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a b s t r a c t 

Stiffness usually increases with the lattice-distortion-induced strain, as observed in many nanostructures. 

Partly due to the size differences in the component elements, severe lattice distortion naturally exists 

in high entropy alloys (HEAs). The single-phase face-centered-cubic (FCC) Al 0.3 CoCrFeNi HEA, which 

has large size differences among its constituent elements, is an ideal system to study the relationship 

between the elastic properties and lattice distortion using a combined experimental and computational 

approach based on in-situ neutron-diffraction (ND) characterizations, and first-principles calculations. 

Analysis of the interatomic distance distributions from calculations of optimized special quasi random 

structure (SQS) found that the HEA has a high degree of lattice distortion. When the lattice distortion 

is explicitly considered, elastic properties calculated using SQS are in excellent agreement with exper- 

imental measurements for the HEA. The calculated elastic constant values are within 5% of the ND 

measurements. A comparison of calculations from the optimized SQS and the SQS with ideal lattice 

sites indicate that the lattice distortion results in the reduced stiffness. The optimized SQS has a bulk 

modulus of 177 GPa compared to the ideal lattice SQS with a bulk modulus of 194 GPa. Machine learning 

(ML) modeling is also implemented to explore the use of fast, and computationally efficient models for 

predicting the elastic moduli of HEAs. ML models trained on a large dataset of inorganic structures are 

shown to make accurate predictions of elastic properties for the HEA. The ML models also demonstrate 

the dependence of bulk and shear moduli on several material features which can act as guides for tuning 

elastic properties in HEAs. 

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

The material-design strategy of mixing five or more elements in

a single lattice with the random-site occupancy has brought about
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he recent emergence of high entropy alloys (HEAs), a new class

f metallic materials [1–5] . Possessing a simple crystal structure

ith a high degree of chemical disorder, the ideal HEA presents a

ingle-phase solid solution with exceptional engineering properties

4,6–21] . Multi-principal element HEAs have the potential of

chieving a good balance of desired properties not attained in

ost conventional alloys containing one or two principal el-

ments, including the high strength [22] , reasonable ductility

23] , high hardness [24] , corrosion [25,26] and fatigue resistance

18 , 19 , 27–30] , and thermal stability [4 , 31–33] . In addition, due to

he high softening resistance at high temperatures, some HEAs

re promising structural materials for elevated-temperature nu-

lear and aerospace applications [34 , 35] . 

Despite the perception that single-phase face-centered-cubic

FCC) alloys exhibit good ductility at the expense of strength [4] ,
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he Al 0.3 CoCrFeNi HEA, a high-temperature single-phase FCC struc-

ure, shows a decent combination of strength, ductility, and tough-

ess [15 , 16 , 36–38] . The as-cast phase and microstructure of the

l x CoCrFeNi (0 ≤ x ≤ 2.0) system were experimentally investigated

y Wang et al. [39] to elucidate the effects of Al on the alloy sys-

em. For Al x CoCrFeNi where 0 ≤ x ≤ 0.5, the system forms a single

CC phase. When 0.5 < x < 0.9, Al x CoCrFeNi transforms to a two-

hase mixture of FCC and BCC structures, and a BCC single phase

here 0.9 ≤ x ≤ 2.0. Li et al. [7] studied the correlations between

he microstructure and mechanical behavior of an Al 0.3 CoCrFeNi

EA fiber fabricated by hot rotary forging and hot drawing. Their

esults showed a remarkable tensile strength and ductility at room

emperature, and its strength and ductility even increase at cryo-

enic temperatures. 

In this study, we employ a combination of in-situ neutron

iffraction (ND), first-principles calculations, and machine learning

ML) to investigate the elastic properties of the Al 0.3 CoCrFeNi HEA,

ncluding elastic moduli and anisotropy. A reduction in the stiff-

ess of the HEA is revealed accompanying the severe lattice distor-

ion in the HEA. The aim of the study is two-fold. First, while there

s a consensus that first-principles predictions of elastic constants

re reliable for ordered structures [40] , limited results are available

o draw the same conclusion for HEAs. A review by Huang et al.

41] compared ab initio methods for studying the elastic parame-

ers of HEAs. They found that effective medium methods, such as

oherent Potential Approximation (CPA) as well as supercell meth-

ds, are generally suitable, but the effective medium model is more

owerful for magnetically-disordered HEAs. Using ab initio tech-

iques, the study also presents the dopant-concentration depen-

ence of the elastic anisotropy [41] . The present study offers a rare

pportunity to assess the agreement between experimental and

omputational results for the elasticity of HEAs. The second aim

f this study is to understand the nature of interatomic interac-

ions and their effects on the elastic properties of materials. With

he existence of exotic structural features, such as the severe lattice

istortion induced by the large-size differences in the constituent

lements of the Al 0.3 CoCrFeNi HEA, it is scientifically meaningful to

nvestigate the structure-property relationships from the perspec-

ive of the elastic response. 

First-principles methods based on the density functional theory

DFT) excel in predicting the elastic properties of pure metals

nd ordered alloys [42 , 43] . To utilize this tool for HEAs, there

s a challenging issue with constructing relatively-small super-

ell models that describe disordered arrangements of multiple

pecies. This problem can be solved with the special quasi-random

tructure (SQS) [44] , which builds a supercell that statistically

imics the most relevant, near-neighbor pair and multi-site

orrelation functions of the disordered solid solution [45] . In

he literature, however, there are very limited DFT investigations

f the elastic properties of HEAs with experimental validations

46] . ND is employed to characterize the structural evolution of

he Al 0.3 CoCrFeNi HEA during mechanical deformation. Due to

 high level of penetration, even in relatively-heavy elements,

n-situ ND can be used to measure the internal strain evolution

f the oriented grain families in polycrystalline materials [47] . ND

as been employed to study the deformation mechanism of the

EAs at both room and high temperatures [48–52] . For example,

uang et al. [52] studied the lattice elasticity of an FCC-structured

oCrFeMnNi by in situ ND experiments, and the HEA shows the

rientation-dependent lattice elasticity. In addition to providing

he information on the grain-level stress and strain heterogeneity,

his technique reveals the overall role of the elastic and plastic

nisotropy [53] . By integrating experiments and computations,

hese results provide valuable assessment of the DFT prediction

f elastic constants for HEAs. In this work, we also build a ML

odel using the gradient-boosted trees (GB-Trees) algorithm to
id the understanding of the elastic properties of the Al 0.3 CoCrFeNi

EA. 

. Materials and methods 

.1. Sample preparation 

Alloy ingots with a nominal composition of Al 0.3 CoCrFeNi were

repared by vacuum-induction melting a mixture of high-grade

etals with purities greater than 99.95 weight percent (wt%). The

pecimen was then hot-isostatic-pressed at 1204 °C and 103 MPa

or 4 h, encapsulated in an argon triple-pumped quartz tube and

omogenized at 1200 °C for 2 h, air cooled, aged at 700 °C for

00 h, and finally quenched. The hot-isostatic-pressing treatment

educes casting defects such as voids which is necessary for precise

echanical test results. The homogenization treatment resulted in

 homogeneous atomic distribution which was confirmed using

tom probe tomography (APT). The aging treatment at 700 °C was

ecessary to determine the phase stability at 700 °C and removed

he polycrystalline texture that was present prior to aging. 

