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Abstract

In this paper, a proximal gradient splitting method for solving nondifferentiable vector opti-
mization problems is proposed. The convergence analysis is carried out when the objective
function is the sum of two convex functions where one of them is assumed to be continuously
differentiable. The proposed splitting method exhibits full convergence to a weakly efficient
solution without assuming the Lipschitz continuity of the Jacobian of the differentiable com-
ponent. To carry this analysis, the popular Beck—Teboulle’s line-search procedure is extended
to the vectorial setting under mild assumptions. It is also shown that the proposed scheme
obtains an e-approximate solution to the vector optimization problem in at most O(1/¢) itera-
tions.
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1 Introduction

Recently, there has been a growing interest in the extension and analysis of classical optimization
algorithms for solving vector optimization problems, i.e., given a function F : R" — R™, the goal
is to obtain a point X € IR” which can not be strictly improved. The vector optimization problem
is as follows

n}cin F(x) subjectto x € R”, (1)

where the partial order is given by a pointed, convex and closed cone K C R™ with a nonempty
interior. Hence, the weakly efficient solutions are the points ¥ such that there is no x € R" satisfying
F(x) < F(x) (or equivalently F(x) — F(x) € int(K)). The above problem becomes the so-called
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multiobjective optimization problem when K is RY = {x € R"| x; > 0, Vi = 1,2,...,m}
and weakly efficient solutions are usually called weak Pareto points, i.e., there is no x € R" such
Fi(x) < F(x),Vi=1,...,m.

A plethora of methods has been proposed for solving problem (1), most of them coming from
the scalar optimization, i.e,, m = 1 and K = R4. In [19], the authors proposed an extension of
the classical steepest descent method for minimizing continuously differentiable multiobjective
functions. A generalized version of [19] was introduced in [23] for solving vector optimization
problems. The latter method was further extended to solve constrained vector optimization prob-
lems in [21]. The full convergence of the projected gradient method for solving quasi-convex
multiobjective optimization problems was studied in [8]. In [11], the authors generalized the gra-
dient method of [19] to solve multiobjective optimization problems over a Riemannian manifold.
The proximal point method was first introduced in [13] for solving vector optimization problems.
A multiobjective proximal point method based on variable scalarizations was proposed in [10]
to solve quasi-convex multiobjective problems. The authors also showed that if the weak Pareto
optimum set satisfies a special property, then the proposed scheme possesses finite termination.
Variants of the vector proximal point method for solving some classes of nonconvex multiobjec-
tive optimization problems were considered in [9,12]. The subgradient method was extended
to the multiobjective setting in [16] and more generally for solving vector optimization problems
in [3]. The Newton method was first introduced in the multiobjective setting in [18] and further
extended to solve vector optimization problems in [22]. Recently, [26] proposed and analyzed a
conjugate gradient method for solving vector optimization problems using different line-search
procedures. Finally, several methods for solving other vector-type optimization problems related
to (1) have been studied in [4-6].

Consider the following structured vector optimization problem

rr}Cin F(x):= G(x) + H(x) subjectto x € R", ()

where G : R” — R is a continuously differentiable K-convex function, and H : R* — R :=
R™ U {+cox } is a proper K-convex function which is possibly nonsmooth. Here, y < +oox for
any y € R™. One of the most studied methods for solving the scalar version of this problem is
the proximal gradient method (PGM) which has been intensively investigated; e.g., [2] and ref-
erences therein. This classical splitting iteration is shown to be an effective and simple scheme
for solving large scale problems and /;-regularized problems; see, for instance, [1,7,28]. Each
iteration of this scheme basically consists of applying a gradient step for the differentiable compo-
nent of the objective function followed by a proximal step of the nonsmooth part. Its applicability
is mainly directly associated with the capability of solving the proximal subproblem, which can
be achieved in some important cases. For instance, when each component h; of H is such that
hi = || - ||1 or h; is the indicator function of a “simple” convex set. In the latter case, this scheme
reduces to the classical projected gradient method. The extension of the PGM for solving compos-
ite multiobjective optimization problems was recently proposed in [27], where it was proved that
every accumulation point, if any, satisfies a necessary optimality condition associated to problem
(2) with £ = R. The latter reference reformulated a robust multiobjective optimization prob-
lem [20] in the setting of (2) and some numerical experiments were considered for solving this
problem. An inertial forward-backward algorithm was proposed in [14] for solving the vector
optimization problem (2), where the Jacobian of the differentiable component is assumed to be
Lipschitz. This scheme combines a gradient-like step and the proximal point iteration [13]. It is
worth emphasizing that this algorithm requires a constraint set in the computation of the proximal



step which makes, in general, the evaluation of the proximal operator more complicated. More-
overt, in the latter algorithm the knowledge of the aforementioned Lipschitz constant is required
in its fomulation.

