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The p-value combination approach is an important statistical strategy
for testing global hypotheses with broad applications in signal detection,
meta-analysis, data integration, etc. In this paper we extend the classic
Fisher’s combination method to a unified family of statistics, called TFisher,
which allows a general truncation-and-weighting scheme of input p-values.
TFisher can significantly improve statistical power over the Fisher and re-
lated truncation-only methods for detecting both rare and dense “signals.”
To address wide applications, analytical calculations for TFisher’s size and
power are deduced under any two continuous distributions in the null and
the alternative hypotheses. The corresponding omnibus test (oTFisher) and
its size calculation are also provided for data-adaptive analysis. We study the
asymptotic optimal parameters of truncation and weighting based on Bahadur
efficiency (BE). A new asymptotic measure, called the asymptotic power effi-
ciency (APE), is also proposed for better reflecting the statistics’ performance
in real data analysis. Interestingly, under the Gaussian mixture model in the
signal detection problem, both BE and APE indicate that the soft-thresholding
scheme is the best, the truncation and weighting parameters should be equal.
By simulations of various signal patterns, we systematically compare the
power of statistics within TFisher family as well as some rare-signal-optimal
tests. We illustrate the use of TFisher in an exome-sequencing analysis for
detecting novel genes of amyotrophic lateral sclerosis. Relevant computation
has been implemented into an R package TFisher published on the Compre-
hensive R Archive Network to cater for applications.

1. Introduction. The p-value combination method is an important statistical strategy for
information-aggregated decision making. It is foundational to many applications including
meta-analysis, data integration and signal detection. In this approach a group of input p-
values Pi , i = 1, . . . , n, are combined to form a single statistic for testing a global hypothesis
related to the whole group. For example, in meta-analysis with each p-value corresponding
to the significance level of one single study, all the p-values are combined together for the
purpose of testing whether or not a common scientific hypothesis is true. In signal detection
each p-value could come from one feature factor, and the p-values of a group of factors are
combined to determine whether some of those factors are associated with a specific outcome.
In either scenario, regardless of the variation in the original data, the p-values provide a
common scale for the assessment of evidence from various studies or factors. In this regard,
the p-value combination is an approach that combines the information from different sources
for making more reliable conclusions.

In order to address the question of how to properly combine a group of p-values, we start
with clarifying the fundamental problem of global hypothesis testing. Specifically, it aims at
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testing a global null hypothesis (H0) vs. a global alternative (H1) regarding the distribution
of the i.i.d. input statistics X1, . . . ,Xn,

(1.1) H0 : Xi
i.i.d.∼ F0 for all i versus H1 : Xi

i.i.d.∼ F1 for all i,

where F0 and F1 denote any two continuous cumulative distribution functions (CDFs). In
many applications the distribution of the statistics under H1 can often be represented by a
mixture model (Cai and Wu (2014))

(1.2) H0 : Xi
i.i.d.∼ F0 = G0 versus H1 : Xi

i.i.d.∼ F1 = (1 − ε)G0 + εG1,

where ε ∈ (0,1], G0 and G1 are two continuous CDFs. For example, in a metaanalysis of n

studies (Song and Tseng (2014)) the null hypothesis is that all studies are negative, for which
their statistics Xi’s all follow the G0 distribution. The alternative is that an ε proportion of
the studies are positive with the corresponding Xi’s following G1 distribution. In detecting
the signals of genetic associations for another example, when a gene containing n single
nucleotide variants (SNVs) is tested (Hoh, Wille and Ott (2001)), the null hypothesis is that
none of the SNVs are associated with a disease, the alternative is that an ε proportion of
SNVs are associated and thus the whole gene is associated.

The statistics are often exactly normal or approximately normal. Therefore, a classic set-
ting is the Gaussian mixture model

(1.3) H0 : Xi
i.i.d.∼ � vs. H1 : Xi

i.i.d.∼ (1 − ε)� + ε�μ,

where ε ∈ (0,1], � and �μ are the CDFs of N(0,1) and N(μ,1), respectively. For simplicity,
we assume the variance is 1 without loss of generality. As long as the data variance is known
or can be accurately estimated, the input statistics can be standardized. The parameters (ε,μ)

characterize the alternative distributions, indicating a pattern of “signals” comparing to the
“noise” represented by N(0,1). This model is typically used to address the statistical signal-
detection problem (Donoho and Jin (2004)).

The global hypothesis testing has its important value when comparing with the multiple
hypothesis testing. The former combines all Xi’s to test against one global null hypothe-
sis; the latter addresses multiple individual hypothesis tests simultaneously. Global testing
is needed when the information from different sources is meant to be combined, for exam-
ple, in meta-analysis or data-integrative analysis. Furthermore, instead of separating signals
from noise, global testing’s milder goal of detecting the existence of signals better meets the
challenges of weak and rare signals. In fact, the detection boundary theory shows that given a
rarity level of the signals, there is a threshold effect on the signal strength (Arias-Castro, Can-
dès and Plan (2011), Donoho and Jin (2004), Ingster (2002), Ingster, Tsybakov and Verzelen
(2010), Wu et al. (2014)). Signals falling under such a threshold cannot be reliably separated
from noise. However, in this case it is still possible to detect these weak signals when input
statistics are combined properly. This idea has motivated tremendous statistical developments
in applications, for example, in finding novel genes of weak genetic effects through SNV-set
association studies (Wu et al. (2014), Barnett and Lin (2014)).

The p-value combination method is an important strategy for testing the global hypothe-
ses. Specifically, following the general setting in (1.1), we define the input p-values as

Pi = 1 − F0(Xi), i = 1, . . . , n.

The input p-values are combined to form a test statistic, and its test p-value is then obtained
for testing the H0. Note that even though this p-value definition is written in a one-sided for-
mat, because F0 and F1 are arbitrary, they can represent two-sided input statistics as well. For
example, if F0 is symmetric around 0, the input statistics can be replaced by X′

i = X2
i ∼ F ′

0.
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Therefore, the framework allows detecting directional signals, for example, both protective
and deleterious effects of genetic mutations.

The p-value combination method has two key advantages in data analysis. First, it does
not rely on knowing the exact parametric model of F1, which is required by some other pow-
erful tests, such as the likelihood ratio test (LRT). Second, regardless of the variation in the
original data X1, . . . ,Xn, the input p-values contain full data information and provide a com-
mon scale for assessing statistical evidence. For example, in meta-analysis of heterogeneous
data, X1, . . . ,Xn could come from different data sources and follow different null distribu-

tions: H0 : Xi
ind∼ F0i , i = 1, . . . , n. However, as long as F0i’s are continuous, the monotone

transformation Pi = 1 − F0i (Xi) will result in the homogeneous global null without losing
information:

(1.4) H0 : Pi
i.i.d.∼ Uniform[0,1], i = 1, . . . , n.

To address the key question on how to effectively combine the input p-values, this paper
provides a significant development based on one of the earliest and most broadly applied
methods—Fisher’s combination test (Fisher (1932)). The test statistic can be defined by either
of the two equivalent formulas:

T f
n =

n∏
i=1

Pi ⇐⇒ Wf
n = −2 log

(
T f

n

) =
n∑

i=1

(−2 log(Pi)
)
.

Besides its simplicity and effectiveness in wide applications, Fisher’s combination also en-
joys a strong theoretical root. In particular, under weak assumptions the log-transformation
for the input p-values in Fisher’s combination has been shown the best among all transforma-
tion functions for cumulating p-values (Littell and Folks (1971, 1973)). Therefore, we focus
on the Fisher type log-transformation instead of other transformation functions, such as the
inverse Gaussian Z-transformation (Stouffer et al. (1949), Whitlock (2005)) (which actually
leads to the summation of the original input statistics under (1.3)).

Fisher’s combination can be further improved, especially in the scenario of signal detec-
tion. Its test statistic equally combines all input p-values, which is not ideal when only a
portion of input p-values were connected to the signals. Indeed, such a scenario is partic-
ularly critical in big data analysis, where we often confront the problem of “needles in a
haystack.” In a previous study we have shown that Fisher’s combination won’t reach the low-
est detection boundary of rare and weak signals (Wu et al. (2014)). To address this issue,
one natural extension is the truncation-based statistics. For example, the truncated product
method (TPM) only combines p-values smaller than a threshold, since they are more likely
related to the signals (Zaykin et al. (2002), Zaykin et al. (2007)). The TPM test statistic can
be written as T t

n(τ ) = ∏n
i=1 P

I(Pi≤τ)
i or, equivalently,

(1.5) Wt
n(τ ) = −2 log

(
T t

n(τ )
) =

n∑
i=1

(−2 log(Pi)
)
I (Pi ≤ τ),

where I (·) is the indicator function and τ ∈ (0,1] is a given truncation threshold. A method
closely related to the TPM is known as the rank truncation product (RTP) method, in which
the truncation threshold is set as the kth smallest p-value for a given k (Dudbridge and Koele-
man (2003), Kuo and Zaykin (2011)). These tests have been widely applied in practice with
appreciated performance (Biernacka et al. (2012), Chen and Yang (2017), Dai, Leeder and
Cui (2014), Li and Tseng (2011), Yu et al. (2009)). However, there is a lack of theoretical
study on the foundation of this method. For example, regarding the best choice of the thresh-
old τ , two “natural” choices were considered. One is to take the “default” choice of τ = 0.05
(Zaykin et al. (2002)), and the other is to set τ = ε. We will show that the fixed truncations
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are not always the best in general. In fact, besides truncating the input p-values, the statistical
power can be significantly increased by properly weighting them.

This paper is largely motivated by practical considerations and makes three main contribu-
tions. First, we unify the Fisher type combination statistics and propose a generic truncation-
and-weighting statistic family, the TFisher. TFisher is suitable for various settings of global
hypothesis testing problem, including scenarios of both sparse and dense signals.

Second, comprehensive study of the TFisher are carried out from both applicational and
theoretical perspectives. To apply the TFisher in broad data analysis scenarios, we provide
analytical methods for calculating both the test p-value and the statistical power under the
general hypotheses (1.1). Regarding the signal detection scenario more specifically, we study
the asymptotic properties of the truncation-and-weighting scheme under (1.2) and (1.3). The
asymptotics is based on the traditional Bahadur efficiency (BE), as well as a newly proposed
measure named asymptotic power efficiency (APE). APE is a better measure in reflecting the
real performance of relevant statistics in data analysis and is of interest in its own right. Based
on both criteria, it is interesting to discover that a soft-thresholding strategy, which weights
the input p-values at the same magnitude of truncation threshold, is optimal or nearly optimal
in a wide range of the parameter space of signals.