.2. In-situ neutron-diffraction (ND) experiments 

In-situ ND measurements of the cylindrical dog-bone speci-

en of Al 0.3 CoCrFeNi HEA (50 mm in length and 6.35 mm in di-

meter) were taken under tension at room temperature. An MTS

oad-frame on the VULCAN Engineering Diffractometer was used

t the Spallation Neutron Source (SNS), Oak Ridge National Lab-

ratory (ORNL) 54 , 55] . The ND instrument uses the time-of-flight

TOF) measurement, which allows for the ND measurements with

 diffraction pattern, covering a wide range of d-spacings without

he rotation of samples or detectors. VULCAN is equipped with two

etectors, designated as Banks 1 and 2 at ±90 °. These detectors

ecord diffraction patterns associated with the lattice planes par-

llel to the axial and transverse directions, respectively. The inci-

ent neutron beam, with a 5 mm × 5 mm slit size, illuminates the

ample. A constant load-control mode with a stepwise-loading se-

uence was used during the measurement of the diffraction pat-

erns. The measurement time to obtain the ND data was 10 min at

ach stress level up to 140 MPa. At larger stress levels, the con-

rol mode was converted from the load to displacement-control

ode. The collected data were analyzed by single-peak fitting, us-

ng the VULCAN Data Reduction and Interactive Visualization soft-

are (VDRIVE) program [56] . 

In the ND experiment, the HEA was uniaxially loaded in the

lastic regime, and each lattice-plane ( hkl ) strain, εhkl , was simulta-

eously measured as a function of the applied stress in both load-

ng and transverse directions using below equation [49 , 57] 

hkl = 

d hkl − d 0 
hkl 

d 0 
hkl 

(1) 

here d hkl denotes the lattice spacing of the ( hkl )-plane during de-

ormation, and d 0 
hkl 

is the stress-free lattice spacing of the plane. 

Using the Kroner model [57 , 58] , a regression is fit on 

1 
E hkl 

and
νhkl 
E hkl 

, where E hkl and νhkl are the diffraction elastic moduli and the

oisson’s ratios, respectively, through setting elastic constants as

arameters satisfying below equations: 

1 

9 B 

− 1 

6 G hkl 

= −νhkl 

E hkl 

(2) 

1 

G hkl 

= 2 

(
1 

E hkl 

+ 

ν

E hkl 

)
(3) 

here B and G hkl are the bulk and shear moduli, respectively.

he single-crystal elastic constants are determined, using the least-

quares fitting over the different hkl directions, minimizing the
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Table 1 

Equations to calculate properties using elements from the elastic tensor. 

Property Equation 

Compliance tensor, s s = C −1 (7) 

Bulk modulus, B, Voigt–Reuss–Hill 

Averaged [58,65,66,67] 
B = 

1 

2 ( s 11 + s 22 + s 33 ) + 4 ( s 12 + s 23 + s 31 ) 
+ 

( C 11 + C 22 + C 33 ) + 2 ( C 12 + C 23 + C 31 ) 

18 
(8) 

Shear modulus, G, Voigt–Reuss–Hill 

Averaged [58,65,66,67] 
G = 

15 

8 ( s 11 + s 22 + s 33 ) − 8 ( s 12 + s 23 + s 31 ) + 6 ( s 44 + s 55 + s 66 ) 
+ 

( C 11 + C 22 + C 33 ) − ( C 12 + C 23 + C 31 ) + 3 ( C 44 + C 55 + C 66 ) 

30 
(9) 
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value of a cost function shown in below equation: 

χ2 = 

n ∑ 

i =1 

((
1 

E hkl 

)
exp,i 

−
(

1 

E hkl 

)
model,i 

)2 / 

e 2 1 ,i 

+ 

n ∑ 

i =1 

((
νhkl 

E hkl 

)
exp,i 

−
(
νhkl 

E hkl 

)
model,i 

)2 / 

e 2 2 ,i (4)

where n is the number of ( hkl ) planes applied to fit the Kroner’s

model; ( 1 
E hkl 

) exp and ( 
νhkl 
E hkl 

) exp are measured from neutron diffrac-

tion; e 1 and e 2 denote the corresponding experimental errors, re-

spectively [57 , 58] . 

2.3. First-principles calculations 

First-principles calculations were performed with the Vienna

Ab-initio Simulation Package (VASP) [59 , 60] using the projector

augmented wave (PAW) method [61] . The exchange-correlation en-

ergy was described with the generalized gradient approximation

(GGA) in the Perdew–Becke–Ernzehof (PBE) parameterization [62] .

A plane-wave cutoff of 700 eV and Monkhorst–Pack k-point grid of

5 × 5 × 5 was used for all calculations. Chemical disorder was mod-

eled with SQS [44] . The generation of SQS was based on the Monte

Carlo-simulated annealing with an objective function to find the

closest match of correlation functions of a disordered state [63] .

The convergence of elastic constants was tested with a series of

SQS with different sizes. A 64-atom SQS (4 Al, 15 Cr, 15 Fe, 15 Co,

and 15 Ni) was selected for analysis in the work. 

The elastic tensor was calculated, using a computational work-

flow based on the stress-strain method described in Ref. [40] .

Starting with a relaxed SQS of the HEA, a set of distorted struc-

tures were generated using 3 × 3 Green–Lagrange strain tensors of

varying magnitudes at ± 0.5% and ± 1%. For each distorted struc-

ture, the 3 × 3 stress tensor is computed by DFT. The elastic tensor

of the SQS is calculated from the relationship between the stress

and strain tensors: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

S 11 

S 22 

S 33 

S 23 

S 13 

S 12 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C 11 C 12 C 13 C 14 C 15 C 16 

C 12 C 22 C 23 C 24 C 25 C 26 

C 13 C 23 C 33 C 34 C 35 C 36 

C 14 C 24 C 34 C 44 C 45 C 46 

C 15 C 25 C 35 C 45 C 55 C 56 

C 16 C 26 C 36 C 46 C 56 C 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

E 11 

E 22 

E 33 

2 E 23 

2 E 13 

2 E 12 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(5)

where S ij and E ij denote the stress and strain, respectively, at row, i ,

and column, j , in the stress tensor. C ij are the elements in the elas-

tic tensor with subscripts using the Voigt-notation. Each element

of the elastic tensor is calculated from a linear fit of the calculated

stresses over the range of strain magnitudes. 

Since SQS does not conserve the point-group symmetry, a pro-

jection technique is employed to approximate the elastic tensor

with cubic symmetry for the Al 0.3 CoCrFeNi HEA. The projection

method offers a computationally-efficient approach to calculate

elastic constants for random alloys and it is shown that the ap-

proximated elastic tensor is accurate and converges quickly with
he size of the SQS [64] . Convergence of the elastic constants was

onfirmed for the 64-atom supercell. The projected elastic tensor

lements for cubic lattices are calculated, using below equation

64] : 

¯
 11 = 

c 11 + c 22 + c 33 

3 

, C̄ 12 = 

c 12 + c 13 + c 23 

3 

, C̄ 44 = 

c 44 + c 55 + c 66 

3 

(6)

Using the elements of the projected elastic tensor, the elastic

oduli of the HEA are calculated according to Table 1 . 