The main goal of this paper is to analyze a variant of the PGM for solving the convex composite
vector optimization problem (2). We extend to the vectorial setting the celebrated Beck-Teboulle’s
line-search, which makes possible to relax the Lipschitz continuity assumption and to prove the
full convergence of the generated sequence to a weakly efficient solution of the problem. Addition-
ally, an iteration complexity bound to obtain an approximate weakly efficient solution of problem
(2) is established. Specifically, it is shown that, for a given tolerance ¢ > 0, an “e-approximate
solution” for problem (2) is obtained after at most O(1/¢) iterations.

Organization of the paper. Section 2 contains notations, definitions and some basic results. The
concept of K—convexity of a vector function and its properties are presented. A vector proxi-
mal scheme and the extension of Beck-Teboulle’s line-search are discussed in Section 3. Section
4 formally describes the vector proximal gradient method for solving the structured vector opti-
mization problem (2), and contains the convergence analysis of the algorithm. The last section is
devoted to some final remarks and considerations.

2 Notation and Basic Results

In this section, following [1,25], we formally state some basic definitions, results, and notations
used in the paper.

In this paper, N and R” denote the nonnegative integers {0,1,2,...} and a p-dimensional real
vector space, respectively.

Let K be a closed, convex, pointed (i.e., X N (—K) = {0}) cone in R™ with nonempty interior.
The partial order < (<) induced in R” by K is defined as x < y (or x < y) if and only if
y—x € K (ory —x € int(K)). The partial order > (>) is defined in a similar way:.

Similarly to [13, 14], we consider the extended R™, denoted by R" := R" U {+cor}, where
+oox is assumed to be such that y < 4oy, for every y € R”. We also assume that

y_|_(_|_oolc) = (+OOIC)+y:+OOIC/ t(—}—oo,c) = +o0, yeﬁm,t>0.

The image of a function F : R" — R is the set Im(F) := {y € R" | y = F(x) | x € R"}. Moreover,
F is said to be proper if its domain defined by dom(F) := {x € R" | F(x) < 400k } is nonempty.
Let (-, -) be the inner product and || - || be its induced norm. The positive dual cone K£* of K
is defined by K* := {w € R™ | (x,w) > 0,Vx € K}. From now on, we assume that there exists
a compact set C C K£* \ {0} such that cone(conv(C)) = K£* and 0 ¢ C. Following [13, 14], we
assume by convention that (oo, w) = +o0 for any w € C. Moreover, we assume without loss of
generality that ||w|| = 1 for every w € C. Since KL = K** (see [25, Theorem 14.1]), we have

—K={ueR"|(uw) <0, Ywe C} (3)
—int(K) = {u e R" | (u,w) <0, Yw € C}. (4)
For a general cone K, the generator set C as above can be chosen as C = {w € K* | ||lw| = 1}.

Frequently, it is possible to take much smaller sets for C, e.g. If K is a polyhedral cone then K* is
also polyhedral, hence C can be chosen as a normalized finite set of its extreme rays. For example,



in scalar optimization, = Ry and we may take C = {1}. For multiobjective optimization, K
and K* are the positive orthant of R, defined as R := {y € R" | y; > 0,Vi =1,...,m}, and we
may take C as the canonical basis of R".

A vector function F : R" — R" is called K~convex if and only if for all x,y € R" and 7 € [0, 1],
Flyx+ (1 =v)y) 2 vF(x) + (1 = 7)F(y).
We consider oF : R" = R™*" defined as
oF(x) ={U e R™"|F(y) = F(x)+ U(y—x), Yy e R"}, xe€R"

If G : R" — R™is K—convex and differentiable, the natural extension of the classical gradient
inequality to the vectorial setting is:

G(y) = G(x) + Jo(x)(y — x), ©)

for any x,y € R", where g (x) denotes the Jacobian matrix of G at x; see [25, Lemma 5.2].

