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ABSTRACT

Although the connection between symmetry and entropy is not clear, researchers calculate configurational entropy with an ideal gas mixing
model all along regardless of which structure they are considering. However, it is obvious that crystalline structures have symmetry, while an
ideal gas does not. Therefore, the same ideal gas mixing value should not be assigned to other structures, such as face-centered-cubic (fcc)
and hexagonal-close-packed (hcp) structures. Here, we offer a precise definition for determining the configurational entropy of crystals. We
calculate the difference in configurational entropy between fcc and hcp structures based on Burnside’s lemma in combinatorial mathematics
and crystallographic rotation-point groups.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114974

As the renowned physicist Landau described in his book,1

whether a particular property exists or does not exist depends on the
system symmetry. Unprecedented physics phenomena appear when-
ever a specific system symmetry is broken. For example, it has been
observed that liquid crystals break translational symmetry, magnets
break rotational symmetry, and superconductors break gauge symme-
try. All these symmetry changes result in entropy changes. The ques-
tion then follows: what physics can we observe when elements are
chemically disordered (asymmetry) on symmetric crystal lattices? The
answer to this question starts with a review of general chemistry. It is
taught that phase changes lead to entropy changes. Solids have the
fewest microstates and thus the lowest entropy. Liquids have more
microstates (as the molecules can translate) and thus have a higher
entropy. Gases have many more microstates and thus the highest
entropy. However, researchers treat every system as the ideal gas
model shown in Fig. 1, despite the fundamental difference that an ideal

gas has a continuous phase space and can be arranged in a random
configuration, whereas a crystal has a discrete phase space and a peri-
odic condition. Different crystal structures also have different numbers
of microstates and different entropies.2–4 Developing a sophisticated
description of the relationship between symmetry and configurational
entropy for chemically disordered elements is the main purpose of this
work. The analytical approach used provides a very straightforward
physical insight into configurational entropy. We apply our result to
explain a crucial example of the phase transformation of high entropy
alloys (HEAs),5–10 which starts at a cryogenic temperature under a
high pressure in the nanoscale region.11–18

To begin with, we briefly review the conventional theorem. The
configurational entropy of an alloy system is usually described by
Boltzmann’s entropy formula,

Sconf ¼ k� lnX; (1)

Appl. Phys. Lett. 115, 264103 (2019); doi: 10.1063/1.5114974 115, 264103-1

Published under license by AIP Publishing

Applied Physics Letters ARTICLE scitation.org/journal/apl

https://doi.org/10.1063/1.5114974
https://doi.org/10.1063/1.5114974
https://doi.org/10.1063/1.5114974
https://doi.org/10.1063/1.5114974
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5114974
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5114974&domain=pdf&date_stamp=2019-12-27
https://orcid.org/0000-0002-0883-315X
mailto:alicehu@cityu.edu.hk
mailto:jwyeh@mx.nthu.edu.tw
https://doi.org/10.1063/1.5114974
https://scitation.org/journal/apl


X ¼

Xn
i¼1

ni

 !
!

Yn
i¼1

ni!ð Þ ;
(2)

where k is the Boltzmann constant and X is the number of ways in
which the available energy can be mixed or shared among the particles
in the system. For a random n-component solid solution, in which the
ith component has a mole fraction of Xi, the ideal configurational
entropy per mole, which is related to the number of distribution
options, is

Sconf ¼ �R
Xn
i¼1

Xi ln Xi; (3)

where Xi ¼ ni
n0
, n0 is Avogadro’s number, and R is the gas constant,

8.314 J K�1 mol�1.19 This is the same as the formula for an n-
component gas mixture.

For an a-b binary system of two elements, we can calculate the
number of configurations using Eq. (4), where na and nb represent the
atom numbers in the a and b types, respectively,

Sconf ¼ k� lnX ¼ k� ln
na þ nbð Þ!
na!� nb!

� �
: (4)

In the following, we report the steps required to modify Eq. (4) in a
sophisticated way to calculate the true configurational entropy.

Corollary 1:Geometry does affect X.
If different colored balls are arranged in a straight line, the num-

ber of configurations is N!, where N is the total number of balls. If we
arrange them in a ring, we use “circular permutation,” and Eq. (5) is
applied,

N!