.4. Machine-learning (ML) models 

Two ML models using the Gradient Boosting Trees (GB-Trees)

lgorithm are trained on 6826 ordered inorganic compounds from

he Materials Project database [66 , 68] to predict the Voigt–Reuss–

ill (VRH) averages of bulk and shear moduli [58 , 65 , 66] . To pre-

ent the higher moduli materials from overly affecting the models,

he target data was log-normalized, which also reduces skew in

he distribution. The elastic constants were calculated from stress

nd strain relations computed using DFT and described in detail

n Ref. [40] . The database contains the results of DFT calculations

erformed with VASP; detailed settings used for VASP are de-

cribed in Ref. [66 , 68] . Our models are compared against bench-

ark models published in Ref. [66] which uses the Gradient Boost-

ng Machine Local Polynomial Regression (GBM-Locfit) framework

rained on 1940 ordered inorganic structures from the Materials

roject database [66 , 68] . The main difference is that the mod-

ls in this work use decision trees as a base learner within the

radient boosting framework, whereas the benchmark models use

ocal polynomial regressions within the gradient-boosting frame-

ork. Models were trained using Scikit-Learn [69] . 

The GB-Trees models built in this work use features gener-

ted using structural and compositional features. Properties that

ere calculated for each compound, such as the density, or cohe-

ive energy per atom, are denoted as structural features. Proper-

ies that relate to elements but not compounds, such as atomic

adius or group number, were combined using weighted holder

eans to generate descriptors denoted as compositional features.

o assumption is made about the optimum way to average the el-

mental properties to generate the compositional features. Hence,

 collection of weighted Holder means, with powers ranging from

4 to 4, were computed for each compositional feature. The arith-

etic average corresponds to a power of 1, a harmonic average cor-

esponds to a power of −1, a geometric average corresponds to the

eroth power, and the Euclidean average corresponds to a power

f 2. The effect of the power is such that the average is shifted

o smaller values for smaller powers, and towards larger values

or larger powers [70] . An example where the type of averaging

learly makes a difference is in estimating the density of a com-

ound from the density of constituent elements. If the constituent

lements’ densities are weighted by mass fraction, then the har-

onic mean more accurately estimates the compound’s density as
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Table 2 

Summary of features for GB-Trees models. Symbols, underlying property descriptions, 

and global SHAP values are listed for each descriptor for the two GB-Trees models. 

Modulus prediction 

GB-Trees model 

Symbol Feature descriptor Global SHAP value 

Bulk μ4 ( g ) Elemental group number 0.147 

E c Cohesive energy 0.135 

ρ Density 0.109 

μ1 ( r ) Element atomic radius 0.071 

μ−4 ( X ) Electronegativity 0.061 

Shear E c Cohesive energy 0.189 

μ4 ( g ) Element group number 0.115 

μ2 ( r ) Element atomic radius 0.107 

μ4 ( X ) Element electronegativity 0.072 

ρ Density 0.060 
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w  
pposed to the arithmetic mean. The Holder mean is defined in

quations below : 

p ( x ) = 

⎛ 

⎝ 

( 

n ∑ 

i =1 

w i 

) −1 
n ∑ 

i =1 

w i x 
p 
i 

⎞ 

⎠ 

1 
p 

, ( p � = 0 ) (10) 

0 ( x ) = exp 

⎛ 

⎝ 

( 

n ∑ 

i =1 

w i 

) −1 
n ∑ 

i =1 

w i ln ( x i ) 

⎞ 

⎠ , ( p = 0 ) (11) 

here the terms, μp ( x ), is the Holder mean to the power of p of

he property, x, w i are the atomic weights of the elements, n is

he number of constituent elements, and x i are the properties. The

eo–Johnson’s power transformation was applied to each descrip-

or to make the training data distribution more gaussian [71] . The

ata transformation accounts for differences in units, and skew in

istributions. 

In total 67 features were computed for each compound. For ML

odels to be able to predict bulk and shear moduli accurately, the

odels must learn patterns relating feature values to the modu-

us values. The more complex the underlying relationship is the

ore data is needed to learn complex patterns. However, learn-

ng on a dataset with unrelated, redundant, or noisy features can

ecrease model performance because the relevant pattern was ob-

uscated with data from irrelevant features. Additionally, minimiz-

ng the number of features will improve the interpretability of the

odel itself. The GB-Trees model makes predictions by fitting shal-

ow decision trees, called weak learners, sequentially where each

eak learner makes a prediction and the next weak learner is fit

o minimize the error residual of the previous weak learner [66] .

ach weak learner has high bias and low variance and by using a

eighted sum of all the weak learner predictions bias is reduced

hile keeping variance low and accurate predictions can be made

72] . There is a bias-variance trade-off with the number of features

onsidered; if the model contains too many features, the variance

ill be high, and the model may be overfit to the training data

ausing it to underperform when making predictions on unseen

ata. On the other hand, if the model contains too few features

he bias will be high, and the model may be underfit, which is

lso undesirable [73] . 

A feature subset that optimizes the model performance is

enerated by using a multi-objective optimized genetic algorithm

eature selection methodology [74 , 75] . The genetic algorithm

rocedure is as follows: First, the algorithm populates a random

ool of feature subsets. This pool is denoted as a generation.

eature subsets are paired up and each pair makes two new

eature subsets by randomly swapping features between the two

ubsets. Next, all the feature subsets are sorted using a method

alled non-dominated sorting, in which all the feature subsets
hat either have the best prediction score for a given number of

eatures, or the smallest number of features for a prediction score

re selected to be included in the next generation. This selection

rocess continues until the original generation size is achieved

nd the process repeats until the average model prediction score

f the population converges. This non-greedy method algorithm

aximizes model prediction performance and minimizes model

omplexity simultaneously [74 , 75] . Multiple genetic algorithm

earches were performed each with a population size of 100 and

ost searches converged within 50 generations. A smaller feature

ubset improves the model interpretability and generalizability.

wo separate models for predicting bulk modulus and shear

odulus were made. The resulting feature subsets with used to

redict the bulk ( B ) and shear ( G ) moduli are: cohesive energy,

 c , density, ρ , Holder mean of the group number of atoms, μ4 ( g ),

he Holder mean of atomic radii, μ1 ( r ), for B , and μ2 ( r ) for G , and

he Holder mean of electronegativity, μ−4 (X ) , for B , and μ4 ( X ) for

 . Table 2 shows the generated feature subsets for each GB-Trees

odel selected by the genetic algorithm and feature importance

alues. 

Fitting the GB-Trees model to the training data itself is a sepa-

ate task from feature selection and is explained in the following

escription. The model training has hyperparameters that controls

ow the model fits to the data. In order to prevent overfitting, a

ested cross-validation scheme was used to tune hyperparameters

nd fit the model in separate cross-validation loops. The model fit-

ing is done in the outer loop with 5-folds. Within each fold of

he outer loop, the hyperparameters of the model are tuned us-

ng 2-folds; this cross-validation step is the inner loop. This nested

ross-validation procedure is needed to prevent an overestimation

f model performance which would occur if the same set of data

sed to tune hyperparameters was used to fit and score the model.

he nested cross- validation method is used to fit the models on

0% of the total dataset. The remaining 20% was used to evaluate

he model performance on an untouched test set. This ensures that

he dataset used for fitting the model is disjoint from the dataset

hat is used to score the fitted model performance. The models

ere trained to minimize the mean-squared-error (MSE), with a

earning rate of 0.15 (a weighting applied to each weak learner),

nd a maximum tree depth of 4. 

