP MeRSESALY YREUSETS ok nRsaavsriv e inded gams rs hevcisiln AN BiARA AR sarersiip A
EQprln RS APT YU b SoR T AIb & L2 SHp AN

oughou

&t&%ﬁ%%‘rﬁ%‘ e ‘A’iTli%}ét 1) and a blué edge (weight

2). Directing the blue edge outward requires both red edges to be directed inward. The OR vertex has three
blue edges. Only one edge needs to be directed inward. (c) An example of a state transition area the vertex it
represents. White rows represent edges that do not change the state of the vertex (they are not incident). Red
and blue rows represent the incident edges and the weights of those edges. (d) The state gadgets for two
different vertices Viand V. Both vertices share edge 3. Virepresents state 4 of an OR vertex. Vrrepresents state
3 of an AND vertex. If edge 1 is selected (the red tile and line), Viwill remain in state 3 while V:will go to state
7. Selecting edge 3 changes the state of both gadgets. (e) Ag overview of the layout of the different components
for the reduction. The dotted red lines represent the vertex gadgets (not to scale), the green boxes below denote
the geometry specific to each vertex to force the state tile into the top row (if in the wrong state) or the bottom
row (if in the correct state). The bottom row requires all |V | state tiles in order for a tile to get into

gadget to the transition area. We create the transition
area for each vertex gadget based on the edges thatare
connected to that vertex. If flipping an edge causes a
vertex to change states we place a concrete block to
stop the tile in the state column of the new state. If
flipping an edge does not affect a vertex then when
that tile leaves the state gadget and goes to the
transition area there will be a block of concrete to stop
the tile in the state column of the state it was
previously in. Since all tiles start at the top of the state
gadget, they all move out of the same level, so only two
vertex gadgets will have their state tile change state
gadgets. We can see this in Figure 11d. Flipping the
first edge will change the state of the right vertex but
not the left. Flipping the third edge edge will change

the state of both. Othe goal location g.

Lemma 5.2. If a vertex enters an illegal state, the
representative vertex gadget’s state tile will be trapped
in an ‘illegal’ state path and cannot be extracted.

Proof. If an edge flip would cause a vertex to enter an
illegal state the tile will still be sent out of the state
gadget into that states column. Since when we create
the vertex gadget we block off the right of the top of
any illegal state columns once a tile goes to the top or
bottom of a state column it can only travel between the
both of these. The only way this tile can be removed
from this column is if a second tile enters this column.
However, there is no way for another tile to enter the
vertex gadget so there is no way to extract the tile once

it becomes trapped in the column.O

Theorem 5.1. Occupancy is PSPACE-complete
with only 1 x 1 tiles in the full tilt model.

Proof. We show Occupancy is PSPACE-hard with
only 1x1 tiles by a reduction from Non-
Deterministic Constraint Logic. Given an instance
of a constraint graph G (with initial configuration
Ci)) and a goal configuration Cy of that graph,
enumerate the edges and vertices of the
configuration. For each vertex in the graph create
a Vertex Gadget. We create the configuration in
the tilt model, S;, as described above with the goal
location g and vertex gadgets laid out side by side
above the goal area as shown in Figure 11e. The
vertex gadgets will have a state transition gadget
for each legal state of that vertex. The transition
area is built based on the edges of the vertex.
Then there exists a sequence of edge flips to
transition Ci to Cy if and only if there exists a
sequence of tilt commands that transition board
Si to a board configuration with some tile at
location g.

Given a sequence of edge flips to transition Cito Cyin G
= (V,E), F = hfy,...fii where f; € E, we can directly translate this
into the move sequence necessary based on Table 5. Each
vertex has its state tile start in the starting state of the
vertex. Lemma 5.1 shows we can select any specific edge
and perform a move sequence to select and flip that edge to
change the state of two vertices and leave all other state
tiles in the same state path. Since there exist move
sequences to flip edges and change the states of vertex
gadgets, a series of edge flips that are a solution to an NCL
configuration-to-configuration problem can be turned into
a move sequence that changes all vertex gadgets to their
goal states which can then be extracted to solve the
occupancy problem.

If given Siand a sequence of tilts T = htj,...t-i, where t; €
{N,E,S,W}, that solved the occupancy problem, the edges to
flip could be found from the sequences of Table 5. We know
by Lemma 5.2 that any tilt sequence not corresponding to a
legal edge flip would trap a state tile, and thus occupancy
could not be solved. Thus, if our sequence solves the
problem, only legal edge flips were made. Further, to solve
occupancy, we need all |V | state tiles in the goal area,
meaning all vertex gadgets were in the correct state, as

specifiedin Cg. O

Corollary 5.1. Relocation is PSPACE-complete with only 1 x 1
tiles in the full tilt model.