Third, for practical data analysis where signal patterns are often unknown, we propose
a data-adaptive omnibus test, called the oTFisher, to automatically pick up the appropriate
truncation-and-weighting parameters for the given data. The oTFisher is a robust solution
under various signal patterns. In literature, omnibus test often relies on computationally in-
tensive simulations or permutations (Lee et al. (2012), Li and Tseng (2011), Lin et al. (2016),
Yu et al. (2009), Chen and Yang (2017)). To reduce the computational burden as well as
to improve the stability and accuracy, we provide an analytical formula for determining the
statistical significance of the oTFisher.

The remainder of the paper is organized as follows. The definitions of the TFisher and the
oTFisher are specified in Section 2. Under finite n, analytical calculations of the test p-value
and statistical power are deduced in Section 3. Based on the BE and APE, the optimality
of the truncation-and-weighting parameters is investigated in Section 4. By simulations in
Section 5 the performance of statistics within TFisher family, as well as other classic testing
procedures, are compared over various signal patterns. Section 6 presents an application of
the TFisher to an exome sequencing study. We report the finding of novel putative disease
genes of amyotrophic lateral sclerosis (ALS). A remark and an extension of the TFisher are
discussed in Section 7. The technical proofs of theorems, propositions and lemmas as well as
additional figures can be found in the Supplementary Material.

2. The TFisher test. With the input p-values Pi , i = 1, . . . , n, the TFisher family ex-
tends Fisher’s p-value combination through a general scheme of truncation and weighting.
Specifically, we define the TFisher statistic as Tn(τ1, τ2) = ∏n

i=1(Pi/τ2)
I (Pi≤τ1) or, equiva-

lently,

(2.1) Wn(τ1, τ2) = −2 log
(
Tn(τ1, τ2)

) =
n∑

i=1

(−2 log(Pi) + 2 log(τ2)
)
I (Pi ≤ τ1),

where τ1 ∈ (0,1] is the truncation parameter that selects small p-values and τ2 > 0 is the
weighting parameter for these selected p-values. When τ1 = τ2 = 1, the TFisher statis-
tic reduces to Fisher’s combination statistic. When τ1 ∈ (0,1] and τ2 = 1, it becomes the
TPM statistic in (1.5). It is well known that Fisher’s combination statistic is a summation
of chi-squared variables. With the weighting and truncation parameters, Wn(τ1, τ2) can be
considered as a compound of shifted chi-squared variables (regarding the weighted term
−2 log(Pi/τ2)) and a binomial variable (regarding the truncation term I (Pi ≤ τ1)). For more
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details, please see the proof of Theorem 1 in the Supplementary Material (Zhang et al.
(2020)).

One key question we try to answer in this paper is how to find the best τ1 and τ2 for a
given H1. Before moving on to a detailed study, it is worth noting a connection between the
TFisher and a perspective of the thresholding strategy often employed in studies of shrinkage
estimation, de-noising and model selection (Donoho (1995), Donoho and Johnstone (1994),
Abramovich et al. (2006)). In particular, when τ2 = 1 (i.e., no weighting), the TPM statistic in
(1.5) can be regarded as a hard-thresholding method. When τ1 = τ2 = τ ∈ (0,1], the TFisher
yields a soft-thresholding method

(2.2) Ws
n(τ) =

n∑
i=1

(−2 log(Pi) + 2 log(τ )
)
+,

where (x)+ ≡ x ∨ 0. Consistent with the literature (e.g., Donoho and Johnstone (1994)),
we will show that the soft thresholding is superior over the hard thresholding in the context
of our study too. Here are a few intuitive points that help to understand it. First, the hard-
thresholding curve (−2 log(Pi))I (Pi ≤ τ) is discontinuous over Pi at the cutoff τ , while the
soft-thresholding curve (−2 log(Pi) + 2 log(τ ))+ is continuous (see Figure 1). Such conti-
nuity is helpful to keep a stable performance of the statistic under varying input p-values.
Second, the soft-thresholding curve drops more steeply over Pi , which gives relatively heav-
ier weights to smaller Pi ’s. It is reasonable because smaller Pi’s are more likely from signals.
Third, it can be shown from our theoretical derivation that Ws

n has a smaller variance than
Wt

n (see also Bruce and Gao (1996)), which helps to reach a higher statistical power.
The optimal τ1 and τ2 can be determined based on the knowledge of H1, as to be illustrated

later. However, if that information is not available, we propose an omnibus test, called the oT-
Fisher, to automatically select appropriate τ1 and τ2 in a data-adaptive fashion. Specifically,
at a fixed n the oTFisher statistic is defined as

W oTFisher
n = min

τ1,τ2
Gn;τ1,τ2

(
Wn(τ1, τ2)

)
,

where Gn;τ1,τ2(w) = P(Wn(τ1, τ2) > w|H0) represents the test p-value of Wn(τ1, τ2) at a
fixed threshold w. Since Gn;τ1,τ2(w) is a function of w, Gn;τ1,τ2(Wn(τ1, τ2)) is a probability
integral transformation of the random variable Wn(τ1, τ2) and, thus, is also a random variable
(cf. Theorem 2.1.10 in Casella and Berger (2002)).

For the sake of easy computation, we consider a discrete search domain over {(τ1j , τ2j ),

j = 1, . . . ,m}, where m is the total number of (τ1, τ2)-pairs on which to search. For sim-
plifying notations, denote Gn;j (w) = Gn;τ1j ,τ2j

(w) and Wn;j = Wn(τ1j , τ2j ). The oTFisher

FIG. 1. Comparison between the hard-thresholding curve (−2 log(Pi))I (Pi ≤ τ ) (black smooth curve) and the
soft-thresholding curve (−2 log(Pi) + 2 log(τ ))+ (green bubble). τ = 0.5.
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statistic becomes

(2.3) Wo
n = min

j∈{1,...,m}Gn;j (Wn;j ).

Simulations show that a relatively sparse search grid of a few small, mediate and large values
of τ1j , τ2j ∈ (0,1] often guarantees a robust performance for various signal patterns.

3. Calculating test p-value and statistical power.

3.1. Test p-value calculation. To apply TFisher to a practical analysis, we need to obtain
the test p-value under finite n. Given τ1 and τ2, Theorem 1 gives the exact null distribution of
Wn(τ1, τ2). Note again that the null hypothesis in (1.4) is even more general than that in (1.1)
because the former tolerates heterogenous input statistics Xi of different null distributions
F0i , i = 1, . . . , n.

THEOREM 1. Under H0 in (1.4) the survival function of Wn(τ1, τ2) in (2.1) is

P
(
Wn(τ1, τ2) ≥ w|H0

)

= (1 − τ1)
nI{w≤0} +

n∑
k=1

k−1∑
j=0

(
n

k

)
τ k

1 (1 − τ1)
n−ke−wk/2 (wk/2)j

j ! ,
(3.1)

where, wk = {(w + 2k log(τ1/τ2)) ∨ 0}.

The proof is given in the Supplementary Material (Zhang et al. (2020)). Note that the
probability has a point mass in its first term due to the case when Pi > τ1 for all i. Also, as a
special case, for the soft-thresholding statistic with τ1 = τ2 = τ , Ws

n(τ) ≥ 0, we have a simple
wk = w ∨ 0. This probability calculation is also confirmed by simulations (see Figure S1 in
the Supplementary Material, e.g.).

Next, for the omnibus test by oTFisher statistic Wo
n in (2.3), we also provide an analytical

calculation for its type I error control in order to avoid computationally intensive simulation
or permutation. Specifically, Theorem 2 gives an asymptotic null distribution of oTFisher.

THEOREM 2. Under H0 in (1.4), at a fixed m, for w0 ∈ [0,1] the statistic Wo
n in (2.3)

has

(3.2) P
(
Wo

n > wo|H0
) = (

1 + o(1)
)
P

(
W ′

n;j < wn;j , j = 1, . . . ,m
)
,

where wn;j ≡ G−1
n;j (wo), (W ′

n;1, . . . ,W ′
n;m) ∼ MVN(nμ,n�) with

μj = 2τ1j

(
1 + log

(
τ2j

τ1j

))
,

�jk = 4
[
τ1jk + τ1jk

(
1 + log

(
τ2j

τ1jk

))(
1 + log

(
τ2k

τ1jk

))

− τ1j τ1k

(
1 + log

(
τ2j

τ1j

))(
1 + log

(
τ2k

τ1k

))]
,

and τ1jk = {τ1j ∧ τ1k}, j, k ∈ {1, . . . ,m}.

Recall that Gn;j (w) = P(Wn;j > w|H0), the value of wn;j ≡ G−1
n;j (wo) is obtained by the

inverse calculation of Theorem 1. The 1 + o(1) term indicates that the difference between the
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two probabilities in (3.2) is negligible as n → ∞. Under the special case of the soft thresh-
olding with τ1j = τ2j = τj , the formulas for μ and � are significantly simplified (assuming
τj ≤ τk) as μj = 2τj , �jk = 4τj [2 − τk + log(τk/τj )]. The multivariate normal probabilities
can be efficiently computed, for example, by Genz (1992). Simulations show that the cal-
culation method is accurate even for small n, and the accuracy improves as n increases as
expected (see Figure S2).

3.2. Statistical power calculation. Under the general global hypotheses in (1.1), we de-
rive an approximate power calculation for the TFisher Wn(τ1, τ2) in (2.1) at given τ1, τ2 and
n. Specifically, with arbitrary continuous CDFs F0 or F1, we define a monotonic transforma-
tion D function on [0,1]:

(3.3) D(x) =
{
x under H0 : F0,

F̄1
(
F̄−1

0 (x)
)

under H1 : F1 �= F0,

where F̄j (x) = 1 − Fj (x), j = 0,1. For any p-value Pi = 1 − F0(Xi), we have D(Pi) ∼
Uniform[0,1] under either H0 or H1. The TFisher statistic can be written as

(3.4) Wn(τ1, τ2) =
n∑

i=1

Yi, where Yi = −2 log
(

D−1(Ui)

τ2

)
I(D−1(Ui)≤τ1)

,

where Ui ≡ D(Pi). Exact calculation is difficult because we assume arbitrary F0 and F1.
Since Yi ’s are i.i.d., we could approximate the calculation based on normal distribution ac-
cording to the Central Limit Theorem (CLT). However, when the truncation parameter τ1 is
small, the normal approximation is not accurate for small or moderate n. We propose to apply
the skew-normal (SN) distribution to accommodate the departure from normality (Azzalini
(1985)). Specifically, to calculate the statistical power, the alternative distribution of TFisher
statistic under H1 is approximated by

Wn(τ1, τ2)|H1
D≈ SN(ξ,ω,α).