. Results 

.1. Agreement between experimental and computational elastic 

roperties 

To measure the lattice-strain changes with respect to the stress

or the Al 0.3 CoCrFeNi HEA system, in-situ ND experiments sub-

ected to continuous tension are performed. The 0.2% yield stress

as determined as 300 MPa for the alloy. Fig. 1 (a) and (b) presents
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Fig. 1. Neutron-diffraction pattern of Al 0.3 CoCrFeNi at room temperature. (a) typical neutron-diffraction pattern detected by the Bank 1 detector and (b) typical neutron- 

diffraction pattern detected by the Bank 2 detector. 

Fig. 2. SEM image showing FCC matrix (93% area fraction, black) and BCC sec- 

ondary phase (7% area fraction, white). The measurement bar corresponds to 5 mi- 

crometers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of experimental and calculated elastic constants. Elastic con- 

stants of C 11 , C 12 , and C 44 , elastic moduli: bulk modulus, B , and shear modulus, 

G . Comparison of experimental (neutron diffraction) and calculated (SQS and CPA) 

elastic constants and elastic moduli of the FCC Al 0.3 CoCrFeNi HEA. 
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typical ND patterns of Al 0.3 CoCrFeNi under tension detected by the

Banks 1 and 2 detectors, respectively at room temperature. More

detailed descriptions of the ND analysis of the same sample can

also be found in Ref. [76] . In addition to showing the small pres-

ence of a second phase, Fig. 1 (a) and 1(b) indicates that the sample

is texture free. 

The lattice strain for each ( hkl ) plane is calculated, based on

the shift of the peaks during loading. The single-crystal elastic con-

stants of the FCC phase are calculated by fitting the Kroner model

to the ND peaks belonging to the FCC reflections. The aging heat

treatment is necessary for the removal of polycrystalline texture

which was present in the homogenized sample which is important

because the determination of the single-crystal elastic constants by

fitting the Kroner model to the FCC peaks has an underlying as-

sumption of a texture free polycrystalline sample. The aged sample

at 700 °C has a minor amount of secondary BCC phase (7.0% area

fraction) as shown in the SEM image in Fig. 2 . More detailed de-

scriptions of the structural and compositional characterization of

the same sample can also be found in Ref. [76] . 

To quantitatively and efficiently predict the elastic properties

for the Al 0.3 CoCrFeNi HEA from first principles, we used a 64-

atom FCC SQS. The medium-sized SQS mimics the near-neighbor

pair and triplet correlation functions of the five-element random

solid solution. The volume, shape, and atomic positions were opti-

mized for the FCC Al 0.3 CoCrFeNi SQS. The elastic constants of the

HEA were, then, calculated with the SQS using the strain-stress
ethod with DFT. The convergence of the elastic constants was

ested carefully with respect to the plain-wave cutoff energy and

-point density. The largest difference in elastic constants between

he last two k-points grids tested was 4.59 GPa for C 11 , which is

ess than 2% of the final value of C 11 . Table 3 gives the compu-

ational elastic constants of the Al 0.3 CoCrFeNi HEA from DFT and

xperimental elastic constants obtained from the in-situ ND exper-

ments. Elastic constants calculated from the Exact Muffin-Tin Or-

itals Coherent Potential Approximation (EMTO-CPA) for the same

EA [77] are also listed for comparison. 

Fig. 3 illustrates the comparison of calculated and experimental

alues for the elastic constants of the FCC Al 0.3 CoCrFeNi HEA. As

hown in Table 3 and Fig. 3 , contrary to the CPA results, the elastic

onstants of the Al 0.3 CoCrFeNi HEA obtained from the SQS model

gree very well with those from ND experiments. The difference

etween DFT predictions and ND measurement is within 5% for all

lastic constants. When compared with DFT predictions, CPA over-

stimates all elastic constants to a much higher degree. The C 44 

alue from CPA is 37% higher than the ND measurement. 

The small difference between the elastic constants of DFT and

D experiments can be understood from the different conditions

nder which these results are obtained. Given the fact that the

lastic moduli are affected by temperature due to lattice-thermal

ibrations [78] , the slight overestimation in the DFT results, shown

n Table 3 , is expected because DFT calculations are performed at

 K, whereas ND is performed at about room temperature, 293 K.

he temperature effect is also related to the slight underestimation
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Table 3 

Experimental and computational elastic constants for the FCC Al 0.3 CoCrFeNi HEA. Elastic constants: C 11 , C 12 , and C 44 , poly- 

crystalline elastic moduli: bulk modulus, B , shear modulus, G , as well as the B/G ratio, the Poisson ratio, ν , and Zener ratio 

2C 44 /(C 11 –C 12 ). a is the lattice constant. The experimental result of the present work is measured by neutron diffraction. 

Method a ( ̊A) C 11 (GPa) C 12 (GPa) C 44 (GPa) B (GPa) G (GPa) ν B/G Zener ratio 

DFT-PBE 3.55 234 148 134 177 85 0.29 2.07 3.08 

ND 3.58 225 145 129 172 81 0.30 2.12 3.19 

EMTO-CPA [76] 3.55 246 171 177 196 96 0.29 2.04 4.72 

Fig. 4. Comparison of calculated bulk and shear moduli. SQS and CPA calculations, 

neutron-diffraction experimental data, and machine-learning predictions for bulk 

and shear moduli. The atomic position-fixed SQS and the CPA results both predict 

higher elastic moduli demonstrating the importance of the lattice distortion effect. 
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Table 4 

The eigenvalues, λ, of the stiffness matrix, C ij . The unit is GPa. 

λ1 λ2 λ3 λ4 λ5 λ6 

86.53 86.53 133.64 133.64 133.64 530.23 

Fig. 5. Lattice-strain evolution in the Al 0.3 CoCrFeNi HEA achieved from the in-situ 

neutron-diffraction experiments at room temperature. The stress-lattice strain re- 

sponses of the (111), (200), (220), (311), and (331) planes parallel and perpendicular 

to the load axis. 
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f lattice constants of the HEA from DFT calculations. Besides, the

l 0.3 CoCrFeNi HEA is modeled as an ideal solid-solution phase

ith the FCC-underlying lattice in the DFT calculations. The

xperimental sample can deviate from such an ideal solution

ondition, possibly having some degree of short-range ordering,

nd the presence of a minor second phase. 

The excellent agreement between the single-crystal elastic con-

tants estimated by the Kroner model and DFT calculations pro-

ides the convincing evidence that a medium-sized SQS can pre-

ict the elastic properties of HEAs accurately, even with a large

egree of size differences in the constituent elements and a mi-

or amount of a second phase. When considering the intrinsic un-

ertainties in DFT energetics and SQS choices, the first-principles

pproach combining the medium-sized SQS and symmetry tensor

rojection still offer an efficient and reliable route to predict the

lastic properties of HEAs. 

To determine the effects of lattice distortion on the elastic prop-

rties, a set of first-principles elastic-constant calculations compar-

ng a volume-only optimized SQS with atoms on the ideal lattice

ites was compared to a fully-optimized SQS structure which in-

roduces the effect of lattice distortion. The volume-optimized SQS

s found the have a lower lattice constant (3.551 Å) than the fully-

ptimized SQS (3.555 Å). The volume-only optimized SQS supercell

s shown to have the same degree of overestimation in elastic con-

tants as the CPA results with as shown in Fig. 4 . The bulk and

hear moduli are plotted in Fig. 4 with the fully-relaxed SQS, CPA,

nd ML predictions. 

