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ABSTRACT

Stiffness usually increases with the lattice-distortion-induced strain, as observed in many nanostructures.
Partly due to the size differences in the component elements, severe lattice distortion naturally exists
in high entropy alloys (HEAs). The single-phase face-centered-cubic (FCC) Alp3CoCrFeNi HEA, which
has large size differences among its constituent elements, is an ideal system to study the relationship
between the elastic properties and lattice distortion using a combined experimental and computational
approach based on in-situ neutron-diffraction (ND) characterizations, and first-principles calculations.
Analysis of the interatomic distance distributions from calculations of optimized special quasi random
structure (SQS) found that the HEA has a high degree of lattice distortion. When the lattice distortion
is explicitly considered, elastic properties calculated using SQS are in excellent agreement with exper-
imental measurements for the HEA. The calculated elastic constant values are within 5% of the ND
measurements. A comparison of calculations from the optimized SQS and the SQS with ideal lattice
sites indicate that the lattice distortion results in the reduced stiffness. The optimized SQS has a bulk
modulus of 177 GPa compared to the ideal lattice SQS with a bulk modulus of 194 GPa. Machine learning
(ML) modeling is also implemented to explore the use of fast, and computationally efficient models for
predicting the elastic moduli of HEAs. ML models trained on a large dataset of inorganic structures are
shown to make accurate predictions of elastic properties for the HEA. The ML models also demonstrate
the dependence of bulk and shear moduli on several material features which can act as guides for tuning
elastic properties in HEAs.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

the recent emergence of high entropy alloys (HEAs), a new class
of metallic materials [1-5]. Possessing a simple crystal structure

The material-design strategy of mixing five or more elements in
a single lattice with the random-site occupancy has brought about
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with a high degree of chemical disorder, the ideal HEA presents a
single-phase solid solution with exceptional engineering properties
[4,6-21]. Multi-principal element HEAs have the potential of
achieving a good balance of desired properties not attained in
most conventional alloys containing one or two principal el-
ements, including the high strength [22], reasonable ductility
[23], high hardness [24], corrosion [25,26] and fatigue resistance
[18,19,27-30], and thermal stability [4,31-33]. In addition, due to
the high softening resistance at high temperatures, some HEAs
are promising structural materials for elevated-temperature nu-
clear and aerospace applications [34,35].

Despite the perception that single-phase face-centered-cubic
(FCC) alloys exhibit good ductility at the expense of strength [4],
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the Aly3CoCrFeNi HEA, a high-temperature single-phase FCC struc-
ture, shows a decent combination of strength, ductility, and tough-
ness [15,16,36-38]. The as-cast phase and microstructure of the
AlxCoCrFeNi (0 <x <2.0) system were experimentally investigated
by Wang et al. [39] to elucidate the effects of Al on the alloy sys-
tem. For AlyCoCrFeNi where 0 <x <0.5, the system forms a single
FCC phase. When 0.5 < x < 0.9, AlxCoCrFeNi transforms to a two-
phase mixture of FCC and BCC structures, and a BCC single phase
where 0.9 <x<2.0. Li et al. [7] studied the correlations between
the microstructure and mechanical behavior of an Aly3;CoCrFeNi
HEA fiber fabricated by hot rotary forging and hot drawing. Their
results showed a remarkable tensile strength and ductility at room
temperature, and its strength and ductility even increase at cryo-
genic temperatures.

In this study, we employ a combination of in-situ neutron
diffraction (ND), first-principles calculations, and machine learning
(ML) to investigate the elastic properties of the Alg3CoCrFeNi HEA,
including elastic moduli and anisotropy. A reduction in the stiff-
ness of the HEA is revealed accompanying the severe lattice distor-
tion in the HEA. The aim of the study is two-fold. First, while there
is a consensus that first-principles predictions of elastic constants
are reliable for ordered structures [40], limited results are available
to draw the same conclusion for HEAs. A review by Huang et al.
[41] compared ab initio methods for studying the elastic parame-
ters of HEAs. They found that effective medium methods, such as
Coherent Potential Approximation (CPA) as well as supercell meth-
ods, are generally suitable, but the effective medium model is more
powerful for magnetically-disordered HEAs. Using ab initio tech-
niques, the study also presents the dopant-concentration depen-
dence of the elastic anisotropy [41]. The present study offers a rare
opportunity to assess the agreement between experimental and
computational results for the elasticity of HEAs. The second aim
of this study is to understand the nature of interatomic interac-
tions and their effects on the elastic properties of materials. With
the existence of exotic structural features, such as the severe lattice
distortion induced by the large-size differences in the constituent
elements of the Aly3CoCrFeNi HEA, it is scientifically meaningful to
investigate the structure-property relationships from the perspec-
tive of the elastic response.

First-principles methods based on the density functional theory
(DFT) excel in predicting the elastic properties of pure metals
and ordered alloys [42,43]. To utilize this tool for HEAs, there
is a challenging issue with constructing relatively-small super-
cell models that describe disordered arrangements of multiple
species. This problem can be solved with the special quasi-random
structure (SQS) [44], which builds a supercell that statistically
mimics the most relevant, near-neighbor pair and multi-site
correlation functions of the disordered solid solution [45]. In
the literature, however, there are very limited DFT investigations
of the elastic properties of HEAs with experimental validations
[46]. ND is employed to characterize the structural evolution of
the Alp3CoCrFeNi HEA during mechanical deformation. Due to
a high level of penetration, even in relatively-heavy elements,
in-situ ND can be used to measure the internal strain evolution
of the oriented grain families in polycrystalline materials [47]. ND
has been employed to study the deformation mechanism of the
HEAs at both room and high temperatures [48-52]|. For example,
Huang et al. [52] studied the lattice elasticity of an FCC-structured
CoCrFeMnNi by in situ ND experiments, and the HEA shows the
orientation-dependent lattice elasticity. In addition to providing
the information on the grain-level stress and strain heterogeneity,
this technique reveals the overall role of the elastic and plastic
anisotropy [53]. By integrating experiments and computations,
these results provide valuable assessment of the DFT prediction
of elastic constants for HEAs. In this work, we also build a ML
model using the gradient-boosted trees (GB-Trees) algorithm to

aid the understanding of the elastic properties of the Alg3CoCrFeNi
HEA.

2. Materials and methods
2.1. Sample preparation

Alloy ingots with a nominal composition of Aly3CoCrFeNi were
prepared by vacuum-induction melting a mixture of high-grade
metals with purities greater than 99.95 weight percent (wt%). The
specimen was then hot-isostatic-pressed at 1204°C and 103 MPa
for 4 h, encapsulated in an argon triple-pumped quartz tube and
homogenized at 1200°C for 2 h, air cooled, aged at 700°C for
500 h, and finally quenched. The hot-isostatic-pressing treatment
reduces casting defects such as voids which is necessary for precise
mechanical test results. The homogenization treatment resulted in
a homogeneous atomic distribution which was confirmed using
atom probe tomography (APT). The aging treatment at 700 °C was
necessary to determine the phase stability at 700°C and removed
the polycrystalline texture that was present prior to aging.