Next we recall some definitions and properties for scalar convex functions which are easily
derived from the vector convex functions properties presented before (i.e., taking m = 1). A
scalar convex function & : R" — RU {4o0} := R is proper, if the domain of 1, dom(h) := {x €
R" | h(x) < 400} is nonempty. The subdifferential of & at x € R" is defined by

oh(x) :={u e R"| h(y) > h(x)+ (u,y —x), Yy € R"}. (6)
Moreover, the graph of oh : R" = IR" is given by
Gph(oh) := {(x,u) € R" x R" | u € oh(x)}.
The subdifferential 0/ is a monotone operator, i.e., for any (x, 1), (y,v) € Gph(dh), we have

(v—u,y—x)>0. (7)
Next, we formally present the concept of weakly efficient solution.

Definition 2.1 An element x* € R" is a weakly efficient solution of problem (2) if there is no x € R" such
that F(x) < F(x*).

The next result, whose proof can be easily verified, presents a necessary and sufficient condition
for a point to be weakly efficient.

Lemma 2.2 A point x € dom(F) is a weakly efficient solution of problem (2) if and only if

max(F(u) — F(x),w) >0, YueR" (8)

weC

Let us end the section by recalling the well-known concept of Fejér convergence. The definition
originates in [17] and has been elaborated further in [15,24].

Definition 2.3 Let S be a nonempty subset of R". A sequence {x*}c in R" is said to be Fejér convergent
to S if and only if for every x € S, there holds ||x**1 — x|| < ||x¥ — x|| for all k € N.



Lemma 2.4 ([24, Theorem 4.11) If {x*}cn is Fejér convergent to S, then the following statements hold:
(i) the sequence {x*}rcn is bounded;

(ii) if an accumulation point of {x*} e belongs to S then {x*}en converges to a point in S.

A function Q : R" — R" will be called positively lower semicontinuous if, for every w € C, the
scalar function (Q(-), w) is lower semicontinuous.

Lemma 2.5 Let Q : R” — R" be a proper, K-convex and positively lower semicontinuous function. Let
{(y*, U*) }ren be a bounded sequence in Gph(9Q) such that {y*}rcn converges to §. Then the following
statements hold:

(i) the sequence {Q(y*) }ren is bounded;
(ii) if {w"}ren C C converges to @, then liminf (Q(y¥), w*) > (Q(7), @).

k—+oc0

Proof. (i) Suppose by contradiction that {Q(y*)}ren has an unbounded subsequence. Without
loss of generality, let us assume that the whole sequence satisfies limy_, , || Q(y¥)|| = +oco. Let
z € int(K) (which is assumed to be nonempty). Then, there exists t > 0 sufficiently small such

that 25 := z + t\lggigll € K. Since ||z¥|| < ||z|| +t < +o0, we obtain by using the Cauchy-Schwarz

inequality that for any x € R"

(2l + DIl = (Q(x), 2. ©)
Moreover, since {(y*, U¥) }xen € Gph(9Q), we have
Q(x) = Q) +UF(x—vF), VxeR",VkeN,
which in turn implies that
(Q(x),2) > (Q), 2% + (UF(x — ), 25, Vx € R",Vk € N.

In view of the definition of z¥, it follows by combining the last inequality with (9) and by using the
Cauchy-Schwarz inequality that

(2l + IR = {Q(F), 25) + (UF(x — ), 25)
> Q") 2) + QUM Il — U (x — ") 112",
for any x € R", k € IN. Hence, since (Q(-), z) is lower semicontinuous, we conclude that
oo = Tim #Q@N)I <2l +HIQCx)| —liminf(Q(y*), z) + lim inf || L[]} — y*[|z"]
<(llzll + DR — (Q(®), >+HUHHx—y|I(IIZII+t) < +oo,

which is a contradiction.