.2. Mechanical stability and ductility 

The mechanical stability of the Al 0.3 CoCrFeNi alloy can be as-

essed with the Born–Huang elastic stability criteria [79] , which

tates a mechanically stable structure satisfies, C 11 –C 12 > 0,

 11 + 2C 12 > 0, and C 44 > 0. According to the Born’s stability

ondition [80] , as long as the eigenvalues remain positive, the

tructure remains stable. Thus, the linear-stability analysis of the
l 0.3 CoCrFeNi structure can be carried out by computing the eigen-

alues of the elasticity tensor, as listed in Table 4 . All the eigenval-

es of the elasticity tensors are positive, meaning that the HEA can

etain its structures under small deformation. 

Another phenomenological model, Pugh’s criterion [81] predicts

hether a polycrystalline material will fail in a ductile or brittle

anner using the ratio of bulk and shear moduli. All values for

he B/G ratio in Table 3 are greater than 1.75, suggesting that the

l 0.3 CoCrFeNi HEA is likely to behave in a ductile manner [82–84] .

uch prediction is in good agreement with previous studies show-

ng the Al 0.3 CoCrFeNi HEA with the superior ductility [8] . More-

ver, the Cauchy’s pressure, C 12 –C 44 , is commonly related to the

uctility behavior of materials, as it infers the character of the

tomic bonding in metallic materials. Where metallic bonding cor-

esponds to positive Cauchy pressure, and bonding with an angular

haracter corresponds to negative Cauchy pressure [85] . Contrary

o the CPA result, the Cauchy pressures obtained from the DFT cal-

ulations are positive, revealing that Al 0.3 CoCrFeNi shows a strong

etallic bond and ductility behavior. This feature is also consistent

ith the experimental analysis [36 , 86] . 

.3. Experimental and calculated elastic anisotropy 

The lattice-strain response of the (111), (200), (311), (331), and

220) planes, with respect to the applied tensile stress, are plot-

ed in Fig. 5 . Description of the lattice strain evolution of the same

ample can also be found in Ref. [76] . Each line indicates the re-

ponse of grains with a lattice direction corresponding to the line

egend. The various slopes of the curves, within the elastic region,
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Table 5 

Minimal and maximal values as well as anisotropy of Young’s and shear moduli, linear compressibility, and 

Poisson’s ratios of Al 0.3 CoCrFeNi. Note that the anisotropy of x is denoted by A = x max /x min . 

Young’s modulus (GPa) Linear compressibility (TPa −1 ) Shear modulus (GPa) Poisson’s ratio 

E min E max βmin βmax G min G max νmin νmax 

126.8 324.1 1.886 1.886 45.9 135.5 −0.155 0.728 

Anisotropy Anisotropy Anisotropy Anisotropy 

2.7 1.0 3.1 −4.7 
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relates to the elastic anisotropy of different ( hkl ) grain families in

the FCC phase [87] . For the (331) grain family, the plotted load-

ing is in the linear-elastic region. The curve of the (200) lattice

grains, however, exhibits a slight downward deflection at about

350 MPa, signifying an elastic-to-plastic transition, and load being

shared from the yielding FCC grains. The curves for the (111) and

(220) lattice grains present a slight upward deflection at about

40 0 MPa. The (20 0) and (111) lattice planes correspond to the ex-

tremes of the elastic stiffness in elastically-anisotropic FCC materi-

als, as it can be seen for Al 0.3 CoCrFeNi in the figure, i.e., the (200)

and (111) grain orientations possess the low and high directional

strength-to-stiffness ratios, respectively [88] . As a result, the (200)

and (111) orientations are the first and the last to yield, respec-

tively. The (200) grains cannot take on more stress whereas the

(111) grains take on more stress, which explains the behavior of

the stress-lattice responses in Fig. 5 . 

Fig. 5 shows lattice strains in loading and transverse directions

obtained from grains oriented such that the individual ( hkl ) plane

normals are parallel and perpendicular, respectively, to the load

axis. It can be observed that the lattice strain changes in the trans-

verse direction are significantly smaller than those in the axial

direction. The response of the individual peaks in the transverse

direction is almost linear, with a slope opposite in sign to that

obtained in the load direction, up to about 300 MPa, where the

yield of preferentially-oriented grains starts. Some of the reflec-

tions, in the transverse direction, show more lattice strains than

others, which is consistent with the differences in lattice strains in

the loading direction, presented in Fig. 5 . 

The description of spatial dependency of the elastic proper-

ties of the Al 0.3 CoCrFeNi HEA in Fig. 6 is derived from the DFT-

calculated single-crystal elastic constants. In the three-dimensional

(3D) representation, properties for an elastically-isotropic systems

present a spherical shape, and any deviation from a spherical

geometry suggests the presence of anisotropy [89] . Table 5 and

Fig. 6 reflect vast anisotropic elastic properties of the Al 0.3 CoCrFeNi

HEA system. 

The extent of anisotropy and the variation of the elastic moduli

with the directions of the HEA can be demonstrated by the de-

gree of deformation of the sphere. The shear modulus and Pois-

son’s ratio depend on both the direction of the applied stress

and a perpendicular measurement direction [90] , which is repre-

sented in the figures by maximum and minimum surfaces. In cer-

tain directions, the Poisson’s ratio is negative. Fig. 6 (b), (d), and

(f) illustrates the 3D surfaces of the crystallographic-orientation-

dependent Young’s and shear moduli, and Poisson’s ratios for all

possible crystallographic directions to show the weak and stiff di-

rections in the crystal structure. In Fig. 6 (d), the transparent green

outer surface and the solid magenta-yellow inner surface represent

the positive maximum and minimum values of shear moduli, re-

spectively. In addition, Fig. 6 (f) displays three surfaces; the outer

transparent green, the middle transparent magenta-yellow, and the

inner solid black surfaces represent the positive maximum, posi-

tive minimum, and negative values of Poisson’s ratios, respectively.

Fig. 6 (a), (c), and (e) represents the two-dimensional projections

onto the XY, XZ , and YZ planes of Young’s and shear moduli and

Poisson’s ratios. 
Fig. 6 (a) and (b) indicates that the Young’s modulus changes

ubstantially in different crystal orientations. The projections are

istorted from the axial [001] directions to the body diagonal

111] directions. The lowest and highest values of Young’s mod-

li are 126.8 GPa, in the [001] orientation, and 324.1 GPa, in the

111] orientation, respectively. The magnitude of Young’s modulus

n a specific direction illustrates the strength of chemical bonds in

hat direction, suggesting that the Al 0.3 CoCrFeNi HEA is more de-

anding to be stretched along the body-diagonal directions than

he axial ones. The macroscopic Young’s modulus calculated from

able 3 has a value of 210.0 GPa. This modulus is close to the aver-

ge of the maximum and minimum values in the [001] and [111]

rientations, which is 225.45 GPa. This trend may be expected for

 polycrystalline material without a crystallographic texture. The

hear modulus of Al 0.3 CoCrFeNi shows an opposite trend with re-

pect to the Young’s modulus, illustrated in Fig. 6 (c) and (d). The

hear modulus remarkably depends on the stress direction, and

he Poisson’s ratio has similar characteristics. The lowest and high-

st orientations for shear moduli are [111] (45.9 GPa) and [001]