2.2. In-situ neutron-diffraction (ND) experiments

In-situ ND measurements of the cylindrical dog-bone speci-
men of Aly3CoCrFeNi HEA (50 mm in length and 6.35mm in di-
ameter) were taken under tension at room temperature. An MTS
load-frame on the VULCAN Engineering Diffractometer was used
at the Spallation Neutron Source (SNS), Oak Ridge National Lab-
oratory (ORNL) 54,55]. The ND instrument uses the time-of-flight
(TOF) measurement, which allows for the ND measurements with
a diffraction pattern, covering a wide range of d-spacings without
the rotation of samples or detectors. VULCAN is equipped with two
detectors, designated as Banks 1 and 2 at +90°. These detectors
record diffraction patterns associated with the lattice planes par-
allel to the axial and transverse directions, respectively. The inci-
dent neutron beam, with a 5mm x 5mm slit size, illuminates the
sample. A constant load-control mode with a stepwise-loading se-
quence was used during the measurement of the diffraction pat-
terns. The measurement time to obtain the ND data was 10 min at
each stress level up to 140 MPa. At larger stress levels, the con-
trol mode was converted from the load to displacement-control
mode. The collected data were analyzed by single-peak fitting, us-
ing the VULCAN Data Reduction and Interactive Visualization soft-
ware (VDRIVE) program [56].

In the ND experiment, the HEA was uniaxially loaded in the
elastic regime, and each lattice-plane (hkl) strain, €y, was simulta-
neously measured as a function of the applied stress in both load-
ing and transverse directions using below equation [49,57]
e = =

hki
where dp;; denotes the lattice spacing of the (hkl)-plane during de-

formation, and dgk, is the stress-free lattice spacing of the plane.

Using the Kroner model [57,58], a regression is fit on ﬁ and

(1)

%, where Epj; and vy, are the diffraction elastic moduli and the

Poisson’s ratios, respectively, through setting elastic constants as
parameters satisfying below equations:
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where B and Gpy are the bulk and shear moduli, respectively.
The single-crystal elastic constants are determined, using the least-
squares fitting over the different hkl directions, minimizing the
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Table 1

Equations to calculate properties using elements from the elastic tensor.
Property Equation
Compliance tensor, § s=C! ™)
Bulk modulus, B, Voigt-Reuss-Hill 1 (Ci1 + G2+ G3) +2(Cra + Gz + Ga1)

Averaged [58.65,66,67] T 20sm +522 +53) +4(51 + 523+ 531)

Shear modulus, G, Voigt-Reuss-Hill 15

18 (8)

n (i1 + G2 +Gs3) — (Ciz + Go3 +Ga1) + 3(Cag + Gss + Cos) )

Averaged [58,65,66,67]

T 8(S11 + S22 + 533) — 8(S12 + 523 + 531) + 6(S4q + Ss5 + Se6) 30

value of a cost function shown in below equation:
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where n is the number of (hkl) planes applied to fit the Kroner’s
model; (ﬁ)exp and (%)EXP are measured from neutron diffrac-
tion; e; and e, denote the corresponding experimental errors, re-
spectively [57,58].

2.3. First-principles calculations

First-principles calculations were performed with the Vienna
Ab-initio Simulation Package (VASP) [59,60] using the projector
augmented wave (PAW) method [61]. The exchange-correlation en-
ergy was described with the generalized gradient approximation
(GGA) in the Perdew-Becke-Ernzehof (PBE) parameterization [62].
A plane-wave cutoff of 700eV and Monkhorst-Pack k-point grid of
5 x5 x 5 was used for all calculations. Chemical disorder was mod-
eled with SQS [44]. The generation of SQS was based on the Monte
Carlo-simulated annealing with an objective function to find the
closest match of correlation functions of a disordered state [63].
The convergence of elastic constants was tested with a series of
SQS with different sizes. A 64-atom SQS (4 Al, 15 Cr, 15 Fe, 15 Co,
and 15 Ni) was selected for analysis in the work.

The elastic tensor was calculated, using a computational work-
flow based on the stress-strain method described in Ref. [40].
Starting with a relaxed SQS of the HEA, a set of distorted struc-
tures were generated using 3 x 3 Green-Lagrange strain tensors of
varying magnitudes at + 0.5% and + 1%. For each distorted struc-
ture, the 3 x 3 stress tensor is computed by DFT. The elastic tensor
of the SQS is calculated from the relationship between the stress
and strain tensors:

Sn Ch G2 Gz G4 GCs GCg Eyy

S» Co G G3 GCu G5 G Ex

Ss3| _ | G3 Gz Gz Gy Gs G E33 (5)
S23 Cu Cua Gy Cu Gs G || 2Ex

S1i3 Cs Gs Gs G5 Gs G || 2E

S12 Ce Go Gs (G G GCes] | 2Er2

where S; and E;; denote the stress and strain, respectively, at row, i,
and column, j, in the stress tensor. C;; are the elements in the elas-
tic tensor with subscripts using the Voigt-notation. Each element
of the elastic tensor is calculated from a linear fit of the calculated
stresses over the range of strain magnitudes.

Since SQS does not conserve the point-group symmetry, a pro-
jection technique is employed to approximate the elastic tensor
with cubic symmetry for the Alg3CoCrFeNi HEA. The projection
method offers a computationally-efficient approach to calculate
elastic constants for random alloys and it is shown that the ap-
proximated elastic tensor is accurate and converges quickly with

the size of the SQS [64]. Convergence of the elastic constants was
confirmed for the 64-atom supercell. The projected elastic tensor
elements for cubic lattices are calculated, using below equation
[64]:

= Cin+Cn+C33 =

é Cp+Ci3+C3 =
1n= =

C44 + C55 + Ce6
, Cip = , Cyq =
3 12 3 44 3

(6)
Using the elements of the projected elastic tensor, the elastic
moduli of the HEA are calculated according to Table 1.