The probability density function (PDF) of SN distribution is f (x) = 2
ω
φ(

x−ξ
ω

) × �(α
x−ξ
ω

),
where φ and � are the PDF and CDF of N(0,1), respectively. The parameters (ξ,ω,α) are
obtained by moment matching:

ξ = μ −
(

2μ3

4 − π

)1/3
,

ω =
√

σ 2 +
(

2μ3

4 − π

)2/3
,

α = sgn(μ3)

√
π(2μ3)2/3

2σ 2(4 − π)2/3 + (2 − π)(2μ3)2/3 ,

where

μ = E(W) = nE(Y1),

σ 2 = Var(W) = n
[
E

(
Y 2

1
) − E2(Y1)

]
,

μ3 = E
(
W − E(W)

)3 = n
[
E

(
Y1 − E(Y1)

)3]
,

with

EYk
1 =

∫ D(τ1)

0

[
−2 log

(
D−1(u)

τ2

)]k

du, k = 1,2,3.
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Simulations show that the SN approximation is accurate, even in the most difficult cases
with small n and τ1, and is much better than the normal approximation (see the numerical
evidences in Figure S3 for Wn(τ1, τ2)’s distribution under H1). Statistical power calculation
is achieved by combining the distributions under both H0 (for the threshold of type I error
control) and H1 (see also Figure S4 for Wn(τ1, τ2)’s statistical power at the significance
level α = 0.05). It is worth noting that we have extensively studied various other distribution
approximation techniques, including the generalized normal distribution (Nadarajah (2005),
Varanasi and Aazhang (1989)), the first- and second-order Edgeworth expansions (DasGupta
(2008)), and the Saddle point approximation (Daniels (1954), Lugannani and Rice (1980)).
Based on our experience (results available on request), the SN approximation often provides
a better accuracy for calculating the power of the TFisher.

4. Optimal truncation-and-weighting scheme. We study the asymptotically optimal
(τ1, τ2) under hypotheses in (1.1) and, in particular, under the Gaussian mixture model in
(1.3) with given (ε,μ), as n → ∞. This study is important because it provides a theoretical
understanding on how the p-value combination method could better capture the contrast
between H0 and H1 and thus improve the power. With this study, if there is prior information
on H1, we will be able to determine the best TFisher statistic accordingly. Under the Gaussian
mixture model in particular, the optimal (τ1, τ2) often happens when τ1 = τ2 < 1. It means
that Fisher’s combination (i.e., no truncation) or TPM (i.e., the hard thresholding) can be
further improved in the context of signal detection. It also means that the oTFisher needs
only focus on the soft-thresholding scheme which significantly eases its computation.

4.1. Optimality by the Bahadur efficiency. We first study the optimality based on
the Bahadur efficiency (Bahadur (1960), Nikitin (1995)). Consider a test statistic Sn =
S(X1, . . . ,Xn) of a random sample (X1, . . . ,Xn). Let Ln(s) = PH0(Sn > s) be the survival
function of Sn under H0 and Ln(s|θ) be the survival function under H1. Here, θ denotes any
parameters in the model of H1. For example, θ = (ε,μ) under the Gaussian mixture model in
(1.3). If limn→∞ − 2

n
logLn(Sn|θ) = c(θ) ∈ (0,∞) under H1, the constant c(θ) is called the

Bahadur efficiency (BE) of Sn. Since Ln(Sn|θ) is actually the p-value of Sn under H1, c(θ)

suggests how quickly the p-value decays to zero. That is, BE measures how much Sn could
asymptotically separate the null and alternative hypotheses. Therefore, within a family of
test statistics the optimal statistic should have the largest BE. Same as in the literature (Abu-
Dayyeh, Al-Momani and Muttlak (2003)), here the input statistics (X1, . . . ,Xn) are regarded
as the sample, with n being the sample size. We will calculate the BE for Sn = Wn(τ1, τ2)/n

as n → ∞. Note that this perspective is different from Littell and Folks (1971, 1973), where
the alternative distribution F1 of input statistics Xi changes over sample size, whereas we
assume F1 is known and does not depend on n.

PROPOSITION 1. Let Sn = Wn(τ1, τ2)/n, where Wn(τ1, τ2) is given in (2.1). Under
global hypotheses in (1.1), with the D function defined in (3.3), the Bahadur efficiency is

(4.1) c(θ; τ1, τ2) = (E1 − E0)
2

V0
,

where E1 = − ∫ τ1
0 log(u/τ2) d(D(u)), E0 = τ1(1 − log τ1 + log τ2), and V0 = τ1[1 + (1 −

τ1)(1 − log τ1 + log τ2)
2].

We aim to find the BE-optimal τ1 and τ2 that maximize c(θ; τ1, τ2). For this purpose we
define a general and meaningful metric for the difference between H0 and H1 by

(4.2) δ(x) = D(x) − x.
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For any level-α test, δ(α) represents the difference between the statistical power and the size.
For a random p-value P , δ(P ) measures a stochastic difference between the p-value under
H0 vs. that under H1. Based on the metric δ(x), Lemma 1 gives a mild condition for the
soft thresholding being “first-order optimal,” in the sense that it leads to a stationary point of
maximization. It means that under general H1, the soft thresholding with τ1 = τ2 provides a
promising choice to construct a powerful test.

LEMMA 1. Consider the general hypotheses in (1.1). With δ(x) in (4.2), if τ ∗ is the
solution of

(4.3)
∫ x

0
log(u) dδ(u) = δ(x)

[
log(x) − 2 − x

1 − x

]
,

then the soft thresholding with τ1 = τ2 = τ ∗ satisfies the first-order conditions for maximizing
c(θ; τ1, τ2) in (4.1).

Equation (4.3) can be easily checked and is often satisfied in broad cases. In particular, the
Gaussian mixture model in (1.3), with δ(x) = 1 − x − �(�−1(1 − x) − μ) being a function
involving parameter μ, satisfies this equation. Furthermore, it is interesting, and somewhat
surprising, to see that the BE-optimal (τ1, τ2) are independent of ε under the general mixture
model of any two continuous distributions defined in (1.2).

LEMMA 2. For mixture model in (1.2), the maximizers τ ∗
1 and τ ∗

2 of BE do not depend
on ε.

Now, under the Gaussian mixture model as a special case, Theorem 3 gives a stronger
result, that is, a sufficient condition that guarantees that the soft thresholding indeed reaches
a local maximum.

THEOREM 3. Under the Gaussian mixture model in (1.3), the solution τ ∗ of equation
(4.3) exists at any ε ∈ (0,1] and μ > 0.85. Furthermore, if τ ∗ also satisfies the condition

δ(τ ∗)
δ′(τ ∗)

= 1 − τ ∗ − �(�−1(1 − τ ∗) − μ)

eμ�−1(1−τ∗)−μ2/2 − 1
> 2 − τ ∗,

then τ1 = τ2 = τ ∗ guarantees a local maximum of c(ε,μ; τ1, τ2) in (4.1). In particular, τ ∗ >

�̄(μ/2) satisfies the above condition.

Even though Theorem 3 does not guarantee a unique maximum, it provides an interesting
insight for analytically calculating the optimal τ ∗ based on δ(x). At the same time, based on
the closed form of BE in (4.1), our numerical studies always got unique maximum at each of
a series of μ values larger than 0.85 (note again that ε is irrelevant to the maximizers τ ∗

1 and
τ ∗

2 ). See Figure S5 for a few examples.
In the following, we combine theoretical and numerical results to understand the practical

implication of the relationship between the maximizers and the maximum of c(ε,μ; τ1, τ2).
The left panel of Figure 2 shows the values of global maximizers τ ∗

1 and τ ∗
2 over μ (ob-

tained by grid search); the right panel shows the maxima with and without restrictions. A few
observations can be made. First, the soft thresholding with τ ∗

1 = τ ∗
2 is globally optimal for

maximizing BE when μ > 0.78. It indicates that the lower bound cut-off value 0.85 given
in Theorem 3 is pretty tight. Second, when μ is larger than this cutoff, τ ∗

1 = τ ∗
2 = τ ∗ is a

decreasing function of the signal strength μ. That is, for stronger signals, the statistic should
include the smaller input p-values by soft thresholding. When the signals are weaker, that is,



TFISHER 187

FIG. 2. BE-optimality over μ values. Left panel: Global maximizers τ∗
1 and τ∗

2 of BE c(ε,μ; τ1, τ2) over μ.
Right panel: Maxima of BE over μ. Optimal: Globally maximal BE; Soft: Maximal BE under restriction τ1 = τ2;
TPM: Maximal BE under restriction τ2 = 1; Fisher: BE at τ1 = τ2 = 1. Fix ε = 0.5 for numerical calculation (it
does not affect τ∗

1 and τ∗
2 ).

when μ is less than the cutoff, the optimal τ ∗
1 and τ ∗

2 could be different; τ ∗
1 is close to 1, but

τ ∗
2 could be larger than 1. However, in this case even if soft thresholding does not give the

exact maximizer of BE, it still leads to a very similar BE. That can be seen from the right
panel of Figure 2. This result implies that the difference between the soft thresholding and
the global-optimal methods could be negligible. Finally, when μ is large, the optimal soft
thresholding is significantly better than the optimal hard thresholding (TPM), and both are
better than Fisher’s method that has no truncation.

4.2. Optimality by the asymptotic power efficiency. As stated in Lemma 2, the fact that
the BE-optimal (τ1, τ2) are irrelevant to ε under mixture model reveals a limitation of BE
itself. In real data analysis, ε should be important to the statistical power of the p-value
combination method. In theoretical studies, the proportion ε of signals is also highly relevant
to the design of optimal test statistics (Arias-Castro, Candès and Plan (2011)). This limitation
of BE’s is essentially due to a general property of the BE:

REMARK 1. Bahadur efficiency does not incorporate the information on the variance of
the test statistic under H1.