135.5 GPa), respectively. The opposite trends of Young’s and shear

oduli in [001] and [111] contribute substantially to the large

nisotropy of the cubic crystal, which is ascribed to the electronic

tructures and atomic arrangements. Lastly, the 3D contour sur-

ace and the projection representations of the Poisson’s ratio for

he Al 0.3 CoCrFeNi HEA crystal are shown in Fig. 6 (e) and (f), re-

pectively. The Poisson’s ratio of the crystal Al 0.3 CoCrFeNi is max-

mized, ν = 0.728, as the stretching along the diagonal directions,

100], induces the lateral contraction along axial directions, [010].

l 0.3 CoCrFeNi also exhibits a negative Poisson’s ratio that is mini-

ized, ν = −0.155, in the < 110 > directions. The appearance of neg-

tive Poisson’s ratios along certain crystallographic directions in

he HEA is in line with various studies of materials with the large

nisotropy [91–93] . Lethbridge et al. surveyed the experimental

lastic constants of 472 materials and found a correlation between

he extreme Poisson’s ratios and elastic anisotropy, irrespective of

he crystal symmetry [91] . Also, a study by Wang et al. determined

hat compounds with negative Poisson’s ratios had metallic bond-

ng as opposed to compounds that did not have negative Poisson’s

atios and had bonds of more covalent nature [93] . 

.4. ML-model selection and performance 

Using ML models to predict material properties has the advan-

age of being extremely fast, compared to computing the property

alues using DFT. In the present work, a GB-Trees algorithm is used

o build a model to predict the bulk and shear moduli. The fea-

ures of the model are subsequently analyzed to gain insights into

he dependence of the predictions on feature values. The ML model

n the current work is benchmarked against a model published in

ef. [66] , the GBM-Locfit model, which uses local-polynomial re-

ression functions for base-learners, as opposed to using decision

rees. The GB-Trees model has improved predictions for the bulk

odulus, compared to the benchmark GBM-Locfit model. The ex-

erimentally measured and predicted VRH averages of the elastic

ulk and shear moduli are listed in Table 5 . The VRH averages of

lastic moduli are averages of the Voigt and Reuss average moduli
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Fig. 6. Spatial dependence of Young’s and shear moduli and Poisson’s ratio of Al 0.3 CoCrFeNi. (a), (c), and (e): The 2D projections of Young’s moduli, shear moduli, and 

Poisson’s ratios on the XY, XZ , and YZ planes, respectively. (b), (d) and (f): The 3D visualization of Young’s moduli, shear moduli, and Poisson’s ratios, respectively. (b) color 

scheme: blue, (d) color scheme: maximum green, minimum magenta, and (f) color scheme: maximum green, minimum magenta, negative black. The X, Y, Z axes correspond 

to the [100], [010], and [001] directions, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Table 6 

Comparison of the predicted elastic moduli of the 

Al 0.3 CoCrFeNi between the GBM-Locfit model and 

the GB Trees model. 

G (GPa) B (GPa) 

ND 81 172 

GBM-Locfit (Benchmark) 85 208 

GB-Trees (This work) 73 161 

e  

a  

t  

t  

c  

t  

s  

c  

d  

o  
or polycrystalline materials, which correspond to upper and lower

ounds, respectively. The Al 0.3 CoCrFeNi bulk modulus prediction

y the ML model created in the present work is improved, com-

ared to the bulk modulus prediction by the GBM-Locfit model.

he prediction of shear modulus is similar in both models. For the

l 0.3 CoCrFeNi HEA, the GB-Trees model predicted a bulk modulus

f 161 GPa, which has a relative error of 6%, which is an improve-

ent on the 208 GPa benchmark prediction with a relative error

f 20%. For the Al 0.3 CoCrFeNi HEA the GB-Trees model predicted

 shear modulus of 73 GPa, which has a relative error of 10%, and

he benchmark predicted 85 GPa, which has a relative error of 5%

s shown in Table 6 . 

We note that the training datasets for the GB-Trees model and

he benchmark models were different and that neither contains

andom alloy or HEA data. To make more equal comparisons be-

ween the two models learning curves are used to evaluate the

ependence of the model learning performance based on the size

f the training dataset. In Fig. 7 (a) and (b) the learning curves for

he bulk and shear modulus prediction models are shown. The y -

xis corresponds to mean squared error (MSE) values. The mod-

m  
ls were trained on log-normalized bulk and shear modulus values

nd an MSE value reflects a ratio between the predicted and ac-

ual values as opposed to an arithmetic difference. In other words

he MSE values can be interpreted as relative errors. The red solid

urve corresponds to the average 5-fold cross-validated scores of

he model on the training data, and the red shaded area repre-

ents one standard deviation above and below. The green solid

urve and shaded area represents corresponding values for the test

ataset. Given that the benchmark GBM-Locfit model was trained

n a dataset with 1940 compounds a fair comparison with the

odels trained in this work is made by comparing the prediction
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Fig. 7. Learning curves showing dependence of model prediction performance (mean squared error) on number of samples in the training dataset. (a) Shear modulus learning 

curves. (b) Bulk modulus learning curves. The red solid curve corresponds to the average 5-fold cross-validated scores of the model on the training data, and the red shaded 

area represents one standard deviation above and below. The green solid curve and shaded area represents corresponding values for the test dataset. The blue point shows 

the model performance of the GBM-Locfit given the size of training and test datasets. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 8. Interatomic distances and lattice sites in the 64-atom SQS for the FCC Al 0.3 CoCrFeNi HEA (a) Box plot showing the distribution of interatomic distances of the nearest- 

neighbor bonds. The box shows the first and third quartiles of the bond lengths for a type of atomic bonds. The whisker extends to the maximum and minimum values that 

are within 1.5 times the inter-quartile range. The circle plots represent outliers. The median and mean for each type of atomic bonds are presented as the green solid line 

and red dashed line, respectively. (b) 64-atom SQS used for DFT calculation with atomic species labeled. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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performance on the learning curves at the same training set size.

Given 1940 training samples the shear and bulk models made in

this work had average cross-validated mean squared error values

of 0.048 and 0.032 on the test datasets respectively whereas the

GBM-Locfit models had mean squared error values of 0.058 and

0.064 for test datasets of the same size. This shows that with the

same number of samples to learn from, the models made in this

work improve upon predictions of shear and bulk moduli. 