2.4. Machine-learning (ML) models

Two ML models using the Gradient Boosting Trees (GB-Trees)
algorithm are trained on 6826 ordered inorganic compounds from
the Materials Project database [66,68] to predict the Voigt-Reuss—
Hill (VRH) averages of bulk and shear moduli [58,65,66]. To pre-
vent the higher moduli materials from overly affecting the models,
the target data was log-normalized, which also reduces skew in
the distribution. The elastic constants were calculated from stress
and strain relations computed using DFT and described in detail
in Ref. [40]. The database contains the results of DFT calculations
performed with VASP; detailed settings used for VASP are de-
scribed in Ref. [66,68]. Our models are compared against bench-
mark models published in Ref. [66] which uses the Gradient Boost-
ing Machine Local Polynomial Regression (GBM-Locfit) framework
trained on 1940 ordered inorganic structures from the Materials
Project database [66,68]. The main difference is that the mod-
els in this work use decision trees as a base learner within the
gradient boosting framework, whereas the benchmark models use
local polynomial regressions within the gradient-boosting frame-
work. Models were trained using Scikit-Learn [69].

The GB-Trees models built in this work use features gener-
ated using structural and compositional features. Properties that
were calculated for each compound, such as the density, or cohe-
sive energy per atom, are denoted as structural features. Proper-
ties that relate to elements but not compounds, such as atomic
radius or group number, were combined using weighted holder
means to generate descriptors denoted as compositional features.
No assumption is made about the optimum way to average the el-
emental properties to generate the compositional features. Hence,
a collection of weighted Holder means, with powers ranging from
—4 to 4, were computed for each compositional feature. The arith-
metic average corresponds to a power of 1, a harmonic average cor-
responds to a power of —1, a geometric average corresponds to the
zeroth power, and the Euclidean average corresponds to a power
of 2. The effect of the power is such that the average is shifted
to smaller values for smaller powers, and towards larger values
for larger powers [70]. An example where the type of averaging
clearly makes a difference is in estimating the density of a com-
pound from the density of constituent elements. If the constituent
elements’ densities are weighted by mass fraction, then the har-
monic mean more accurately estimates the compound’s density as
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Table 2

Summary of features for GB-Trees models. Symbols, underlying property descriptions,
and global SHAP values are listed for each descriptor for the two GB-Trees models.

Modulus prediction Symbol Feature descriptor Global SHAP value

GB-Trees model

Bulk 1q(g) Elemental group number 0.147
E. Cohesive energy 0.135
P Density 0.109
py(r) Element atomic radius 0.071
H_g(X) Electronegativity 0.061

Shear E. Cohesive energy 0.189
14(g) Element group number 0.115
po(r) Element atomic radius 0.107
Ha(X) Element electronegativity  0.072
P Density 0.060

opposed to the arithmetic mean. The Holder mean is defined in
equations below:

1
P

-1
pp) = [ D wi] D waxl | . (p#0) (10)
i=1 i=1

-1
po@)=exp [ (D wi] D wilnx) |, (p=0) (11)
i1 i1

where the terms, wp(x), is the Holder mean to the power of p of
the property, x, w; are the atomic weights of the elements, n is
the number of constituent elements, and x; are the properties. The
Yeo-Johnson’s power transformation was applied to each descrip-
tor to make the training data distribution more gaussian [71]. The
data transformation accounts for differences in units, and skew in
distributions.

In total 67 features were computed for each compound. For ML
models to be able to predict bulk and shear moduli accurately, the
models must learn patterns relating feature values to the modu-
lus values. The more complex the underlying relationship is the
more data is needed to learn complex patterns. However, learn-
ing on a dataset with unrelated, redundant, or noisy features can
decrease model performance because the relevant pattern was ob-
fuscated with data from irrelevant features. Additionally, minimiz-
ing the number of features will improve the interpretability of the
model itself. The GB-Trees model makes predictions by fitting shal-
low decision trees, called weak learners, sequentially where each
weak learner makes a prediction and the next weak learner is fit
to minimize the error residual of the previous weak learner [66].
Each weak learner has high bias and low variance and by using a
weighted sum of all the weak learner predictions bias is reduced
while keeping variance low and accurate predictions can be made
[72]. There is a bias-variance trade-off with the number of features
considered; if the model contains too many features, the variance
will be high, and the model may be overfit to the training data
causing it to underperform when making predictions on unseen
data. On the other hand, if the model contains too few features
the bias will be high, and the model may be underfit, which is
also undesirable [73].

A feature subset that optimizes the model performance is
generated by using a multi-objective optimized genetic algorithm
feature selection methodology [74,75]. The genetic algorithm
procedure is as follows: First, the algorithm populates a random
pool of feature subsets. This pool is denoted as a generation.
Feature subsets are paired up and each pair makes two new
feature subsets by randomly swapping features between the two
subsets. Next, all the feature subsets are sorted using a method
called non-dominated sorting, in which all the feature subsets

that either have the best prediction score for a given number of
features, or the smallest number of features for a prediction score
are selected to be included in the next generation. This selection
process continues until the original generation size is achieved
and the process repeats until the average model prediction score
of the population converges. This non-greedy method algorithm
maximizes model prediction performance and minimizes model
complexity simultaneously [74,75]. Multiple genetic algorithm
searches were performed each with a population size of 100 and
most searches converged within 50 generations. A smaller feature
subset improves the model interpretability and generalizability.
Two separate models for predicting bulk modulus and shear
modulus were made. The resulting feature subsets with used to
predict the bulk (B) and shear (G) moduli are: cohesive energy,
E., density, p, Holder mean of the group number of atoms, 4(g),
the Holder mean of atomic radii, wq(r), for B, and w,(r) for G, and
the Holder mean of electronegativity, jt_4(X), for B, and t4(X) for
G. Table 2 shows the generated feature subsets for each GB-Trees
model selected by the genetic algorithm and feature importance
values.

Fitting the GB-Trees model to the training data itself is a sepa-
rate task from feature selection and is explained in the following
description. The model training has hyperparameters that controls
how the model fits to the data. In order to prevent overfitting, a
nested cross-validation scheme was used to tune hyperparameters
and fit the model in separate cross-validation loops. The model fit-
ting is done in the outer loop with 5-folds. Within each fold of
the outer loop, the hyperparameters of the model are tuned us-
ing 2-folds; this cross-validation step is the inner loop. This nested
cross-validation procedure is needed to prevent an overestimation
of model performance which would occur if the same set of data
used to tune hyperparameters was used to fit and score the model.
The nested cross- validation method is used to fit the models on
80% of the total dataset. The remaining 20% was used to evaluate
the model performance on an untouched test set. This ensures that
the dataset used for fitting the model is disjoint from the dataset
that is used to score the fitted model performance. The models
were trained to minimize the mean-squared-error (MSE), with a
learning rate of 0.15 (a weighting applied to each weak learner),
and a maximum tree depth of 4.