N
¼ N � 1ð Þ! : (5)

Therefore, it is obvious that the configuration number embedded
in the entropy formula inevitably depends on the structure of the tar-
get problem. Figure 2(a) demonstrates that different geometries have a
different number of configurations, as configurations belonging to the

same energy state due to the symmetry effect are regarded as the same
configuration. In other words, different structures should not be
treated with the same mixing-entropy formula as that of an ideal gas.
We can solve X with group theory for different symmetries. Face-
centered-cubic (fcc) and hexagonal-close-packed (hcp) structures are
the focus in this work.

Corollary 2: Entropy can be calculated with the Gibbs entropy
formula.

As energy is not influenced by coordinate placement, configu-
rations that duplicate each other under rotation are considered to
be the same, that is, they have the same energy and belong to the
same microstate. However, the number of degenerated configura-
tions in a microstate still contributes to the probability of the
microstate. Because Eq. (4) cannot be used for alloys in which
degeneracy occurs, we begin from another fundamental equation,
the Gibbs entropy formula,

Sconf ¼ �k
Xn
i¼1

pi ln pi ; (6)

FIG. 2. (a) Different structural symmetries result in different configuration numbers.
2D rotation symmetry is allowed for Ring and Square configurations, and 3D rota-
tion is allowed for Cube configurations. Detailed calculations solved by Burnside’s
lemma are listed in the supplementary material. (b) Example showing the difference
in entropy between the Gibbs entropy definition and the ideal gas model for two red
balls and two blue balls in a square. There are a total of six configurations in two
microstates: one microstate has four configurations and the other has two configu-
rations. Rotations of 0�;690�; and 180� are allowed.

FIG. 1. Current problem with using the ideal gas model for entropy calculations in
lattice structures, high entropy alloys, diffusion, and grain boundary/dislocation with
chemical disorder.
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where k is the Boltzmann constant and pi is the probability of a micro-
state, which equals Xi /X, where X is the total number of possible
configurations and Xi is the number of configurations of microstate i.
For the extreme case, if a system is at perfect disorder without any
symmetric effect (all pi¼ 1/X), such as an ideal gas, Eq. (6) reduces to
the Boltzmann formula k lnX, which is commonly used.

Corollary 3: Microstate configurations Xi and corresponding
probability pi can be solved by Burnside’s lemma.20

Alloys that contain several types of indistinguishable atoms are
similar to the mathematical problem of coloring mi colors on ni balls
in a stack. For example, if two red balls and two blue balls are stacked
in a 2� 2 structure (where 2D rotation is allowed), only two micro-
states remain among the six original configurations, one of which has
a probability of 2/3 and the other a probability of 1/3. Figure 2(b) illus-
trates how the probability differences change the entropy outcome.
(Burnside’s lemma and a detailed calculation of this example are given
in Table S1 and Ref. 20).

Based on the above arguments, we need to solve the microstates
(known as “orbitals” in mathematical language) and their probabilities
for HEAs with fcc and hcp structures by group theory (the details are
given in the Methodology section of the supplementary material). It is
worth noting that Burnside’s lemma20 only gives the total number
of microstates but not the probability of each microstate, or in other
words, the number of orbitals but not the “size” of each orbital. In
practice, all configurations are generated and rotated, and the num-
ber that falls into the same microstate is examined. If the number of
orbitals from the code agrees with Burnside’s lemma, then the cor-
rect configurational entropy can be calculated from these probabili-
ties using Eq. (6). The three examples in Table S1 show binary
atoms distributed in a 2� 2 square, a 2� 2 � 2 cube, and an fcc
unit cell. Table S2 lists the microstate probabilities and the corre-
sponding mixing entropy for the 12 and 18 nearest atoms in equi-
molar fcc and hcp structures.

All the calculated shapes fulfill the required point-group rules in
Fig. 3(a). It can be seen in Table S2 and Fig. 3(b) that the hcp structure
exhibits a higher configurational entropy than the fcc structure with
the same number and type of atoms. We can also clearly see that
entropy at the nanoscale is “subextensive.” “Extensive” indicates a var-
iable whose value depends on the substance quantity, such as the vol-
ume and mass; “intensive” indicates a physical property that does not
change with the system size, such as density; subextensive describes a
physical variable whose combined system value is less than the sum of
the independent system values. Figure 3(b) shows that normalized
binary system entropy increases nonlinearly as the number of atoms
increases. When the number of atoms is large enough to apply
Sterling’s approximation, the normalized entropy becomes a constant.
This means that the subextensive entropy (nonlinear) becomes exten-
sive (linear) only after Stirling’s approximation is applied. Large differ-
ences in the entropy of ideal gas, fcc structures, and hcp structures are
revealed at the subextensive nanoscale size, which suggests the exis-
tence of configurational entropy driven deformation and phase
transformation.