(ii) Let {w*}ren C C converging to @. Clearly @ € C, since C is closed. Then, it follows by
using the Cauchy-Schwarz inequality, the lower semicontinuity of (Q(-), @), the boundedness of
{Q(¥*) }rew proved in (i), and the fact that {||w* — @|| }xen converges to zero, that

liminf (Q(y"), ") > lim inf (Q(y"), w* — @) + liminf (Q(y"), @) = (Q(9), @),

concluding the proof. u



3 A Proximal Regularization and the Line-search Procedure

This section is devoted to analyze a proximal regularization and a line-search procedure, which
will be essential to introduce the proximal gradient method for solving composite vector opti-
mization problems.

Let x € dom(H) and a > 0 be given. Consider the following function 6, , : R" — R defined as
1
Or (1) := Py(u) + ﬂHu —x|)?, Vu e R", (10)

where ¢, : R" — R is given by

Py (1) := max(Jg(x)(u —x) + H(u) — H(x), w), Yu € R™. (11)

weC
Moreover, define p(x,«) as

p(x,a) := arg min O o (1). (12)

Since 1, is convex, 0, is strongly convex. Hence, p(x, «) is uniquely determined and belongs to
dom(H) (note that dom(F) = dom(H) = dom(fy,) = dom(¢y)). It is worth noting that when
m = 1in problem (2), p(x, «) is directly related to the classical forward-backward operator evaluated
at x.

In the following, we present some basic properties associating the above elements with weakly
efficient solutions of problem (2). First, let us fix a point { € int(K) such that

0 < 41 :=min ({,w) < max ({,w) < 1. (13)
weC weC

Since int(K) # @ and C is a compact set satisfying (4), it is easy to show that there always exists a
point { € int(K) satisfying the above condition. For multiobjective optimization where K = R",
for example, we can choose { = (1,...,1).

Lemma 3.1 Let x € dom(F) and a > 0 be given, and let p(x,«) be computed as in (12). Then, the
following statements hold:

() for every z € dom(F) and v € (0,1), we have

2
Ora(p(x,a)) < ymax (F(z) — F(x),w) + %HZ —x% (14)

weC
() Oxa(p(x,a)) <0,and 0,4 (p(x,a)) = 0ifand only if p(x,a) = x;
(iii) if p(x, &) = x then x is a weakly efficient solution of problem (2);

(iv) let C be as in (13) and assume that

G(p(x,@) = G(x) < Ja(x) (p(x,a) = %) + 5 |Ip(x,0) = x|, (15)
Then
max (F(p(x,a)) — F(x),w) < Oxa(p(x,a)). (16)

As a consequence, if x is a weakly efficient solution of problem (2) then p(x, a) = x.

6



Proof. (i) Let z € dom(F) and « € (0,1). It follows from (10)-(12) that
Ora(p(x,a)) <Ora(x+7(z—x))
1
=max(Jg(x)7(z — x) + H(x + (2 — x)) — H(x),w) + o |l7(z = x)|%

weC 20

Since G is differentiable and K-convex, we have from (3) and (5) that for every w € C, holds

e (x)(z — x),w) < (G(x+7(z —x)) = G(x), w).
Combining the last two inequalities, we conclude that

Ora(p(x,a)) < max(G(x+7(z = x)) = G(x) + H(x + 7(z - x)) — H(x),w) +

Y. 2
weC szHZ xH

Hence, using the K-convexity of G and H, we obtain
2
0a(p(x,0)) < ymax (G(z) — G(x) + H(z) — H(x),w) + 2|z - x|
weC 2u
The result follows trivially from the definition of F, given in problem (2).

(ii) This statement follows immediately from the fact that 6y,(-) is strongly convex, p(x,«) is
uniquely determined and 6, . (p(x,a)) < Oy 4(x) = 0.

(iii) Assume that p(x,«) = x. In view of (ii), we have 0, ,(p(x,«)) = 0. Then, it follows from (i)
that

2
0="0xa(p(x,a)) < ymax(F(z) — F(x),w) + ;/TXHZ — tz, Vz € dom(F),Vy € (0,1).

weC

Hence, dividing by v and letting v | 0, we have maxyec (F(z) — F(x), w) > 0 for every z €
dom(F). By convention (+ocoy, w) = 400 for any w € C, hence the latter inequality trivially holds
for z ¢ dom(F). Using Lemma 2.2, we conclude that x is a weakly efficient solution of (2).