3. Results

3.1. Agreement between experimental and computational elastic
properties

To measure the lattice-strain changes with respect to the stress
for the Alg3CoCrFeNi HEA system, in-situ ND experiments sub-
jected to continuous tension are performed. The 0.2% yield stress
was determined as 300 MPa for the alloy. Fig. 1(a) and (b) presents
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Fig. 1. Neutron-diffraction pattern of Alp3CoCrFeNi at room temperature. (a) typical neutron-diffraction pattern detected by the Bank 1 detector and (b) typical neutron-

diffraction pattern detected by the Bank 2 detector.

Aly3CoCrFeNi after heat-treatment N
at 700 °C for 500 hours ‘

Fig. 2. SEM image showing FCC matrix (93% area fraction, black) and BCC sec-
ondary phase (7% area fraction, white). The measurement bar corresponds to 5 mi-
crometers.

typical ND patterns of Aly3CoCrFeNi under tension detected by the
Banks 1 and 2 detectors, respectively at room temperature. More
detailed descriptions of the ND analysis of the same sample can
also be found in Ref. [76]. In addition to showing the small pres-
ence of a second phase, Fig. 1(a) and 1(b) indicates that the sample
is texture free.

The lattice strain for each (hkl) plane is calculated, based on
the shift of the peaks during loading. The single-crystal elastic con-
stants of the FCC phase are calculated by fitting the Kroner model
to the ND peaks belonging to the FCC reflections. The aging heat
treatment is necessary for the removal of polycrystalline texture
which was present in the homogenized sample which is important
because the determination of the single-crystal elastic constants by
fitting the Kroner model to the FCC peaks has an underlying as-
sumption of a texture free polycrystalline sample. The aged sample
at 700°C has a minor amount of secondary BCC phase (7.0% area
fraction) as shown in the SEM image in Fig. 2. More detailed de-
scriptions of the structural and compositional characterization of
the same sample can also be found in Ref. [76].

To quantitatively and efficiently predict the elastic properties
for the Alp3CoCrFeNi HEA from first principles, we used a 64-
atom FCC SQS. The medium-sized SQS mimics the near-neighbor
pair and triplet correlation functions of the five-element random
solid solution. The volume, shape, and atomic positions were opti-
mized for the FCC Alp3CoCrFeNi SQS. The elastic constants of the
HEA were, then, calculated with the SQS using the strain-stress
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Fig. 3. Comparison of experimental and calculated elastic constants. Elastic con-
stants of Cy;, Cqp, and Cy4, elastic moduli: bulk modulus, B, and shear modulus,
G. Comparison of experimental (neutron diffraction) and calculated (SQS and CPA)
elastic constants and elastic moduli of the FCC Aly3CoCrFeNi HEA.

method with DFT. The convergence of the elastic constants was
tested carefully with respect to the plain-wave cutoff energy and
k-point density. The largest difference in elastic constants between
the last two k-points grids tested was 4.59 GPa for Cy;, which is
less than 2% of the final value of Cy;. Table 3 gives the compu-
tational elastic constants of the Alg3CoCrFeNi HEA from DFT and
experimental elastic constants obtained from the in-situ ND exper-
iments. Elastic constants calculated from the Exact Muffin-Tin Or-
bitals Coherent Potential Approximation (EMTO-CPA) for the same
HEA [77] are also listed for comparison.

Fig. 3 illustrates the comparison of calculated and experimental
values for the elastic constants of the FCC Aly3CoCrFeNi HEA. As
shown in Table 3 and Fig. 3, contrary to the CPA results, the elastic
constants of the Aly3CoCrFeNi HEA obtained from the SQS model
agree very well with those from ND experiments. The difference
between DFT predictions and ND measurement is within 5% for all
elastic constants. When compared with DFT predictions, CPA over-
estimates all elastic constants to a much higher degree. The Cy4
value from CPA is 37% higher than the ND measurement.

The small difference between the elastic constants of DFT and
ND experiments can be understood from the different conditions
under which these results are obtained. Given the fact that the
elastic moduli are affected by temperature due to lattice-thermal
vibrations [78], the slight overestimation in the DFT results, shown
in Table 3, is expected because DFT calculations are performed at
0K, whereas ND is performed at about room temperature, 293 K.
The temperature effect is also related to the slight underestimation
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Table 3

Experimental and computational elastic constants for the FCC Alg3CoCrFeNi HEA. Elastic constants: Cyy, Ci3, and Cyq, poly-
crystalline elastic moduli: bulk modulus, B, shear modulus, G, as well as the B/G ratio, the Poisson ratio, v, and Zener ratio
2C44/(C11-Cy2). a is the lattice constant. The experimental result of the present work is measured by neutron diffraction.

Method a(A) Cy (GPa) Cyp (GPa) Ca4 (GPa) B (GPa) G (GPa) v B/G Zener ratio
DFT-PBE 3.55 234 148 134 177 85 0.29 2.07 3.08
ND 3.58 225 145 129 172 81 0.30 212 3.19
EMTO-CPA [76] 3.55 246 171 177 196 96 0.29 2.04 4.72
Table 4
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K B SQS (fixed atoms
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Fig. 4. Comparison of calculated bulk and shear moduli. SQS and CPA calculations,
neutron-diffraction experimental data, and machine-learning predictions for bulk
and shear moduli. The atomic position-fixed SQS and the CPA results both predict
higher elastic moduli demonstrating the importance of the lattice distortion effect.

of lattice constants of the HEA from DFT calculations. Besides, the
Alp3CoCrFeNi HEA is modeled as an ideal solid-solution phase
with the FCC-underlying lattice in the DFT calculations. The
experimental sample can deviate from such an ideal solution
condition, possibly having some degree of short-range ordering,
and the presence of a minor second phase.

The excellent agreement between the single-crystal elastic con-
stants estimated by the Kroner model and DFT calculations pro-
vides the convincing evidence that a medium-sized SQS can pre-
dict the elastic properties of HEAs accurately, even with a large
degree of size differences in the constituent elements and a mi-
nor amount of a second phase. When considering the intrinsic un-
certainties in DFT energetics and SQS choices, the first-principles
approach combining the medium-sized SQS and symmetry tensor
projection still offer an efficient and reliable route to predict the
elastic properties of HEAs.

To determine the effects of lattice distortion on the elastic prop-
erties, a set of first-principles elastic-constant calculations compar-
ing a volume-only optimized SQS with atoms on the ideal lattice
sites was compared to a fully-optimized SQS structure which in-
troduces the effect of lattice distortion. The volume-optimized SQS
is found the have a lower lattice constant (3.551 A) than the fully-
optimized SQS (3.555 A). The volume-only optimized SQS supercell
is shown to have the same degree of overestimation in elastic con-
stants as the CPA results with as shown in Fig. 4. The bulk and
shear moduli are plotted in Fig. 4 with the fully-relaxed SQS, CPA,
and ML predictions.