Indeed, the formula (4.1) does not engage the variance of the test statistic under H1. More
reasoning for this remark is given in the proof of Proposition 1 (see the Supplementary Ma-
terial (Zhang et al. (2020))).

To overcome this limitation, we propose a new measure for asymptotic efficiency, called
the asymptotic power efficiency (APE). APE is more directly related to the statistical power
and will take both variances under H0 and H1 into consideration. Specifically, following
equation (3.4) and by the CLT, under H0 we have PH0(Wn > nE0 + zα

√
nV0) → α, where

E0 and V0, given in (4.1), are the null mean and the null variance of Yi in (3.4), respectively.
zα is the upper α-quantile of N(0,1). The asymptotic power under H1 is

PH1(Wn > nE0 + zα

√
nV0) = PH1

(
Wn − nE1√

nV1
> zα

√
V0

V1
− √

n
E1 − E0√

V1

)
,
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where

V1 = EH1(Yi)

=
∫ τ1

0
log2(u)D′(u) du −

(∫ τ1

0
log(u)D′(u) du

)2

+ (
D(τ1) − 1

)[
2 log(τ2)

∫ τ1

0
log(u)D′(u) du − log2(τ2)D(τ1)

]
.

Let θ denote any parameters in the mode of H1. We define the APE as

(4.4) an,α(θ; τ1, τ2) = √
n
E1 − E0√

V1
− zα

√
V0

V1
.

Since (Wn −nE1)/
√

nV1 → N(0,1) under H1, the larger the APE, the bigger the asymptotic
power and thus the more “efficient” the test statistic is. Comparing the BE in (4.1) and the
APE in (4.4), they are are consistent in the sense that the bigger the mean difference E1 −E0,
the more efficient a test statistic is. Meanwhile, APE is more advanced for real data analysis as
it further accounts for the variance under H1 as well as the sample size n and the significance
level α.

When n is large, an,α(θ; τ1, τ2) is dominated by the
√

n term. We define

(4.5) b(θ; τ1, τ2) = E1 − E0√
V1

as another measure for asymptotic efficiency, which we call the asymptotic power rate (APR).
The formula shows that V1 is more closely related to statistical power than V0; the latter only
affects the constant term in APE. APR is similar to BE in (4.1) except that the denominator
more reasonably refers to V1.

The next theorem indicates that under the Gaussian mixture model, where θ = (ε,μ), the
soft-thresholding method can be a promising candidate in terms of maximizing b(ε,μ; τ1, τ2).

PROPOSITION 2. Consider the Gaussian mixture model in (1.3). If μ > 0.85 and

ε < hb(μ) = 1 + g̃1(μ)

(g̃1(μ))2 − g̃1(μ) − g̃2(μ)
,

where

g̃k(μ) =
∫ 1

0
logk(x)

(
eμ�−1(1−x)−μ2/2 − 1

)
dx,

then at some τ ∗, τ1 = τ2 = τ ∗ is a stationary point of b(ε,μ; τ1, τ2) in (4.5).

Comparing with Theorem 3 on BE, Proposition 2 on APR provides a consistent yet more
comprehensive picture about the optimality domain that does involve ε. The following the-
orem of APE takes into further consideration of the test number n and the significance level
α.

THEOREM 4. Consider the Gaussian mixture model in (1.3). Follow the notations in
Proposition 2. Denote cn = √

n/zα . There exists a lower bound μ′ > 0 such that if μ > μ′
and

ε < han(μ) = (1 − cn)[1 + g̃1(μ)] + 2g̃1(μ) + g̃2(μ)

(1 − cn)[(g̃1(μ))2 − g̃1(μ) − g̃2(μ)] + 2g̃1(μ) + g̃2(μ)
,

then at some τ ∗, τ1 = τ2 = τ ∗ is a stationary point of an,α(ε,μ; τ1, τ2) in (4.4).
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FIG. 3. The curves defined by hb(μ) in Proposition 2 (the black curve) and by han(μ) in Theorem 4 with
α = 0.05 and n = 50 (the red curve) or n = 5000 (the cyan curve). The soft thresholding τ1 = τ2 = τ∗, for some
τ∗, satisfies the first order condition of maximizing b(ε,μ; τ1, τ2) or an,α(ε,μ; τ1, τ2) for all (ε,μ) below the
corresponding boundary curves.

To better understand Proposition 2 and Theorem 4, Figure 3 visualizes the boundary curves
regarding hb(μ) and han(μ) in the (μ, ε)-plane. Our results indicate that the soft thresholding
is promising whenever the true signal parameters (μ, ε) fall under these curves (depending
on the criterion is APR or APE). Moreover, because han(μ) ≥ hb(μ) and han(μ) → hb(μ)

as n → ∞, the advantage of soft thresholding is even more prominent when n is small.
Now, let us numerically study the APE-optimal τ ∗

1 and τ ∗
2 , which depend on μ, ε, n and the

significance level α, for maximizing the APE an,α(ε,μ; τ1, τ2). In the first row of Figure 4,

FIG. 4. The APE-optimal (τ∗
1 , τ∗

2 ) at n = 50, α = 0.05. Row 1: fixing ε; row 2: fixing μ.
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τ ∗
1 and τ ∗

2 are obtained over μ at fixed ε = 0.01 or 0.1. The pattern is consistent with Figure 2
in that the soft thresholding is indeed globally optimal, when μ is large enough, and τ ∗ is a
decreasing function of μ. Moreover, the smaller the ε, the smaller the μ’s cutoff is for the
soft thresholding being optimal. When μ is smaller than the cutoff, both τ ∗

1 and τ ∗
2 could

be large, indicating a light truncation and an upscaling (i.e., >1) weighting for the p-values.
The second row of Figure 4 fixes μ and plots the optimal τ ∗

1 and τ ∗
2 over ε. Consistent with

our theorem, the soft thresholding is indeed globally optimal when ε is not too large (i.e.,
sparse signals). Such optimal τ ∗ is proportional to the signal proportion ε. The ratio τ ∗/ε is
a decreasing function of μ, which could be larger or smaller than 1. Thus, the best cutoff τ ∗
is not a “natural” value 0.05, as suggested in the literature (Zaykin et al. (2002)), and it is not
simply the proportion ε either. Our study reveals the functional relationship between τ ∗ and
(ε,μ).

It is worth noting that even in cases the soft thresholding is not exactly APE optimal (e.g.,
when ε is big or when μ is small), it is still “nearly optimal” in that it provides virtually
the same statistical power as the exact optimal solution. See Figure S6 for a few examples.
Together with the consistent results based on the BE (as shown by Figure 2), we conclude
that the soft-thresholding TFisher is the best choice in practice.

5. Statistical power comparisons. From the signal-detection perspective, we compare
the power of TFisher type statistics and a few classic test statistics under the Gaussian mixture
model in (1.3). The main purpose is to illustrate their relative advantages under various signal
patterns, including both rare and dense signals.

Eight statistics considered are: (1) the optimal TFisher Wn(τ
∗
1 , τ ∗

2 ) in (2.1), where τ ∗
1 and

τ ∗
2 are the global maximizers of APE in (4.4); (2) the optimal soft-thresholding TFisher

Ws
n(τ ∗) in (2.2), where τ ∗ is the maximizer of APE under restriction τ1 = τ2; (3) the om-

nibus statistic Wo
n in (2.3) with searching domain τ1 = τ2 ∈ {0.01,0.05,0.5,1}; (4) the soft-

thresholding TFisher Ws
n(0.05) with fixed τ = 0.05; (5) Fisher’s combination statistic (i.e.,

Ws
n(1)); (6) the TMP statistic (i.e., Wn(τ1 = 0.05, τ2 = 1)); (7) the minimal p-value method

(minP), which takes the smallest input p-value as the test statistic, often serves as a stan-
dard method to compare with in global hypothesis testing studies; (8) the higher criticism
method (HC), which has been shown an asymptotically optimal test for rare and weak sig-
nals (Donoho and Jin (2004)).

Statistical power of these methods can be affected by several factors on signal pattern. In
order to provide comprehensive yet concise comparisons under the multidimensions of the
factors, the results are organized in Figure 5 and Figure 6. Specifically, Figure 5 illustrates
the power over μ at given n (by row) or nε (by column, which can be interpreted as the ex-
pected number of signals). Figure 6 illustrates the power over ε at given n (by row) or μ (by
column). Interesting observations can be seen from these two figures. First, the two statistics
Wn(τ

∗
1 , τ ∗

2 ) and Ws
n(τ ∗) virtually give the same power, which is always the highest. In prac-

tice, if we have prior information on (ε,μ), we can obtain the optimal τ ∗ by maximizing the
APE for the best possible power.

Second, Wo
n is a robust method under various settings. It is often close to the best and

never the worst. In fact, its power is often close to the power of the TFisher at the chosen
parameter values. For example, when Wo

n in (2.3) adaptively chooses τ1j = τ2j = 0.05, it
gives a similar but slightly lower power than Wn(0.05,0.05) in (2.1). The slight loss of power
is due to a larger uncertainty of the adaptation process. Overall, when the prior information
of signal pattern is not available, it is a good practice to apply the omnibus test.

Third, regarding the TFisher statistics with fixed truncation-and-weighting parameters, the
soft-thresholding Ws

n(0.05), which focuses on input p-values not larger than 0.05, has an
advantage when ε is small (e.g., true signals are indeed sparse) but has a disadvantage when
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FIG. 5. Power comparisons over increasing signal strength μ on the x-axis. Each row has the same n, and each
column has the same nε (i.e., the expected number of signals). Type I error rate α = 0.05. Soft 0.05: Ws

n(0.05);
TPM 0.05: Wn(τ1 = 0.05, τ2 = 1); Fisher: Ws

n(1); Optimal: Wn(τ∗
1 , τ∗

2 ) and Ws
n(τ∗) give the same curve; Om-

nibus: soft-thresholding Wo
n adapting τ ∈ {0.01,0.05,0.5,1}; minP: minimal p-value test; HC: higher criticism

test.