Considering that the models are trained with no HEA data in

the dataset, the favorable model performance indicates that the

model has good generalizability and can serve as a rapid screen-

ing tool to make predictions for compounds and alloys without

the need to do further DFT elastic constant calculations. The bulk

and shear moduli of compounds can be predicted with the GB-

rees models without having to perform DFT elastic-constant cal-

culations. The models made in this work have relative errors of

less than 5% for bulk and less than 10% for shear moduli and for

over half of the testing dataset compounds. It may be possible to

further reduce the relative errors of predictions for disordered al-

loys like HEA’s by introducing alloys with disorder, and lattice dis-

tortion into the training dataset, and also, include descriptors for

disorder, lattice distortion [66] . 
.5. Effects of magnetic moments, nearest-neighbor distances, and 

ocal environments 

The effect of interatomic interactions on mechanical proper-

ies of the Al 0.3 CoCrFeNi HEA is elucidated by examining nearest

eighbor distances and magnetic moments of elemental species.

ig. 8 shows the distribution of the interatomic distances of the

earest-neighbor atoms for the FCC Al 0.3 CoCrFeNi HEA calculated

rom the optimized 64-atom SQS. The SQS does not contain any

earest-neighbor Al-Al pair, but it represents a population that al-

ows probing the statistical distribution of the nearest-neighbor

istances for other homoatomic and heteroatomic pairs in the HEA.

he wide spread of interatomic distances, even between atoms of

he same species, such as Cr, is rare in conventional alloys. We

ote that the interatomic distances of Cr–Cr pairs are related to

he local environment of the Cr atoms, which also strongly affects

he magnetic moments of Cr atoms. The magnetic frustration of Cr

ue to its antiferromagnetism has been observed in other HEA’s

uch as CrMnFeCoNi HEA and its quaternary derivative of NiFe-

rCo [94 , 95] . Given a local environment with mostly-ferromagnetic

earest neighbors (such as Fe, Co, and Ni), another Cr atom as a

earest neighbor results in geometric frustration. The bond length
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Fig. 9. Atomic magnetic moment vs. the average magnetic moment of first nearest-neighbors. (a) relaxed SQS supercell, and (b) unrelaxed SQS supercell. Size of Cr markers 

reflect the number of Cr nearest neighbors, and red circles denote Cr atoms with paramagnetic Al nearest neighbors. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Plot of the magnetic-moment difference between Cr nearest neighbors vs. 

Cr nearest neighbor interatomic distances. Keeping the ionic positions fixed results 

in magnetically-frustrated Cr atoms. There is the same number of red dots and blue 

dots but the blue dots are heavily overlapped. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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f a Cr–Cr nearest neighbor pair is shown in Fig. 9 to be affected

y its local environment, and the degree of magnetic frustration.

his indicates that the magnetic property of constituent elements

an also have a large impact on lattice distortion. 

Fig. 9 (a) and (b) plots the magnetic moments of different

tomic species, m ( μB ), on the vertical axis against the average

agnetic moment of the 12 nearest neighbors, m̄ NN ( μB ), for the

elaxed SQS supercell and the unrelaxed SQS supercell, respec-

ively. The size of the Cr data points indicates the number of Cr

earest neighbors: The larger the data point the more Cr near-

st neighbors there are. Cr is anti-ferromagnetic and except for Al,

hich is paramagnetic, the rest of the elements are ferromagnetic.

hen the Cr atoms are surrounded by atoms with a large positive

agnetic moment, it can attain a large negative magnetic moment.

owever, when there are more Cr nearest neighbors, they become

agnetically frustrated and tend to have magnetic moments closer

o zero. The red circles around the Cr data points in Fig. 9 (a) and

b) represents those atoms with an Al atom in its nearest neighbor.

here are more Cr atoms with frustrated magnetic moments in the

nrelaxed supercell, compared to the relaxed supercell. 
Fig. 10 plots the magnetic-moment difference between the Cr

earest neighbors against the Cr nearest neighbors’ interatomic

istance for both the relaxed SQS supercell (red dots) and the un-

elaxed SQS supercell (blue dots). The number of red and blue dots

s the same, but the blue dots are heavily overlapped. In the re-

axed supercell, there seems to be a relation that the more an-

iparallel Cr–Cr pairs have smaller interatomic distances, compared

o the magnetically-frustrated Cr nearest neighbors. As previously

entioned, the magnetic moment of the Cr atom is heavily influ-

nced by the local environment. In the case of the magnetically-

rustrated Cr atoms, the presence of an Al atom instead of another

e, Co, or Ni atom will reduce the average magnetic moment of

he nearest neighbors which may affect the bond lengths and lat-

ice distortion as well. 

. Discussion 

This study compares the single-crystal elastic constants of an

EA with the composition of Al 0.3 CoCrFeNi, obtained by ND ex-

eriments, first-principles calculations, and ML model precdictions.

btaining single crystal elastic constants requires sufficiently large

ingle-crystals that are homogeneous and defect-free. This require-

ent makes the availability of the single-crystal elastic constant

ata for HEAs sparse. The integrated approach of this study pro-

ides the valuable experimental validation of elastic-constants val-

es calculated using first-principles methods. Using the Kroner

odel [57 , 96] , the single-crystal elastic constants are estimated

rom diffraction elastic constants of a polycrystalline Al 0.3 CoCrFeNi

EA sample. Comparing the estimated single-crystal elastic con-

tants with the results from different ab initio methods, it is

ound that the SQS supercell method with relaxed atomic positions

as elastic-constant values that are within 5% of those from the

D experiments. The CPA model and the SQS model without the

tomic position relaxation both overestimated elastic-constant val-

es. Within CPA, the random alloys are treated by assuming the

verage occupations of lattice sites and do not consider lattice dis-

ortion [97] . The ideal-lattice assumption made in CPA is not sup-

orted by the experimental observations in which it is demon-

trated that the interatomic distances of the atomic pairs in HEAs

re essentially different [98] . In addition, CPA also does not specif-

cally consider the charge transfer between atoms, which can lead

o errors in describing the interatomic bonding. In the SQS model,

he most relevant local states of the disordered phases are cap-

ured [45] . 
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Fig. 11. Scatter plot of bulk-modulus SHAP values for all compounds in the training set and their respective (a) cohesive energy, E c , (b) group number, μ4 (g) , (c) density, ρ , 

(d) radius, μ1 (r) , and (e) electronegativity, μ−4 (X) . The y -axis SHAP values measure the contribution of individual features to the model outputs. The color bar is mapped to 

a second feature values, to highlight the feature interaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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The lattice distortion results in large distributions in inter-

atomic bond lengths for all the different atomic specie pairs. The

largest difference in the atomic radii is between an Al–Cr pair

with a difference of 0.15 angstrom [99] . It was expected that the

elastic moduli of the HEA would be increased due to the strain the

interatomic bonds are experiencing within the distorted lattice.

However, the comparison between the volume-only optimized SQS

supercell and the fully-optimized SQS supercell revealed a decrease

in the elastic moduli. The lattice constant of the fully-relaxed SQS

model was larger than that of the volume-optimized SQS model,

suggesting that the severe lattice distortion in HEAs can reduce

the average interatomic bond strength and reduce stiffness as in

the case of the FCC Al 0.3 CoCrFeNi HEA. Some of the reduction in

stiffness from the volume-optimized SQS and the fully-optimized

SQS may be attributed to the internal relaxations of the atoms;

as explained by a relaxation term in the elastic tensor calculation

defined by Lutsko [100] . The effect of the relaxation term and the

lattice distortion effect are coupled since the relaxation term is a

direct result of internal heterogeneity i.e. atomic size differences;

which gives support to the prospect of tuning elastic properties

via lattice distortion engineering. In addition to atomic size dif-

ferences, magnetic properties are another factor to consider with

respect to lattice distortion effects. For example, the Cr nearest

neighbor bond lengths are affected by the magnetic moments

of other atomic species in the local environment. Toda-Caraballo
t al. proposed a methodology that can compute the distribution

f interatomic distances of HEAs with the input of unit-cell param-

ters and bulk moduli of elements involved [101] . Here, our study

rovides the concrete evidence to corroborate their argument on

he linkage between the lattice distortion and elastic properties of

EAs. Lee et al. designed a single-phase BCC solid-solution phase

efractory HEA with exceptional yield strength as well as ductility

hich was attributed to solid-solution hardening originating in

urn from the lattice distortion in the refractory HEA [102] . The

iscrepancy in the elastic constant of the FCC Al 0.3 CoCrFeNi HEA

etween the SQS supercells (one with the atomic position relax-

tion and one without) suggests the importance of such lattice

istortion in determining the elastic properties of HEAs. 