3.2. Mechanical stability and ductility

The mechanical stability of the Aly3CoCrFeNi alloy can be as-
sessed with the Born-Huang elastic stability criteria [79], which
states a mechanically stable structure satisfies, C;1-C; > O,
Cy1 +2C;, > 0, and C44 > 0. According to the Born’s stability
condition [80], as long as the eigenvalues remain positive, the
structure remains stable. Thus, the linear-stability analysis of the
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Fig. 5. Lattice-strain evolution in the Alg3CoCrFeNi HEA achieved from the in-situ
neutron-diffraction experiments at room temperature. The stress-lattice strain re-
sponses of the (111), (200), (220), (311), and (331) planes parallel and perpendicular
to the load axis.

Alg 3CoCrFeNi structure can be carried out by computing the eigen-
values of the elasticity tensor, as listed in Table 4. All the eigenval-
ues of the elasticity tensors are positive, meaning that the HEA can
retain its structures under small deformation.

Another phenomenological model, Pugh’s criterion [81] predicts
whether a polycrystalline material will fail in a ductile or brittle
manner using the ratio of bulk and shear moduli. All values for
the B/G ratio in Table 3 are greater than 1.75, suggesting that the
Alp3CoCrFeNi HEA is likely to behave in a ductile manner [82-84].
Such prediction is in good agreement with previous studies show-
ing the Alg3CoCrFeNi HEA with the superior ductility [8]. More-
over, the Cauchy’s pressure, C;5-C44, is commonly related to the
ductility behavior of materials, as it infers the character of the
atomic bonding in metallic materials. Where metallic bonding cor-
responds to positive Cauchy pressure, and bonding with an angular
character corresponds to negative Cauchy pressure [85]. Contrary
to the CPA result, the Cauchy pressures obtained from the DFT cal-
culations are positive, revealing that Alg3CoCrFeNi shows a strong
metallic bond and ductility behavior. This feature is also consistent
with the experimental analysis [36,86].

3.3. Experimental and calculated elastic anisotropy

The lattice-strain response of the (111), (200), (311), (331), and
(220) planes, with respect to the applied tensile stress, are plot-
ted in Fig. 5. Description of the lattice strain evolution of the same
sample can also be found in Ref. [76]. Each line indicates the re-
sponse of grains with a lattice direction corresponding to the line
legend. The various slopes of the curves, within the elastic region,
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Table 5

Minimal and maximal values as well as anisotropy of Young’s and shear moduli, linear compressibility, and
Poisson’s ratios of Alp3CoCrFeNi. Note that the anisotropy of x is denoted by A = Xmax/Xmin-

Young's modulus (GPa)

Linear compressibility (TPa~')

Shear modulus (GPa) Poisson’s ratio

Ennin Emax Bmin Bmax Gmin Gmax Vmin Vmax
126.8  324.1 1.886  1.886 459 1355 -0.155  0.728
Anisotropy Anisotropy Anisotropy Anisotropy

2.7 1.0 3.1 —4.7

relates to the elastic anisotropy of different (hkl) grain families in
the FCC phase [87]. For the (331) grain family, the plotted load-
ing is in the linear-elastic region. The curve of the (200) lattice
grains, however, exhibits a slight downward deflection at about
350 MPa, signifying an elastic-to-plastic transition, and load being
shared from the yielding FCC grains. The curves for the (111) and
(220) lattice grains present a slight upward deflection at about
400 MPa. The (200) and (111) lattice planes correspond to the ex-
tremes of the elastic stiffness in elastically-anisotropic FCC materi-
als, as it can be seen for Aly3CoCrFeNi in the figure, i.e., the (200)
and (111) grain orientations possess the low and high directional
strength-to-stiffness ratios, respectively [88]. As a result, the (200)
and (111) orientations are the first and the last to yield, respec-
tively. The (200) grains cannot take on more stress whereas the
(111) grains take on more stress, which explains the behavior of
the stress-lattice responses in Fig. 5.

Fig. 5 shows lattice strains in loading and transverse directions
obtained from grains oriented such that the individual (hkl) plane
normals are parallel and perpendicular, respectively, to the load
axis. It can be observed that the lattice strain changes in the trans-
verse direction are significantly smaller than those in the axial
direction. The response of the individual peaks in the transverse
direction is almost linear, with a slope opposite in sign to that
obtained in the load direction, up to about 300 MPa, where the
yield of preferentially-oriented grains starts. Some of the reflec-
tions, in the transverse direction, show more lattice strains than
others, which is consistent with the differences in lattice strains in
the loading direction, presented in Fig. 5.

The description of spatial dependency of the elastic proper-
ties of the Alp3CoCrFeNi HEA in Fig. 6 is derived from the DFT-
calculated single-crystal elastic constants. In the three-dimensional
(3D) representation, properties for an elastically-isotropic systems
present a spherical shape, and any deviation from a spherical
geometry suggests the presence of anisotropy [89]. Table 5 and
Fig. 6 reflect vast anisotropic elastic properties of the Aly3CoCrFeNi
HEA system.

The extent of anisotropy and the variation of the elastic moduli
with the directions of the HEA can be demonstrated by the de-
gree of deformation of the sphere. The shear modulus and Pois-
son’s ratio depend on both the direction of the applied stress
and a perpendicular measurement direction [90], which is repre-
sented in the figures by maximum and minimum surfaces. In cer-
tain directions, the Poisson’s ratio is negative. Fig. 6(b), (d), and
(f) illustrates the 3D surfaces of the crystallographic-orientation-
dependent Young’s and shear moduli, and Poisson’s ratios for all
possible crystallographic directions to show the weak and stiff di-
rections in the crystal structure. In Fig. 6(d), the transparent green
outer surface and the solid magenta-yellow inner surface represent
the positive maximum and minimum values of shear moduli, re-
spectively. In addition, Fig. 6(f) displays three surfaces; the outer
transparent green, the middle transparent magenta-yellow, and the
inner solid black surfaces represent the positive maximum, posi-
tive minimum, and negative values of Poisson’s ratios, respectively.
Fig. 6(a), (c), and (e) represents the two-dimensional projections
onto the XY, XZ, and YZ planes of Young’s and shear moduli and
Poisson’s ratios.