ε is large. Fisher’s statistic Ws
n(1), which contains all input p-values, shows merit in the

opposite scenario. Meanwhile, the relative advantage of Ws
n(0.05) vs. Ws

n(1) is related to μ.
Even when ε is significantly larger than 0.05 (say, around 0.1 and 0.2), Ws

n(0.05) could still
outperform Ws

n(1) as long as μ is relatively large (Figure 5 panel 3-3 and Figure 6 panel 1-3).
This observation is consistent with the theoretical study of BE and APE—the larger the μ,
the smaller the optimal τ ∗ shall be. Moreover, the hard-thresholding TMP, Wn(0.05,1), is
rarely among the best. In particular, it has a clear disadvantage compared to Ws

n(0.05) when
ε is small, where the truncation level should have been justified. It evidences that, beyond
truncation, weighting for the input p-values is important for detecting sparse signals.

Fourth, comparing with the two classic test statistics, minP and HC, the TFisher type statis-
tics are more robust over various signal patterns. These two statistics perform well when
signals are rare as expected (although oTFisher is still comparable). However, they are sig-
nificantly less powerful when signals are denser (e.g., when ε > 0.1).

The data-adaptive omnibus testing procedures are of special interest in real data analy-
sis when signal patterns are unknown and the optimal truncation and weighting parameters
are hard to decide. Therefore, we further compared the power of three omnibus tests: the
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FIG. 6. Power comparisons over increasing signal proportion ε on the x-axis. Each row has the same n, and
each column has the same μ. Type I error rate α = 0.05. Soft 0.05: Ws

n(0.05); TPM 0.05: Wn(τ1 = 0.05, τ2 = 1);
Fisher: Ws

n(1); Optimal: Wn(τ∗
1 , τ∗

2 ) and Ws
n(τ∗) give the same curve; Omnibus: soft-thresholding Wo

n adapting
τ ∈ {0.01,0.05,0.5,1}; minP: minimal p-value test; HC: higher criticism test.

soft-thresholding oTFisher Wo
n , the adaptive TPM (ATPM), and the adaptive RTP (ARTP)

(Yu et al. (2009)). Figures 7 and 8 shows that the soft-thresholding oTFisher dominates
ATPM and ARTP across all these settings. This is a very interesting result. First, it shows
that the hard thresholding is worse than the soft thresholding, even if the adaptive strategy
is applied. Second, ARTP was shown to have the highest power among a group of exist-
ing adaptation-based genetic association tests (Su et al. (2016)). Our result indicates that
statistical power could be further improved by properly weighting the input p-values. Com-
paring between ARTP and ATPM themselves, the figures show that ARTP could be better
for sparser and stronger signals, while ATPM is more preferred for denser and weaker sig-
nals.

Moreover, in order to assess statistical power in a context that is closer to real data analysis,
we compared relevant tests through simulations based on a real data of genome-wide associa-
tion study (GWAS) of Crohn’s disease (Duerr et al. (2006)). Specifically, we simulated quan-
titative traits by a linear model Y = βG + ε. Here, GN×n denotes the design matrix of SNV
genotype data (n is the number of SNVs in a given gene to be tested; N = 1145 is the sample
size of this data). We set zero or nonzero equal elements in the coefficient vector β to mimic

the genetic effects. The error term ε = (ε1, . . . , εN)′, with εk
i.i.d.∼ N(0,1), k = 1, . . . ,N , sim-
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FIG. 7. Power curves over μ for the optimal and data-adaptive omnibus tests. Type I error rate α = 0.05. Opti-
mal: the optimal TFisher Wn(τ∗

1 , τ∗
2 ) in (2.1), where τ∗

1 and τ∗
2 are the global maximizers of APE in (4.4); ARTP:

adaptive RTP adapting K ∈ {1,0.05n,0.5n,n}; oTFisher: the soft-thresholding omnibus TFisher Wo
n adapting

τ ∈ {0.01,0.05,0.5,1}; ATPM: adaptive TPM (the hard thresholding) adapting τ ∈ {0.01,0.05,0.5,1}.

ulates a scaled random influence from environmental and other genetic factors. The response
vector Y is generated from the linear model to simulate a quantitative trait. Given the data
(G,Y ), we test the global null H0 : β = 0. The p-values combination methods were based
on the Z-test of the marginal least-squared estimation of β̂j , j = 1, . . . , n, followed by a
typical decorrelation procedure, as described in Section 6. Figure 9 shows the power com-
parisons based the genotype data of three genes of Crohn’s disease—CARD15, MUC2 and
IL23R. Besides the tests discussed above, we also evaluated two classic SNV-set based as-
sociation tests, SKAT (the Sequence Kernel Association Test) and the omnibus SKAT (Wu
et al. (2011)). The results show that across different genes and different numbers of causal
variants, the soft-thresholding statistic at τ = 0.05 (i.e., Ws

n(0.05)) and the omnibus oTFisher
statistic (i.e., Wo

n ) have relatively higher power than the competitors.

6. Application in exome-seq data analysis. In this section we illustrate an application
of the TFisher in analyzing an exome-sequencing data of amyotrophic lateral sclerosis (ALS).
Similar data analysis procedure can be applied in general to global hypothesis testing prob-
lems based on generalized linear model (GLM).
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FIG. 8. Power curves over ε for the optimal and data-adaptive omnibus tests. Type I error rate α = 0.05. Opti-
mal: the optimal TFisher Wn(τ∗

1 , τ∗
2 ) in (2.1), where τ∗

1 and τ∗
2 are the global maximizers of APE in (4.4); ARTP:

adaptive RTP adapting K ∈ {1,0.05n,0.5n,n}; oTFisher: the soft-thresholding omnibus TFisher Wo
n adapting

τ ∈ {0.01,0.05,0.5,1}; ATPM: adaptive TPM (the hard thresholding) adapting τ ∈ {0.01,0.05,0.5,1}.

The exome-seq data was obtained by using the next-generation sequencing technology to
sequence all protein-coding DNA regions, that is, the exome, and to identify genetic vari-
ants in human subjects. Our data came from the ALS Sequencing Consortium, and the data
cleaning and SNV filtering process followed the same steps as the original study (Smith et
al. (2014)). The final data contained 457 ALS cases and 141 controls with 105,764 SNVs in
17,088 genes.

We carry out the gene-based SNV-set test, in which each gene is a testing unit for po-
tential genetic association with ALS. A p-value is generated for each SNV, measuring its
own association strength. For a given gene, the null hypothesis is that it is not associated
with ALS. This is equivalent to a global null hypothesis that none of the SNVs are asso-
ciated, so that the SNV p-values follow the H0 in (1.4) after decorrelation. The logistic
regression is applied to obtain the input SNV p-values, which allows for controlling other
nongenetic covariates. Specifically, let yk be the binary indicator of ALS case (yk = 1) or
non-ALS control (yk = 0) for the kth individual, k = 1, . . . ,N . Let Gk = (Gk1, . . . ,Gkn)

′
denote the genotype vector of n SNVs in the given gene, and let Zk = (1,Zk1,Zk2)

′ be the
vector of the intercept and covariates of gender and country origin. The logistic regression
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FIG. 9. Power comparisons by GWAS simulations based on a real genotype data of three genes CARD15,
MUC2 and IL23R. The x-axis gives increasing value of either 2 (row 1) or 4 (row 2) nonzero elements
in β . Soft 0.05: Ws

n(0.05); TPM 0.05: Wn(τ1 = 0.05, τ2 = 1); Fisher: Ws
n(1); ATPM: adaptive TPM adapting

τ1 ∈ {0.05,0.5,1}; Omnibus: soft-thresholding Wo
n adapting τ ∈ {0.05,0.5,1}; minP: minimal p-value test; HC:

higher criticism test; SKAT: sequence kernel association test. SKAT-o: omnibus SKAT; ARTP: adaptive RTP adapt-
ing k ∈ {0.05n,0.5n,n} (rounding to the closest positive integers). Type I error rate α = 2.5 × 10−6.

model is

logit
(
E(Yk|Gk,Zk)

) = G′
kβ + Z′

kγ,

where β and γ are the coefficients. The null hypothesis is that none of the SNVs in the gene
are associated, and thus this gene is not associated:

H0 : βi = 0, i = 1, . . . , n.

To test this null hypothesis, we adopted the classic marginal score test statistic (McCullagh
and Nelder (1989), Schaid et al. (2002))

Ui =
N∑

k=1

Gki(Yk − Ỹk), i = 1, . . . , n,

where Ỹk is the fitted probability of the case under H0. Let U = (U1, . . . ,Un), �̂ =
G′WG − G′WZ(Z′WZ)−1Z′WG, where G = (Gki) and Z = (Zki) are the correspond-
ing design matrices, and the diagonal matrix W = diag{Ỹk(1 − Ỹk)}1≤k≤N . It can be shown
that under H0, as N → ∞,

X = �̂− 1
2 U

D→ N(0, In×n).

Thus, the p-values for the corresponding n SNVs in a gene are

Pi = 2P
(
N(0,1) > |Xi |) i.i.d.→ Uniform(0,1), i = 1, . . . , n,

which asymptotically satisfy the global null hypothesis in (1.4) as N → ∞. If a gene contains
only one SNV (i.e., n = 1), then the SNV’s p-value is the test p-value of this gene. If a gene
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FIG. 10. QQ plots for the − log10 transformed test p-values of all genes. Left: by Ws
n(0.05). Right: by Wo

n

adapting to τ1 = τ2 ∈ {0.05,0.5,1}.

contains multiple SNVs (i.e., n ≥ 2), then the corresponding p-values are treated as the input
to obtain TFisher or oTFisher statistics. The test p-value is calculated by the methods given
in Section 3.1.

Figure 10 gives the QQ plot regarding the test p-values of all genes. The left panel is
obtained by soft-thresholding TFisher statistic Ws

n(0.05). Because of the truncation, genes
that contain all SNV p-values larger than 0.05 would have test p-values being 1 (indicated
by the flat part of the dots). Such genes are likely not associated anyway; thus, the truncation
does not undermine the overall control of the genome-wide type I error rate. In the figure this
is evidenced because the majority of p-values are aligned along the diagonal as expected. The
right panel is obtained by the omnibus statistic Wo

n adapting to τ1 = τ2 ∈ {0.05,0.5,1}. The
top-ranked genes by both methods are consistent, which is reasonable because the signals,
that is, the ALS associated SNVs, are often in a small proportion of all SNVs.