(iv) Using (11), (15), the decomposition F = G + H, and the last inequality in (13), we obtain that,
forany w € C,
(F(p(x,0)),w) = (F(x) + G(p(x,2)) — G(x) + H(p(x,a)) — H(x),w)
1
< (F(x) + Jo(0) (p(x, &) = x) + H(p(x,)) = H(x) + 5[ p(x, &) = x[|*¢, w)

< (F(x), w) + ¢ (p(x,2)) + % p(x, @) — x[I?,

which clearly proves (16), in view of the definition of 6, given in (10). Now in order to prove
the last statement in (iv), assume by contradiction that p(x,a) # x. Then, combining (ii) and (16),
we obtain (F(p(x,a)) — F(x),w) < 0 for any w € C. The latter conclusion implies that x is not a
weakly efficient solution of problem (2), see (4), which is a contradiction. |

Next we present a monotone property satisfied by p(x, «) associated with the proximal gradient
iteration, which is essential to our analysis. Although the proof is similar to the one presented in
Lemma 2.4 of [7] for the scalar case, we present its proof for the sake of completeness.

Lemma 3.2 Forany x € dom(F) and ay > a1 > 0, we have

44
Djjllx —p(xa)l =[x = p(x, a2)[| = [lx = p(x,a) . (17)
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Proof. Given x € dom(F), it follows from the first-order optimality condition of (12) that, for every
a >0, (x.2)
x—p(x,a
B2 e opu(p(x,a).
Let arbitrary ap > a1 > 0 be given. From the latter inclusion and the monotonicity of d¢, given in
(7), we have

0< <x— p(x,az) X P(xr"‘l),p(x,(xz) — p(x,oc1)>

[1%) &1
) 1
_lx=p(x, az)||?

el (L ) e plana) - pln )

[1%) X1 X1 (%)

Hence, multiplying the above inequality by a, and using the Cauchy-Schwarz inequality, we ob-
tain

14 [44
0 <~ llr = )= 22l = plaan) 2 (3241 = plaan)] - x = plx,)|
[44
= (= pl )] =l = ) - (521 = plan)] = = pCz )] ).

Since g—f > 1, both above factors are nonnegative which clearly implies (17). |

Next we present a useful result.

Lemma 3.3 Let {y*};en C dom(F) be a bounded sequence. Then {p(y¥, B) }xen is also bounded for any
g > 0.

Proof. Let p* := p(y*, B) and note that the optimality condition of (12) with x = y¥, a = B yields
yk _ Pk
P

Hence, using the subgradient inequality (6), we have

€ pu(p),  VkeN.

1 n
Pye(u) > lpyk<]?k) + E(yk —pku—ph), Vu € R",Vk € N.

Using the above inequality twice, firstly with u = po and then withk =0and u = pk, and adding
the resulting inequalities, we obtain

1 1
Py (P°) + P (1) = P (P°) + 0 () + B<y" - - P+ 5! O—p% P =p")
1 1
= Py (P") + () + B<y° — 5 =)+ Bllpk -~ (18)

Note that in view of (11) and the compactness of C, there exists a bounded sequence {w*} C C
such that

P(Pb) = o (pP) + (H(P"), w"),  VkEN, (19)



where, for every y € dom(F),

§y(p) = Jcly)(p—y) —H(y),w"),  VkeN. (20)

Since (11) implies that lpyk(pk) > lﬁ]y‘k(pk) + (H(p"), w*), we obtain from (18) and (19) that

Py (P°) + Pl (") + (H(p"), wF)

- 1
> (1) + (HP), )+ 9 (0°) + 500 =4 =) + gl = I

Simplifying (H(p*), w*) and rewriting the above inequality, we get

1 ) ) 1
BHPk = PP < gy (P°) + P () — o (p°) — Pl (p") — g~ V5P = p).

Note that 1,5’;,(( p¥) does not contain the term H(p*). Moreover, since {y*}ren and {w*}ien are

bounded, we easily see that the left hand side of the above inequality is O(|| p* — p°)||?) whereas
the right hand side is O(||p* — p°)||), in view of the definitions of ¢ and {* given in (11) and (20),
respectively. This observation clearly implies that {||p* — p°|| }xen is bounded, proving the lemma.

Next we present an extension of Beck-Teboulle’s backtracking line-search [2] to the vectorial
optimization setting.