Fig. 6(a) and (b) indicates that the Young’s modulus changes
substantially in different crystal orientations. The projections are
distorted from the axial [001] directions to the body diagonal
[111] directions. The lowest and highest values of Young's mod-
uli are 126.8 GPa, in the [001] orientation, and 324.1 GPa, in the
[111] orientation, respectively. The magnitude of Young’s modulus
in a specific direction illustrates the strength of chemical bonds in
that direction, suggesting that the Aly3CoCrFeNi HEA is more de-
manding to be stretched along the body-diagonal directions than
the axial ones. The macroscopic Young’s modulus calculated from
Table 3 has a value of 210.0 GPa. This modulus is close to the aver-
age of the maximum and minimum values in the [001] and [111]
orientations, which is 225.45 GPa. This trend may be expected for
a polycrystalline material without a crystallographic texture. The
shear modulus of Alg3CoCrFeNi shows an opposite trend with re-
spect to the Young’s modulus, illustrated in Fig. 6(c) and (d). The
shear modulus remarkably depends on the stress direction, and
the Poisson’s ratio has similar characteristics. The lowest and high-
est orientations for shear moduli are [111] (45.9GPa) and [001]
(135.5 GPa), respectively. The opposite trends of Young’s and shear
moduli in [001] and [111] contribute substantially to the large
anisotropy of the cubic crystal, which is ascribed to the electronic
structures and atomic arrangements. Lastly, the 3D contour sur-
face and the projection representations of the Poisson’s ratio for
the Aly3CoCrFeNi HEA crystal are shown in Fig. 6(e) and (f), re-
spectively. The Poisson’s ratio of the crystal Aly3CoCrFeNi is max-
imized, v=0.728, as the stretching along the diagonal directions,
[100], induces the lateral contraction along axial directions, [010].
Alp3CoCrFeNi also exhibits a negative Poisson’s ratio that is mini-
mized, v =-0.155, in the <110> directions. The appearance of neg-
ative Poisson’s ratios along certain crystallographic directions in
the HEA is in line with various studies of materials with the large
anisotropy [91-93]. Lethbridge et al. surveyed the experimental
elastic constants of 472 materials and found a correlation between
the extreme Poisson’s ratios and elastic anisotropy, irrespective of
the crystal symmetry [91]. Also, a study by Wang et al. determined
that compounds with negative Poisson’s ratios had metallic bond-
ing as opposed to compounds that did not have negative Poisson’s
ratios and had bonds of more covalent nature [93].

3.4. ML-model selection and performance

Using ML models to predict material properties has the advan-
tage of being extremely fast, compared to computing the property
values using DFT. In the present work, a GB-Trees algorithm is used
to build a model to predict the bulk and shear moduli. The fea-
tures of the model are subsequently analyzed to gain insights into
the dependence of the predictions on feature values. The ML model
in the current work is benchmarked against a model published in
Ref. [66], the GBM-Locfit model, which uses local-polynomial re-
gression functions for base-learners, as opposed to using decision
trees. The GB-Trees model has improved predictions for the bulk
modulus, compared to the benchmark GBM-Locfit model. The ex-
perimentally measured and predicted VRH averages of the elastic
bulk and shear moduli are listed in Table 5. The VRH averages of
elastic moduli are averages of the Voigt and Reuss average moduli



G. Kim, H. Diao and C. Lee et al./Acta Materialia 181 (2019) 124-138 131

3D surface plot of

@ 150

2D cut in directional
XY, XZ, YZ planes ; i
elastic properties
— (b) 2

_ L
ﬂ“; \ %
g \‘\ [Cl /
@ N w /
2 '
= \ /
2 } 0 {
§ 150 / 75 75 | 150
- / E [GPa]\
g 75
= /
=] /

L ~ 150 -

Shear Modulus (GPa)

Poisson's Ratio

04775
-

0 )
v 0257y 0.4

Fig. 6. Spatial dependence of Young's and shear moduli and Poisson’s ratio of Alg3CoCrFeNi. (a), (c), and (e): The 2D projections of Young’s moduli, shear moduli, and
Poisson’s ratios on the XY, XZ, and YZ planes, respectively. (b), (d) and (f): The 3D visualization of Young’s moduli, shear moduli, and Poisson’s ratios, respectively. (b) color
scheme: blue, (d) color scheme: maximum green, minimum magenta, and (f) color scheme: maximum green, minimum magenta, negative black. The X, Y, Z axes correspond
to the [100], [010], and [001] directions, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

for polycrystalline materials, which correspond to upper and lower
bounds, respectively. The Alg3CoCrFeNi bulk modulus prediction
by the ML model created in the present work is improved, com-
pared to the bulk modulus prediction by the GBM-Locfit model.
The prediction of shear modulus is similar in both models. For the
Alg3CoCrFeNi HEA, the GB-Trees model predicted a bulk modulus
of 161 GPa, which has a relative error of 6%, which is an improve-
ment on the 208 GPa benchmark prediction with a relative error
of 20%. For the Alg3CoCrFeNi HEA the GB-Trees model predicted
a shear modulus of 73 GPa, which has a relative error of 10%, and
the benchmark predicted 85 GPa, which has a relative error of 5%
as shown in Table 6.

We note that the training datasets for the GB-Trees model and
the benchmark models were different and that neither contains
random alloy or HEA data. To make more equal comparisons be-
tween the two models learning curves are used to evaluate the
dependence of the model learning performance based on the size
of the training dataset. In Fig. 7(a) and (b) the learning curves for
the bulk and shear modulus prediction models are shown. The y-
axis corresponds to mean squared error (MSE) values. The mod-

Table 6

Comparison of the predicted elastic moduli of the
Alp3CoCrFeNi between the GBM-Locfit model and
the GB Trees model.

G (GPa) B (GPa)
ND 81 172
GBM-Locfit (Benchmark) 85 208
GB-Trees (This work) 73 161

els were trained on log-normalized bulk and shear modulus values
and an MSE value reflects a ratio between the predicted and ac-
tual values as opposed to an arithmetic difference. In other words
the MSE values can be interpreted as relative errors. The red solid
curve corresponds to the average 5-fold cross-validated scores of
the model on the training data, and the red shaded area repre-
sents one standard deviation above and below. The green solid
curve and shaded area represents corresponding values for the test
dataset. Given that the benchmark GBM-Locfit model was trained
on a dataset with 1940 compounds a fair comparison with the
models trained in this work is made by comparing the prediction
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performance on the learning curves at the same training set size.
Given 1940 training samples the shear and bulk models made in
this work had average cross-validated mean squared error values
of 0.048 and 0.032 on the test datasets respectively whereas the
GBM-Locfit models had mean squared error values of 0.058 and
0.064 for test datasets of the same size. This shows that with the
same number of samples to learn from, the models made in this
work improve upon predictions of shear and bulk moduli.

Considering that the models are trained with no HEA data in
the dataset, the favorable model performance indicates that the
model has good generalizability and can serve as a rapid screen-
ing tool to make predictions for compounds and alloys without
the need to do further DFT elastic constant calculations. The bulk
and shear moduli of compounds can be predicted with the GB-
Trees models without having to perform DFT elastic-constant cal-
culations. The models made in this work have relative errors of
less than 5% for bulk and less than 10% for shear moduli and for
over half of the testing dataset compounds. It may be possible to
further reduce the relative errors of predictions for disordered al-
loys like HEA’s by introducing alloys with disorder, and lattice dis-
tortion into the training dataset, and also, include descriptors for
disorder, lattice distortion [G6].