To the best of our knowledge, most of these top ranked genes have not been directly re-
ported in genetic association studies of ALS, even though they are promisingly related to
ALS from the functionality perspective as discussed below. In particular, gene SMAP1 (con-
taining eight SNVs in our data, p-value 1.76 × 10−6) is among a significant cluster of altered
genes in frontal cortex of ALS samples (Andrés-Benito et al. (2017)). The STRING protein-
protein network (Szklarczyk et al. (2014)) shows that it has a strong connection with LRRK2,
a known gene associated with late-onset Parkinson’s disease (PD), which is a neurodegener-
ative disease closely related to ALS (Bonifati (2006)). Gene SLC22A24 (12 SNVs, p-value
1.85 × 10−5) has reported statistical association with Alzheimer’s disease, another neurode-
generative disease closely related to ALS (Ayers et al. (2016)). Furthermore, STRING net-
work shows that SLC22A24 has strong connections with two ALS related genes, AMACR and
C7orf10. AMACR is a gene of AMACR deficiency, a neurological disorder similar as ALS;
both initiate and slowly worsen in later adulthood. C7orf10 is associated with ALS types
3 and 4 (Fanning et al. (2012)). Gene OSMR (eight SNVs, p-value 6.35 × 10−5) has been
found critically involved in neuronal function regulation and protection (Guo et al. (2015)).
Also, it is associated with IL31RA functional receptor, which is a critical neuroimmune link
between TH2 cells and sensory nerves (Cevikbas et al. (2014)). Gene TBX6 (eight SNVs, p-
value 9.47 × 10−5) involves regulation in neural development and maturation (Chapman and
Papaioannou (1998)). Moreover, in a novel stem cell therapy of ALS, TBX6 and its associated
SOX2 play a critical role (Pandya et al. (2012)). Gene VAX2 (7 SNVs, p-value 1.22 × 10−4)
plays a functional role in specifying dorsoventral forebrain. It has direct protein-protein inter-
action with ALS gene CHMP2B (Cox et al. (2010)). It also has a direct STRING connection
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with SIX3, which proliferates and differentiates neural progenitor cells (GeneCards database:
www.genecards.org). Gene GFRA1 (4 SNVs, p-value 2.99× 10−4) encodes a member of the
glial cell line-derived neurotrophic factor receptor (GDNFR). It has direct STRING connec-
tion with two ALS genes—RAP1A, which is associated with ALS by influencing the activa-
tion of Nox2 (a modifier of survival in ALS (Carter et al. (2009))), and PIK3CA, which is an
up-regulated gene in the ALS mouse model (de Oliveira et al. (2014)). Moreover, GFRA1 was
found to be hypomethylated in sporadic ALS patients (Morahan et al. (2009)). The expression
of GFRA1 was also found to change in spinal motoneurons, which may have implications re-
garding the use of neurotrophic factors in treating motoneuron diseases, such as ALS (Zhang
and Huang (2006)).

We compared the performance of various tests based on the above putative genes that
have high biological relevance to ALS. Table 1 shows that the soft-thresholding methods
often generated smaller p-values than the TPM methods. The ATPM and ARTP performed
similarly as or slightly worse than the oTFisher. Moreover, the minP, SKAT and SKAT-o
generally gave larger p-values than the methods in the TFisher family. The results indicate
that, based on the given data, TFisher family could provide more power than these traditional
methods in detecting at least some of novel disease genes of ALS.

7. Discussion. The conclusion that the soft thresholding with τ1 = τ2 ∈ (0,1] is optimal
or nearly optimal brings an interesting observation that downscaling input p-values should
be a common practice in both multiple-hypothesis testing and global testing procedures. For
the multiple-hypothesis testing problem, it is well known that the individual p-values should
be downscaled (e.g., by the Bonferroni or the False Discovery Rate procedures) in order to
reduce the test error. For the global testing problem, we have shown that the input p-values
should also be downscaled by τ2 ∈ (0,1] in order to increase the statistical power.

TFisher is a family of p-value combination methods. For practical purpose, we recommend
soft thresholding with τ1 = τ2 ∈ (0,1]. In some scientific applications, if prior information of
such signal patterns is known or can be obtained from precedent studies, we could carry out
optimality and/or power studies to decide the best τ value (e.g., following Figure 4). If not,
the omnibus test statistic W 0

n in (2.3) would be a good choice.
In this paper we focus on two constant parameters τ1 and τ2. However, the TFisher statis-

tic can be further extended based on a more general weighting-and-truncation scheme. For
example, we can allow a sequence of test-specific weights, τ2,i > 0, so that the test statistic
becomes Tn(τ1, τ2,1, . . . , τ2,n) = ∏n

i=1(Pi/τ2,i)
I (Pi≤τ1) or, equivalently,

(7.1) Wn(τ1, τ2,1, . . . , τ2,n) =
n∑

i=1

(−2 log(Pi) + 2 log(τ2,i )
)
I (Pi ≤ τ1).

Moreover, the parameters (τ1, τ2,1, . . . , τ2,n) could even be random. For example, when
τ1 = P(k) and τ2 = 1 for a given k, where P(1) ≤ · · · ≤ P(n) are the ordered input p-
values, it becomes the RTP statistic in Dudbridge and Koeleman (2003). When τ1 = 1 and
τ2,i ≡ P

1−λi

i , it becomes the power-weighted p-value combination statistic T = ∏n
i=1 P

λi

i

(Good (1955), Li and Tseng (2011)). The more general setting could be helpful in certain
scenarios, for example, signals could have different magnitudes (e.g., H1 : Xi ∼ N(μi,1)).
However, this scenario is beyond the typical global hypothesis problem in (1.1).
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TABLE 1
P -values of the putative ALS genes. oTFisher: the omnibus soft-thresholding Wo

n adapting τ ∈ {0.05,0.5,1}; Soft_0.05: Ws
n(0.05); Fisher: Ws

n(1); TPM 0.05:
Wn(τ1 = 0.05, τ2 = 1); ATPM: adaptive TPM adapting τ1 ∈ {0.05,0.5,1}; ARTP: adaptive RTP adapting k ∈ {0.05n,0.5n,n} (rounding to the closest positive integers); minP:

minimal p-value test; SKAT: sequence kernel association test. SKAT-o: omnibus SKAT

Gene oTFisher Soft_0.05 Soft_0.5 Fisher TPM_0.05 TPM_0.5 ATPM ARTP minP SKAT SKATO

SMAP1 2.9E−06 1.8E−06 2.8E−06 5.2E−06 4.4E−06 1.1E−05 7.7E−06 2.9E−06 5.4E−05 7.1E−01 7.1E−01
SLC22A24 3.5E−05 1.9E−05 8.5E−04 6.8E−04 2.3E−03 1.2E−03 1.3E−03 7.4E−05 1.8E−01 4.0E−01 5.7E−01
OSMR 1.1E−04 6.3E−05 1.4E−04 1.3E−04 6.0E−05 2.7E−04 1.2E−04 1.2E−04 5.2E−01 1.0E+00 1.0E+00
TBX6 1.2E−04 9.5E−05 6.4E−05 6.7E−05 1.1E−05 2.1E−04 1.9E−05 4.8E−05 9.5E−01 8.6E−01 4.6E−01
VAX2 2.1E−04 1.2E−04 2.1E−04 2.0E−04 6.4E−05 4.8E−04 9.9E−05 2.2E−04 1.2E−04 2.4E−05 5.4E−05
GFRA1 5.7E−04 3.0E−04 3.2E−04 2.9E−04 2.4E−04 4.0E−04 4.4E−04 4.9E−04 5.2E−04 4.3E−01 6.2E−01
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SUPPLEMENTARY MATERIAL

Supplement to “TFisher: A truncation and weighting procedure for combining p-
values” (DOI: 10.1214/19-AOAS1302SUPP; .pdf). Supplementary material available online
includes proofs of all propositions, lemmas and theorems, as well as supplementary figures
that show calculations, theoretical results and power comparisons.
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1. Proofs for Lemmas and Theorems.

1.1. Proof of Theorem 1.

Proof. Consider the null hypothesis in (1.4), and denote random vari-

ables Ui
i.i.d.∼ Uniform[0, 1] for i = 1, . . . , n. Let K be the number of Pi’s that

are less than or equal to the threshold τ1. Note that K = 0 indicates Pi > τ1

for all i = 1, ..., n, which happens only if Wn(τ1, τ2) ≤ 0, and the probability
is P (K = 0) = (1 − τ1)n. Also note that, given K ≥ 1 of the Pi’s are less
than or equal to τ1, these p-values can be regarded as i.i.d. Uniform[0, τ1]
(Zaykin et al., 2002). That is, given K ≥ 1 the TFisher statistic in (2.1)
follows the same distribution as

Wn(τ1, τ2)|K D
=

K∑
i=1

[
−2 log

(
τ1

τ2
Ui

)]
.

For a fixed positive integer k ≥ 1, it is easy to check that

P

(
k∑
i=1

−2 log

(
τ1

τ2
Ui

)
≥ w

)
= F̄χ2

2k

(
w + 2k log

(
τ1

τ2

))
,

where F̄χ2
2k

(x) is the survival function of a chi-squared distribution with 2k

degrees of freedom. Noting also that K ∼ Binomial(n, τ1), we can regard

∗The research was supported in part by the NSF grants DMS-1309960 and DMS-
1812082.
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the TFisher statistic Wn(τ1, τ2) as a compound of this shifted chi-squared
distribution and the binomial distribution:

P (Wn(τ1, τ2) ≥ w|H0) = (1− τ1)nI{w≤0}

+
n∑
k=1

(
n

k

)
τk1 (1− τ1)n−kF̄χ2

2k

(
w + 2k log

(
τ1

τ2

))
.

We can further simplify the above formula by noting the relationship be-
tween F̄χ2

2k
(x) and the upper incomplete gamma function Γ(s, x), x > 0:

F̄χ2
2k

(x) =

∫ +∞

x

uk−1e−u/2

2k(k − 1)!
du =

∫ +∞

x/2

yk−1e−y

(k − 1)!
dy =

Γ(k, x/2)

(k − 1)!
= e−x/2

k−1∑
j=0

(x/2)j

j!
.