It is worth noting that even pure element structures can have
entropy differences, such as the “intrinsic entropy” difference between
hcp cobalt and fcc cobalt. In contrast to intrinsic entropy, the entropy
of mixing arises from the randomness in a solid solution. Thus, the
total entropy equation for multielement solid solutions should be used

when configurational, electronic, vibrational, and magnetic dipole ran-
domness are considered,

Total entropy ¼ Intrinsic entropy

þ Configurational entropy of mixing

þ Other entropy: (7)

The intrinsic entropy of the fcc crystal is slightly higher than that of
the hcp crystal by 0.005R3 and 0.0009R4 near the melting point. To
compare the influence of intrinsic and configurational entropy differ-
ences, we take the largest intrinsic difference of 0.005R per mole and
consider 12 atoms, which is SIntrinsichcp!fcc ¼ 0:005k � 12 1

12 atoms ¼ 5:17

�10�3 meV
12 atoms�K. This is much smaller than SConfigurationalhcp!fcc ¼ 3:79 k�5:09 k

12 atoms

¼ �0:11 meV
12 atoms�K, where k ¼ 8:617� 10�5 eV

K . This demonstrates
that due to the symmetry effect, the configurational entropy of mixing
between hcp and fcc equimolar binary alloys is more than 20 times
larger than the intrinsic entropy difference for a nanoscale structure of
12 atoms. Thus, the intrinsic entropy difference is negligible when the
configurational entropy difference of mixing between fcc and hcp
dominates, which enhances nanoscale hcp formation from the fcc par-
ent phase. Figure 3(c) shows the configurational entropy difference
between hcp and fcc structures for 12 and 18 nearest neighbor atoms.
This indicates that alloys with more components obviously have a
greater configuration entropy difference, but the difference after being
normalized by the atom number lowers when a greater number of
atoms are involved. It is thus noted that the maximum difference
would occur approximately at the nanostructure of 12 atoms.

Because the configurational entropy of hcp structures is higher
than that of fcc structures for multielement equimolar alloys, the
new Gibbs free energy difference is in fact larger than previously

FIG. 3. (a) Rotation point group for fcc and hcp structures; (b) for a binary equimo-
lar alloy, the configurational entropies of 12 and 18 nearest neighbor atoms normal-
ized to 1 mole and the conventional values before and after Stirling’s
approximation; (c) configurational entropy difference between hcp and fcc struc-
tures for 12 and 18 nearest neighbor atoms. Unary, binary, ternary, and quaternary
equimolar alloys are compared. (d) Gibbs free energy difference between fcc and
hcp structures of CrCoNi with additional consideration of the configurational entropy
of 18 atoms (exact solution) and 42 atoms (Monte Carlo approximation of the exact
solution) and comparison with the sole contribution of lattice dynamics.12
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expected by researchers according to the Sconfigurationalhcp
¼ Sconfigurationalfcc assumption,

DGhcp!fcc newð Þ > DGhcp!fcc oldð Þ;
DHhcp!fcc � T � SOthershcp!fcc � T � Sconfigurationalhcp!fcc

> DHhcp!fcc � T � SOthershcp!fcc � T � 0 ; (8)

where DGhcp!fcc ¼ Gfcc � Ghcp and DHhcp!fcc ¼ Hfcc �Hhcp. As an
example, we compare the 77K CrCoNi Gibbs free energy difference
DGhcp!fcc oldð Þ obtained from the density functional theory (DFT),13