3.5. Effects of magnetic moments, nearest-neighbor distances, and
local environments

The effect of interatomic interactions on mechanical proper-
ties of the Alg3CoCrFeNi HEA is elucidated by examining nearest
neighbor distances and magnetic moments of elemental species.
Fig. 8 shows the distribution of the interatomic distances of the
nearest-neighbor atoms for the FCC Aly3;CoCrFeNi HEA calculated
from the optimized 64-atom SQS. The SQS does not contain any
nearest-neighbor Al-Al pair, but it represents a population that al-
lows probing the statistical distribution of the nearest-neighbor
distances for other homoatomic and heteroatomic pairs in the HEA.
The wide spread of interatomic distances, even between atoms of
the same species, such as Cr, is rare in conventional alloys. We
note that the interatomic distances of Cr-Cr pairs are related to
the local environment of the Cr atoms, which also strongly affects
the magnetic moments of Cr atoms. The magnetic frustration of Cr
due to its antiferromagnetism has been observed in other HEA's
such as CrMnFeCoNi HEA and its quaternary derivative of NiFe-
CrCo [94,95]. Given a local environment with mostly-ferromagnetic
nearest neighbors (such as Fe, Co, and Ni), another Cr atom as a
nearest neighbor results in geometric frustration. The bond length
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of a Cr-Cr nearest neighbor pair is shown in Fig. 9 to be affected
by its local environment, and the degree of magnetic frustration.
This indicates that the magnetic property of constituent elements
can also have a large impact on lattice distortion.

Fig. 9(a) and (b) plots the magnetic moments of different
atomic species, m(ug), on the vertical axis against the average
magnetic moment of the 12 nearest neighbors, myy (), for the
relaxed SQS supercell and the unrelaxed SQS supercell, respec-
tively. The size of the Cr data points indicates the number of Cr
nearest neighbors: The larger the data point the more Cr near-
est neighbors there are. Cr is anti-ferromagnetic and except for Al,
which is paramagnetic, the rest of the elements are ferromagnetic.
When the Cr atoms are surrounded by atoms with a large positive
magnetic moment, it can attain a large negative magnetic moment.
However, when there are more Cr nearest neighbors, they become
magnetically frustrated and tend to have magnetic moments closer
to zero. The red circles around the Cr data points in Fig. 9(a) and
(b) represents those atoms with an Al atom in its nearest neighbor.
There are more Cr atoms with frustrated magnetic moments in the
unrelaxed supercell, compared to the relaxed supercell.

Fig. 10 plots the magnetic-moment difference between the Cr
nearest neighbors against the Cr nearest neighbors’ interatomic
distance for both the relaxed SQS supercell (red dots) and the un-
relaxed SQS supercell (blue dots). The number of red and blue dots
is the same, but the blue dots are heavily overlapped. In the re-
laxed supercell, there seems to be a relation that the more an-
tiparallel Cr-Cr pairs have smaller interatomic distances, compared
to the magnetically-frustrated Cr nearest neighbors. As previously
mentioned, the magnetic moment of the Cr atom is heavily influ-
enced by the local environment. In the case of the magnetically-
frustrated Cr atoms, the presence of an Al atom instead of another
Fe, Co, or Ni atom will reduce the average magnetic moment of
the nearest neighbors which may affect the bond lengths and lat-
tice distortion as well.

4. Discussion

This study compares the single-crystal elastic constants of an
HEA with the composition of Aly3CoCrFeNi, obtained by ND ex-
periments, first-principles calculations, and ML model precdictions.
Obtaining single crystal elastic constants requires sufficiently large
single-crystals that are homogeneous and defect-free. This require-
ment makes the availability of the single-crystal elastic constant
data for HEAs sparse. The integrated approach of this study pro-
vides the valuable experimental validation of elastic-constants val-
ues calculated using first-principles methods. Using the Kroner
model [57,96], the single-crystal elastic constants are estimated
from diffraction elastic constants of a polycrystalline Aly3;CoCrFeNi
HEA sample. Comparing the estimated single-crystal elastic con-
stants with the results from different ab initio methods, it is
found that the SQS supercell method with relaxed atomic positions
has elastic-constant values that are within 5% of those from the
ND experiments. The CPA model and the SQS model without the
atomic position relaxation both overestimated elastic-constant val-
ues. Within CPA, the random alloys are treated by assuming the
average occupations of lattice sites and do not consider lattice dis-
tortion [97]. The ideal-lattice assumption made in CPA is not sup-
ported by the experimental observations in which it is demon-
strated that the interatomic distances of the atomic pairs in HEAs
are essentially different [98]. In addition, CPA also does not specif-
ically consider the charge transfer between atoms, which can lead
to errors in describing the interatomic bonding. In the SQS model,
the most relevant local states of the disordered phases are cap-
tured [45].
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The lattice distortion results in large distributions in inter-
atomic bond lengths for all the different atomic specie pairs. The
largest difference in the atomic radii is between an Al-Cr pair
with a difference of 0.15 angstrom [99]. It was expected that the
elastic moduli of the HEA would be increased due to the strain the
interatomic bonds are experiencing within the distorted lattice.
However, the comparison between the volume-only optimized SQS
supercell and the fully-optimized SQS supercell revealed a decrease
in the elastic moduli. The lattice constant of the fully-relaxed SQS
model was larger than that of the volume-optimized SQS model,
suggesting that the severe lattice distortion in HEAs can reduce
the average interatomic bond strength and reduce stiffness as in
the case of the FCC Alg3CoCrFeNi HEA. Some of the reduction in
stiffness from the volume-optimized SQS and the fully-optimized
SQS may be attributed to the internal relaxations of the atoms;
as explained by a relaxation term in the elastic tensor calculation
defined by Lutsko [100]. The effect of the relaxation term and the
lattice distortion effect are coupled since the relaxation term is a
direct result of internal heterogeneity i.e. atomic size differences;
which gives support to the prospect of tuning elastic properties
via lattice distortion engineering. In addition to atomic size dif-
ferences, magnetic properties are another factor to consider with
respect to lattice distortion effects. For example, the Cr nearest
neighbor bond lengths are affected by the magnetic moments
of other atomic species in the local environment. Toda-Caraballo

et al. proposed a methodology that can compute the distribution
of interatomic distances of HEAs with the input of unit-cell param-
eters and bulk moduli of elements involved [101]. Here, our study
provides the concrete evidence to corroborate their argument on
the linkage between the lattice distortion and elastic properties of
HEAs. Lee et al. designed a single-phase BCC solid-solution phase
refractory HEA with exceptional yield strength as well as ductility
which was attributed to solid-solution hardening originating in
turn from the lattice distortion in the refractory HEA [102]. The
discrepancy in the elastic constant of the FCC Alg3CoCrFeNi HEA
between the SQS supercells (one with the atomic position relax-
ation and one without) suggests the importance of such lattice
distortion in determining the elastic properties of HEAs.