Proof. If we ask whether we can relocate the state tile in the
vertex gadget for va to the goal location g, we have an
equivalence of the Occupancy problem.

|

Corollary 5.2. Reconfiguration is PSPACEcomplete with only 1
x 1 tiles in the full tilt model.

Proof. Since state tiles remain in their vertex gadget, they
remain in the same order when extracted. The goal
configuration is all tiles extracted from the vertex gadgets
in the valid row ordered by vertex number. In order to
extract all the tiles into the valid row, all gadgets must be in

the correct state when extracted. 06 Conclusion

In this paper we presented a hierarchy of shapes that
are buildable within the full tilt model. We proved
several characteristics about the drop-shape class,
then gave an algorithm to decide membership in the
class for hole-free shapes. We then provided a
universal constructor that strongly builds this class of
shapes. We then answered an open question by
proving that the Occupancy problem in full tilt is
PSPACE-complete even with only 1 x 1 tiles.

We leave a number of open problems. When
considering drop-shape membership, our algorithm
does not consider shapes with holes. Does there exist
an efficient algorithm to determine membership in D
for all shapes? Also in defining membership in levels

of our hierarchy we only consider one tile type
that sticks to itself in determining if a cut is valid.
What shapes can be built in lower levels of the
hierarchy if more tile types are allowed? Does
there exist a tile type hierarchy and how does it
relate to the drop shape hierarchy? In regards to
Theorem 3.2, does there exist a tighter bound on
the level of the hierarchy a shape must be in?
Lastly, for complexity of the occupancy,
relocation, and reconfiguration problems, we use
a connected board to show PSPACE-
completeness. Is the problem easier when
limiting the board type to simple or monotone, or

does it remain PSPACE-complete?

References

(1]
(2]
(3]

[4]

(5]

[7]

(8]

Atomix, Thalion Software, 1990.

Mega maze, Phillips Media, 1995.

Jose Balanza-Martinez, David Caballero, Angel Cantu,
Luis Garcia, Austin Luchsinger, Rene Reyes, Robert
Schweller, and Tim Wylie, Full tilt: Universal
constructors for general shapes with uniform external
forces, 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’19, 2019.

Aaron T. Becker, Erik D. Demaine, Sa'ndor P. Fekete,
Golnaz Habibi, and James McLurkin, Reconfiguring
massive particle swarms with limited, global control,
Algorithms for Sensor Systems (Berlin, Heidelberg),
Springer Berlin Heidelberg, 2014, pp. 51-66.

Aaron T. Becker, Erik D. Demaine, Sa’ndor P. Fekete,
Jarrett Lonsford, and Rose Morris-Wright, Particle
computation: complexity, algorithms, and logic,
Natural Computing (2019).

Aaron T. Becker, Erik D. Demaine, Sa'ndor P. Fekete,
and James McLurkin, Particle computation: Designing
worlds to control robot swarms with only global
signals, IEEE International Conference on Robotics
and Automation, ICRA’14, May 2014, pp. 6751-6756.
Aaron T. Becker, S’andor P. Fekete, Phillip Keldenich,
Dominik Krupke, Christian Rieck, Christian Scheffer,
and Arne Schmidt, Tilt Assembly: Algorithms for
Micro-Factories that Build Objects with Uniform
External Forces, 28th International Symposium on
Algorithms and Computation (ISAAC 2017), Leibniz
International Proceedings in Informatics (LIPIcs), vol.
92,2017, pp. 11:1-11:13.

Aaron T. Becker, Sa'ndor P. Fekete, Phillip Keldenich,
Dominik Krupke, Christian Rieck, Christian Scheffer,
and Arne Schmidt, Tilt assembly: Algorithms for micro-
factories that build objects with uniform external
forces, Algorithmica (2018).

[9] Robert A. Hearn and Erik D. Demaine, The
nondeterministic ~ constraint logic model of
computation: Reductions and applications,

Proceedings of the 29th International Colloquium on
Automata, Languages and Programming (London, UK,
UK), ICALP ’02, Springer-Verlag, 2002, pp. 401-413.

[10] Sheryl Manzoor, Samuel Sheckman, Jarrett Lonsford,
Hoyeon Kim, Min Jun Kim, and Aaron T.

Becker, Parallel self-assembly of polyominoes under uniform
control inputs, IEEE Robotics and Automation Letters 2
(2017), no. 4, 2040-2047.

[11] Matthew]. Patitz, An introduction to tile-based selfassembly
and a survey of recent results, Natural Computing 13 (2014),
no. 2, 195-224.

[12] Arne Schmidt, Sheryl Manzoor, Li Huang, Aaron T. Becker,
and Sa'ndor Fekete, Efficient parallel selfassembly under
uniform control inputs, IEEE Robotics and Automation
Letters (2018), 1-1.

15