Therefore, the survival function of Wn(τ1, τ2) is given by

P (Wn(τ1, τ2) ≥ w|H0) = (1− τ1)nI{w≤0}

+
n∑
k=1

k−1∑
j=0

(
n

k

)
τk1 (1− τ1)n−ke−wk/2

(wk/2)j

j!
,

where, wk =
(
w + 2k log

(
τ1
τ2

))
∨ 0.

1.2. Proof of Theorem 2.

Proof. For the omnibus test in (2.3), noting that Gj is monotone, we
have

P (min
j
Gj(Wn;j) > wo) = P (Wn;j(P1, . . . , Pn) < wn;j , j = 1, . . . ,m),

where wn;j ≡ G−1
j (wo). These Wn;j ’s are functions of the same set of input

p-values, and therefore they are dependent among each other. Fortunately,
since Wn;j =

∑n
i=1[−2 log(Pi/τ2j)I(Pi<τ1j)], by the Central Limit Theorem

(CLT), the statistics (W ′n;1, ...,W
′
n;m) asymptotically follow the multivariate

normal (MVN) distribution with mean vector nµm×1 = (nµ1, . . . , nµm) and
covariance matrix nΣm×m, where

nµj = E(Wn;j) = 2nτ1j(1 + log(τ2j/τ1j)),
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and

nΣjk = Cov(Wn;j ,Wn;k)

= 4n[τ1jk + τ1jk(1 + log(
τ2j

τ1jk
))(1 + log(

τ2k

τ1jk
))

− τ1jτ1k(1 + log(
τ2j

τ1j
))(1 + log(

τ2k

τ1k
))],

where τ1jk = min{τ1j , τ1k}. Thus we can approximate the p-value of the
oTFisher by the asymptotic distribution of Wn;j ’s. That is, as n→∞,

P (min
j
Gj(Wn;j) > wo) = (1 + o(1))P (W ′n;j < wn;j , j = 1, . . . ,m),

where (W ′n;1, ...,W
′
n;m) ∼ MVN(nµm×1, nΣm×m) with the elements of µ and

Σ given above.

1.3. Proof of Proposition 1.

Proof. To calculate cT (θ), one can apply a composition method (cf.

Theorem 1.2.2 in Nikitin (1995)). Specifically, if (i) Tn
P→ g(θ) under H1,

and (ii) the tail property of p-value underH0 satisfies limn→∞− 2
n logLn(t) =

f(t), where f(t) is continuous on an open interval I, and g(θ) ∈ I for all

θ under H1, then cT (θ) = f(g(θ)). Note that the convergence Tn
P→ g(θ)

under H1 implies that the variance of Tn will converge to 0 under H1. Thus
BE contains the variance information only under H0.

For any TFisher statistic Wn(τ1, τ2) in (2.1), consider an equivalent test
statistic Tn = Wn/n. Following (3.4) and the Law of Large Numbers, under
H1 we have

Wn

n
P→ E1 = E1(Yi) =

∫ D(τ1)

0
− log

(
D−1(u)

τ2

)
du =

∫ τ1

0

[
− log

(
u

τ2

)
D′(u)

]
du.

Note that

P (
Wn

n
> t) = P (

1
n

∑n
i Yi − E0√
V0/n

>
t− E0√
V0/n

),

where E0 and V0 denote the mean and variance of Yi under H0, respectively:

E0 = EH0(Yi) = τ1(1− log τ1 + log τ2),

V0 = VarH0(Yi) = τ1[1 + (1− τ1)(1− log τ1 + log τ2)2].
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Consider the test statistic under H0, by the CLT and Mill’s ratio, we have

lim
n→∞

− 2

n
logP (

Wn

n
> t) =

(t− E0)2

V0
.

Thus the BE of Wn is

c(ε, µ; τ1, τ2) =
(E1 − E0)2

V0
.

1.4. Proof of Lemma 1.

of Lemma 1. The first order partial derivative of c(θ; τ1, τ2) with respect
to τ1 is

∂c(θ; τ1, τ2)

∂τ1
∝ 2V0

∂∆

∂τ1
−∆

∂V0

∂τ1
,

where

∂∆

∂τ1
= log

(
τ2

τ1

)
(D′(τ1)− 1),

∂V0

∂τ1
=

(
1− 2(1− τ1)

(
1 + log

(
τ2

τ1

))
+ (1− 2τ2)

(
1 + log

(
τ2

τ1

))2
)
.

At τ1 = τ2, we have both partials equal to 0.

We further examine the partial derivative with respect to τ2 and then
evaluate it at τ2 = τ1,

∂∆

∂τ2

∣∣∣
τ2=τ1

=
2(D(τ1)− τ1)

τ1
;

∂V0

∂τ2

∣∣∣
τ2=τ1

= 2(1− τ1);

∆
∣∣∣
τ2=τ1

=

∫ τ1

0
− log (u) (D′(u)− 1)du+ log(τ1)(D(τ1)− τ1);

V0

∣∣∣
τ2=τ1

= τ(2− τ1).
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Thus

∂c(θ; τ1, τ2)

∂τ2

∣∣∣
τ2=τ1

= 0

⇔(D(τ1)− τ1)(2− τ1)

− (1− τ1)

∫ τ1

0
− log(u)(D′(u)− 1)du− (D(τ1)− τ1)(1− τ1) log(τ1)

= 0

⇔
∫ τ1

0
− log(u)(D′(u)− 1)du = (D(τ1)− τ1)

(
2− τ1

1− τ1
− log(τ1)

)
.

1.5. Proof of Lemma 2.

of Lemma 2. The Bahadur efficiency is c(θ; τ1, τ2) = (E1−E0)2

V0
= ∆2

V0
,

where V0 is irrelevant to H1, thus to ε. On the other hand,

∆ =

∫ τ1

0
− log

(
u

τ2

)
(D′(u)− 1)du.

We can show that ∆ = εg(τ1, τ2, µ). This is equivalent to show D′(u) − 1
has such separability of ε.

By (3.3), D(x) = 1− F1(F−1
0 (1− x)) where F0(x) = G0(x) and F1(x) =

(1− ε)G0(x) + εG1(x;µ). We can further write

D(x) = 1− (1− ε)G0(G−1
0 (1− x))− εG1(G−1

0 (1− x);µ)

= 1− (1− ε)(1− x)− εG1(G−1
0 (1− x);µ)

= x+ ε− εx− εG1(G−1
0 (1− x);µ).

D(x)− x = ε(1− x−G1(G−1
0 (1− x);µ)).

D′(x)− 1 = ε

(
−1 +

G′1(G−1
0 (1− x);µ)

G′0(G−1
0 (1− x))

)
.

This completes the proof.

1.6. Proof of Theorem 3.

of Theorem 3. Following Lemma 1 for the first-order conditions for
maximizing c(θ; τ1, τ2) in (1.3), note that for the Gaussian mixture model in
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(1.3), D′(x)−1 = ε(eµΦ−1(1−x)−µ2/2−1) and D(x)−x = ε(1−x−Φ(Φ−1(1−
x)− µ)). Therefore the optimal τ1 = τ2 = τ∗ does not depend on ε.

Let f(τ) = (D(τ)−τ)
(

2−τ
1−τ − log(τ)

)
+
∫ τ

0 log(u)(D′(u)−1)du. Note that

f(0) = 0, f ′(0) = 1 −D′(0) > 0. A sufficient condition for the existence of
the root τ∗ is

f(1) = 1−D′(1)−
∫ τ

0
log(u)(D′(u)− 1)du > 0

⇔ ε+ ε

∫ τ

0
log(u)(eµΦ−1(1−x)−µ2/2 − 1)du < 0.

This is equivalent to

e−µ
2/2 −

∫ 1

0
log(u)eµΦ−1(1−u)du > 0⇐⇒ µ > µ = 0.84865.

Next we will examine the second order derivatives. In a generic form,

∂2c(θ; τ1, τ2)

∂τ1∂τ2
=

1

V0

2∆2 ∂V0
∂τ1

∂V0
∂τ2

V 2
0

−
2∂V0∂τ1

∂∆
∂τ2

+ ∆ ∂2V0
∂τ1∂τ2

V0
+ 2∆

∂2∆

∂τ1∂τ2
+ 2

∂∆

∂τ1

∂∆

∂τ2

 .
Again ∂∆

∂τ1

∣∣∣
τ2=τ1

= 0 and ∂V0
∂τ1

∣∣∣
τ2=τ1

= 0. We can simplify

∂2c(θ; τ1, τ2)

∂τ2
1

∣∣∣
τ2=τ1

=
1

V0

−∆∂2V0
∂τ21

V0
+ 2∆

∂2∆

∂τ2
1

∣∣∣
τ2=τ1

,

∂2c(θ; τ1, τ2)

∂τ2
2

∣∣∣
τ2=τ1

=
1

V0

2∆2(∂V0∂τ2
)2

V 2
0

−
2∂V0∂τ2

∂∆
∂τ2

+ ∆∂2V0
∂τ22

V0
+ 2∆

∂2∆

∂τ2
2

+ 2(
∂∆

∂τ2
)2

∣∣∣
τ2=τ1

,

∂2c(θ; τ1, τ2)

∂τ1∂τ2

∣∣∣
τ2=τ1

=
1

V0

−∆ ∂2V0
∂τ1∂τ2

V0
+ 2∆

∂2∆

∂τ1∂τ2

∣∣∣
τ2=τ1

.

The following are the relevant terms evaluated at τ2 = τ1 = τ∗

∂2V0

∂τ2
1

= 2;
∂2V0

∂τ2
2

=
2(1− τ∗)

τ∗
;

∂2V0

∂τ1∂τ2
= −2;

∂2∆

∂τ2
1

= −D
′(τ∗)− 1

τ∗
;

∂2∆

∂τ2
2

= −D(τ∗)− τ∗

τ∗2
;

∂2∆

∂τ1∂τ2
=
D′(τ∗)− 1

τ∗
;

∆ =
(D(τ∗)− τ∗)(2− τ∗)

1− τ∗
; V0 = τ∗(2− τ∗).
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Plugging them back, we can get the conditions for local maximization. In

particular, the condition ∂2c(θ;τ1,τ2)
∂τ21

∣∣∣
τ2=τ1=τ∗

< 0 is equivalent to D(1) <

D(τ∗) + (1 − τ∗)D′(τ∗), which is always true because D(x) is a concave

function. Finally, after some algebra, the condition ( ∂
2c(θ;τ1,τ2)
∂τ21

∂2c(θ;τ1,τ2)
∂τ22

−

(∂
2c(θ;τ1,τ2)
∂τ1∂τ2

)2)
∣∣∣
τ2=τ1=τ∗

> 0 is equivalent to

D(τ∗)− τ∗

D′(τ∗)− 1
> 2− τ∗.