The ML models are leveraged here to uncover patterns between

eatures and the bulk and shear moduli learned by the models.

nterpretable ML models are useful in gaining insight into the

nderlying physics that governs the observed behavior, and may

erve as guides for adjusting compositions in designing HEAs

ith desirable characteristics. To quantify how much the model

redictions are influenced due to a change in a given feature

alue, feature importances are computed. In this work, we use

hapley Additive Explanations (SHAP) values to measure feature

mportance [103 , 104] . The SHAP value of a feature represents is

he average marginal contribution of a feature value. For example,

iven a modulus to predict for a single sample, the SHAP method
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Fig. 12. Scatter plot of shear-modulus SHAP values for all compounds in the training set and their respective (a) cohesive energy, E c , (b) group number, μ4 (g) , (c) density, ρ , 

(d) radius, μ2 (r) , and (e) electronegativity, μ4 (X) . The y -axis SHAP values measure the contribution of individual features to the model outputs. The color bar is mapped to 

a second feature values, to highlight feature interaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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w  
akes the difference between the predicted modulus and the aver-

ge of all the modulus predictions in the training dataset. Then the

ethod determines how much each feature affects the prediction.

he sum of all the contributions of each feature equals the differ-

nce between the modulus prediction of the current instance and

he average modulus prediction of all instances. Figs. 11 and 12

how scatterplots of the SHAP values for all 5 features and for the

ulk and shear moduli-prediction models, respectively. Each dot

n a scatterplot represents a single prediction instance. The y -axis

hows the SHAP value assigned to that feature in that particular

nstance, and the corresponding feature value can be read on the

 -axis. A SHAP value of 0 means that for that instance which had a

iven feature value, that feature did not contribute to a change in

he model prediction from the average prediction. Positive or neg-

tive SHAP values on the other hand, mean that the given feature

alue made the model prediction go up or down, respectively. The

catter points are also mapped to a color bar corresponding to a

econd feature so that the interaction of pairs of features and their

ffect on model predictions can be observed. In both the bulk and

hear modulus prediction models, an increase in moduli generally

orresponds to a decrease in cohesive energy, the average group

umber of the constituent elements, or the average atomic radus

f the constituent elements. Conversely, an increase in both bulk
nd shear modulus predictions are seen for an increase in den-

ity. The average electronegativity of the constituent elements,

owever, has a divergent behavior between the bulk and shear

odulus predictions. The bulk modulus predictions increases with

ncreasing average electronegativity, hitting a peak. With further

ncreased average electronegativity, the bulk modulus decreases.

he shear modulus predictions, however, decrease with increasing

verage electronegativity. It can be pointed out that the power of

he Holder mean of electronegativity for the bulk modulus pre-

ictions is −4, whereas it is 4 for the shear modulus predictions.

he effect of this is that the bulk modulus predictions are more

ependent on the electronegativity of the most electronegative

lement, and the shear modulus predictions are more dependent

n the electronegativity of the least electronegative element. These

eneral trends can aid the development of new design rules sim-

lar to how empirical rules have been developed historically in the

aterials science and metallurgy i.e., Hume-Rothery rules. The ML

ork done in this study, illustrates how the ML-model selection

nd interpretation techniques can be generalized on a larger scale

o understand underlying relationships between properties. 

The feature subsets for the bulk and shear modulus prediction

odels are listed in Table 2 with the computed global SHAP values

hich are computed by averaging the absolute values of all the



136 G. Kim, H. Diao and C. Lee et al. / Acta Materialia 181 (2019) 124–138 

Table 7 

Effect of Al on experimental and calculated hardness values for the FCC Al x CrCoFeNi HEA. The experimentally-measured 

Vicker’s hardness values are compared with calculated hardness values for increasing amounts of Al. Hardness increases 

with increasing the Al content in both calculated and measured values. 

Composition GB-trees predicted 

B (GPa) 

GB-trees predicted 

G (GPa) 

Calculated 

hardness (Hv) 

Experimentally measured 

hardness (Hv) 

Al 0.1 CoCrFeNi 141.1 59.6 5.0 1.83 [108] 

Al 0.3 CoCrFeNi 161.5 73.2 6.8 3.4 [109] 

Al 0.6 CoCrFeNi 163.8 74.6 6.9 3.5 [109] 
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individual SHAP values from each of the training samples. For both

bulk and shear moduli predictions, the group number and cohesive

energy features are the largest contributors to the model output

indicating that changes in these features cause the larges changes

in the model prediction. 

The predictions from the ML models can be combined with

empirical models to predict materials properties that are difficult

to predict from first-principles, for example, the hardness of the

Al x CrCoFeNi HEA. Experimental studies on the effect of varying

the Al content in the Al x CrCoFeNi HEA on its mechanical proper-

ties have found that for the as-cast samples with the FCC phase,

Vicker’s hardness increases with increasing the Al content from

x = 0 to x = 0.5 [105] . Vicker’s hardness can be predicted, using

known shear and bulk moduli, and Eq. (12) published by Niu et al.,

which takes both shear and bulk moduli into account and has good

agreement for both cubic and non-cubic materials [83 , 106 , 107] : 

H ν = 2 

(
G 

3 

B 

2 

)0 . 585 

− 3 (12)

where H v is Vicker’s hardness. The increase in the predicted bulk

and shear moduli, and the predicted hardness is positively cor-

related with the experimentally-observed increase in hardness, as

shown in Table 7 . The ML models for predicting bulk and shear

moduli has its own errors, and using those predictions in the above

model can propagate errors. However, this qualitative agreement

in trends between the predicted and measured hardness values

illustrates the ease and utility of using the ML model to study

trends and feature dependence of model outputs either for design

or screening purposes. 

5. Conclusion 

In conclusion, the work explored the elasticity of FCC

Al 0.3 CoCrFeNi, an HEA with high strength and good ductility,

with experimental and computational methods. Good agreement

in elastic constants was observed from ND, first-principles calcula-

tions, and ML models. Anaysis of the computational results found

that a severe lattice distortion presents in this HEA, leading to an

reduction in its stiffness. A high degree of eastic anisotropy was

revealed through the first-principles determination of the elastic

constants, which also agreed with the observed lattice strain evo-

lution during the in-situ ND tension experiments. It is demon-

strated that ML models can cpature the correlations between ma-

terial features and make accurate predictions of elastic constants

of the HEA. This study on the elastic constants of the Al 0.3 CoCrFeNi

HEA provides a much-needed experimental validation of computa-

tional tools and encourages more studies using this integrated ap-

proach to actively guide the search for new alloy design. The ML

models can be interpreted either for developing new design rules

or understanding relations between physical quantities of interest. 
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