which is around 3:8 meV
atoms, with T � Sconfigurationalhcp!fcc ¼ 77K

� 13:48k�14:87k
18 atoms ¼ �0:5 meV

atoms (from Table S2). This numerical compari-
son shows that the configurational entropy difference at the nanoscale
is not negligible, as shown in Fig. 4(a). As temperature is a multiplier
in the equation, the effect of symmetry on the entropy difference
diminishes as the temperature approaches zero. However, the symme-
try effect causes the fcc-to-hcp transition temperature to increase to a
much higher temperature during nanoscale hcp transformation, as
shown in Fig. 3(d). This demonstrates that the stable range of nano-
scale hcp structures increases to higher temperatures and that there is
a higher probability of nanoscale hcp phase formation by other means,
such as plastic deformation, at low temperatures or high pressure.
However, the above calculation and discussion are based on the ran-
dom distribution of different kinds of atoms. In reality, the difference
in chemical bonding, atomic size difference among constitutive ele-
ments, or atomic pairs might cause a certain degree of short range
ordering. Under this condition, the configuration entropy under short
range ordering would be smaller than that in the random distribution.
However, this short-range-order tendency ordinarily makes a rela-
tively small decrease in configurational entropy, and thus, their differ-
ence in the present fcc and hcp concentrated the solid solution phase;
otherwise, strong compounds in some specific structures would form.
As a result, the present crystal symmetry effect is still valid when short
range ordering forms.

This configurational entropy difference becomes a basic and
important factor explaining the low stacking fault energy found in
HEAs. A stacking fault is a four-layer atomic plane ABAB embedded in
an fcc structure ABCABCABC…, as shown in Fig. 4. The stacking fault

energy also depends on the solute type, which causes segregation in
stacking faults and thus a change in stacking fault energy. This is why
the stacking fault energy of Al solid solutions, Cu solid solutions, Ni
solid solutions, austenite steels, and multielement fcc solid solutions
(including high-entropy solid solutions) also depends on the composi-
tion. As the stacking fault energy can be regarded as the sum of the free
energy difference DGfcc!hcp and dual interface energy cfcc=hcp, when
DGfcc!hcp is more negative, the stacking fault energy is positively
smaller and the stacking fault area becomes larger because the surface
tension of the stacking fault is correspondingly smaller and the repulsive
force between two Shockley partial dislocations at the fault ends widens
the stacking fault. The stacking fault is wider under the effect of crystal
symmetry, which in turn positively affects the planar slip of the disloca-
tion movement, the formation of nanotwins, the work-hardening rate,
and the strength and ductility. In addition, hcp formation from the fcc
parent phase found under cryogenic deformation and high pressure can
be explained by the crystal symmetry effect. We propose that the nucle-
ation and growth of the hcp phase are possible via deformation at cryo-
genic temperatures where diffusion is almost impossible.11–18 When a
sequence of Shockley partial dislocations on every (111) plane glides
over each other, the hcp phase becomes thicker and wider in the fcc
matrix. Figure 4 shows the formation of nanotwin and nanosized hcp
structures under tensile testing at cryogenic temperatures. In high pres-
sure induced phase transformation,21–23 we also propose that the high
pressure widens the stacking faults in opposite directions and forms a
thick hcp crystal when stacking faults on every other (111) plane meet
each other. Thus, the symmetry effect is a positive factor in fcc-to-hcp
phase transformation in both providing more nucleation sites and
increasing the driving force.

This work offers some important conclusions. First, different
crystalline solid solutions have different intrinsic and configurational
entropies in mixing. hcp structures have a significantly higher configu-
ration entropy in mixing than fcc structures at the nanoscale due to
the symmetry effect, and the more the elements in equimolar alloys,
the stronger the effect. Second, fcc-to-hcp phase transformations
observed in cryogenic-mechanical tests and highly pressurized HEAs
can be explained by this crystal symmetry effect. Entropy differences
between hcp and fcc structures cause free energy differences that
increase with temperature. As stacking faults are ABAB structures
(nanoscale hcp) embedded in the fcc matrix, the symmetry effect
reduces the stacking fault energy and enhances the stacking fault
stability in fcc structures. These crystal symmetry stabilized stacking
faults enhance the formation of nanotwins and larger hcp structures,
thus leading to an improvement in mechanical properties. This configu-
rational entropy definition helps to clarify the roles of entropy, bonding
energy, and free energy in the nanoscale dimension for accurate phase
prediction in thermodynamic software, such as Thermo-Calc24 and
Calphad (which calculates phase diagrams).25 Finally, conventional con-
figurational entropy makes no difference from any structure: gas, liquid,
or solid. This work shows that configurational entropy can differ even
in a solid, which provides a perspective on statistical mechanics relating
symmetry to entropy, and has many applications across a range of
disciplines.

See the supplementary material for the detailed calculations
solved by Burnside’s lemma associated with different configuration
numbers due to different structural symmetries.

FIG. 4. Crystal symmetry effect enhances the formation of stacking faults, nano-
twins, and nanosized hcp structures during annealing and tensile testing at cryo-
genic temperatures.
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