One sufficient condition for such inequality holds is D′(τ∗) > 1 which is
equivalent to τ∗ > 1− Φ(µ/2).

1.7. Proof of Proposition 2.

Proof. Taking the partial of b(θ; τ1, τ2) with respect to τ1, we have

∂

∂τ1
b(θ; τ1, τ2) ∝

(
2V1

∂∆

∂τ1
−∆

∂V1

∂τ1

)
,

where

∂V1

∂τ1
= log2(τ1)D′(τ1)− 2 log(τ1)D′(τ1)

∫ τ1

0
log(u)D′(u)du

+2D′(τ1) log(τ2)

∫ τ1

0
log(u)D′(u)du+ 2(D(τ1)− 1) log(τ2) log(τ1)D′(τ1)

+ log2(τ2)(D′(τ1)− 2D(τ1)D′(τ1)).

Therefore,

∂V1

∂τ1

∣∣∣
τ2=τ1

= log2(τ1)D′(τ1)− 2D′(τ1) log2(τ1) + log2(τ1)D′(τ1) = 0.

Together with ∂V0
∂τ1

∣∣∣
τ1=τ2

= ∂∆
∂τ1

∣∣∣
τ1=τ2

= 0, as was shown in the proof of

Theorem 3, we have

∂

∂τ1
b(θ; τ1, τ2)

∣∣∣
τ1=τ2

= 0.

The choice τ1 = τ2 = τ∗ meets the first order conditions for the optimality

if ∂
∂τ2
b(θ; τ1, τ2)

∣∣∣
τ1=τ2=τ∗

= 0 has a solution τ∗. This is equivalent to solve(
2V1

∂∆

∂τ2
−∆

∂V1

∂τ2

)∣∣∣
τ1=τ2=τ∗

= 0,
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where

∆|τ1=τ2 = −
∫ τ1

0
log(u)D′(u)du+D(τ1) log(τ1)− τ1;

∂∆

∂τ2
|τ1=τ2 =

D(τ1)− τ1

τ1
;

V1|τ1=τ2 =

∫ τ1

0
log2(u)D′(u)du− (

∫ τ1

0
log(u)D′(u)du)2

+ 2(D(τ1)− 1) log(τ1)

∫ τ1

0
log(u)D′(u)du+ log2(τ1)D(τ1)(1−D(τ1));

∂V1

∂τ2
|τ1=τ2 = 2

D(τ1)− 1

τ1

[∫ τ1

0
log(u)D′(u)du−D(τ1) log(τ1)

]
.

Plug them in and after simplification, we want to solve

fb(τ) = (g1(τ))2 − τ(1− 2 log(τ))(D(τ)− 1)

1− τ
g1(τ)− D(τ)− τ

1− τ
g2(τ)

+
D(τ)(D(τ)− 1) log(τ)(1− log(τ))

1− τ
= 0,

where gk(τ) = gk(τ ; ε, µ) =
∫ 1

0 logk(u)D′(u)du.

It is easy to check that fb(0) = 0 and f ′b(0) < 0. A sufficient condition for
the existence of a root is that fb(1) > 0, i.e.,

fb(1) = (g1(1))2 +D′(1)g1(1)− (1−D′(1))g2(1) > 0.

Notice that g1(1) = εg̃1(µ)− 1 and g2(1) = εg̃2(µ) + 2. This is equivalent
to

ε[(g̃1(µ))2 − g̃1(µ)− g̃2(µ)] > 1 + g̃1(µ).

Since (g̃1(µ))2 − g̃1(µ) − g̃2(µ) < 0 and 1 + g̃(µ) needs to be < 0, the
sufficient conditions for the existence of a root is

µ > µ = 0.84865,

ε <
1 + g̃1(µ)

(g̃1(µ))2 − g̃1(µ)− g̃2(µ)
,

where µ is the same given in Theorem 3.
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1.8. Proof of Theorem 4.

Proof. Taking the partial of an,α(θ; τ1, τ2) with respect to τ1, we have

∂

∂τ1
an,α(θ; τ1, τ2)

∝ (zα
√
V0 −

√
n∆)

(
V1
∂V0

∂τ1
− V0

∂V1

∂τ1

)
−
√
nV1

(
2V0

∂∆

∂τ1
−∆

∂V0

∂τ1

)
∝
(
V1
∂V0

∂τ1
− V0

∂V1

∂τ1

)
−
√
nV0

zα

(
2V1

∂∆

∂τ1
−∆

∂V1

∂τ1

)
.

Following the proof of Theorem 3 and Proposition 2, we have ∂V1
∂τ1
|τ1=τ2 =

∂V0
∂τ1
|τ1=τ2 = ∂∆

∂τ1
|τ1=τ2 = 0, and thus

∂

∂τ1
an,α(θ; τ1, τ2)

∣∣∣
τ1=τ2

= 0.

The choice τ1 = τ2 = τ∗ meets the first order conditions for the optimality
if ∂

∂τ2
an,α(θ; τ1, τ2)|τ1=τ2 = 0 has a solution τ∗. This is equivalent to solve[(

V1
∂V0

∂τ2
− V0

∂V1

∂τ2

)
−
√
nV0

zα

(
2V1

∂∆

∂τ2
−∆

∂V1

∂τ2

)]∣∣∣
τ1=τ2

= 0,

where V0|τ1=τ2 = τ1(2− τ1), ∂V0
∂τ2
|τ1=τ2 = 2(1− τ1), and the rest of the terms

are given in the proof of Proposition 2. We can simplify the equation to be

fc(τ) = (τ − cτ )(g1(τ))2

− τ(D(τ)− 1)

1− τ
(2 log(τ)(1− τ + cτ )− 2 + τ − cτ ) g1(τ)

+

(
τ − cτ

D(τ)− τ
1− τ

)
g2(τ)

+
τD(τ)(D(τ)− 1) log(τ)

1− τ
(log(τ)(1− τ + cτ )− 2 + τ − cτ ) = 0,

where cτ = cn
√
τ(2− τ). Here we have fc(0) = 0 and f ′c(0) > 0. The

condition fc(1) < 0 means

(1− cn)ε
(
(g̃1(1))2 − g̃1(1)− g̃2(1)

)
− (1− cn)(g̃1(1) + 1)

+ε (2g̃1(1) + g̃2(1))− (2g̃1(1) + g̃2(1)) < 0.



10 H. ZHANG ET AL.

For cn large enough, (1 − cn)[(g̃1(µ))2 − g̃1(µ) − g̃2(µ)] + 2g̃1(µ) + g̃2(µ) >
0.Thus, a sufficient conditions for the existence of τ∗, i.e., the stationary
point is

µ > µ′ such that (1− cn)[1 + g̃1(µ′)] + 2g̃1(µ′) + g̃2(µ′) = 0,

ε <
(1− cn)[1 + g̃1(µ)] + 2g̃1(µ) + g̃2(µ)

(1− cn)[(g̃1(µ))2 − g̃1(µ)− g̃2(µ)] + 2g̃1(µ) + g̃2(µ)
.

2. Supplementary Figures.
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Fig S1: The right-tail distribution curves of Wn(τ1, τ2) under H0. Left panel:
(τ1, τ2) = (0.05, 0.05); Right panel: (τ1, τ2) = (0.25, 0.75). Simulation: the
solid curve obtained by 104 simulations; Exact: the dashed curve calculated
by formula (3.1). This figure shows that formula (3.1) provides a perfect null
distribution curve for the TFisher family Wn(τ1, τ2) in (2.1).

Fig S2: The left-tail null distribution of W o
n over τ1j = τ2j = τj ∈

{0.1, 0.2, . . . , 1}. Simulation: the solid curve obtained by 104 simulations;
Approx.: the dashed curve calculated by Proposition 2. The left-tail proba-
bility of W o

n , which corresponds to its p-value because a smaller W o
n indicates

a stronger evidence against the null. The calculation is slightly conservative,
which guarantees that the type I error rate will be no more than the nominal
value in real applications.
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Fig S3: The right-tail distribution of Wn(τ1, τ2) under the alternative hy-
potheses of Gaussian mixture in (1.3). Left panel: (τ1, τ2) = (0.05, 0.05);
right panel: (0.10, 0.25). Simulation: the solid curve obtained by 104 simu-
lations; Approx. SN: the green dashed curve calculated by the skew-normal
approximation; Approx. N: the red dashed curved calculated by the normal
approximation.

Fig S4: The statistical power calculation versus simulation for Wn(τ1, τ2)
under Gaussian mixture model in (1.3). Type I error rate α = 0.05. Left
panel: τ1 = 0.1, τ2 = 0.5; Middle: τ1 = 0.05, τ2 = 0.05; Right: τ1 = 0.05, τ2 =
0.25. Simu: the solid curve obtained by 104 simulations. Calc SN: the dotted
curved by the SN-based approximate calculation.
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Fig S5: 3D surface of BE c(ε, µ; τ1, τ2) over the 2D grid of τ1 ∈ (0, 1] and
τ2 ∈ (0, 3) with a step size 0.01. Here fix ε = 0.5. Left panel: µ = 0.5, the
maximizers τ∗1 = 0.9, τ∗2 = 1.28 and the global maximum c∗ = 0.071; Middle:
µ = 1, τ∗1 = τ∗2 = 0.39 and c∗ = 0.394; Right: µ = 1.5, τ∗1 = τ∗2 = 0.05 and
c∗ = 1.674.

Fig S6: Power comparison between globally optimal TFisher statistic (at
global maximizers (τ∗1 , τ

∗
2 ) of APE; represented by the solid curve) and the

optimal soft-thresholding TFisher (at restricted maximizers τ1 = τ2 = τ∗ of
APE; represented by the dashed curve). The number of tests n = 50, the
type I error α = 0.05. Left: ε = 0.1. Right: µ = 2.

.
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