The ML models are leveraged here to uncover patterns between
features and the bulk and shear moduli learned by the models.
Interpretable ML models are useful in gaining insight into the
underlying physics that governs the observed behavior, and may
serve as guides for adjusting compositions in designing HEAs
with desirable characteristics. To quantify how much the model
predictions are influenced due to a change in a given feature
value, feature importances are computed. In this work, we use
Shapley Additive Explanations (SHAP) values to measure feature
importance [103,104]. The SHAP value of a feature represents is
the average marginal contribution of a feature value. For example,
given a modulus to predict for a single sample, the SHAP method
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Fig. 12. Scatter plot of shear-modulus SHAP values for all compounds in the training set and their respective (a) cohesive energy, E., (b) group number, pi,(g), (c) density, p,
(d) radius, py(r), and (e) electronegativity, pi4(X). The y-axis SHAP values measure the contribution of individual features to the model outputs. The color bar is mapped to
a second feature values, to highlight feature interaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

takes the difference between the predicted modulus and the aver-
age of all the modulus predictions in the training dataset. Then the
method determines how much each feature affects the prediction.
The sum of all the contributions of each feature equals the differ-
ence between the modulus prediction of the current instance and
the average modulus prediction of all instances. Figs. 11 and 12
show scatterplots of the SHAP values for all 5 features and for the
bulk and shear moduli-prediction models, respectively. Each dot
in a scatterplot represents a single prediction instance. The y-axis
shows the SHAP value assigned to that feature in that particular
instance, and the corresponding feature value can be read on the
x-axis. A SHAP value of 0 means that for that instance which had a
given feature value, that feature did not contribute to a change in
the model prediction from the average prediction. Positive or neg-
ative SHAP values on the other hand, mean that the given feature
value made the model prediction go up or down, respectively. The
scatter points are also mapped to a color bar corresponding to a
second feature so that the interaction of pairs of features and their
effect on model predictions can be observed. In both the bulk and
shear modulus prediction models, an increase in moduli generally
corresponds to a decrease in cohesive energy, the average group
number of the constituent elements, or the average atomic radus
of the constituent elements. Conversely, an increase in both bulk

and shear modulus predictions are seen for an increase in den-
sity. The average electronegativity of the constituent elements,
however, has a divergent behavior between the bulk and shear
modulus predictions. The bulk modulus predictions increases with
increasing average electronegativity, hitting a peak. With further
increased average electronegativity, the bulk modulus decreases.
The shear modulus predictions, however, decrease with increasing
average electronegativity. It can be pointed out that the power of
the Holder mean of electronegativity for the bulk modulus pre-
dictions is —4, whereas it is 4 for the shear modulus predictions.
The effect of this is that the bulk modulus predictions are more
dependent on the electronegativity of the most electronegative
element, and the shear modulus predictions are more dependent
on the electronegativity of the least electronegative element. These
general trends can aid the development of new design rules sim-
ilar to how empirical rules have been developed historically in the
materials science and metallurgy i.e., Hume-Rothery rules. The ML
work done in this study, illustrates how the ML-model selection
and interpretation techniques can be generalized on a larger scale
to understand underlying relationships between properties.

The feature subsets for the bulk and shear modulus prediction
models are listed in Table 2 with the computed global SHAP values
which are computed by averaging the absolute values of all the
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Table 7

Effect of Al on experimental and calculated hardness values for the FCC Al,CrCoFeNi HEA. The experimentally-measured
Vicker’s hardness values are compared with calculated hardness values for increasing amounts of Al. Hardness increases
with increasing the Al content in both calculated and measured values.

Composition GB-trees predicted GB-trees predicted Calculated Experimentally measured
B (GPa) G (GPa) hardness (Hv) hardness (Hv)

Alp1CoCrFeNi 141.1 59.6 5.0 1.83 [108]

Al 3CoCrFeNi 161.5 73.2 6.8 3.4 [109]

AlysCoCrFeNi 163.8 74.6 6.9 3.5 [109]

individual SHAP values from each of the training samples. For both
bulk and shear moduli predictions, the group number and cohesive
energy features are the largest contributors to the model output
indicating that changes in these features cause the larges changes
in the model prediction.

The predictions from the ML models can be combined with
empirical models to predict materials properties that are difficult
to predict from first-principles, for example, the hardness of the
AlyCrCoFeNi HEA. Experimental studies on the effect of varying
the Al content in the AlCrCoFeNi HEA on its mechanical proper-
ties have found that for the as-cast samples with the FCC phase,
Vicker’s hardness increases with increasing the Al content from
x=0 to x=0.5 [105]. Vicker’s hardness can be predicted, using
known shear and bulk moduli, and Eq. (12) published by Niu et al.,
which takes both shear and bulk moduli into account and has good
agreement for both cubic and non-cubic materials [83,106,107]:

GB 0.585
H, :2<Bz> -3 (12)

where H, is Vicker’s hardness. The increase in the predicted bulk
and shear moduli, and the predicted hardness is positively cor-
related with the experimentally-observed increase in hardness, as
shown in Table 7. The ML models for predicting bulk and shear
moduli has its own errors, and using those predictions in the above
model can propagate errors. However, this qualitative agreement
in trends between the predicted and measured hardness values
illustrates the ease and utility of using the ML model to study
trends and feature dependence of model outputs either for design
or screening purposes.

5. Conclusion

In conclusion, the work explored the elasticity of FCC
Alp3CoCrFeNi, an HEA with high strength and good ductility,
with experimental and computational methods. Good agreement
in elastic constants was observed from ND, first-principles calcula-
tions, and ML models. Anaysis of the computational results found
that a severe lattice distortion presents in this HEA, leading to an
reduction in its stiffness. A high degree of eastic anisotropy was
revealed through the first-principles determination of the elastic
constants, which also agreed with the observed lattice strain evo-
lution during the in-situ ND tension experiments. It is demon-
strated that ML models can cpature the correlations between ma-
terial features and make accurate predictions of elastic constants
of the HEA. This study on the elastic constants of the Aly3CoCrFeNi
HEA provides a much-needed experimental validation of computa-
tional tools and encourages more studies using this integrated ap-
proach to actively guide the search for new alloy design. The ML
models can be interpreted either for developing new design rules
or understanding relations between physical quantities of interest.
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