Line-search Procedure
Step 0. Given { asin (13) and 77 € (0,1). Input (x,0) € dom(F) x R, +;
Step 1. Let p(x, ) be computed as in (12) with « = 0;
Step 2. If

G(p(x,2) ~ G(x) = Jo()(p(x,0) ~ 2) + 5 p() ~xlPE, @)

stop and output (p(x,a),a). Otherwise, set & := ya and return to Step 1.

end

Some remarks about the above line-search procedure follows. First, if | is Lipschitz continuous
with Lipschitz constant L, then any «# < 1/L satisfies the vector inequality in (21). Second, as it will
be shown in the next proposition, the above backtracking procedure stops after a finite number
of steps even if J; fails to be Lipschitz continuous. Note that, the Lipschitz continuity is required
for proving the well-definition of Beck-Teboulle’s line-search in [2]. Third, it is worth mentioning
that this procedure may also be useful as a subroutine of forward-backward type algorithms for
solving problems in which the Lipschitz constant of ] exists but is not known or hard to estimate.
Finally, for convenience, we use the notation (p(x,a),a) = LS(x,0) to refer to the output of the
above line-search procedure with input (x, o).

In the following, we present a technical lemma regarding the violation of the vector inequality
(21). This result will be useful to prove the finite termination of the line-search procedure and to

9



conclude that our vector proximal gradient algorithm converges to a weakly efficient solution of
problem (2).

Lemma 3.4 Let {Bi}ren C (0,0] be a sequence converging to zero and let {y*}ren € dom(F) be a
bounded sequence such that the inequality in (21) fails with (x,) = (y, Bx), for every k € IN. Then,

k k
lim 1y — p(y*, Br)ll _o
k—+oo ,Bk

Proof. First, for convenience, denote 9% := p(y/*, Bx). Since, for every k € IN, the inequality in (21)
fails with (x,a) = (y*, Bx), it follows that there exists w* € C such that

%@Wﬁ—wmﬁ+£J¢—WWaﬁwwam—c@mﬂ
< (Je(@") (7" — ), @),

where the last inequality follows by the K—convexity of G and (5). Hence, rewriting the above
inequality and using the Cauchy-Schwarz inequality and the fact that (wf,{) > §; > 0, we obtain

01

a7 < (e - 1e)] @ - ) 0)

<l o (6) = Jo ()| - |9 — "]

The above inequalities together with that fact that ||w*|| = 1 imply that #* # y* and

yH<2 H]c —Je()|[, VkeN. (22)

Since B < 0, using the triangle inequality and Lemma 3.2, we obtain

98I < Nly* = 95 + 1951 < V" = ps, o) + |19¥))
<Y = p% )+ p° o) — p(*, o) || + (1)

It follows from the above inequalities combined with boundedness of {y/* }cn and Lemma 3.3 that
{9*}ren is bounded, which in turn, in view of the continuity of Jg, implies that {||J (7*) || }xen is
also bounded. Hence, since {B }xen converges to zero, it follows from (22) that {||y* — 9| }ren
converges to zero. It follows then by using again the continuity of [ and (22) that

N ol
1 =0, 23
Jim = @)

which proves the lemma. n

Next we show that the above line-search procedure provides an output after a finite number of
steps, without assuming J¢ to be Lipschitz continuous.

Proposition 3.5 Let x € dom(F). If x is not a weakly efficient solution of problem (2), then the line-search
procedure stops after a finite number of steps.

10



Proof. Let x € dom(F) and assume that it is not a weakly efficient solution of problem (2). Suppose
by contradiction that the line-search procedure does not stop after a finite number of steps. Hence,
for every k € IN, the vector inequality in (21) is violated with & = a; := oy, It follows from
Lemma 3.4 with (v*, B¢) = (x, &) that

lim w —0. (24)
k— 400 [14%

In particular, {p(x, ax) }renw converges to x, in view of {ay tren 4 0. On the other hand, we have
from the optimality condition of (12) that

x — p(x, ax)

o € Ae(p(x, ). 25)
k

Hence, since the graph of 01, is closed and {p(x, ax) }ren converges to x, we obtain

0 € 9 (x).

Then, in view of the convexity of 1., we conclude that x minimizes .. Therefore, in view of the
definition of i, we have, for every u € R”,

0 =x(x) < Pa(u) = max{Jo () (u — x) + H(u) — H(x) 0)
<max(G(u) — G(x) + H(u) — H(x), w)

weC

=max(F(u) — F(x),w),

where the second inequality is due the K—convexity of G and (5). Hence, Lemma 2.2 implies that x
is a weakly efficient solution of problem (2), which contradicts the assumption of the lemma. MW

4 Proximal Gradient Method and Convergence Analysis

This section states the vector proximal gradient method and analyzes its convergence properties. It
is shown that, under some standard assumptions, the whole sequence generated by the proposed
scheme converges to a weakly efficient solution of (2).

The proximal gradient method is stated as below.

Vector Proximal Gradient Method (VPGM) with Line-search

Step 0. Let (x%, ) € dom(F) x R, be given, set k = 0;

Step 1. If x* is a weakly efficient solution of (2), stop and output x*;

Step 2. Use the line-search procedure to compute (p(x¥,a),a) = LS(x¥, o) and set

we=a, ¥ =p(k,ap);

set k <— k + 1 and return to step 1.

end

Some comments are in order. First, the VPGM is a natural extension to the vectorial setting
of the well known proximal gradient algorithm [2,7] for solving composite convex optimization
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problems. Second, the main iterative step consists of checking if the current point is a weakly effi-
cient solution of problem (2) and if it is not, then the line-search procedure of Section 3 is invoked
in order to compute the next iterate. Third, the line-search procedure returns the next iterate after
a finite number of steps, in view of the stopping criterion and Proposition 3.5. Moreover, if x* is

not a weakly efficient solution of problem (2), then in view of (21) and the definition of x**1, we
have i
G — G(xF) =< Jo(F) (x5! — &F) + ngk“ —xF)|2g, Vk € IN. (26)
k
As a consequence, in view of the definition of x**1 and Lemma 3.1(ii) and (iv), we obtain
F(x*1) < F(xb), (27)

showing that the VPGM is a decreasing scheme in the order given by K.

Note that if the VPGM stops at some iteration k, then x* is a weakly efficient solution of problem
(2). Hence, in our analysis, we assume that the VPGM generates an infinite sequence.

Next we present a key inequality satisfied by the sequence generated by the VPGM, which is
essential to prove its full convergence.

Proposition 4.1 Let {x*};cn be generated by the VPGM. Then, for every x € dom(F), the following
inequality holds

K — x||2 < [|2F — x||* + 20 max <F(x) — P(xk+1),ZU>, VkeN.
weC

Proof. Since Xkt = p(xk, ay ), it follows from (10)—(12) that

e AT

ok = = € 9y (xF ). (28)
Xk

Hence, the subgradient inequality and the definition of ¢« (+) given in (11) imply that
Par(¥) 2 o (61 4 (08, 2 = ) (29)
= () 4 (0 — ) Lt 2
k

On the other hand, using the decomposition F = G + H, (11), the K—convexity of G, and (5), we
have

max (F(x) — F(x*),w) = max (G(x) — G(x*) + H(x) — H(x"), w)

> max (Jo (¥) (x — ¥¥) + H(x) — H(x"), 0) = ().

weC

In view of step 2 of VPGM and (21), we have

P () = max (Jo (xF) (A1 — x5 + H(xF ) — H(xb), w)

weC

1
> max (G(x* 1) — G(xF) — — || xF1 — xF |20 + H(x*1) — H(x5), w)
weC 20
1
= max (F(x*1) — F(x*) — ——||2"! — x5 ||2¢, w).
weC 20

12



Combining the latter two inequalities with (29), we obtain for every w € C:

1
max (F(x) — F(x),w) > . (xF1) + (o5, x — %) 4+ = ||k — 212
weC X

1
> <P(xk+l) o F(xk),w> _ <€2/0(w> ka—i—l o kaZ + (vk,x o xk> + DTka _ xk+1H2
k k

> (F(xM1) — F(x%), w) + (o, x — xF) + L xk)|2,

27¢ka

where the last inequality is due to the fact that ({, w) <1, in view of (13).

Hence, since C is compact, there exists wk € C such that the above maximum is attained, and
then rewriting the above inequality with w = w*, we easily obtain

20 (05, x — &%) 4 ||k — Y2 < 20 (F(x) — F(xF), w*) < 244 max (F(x) — F(x*1, w).
we

The result then follows by noting that

ka—i—l . xHZ — ka o XHZ _|_2<xk+1 . xk,xk o x> + ka—i—l . kaZ

and ay (05, x — xF) = (xF+1 — ¥k, ¥k — x), in view of the definition of ¥ in (28). u

In order to prove the convergence of the sequence generated by the VPGM, the following stan-
dard assumption is required:

Q= {x € R"|F(x) < F(x"), Vk € N} # @.

This assumption has been considered in the vector/multiobjective optimization literature for the
convergence analysis of several methods; see, for instance [8,10,13,23]. In view of the decreasing
property of the sequence {F(x*) }rcn (see (27)), the above assumption holds automatically if Im(F)
is complete. Recall that Im(F) is said to be complete if for every sequence {y*}icn satisfying
F(y**1) < F(y*) for all k € NN, there exists y € R" such that F(y) < F(y*) for all k € N. The
completeness of Im(F) ensures the existence of weakly efficient solutions for vector optimization
problems (see [25, Section 3]). In scalar optimization, it is equivalent to the existence of solution.

Before proceeding, it will be useful to consider the following sequence
O := 0,0, (x1),  VKEN, (30)

where 0, , is as defined in (10). Note that Lemma 3.1(ii)-(iv) imply that 6y < 0 for every k, and

0r = 0if and only if x**! = x¥, in which case the VPGM stops obtaining a weakly efficient solution
of problem (2).
Now note that Lemma 3.1(iv) combined with the definition of x**1 yield
0| = =6, < (F(x*) — F(x**1),w), VwecC. (31)

Next, we establish our main result, which shows that the whole sequence generated by the
VPGM converges without assuming Lipschitz continuity on Jg.

Theorem 4.2 The sequence {x*} e generated by the VPGM converges to a weakly efficient solution of
problem (2).
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Proof. It follows from Proposition 4.1 that {x*};c is Fejér convergent to Q, which implies by
Lemma 2.4 that {x*};cn is bounded. Let ¥ be an accumulation point and consider a subsequence
{x*}ren converging to . Since {F(x¥)}ren is K-decreasing (in view of (27)), we obtain that
¥ € Q). Infact, forany w € C,

(F(x¥),w) > (F(x'"),w), Yk €N such that k < i,.
Hence, using that (F(-), w) is lower semicontinuous for any w € C, we get

(F(x¥),w) > liminf (F(x"),w) > (F(%),w).
L—+o00
Thus, from Lemma 2.4 the whole sequence {x*};c converges to a point ¥ € Q. Let us now show
that x is a weakly efficient solution of problem (2).

We split our analysis in two cases:
Case 1. There exists & > 0 such that & < a; for all k € IN.

Since {F(x)}ten is K—decreasing and F(¥) =< F(x), we obtain that, for every w € C,
{(F(x*),w) }ren is decreasing and bounded below by (F(%),w). Hence, {{(F(x*),w)};en con-
verges, and then (31) implies that limy_, | , 6y = 0. Now, since {ay }ren is bounded from below by
&, it follows from Lemma 3.1(i) that, forallz € R"”, y € (0,1), and k € N,

2

6, < max (F(z) — F(x), w) + 1 ||z — x¥|]2
weC 20

,)/2

ﬁHZ — N2, (32)

< 7(F(z) — F(x"), ") +
where w* is the point in C achieving the above maximum. Since C is compact, we may as-
sume without loss of generality that {wen converges to some @. Hence, (32) together with
Lemma 2.5(ii) and the fact that {6 }xen converges to zero imply that

2
0 < y(F(z) — F(%),®) + 'ZL&HZ — %)%, VzeRw
Now, dividing both sides of the above inequality by - and letting -y | 0, we obtain
0 < (F(z) — F(&),@) < ma():( (F(z) — F(x),w), VzeR",
we

which implies from Lemma 2.2 that ¥ is a weakly efficient solution of problem (2).
Now, we consider the second case.
Case 2. There exists a subsequence of {ay }ren converging to zero.
Suppose without loss of generality that {ay }xen converges to zero. Define & := % > 0 and

%5 .= p(x*,&;). Hence, it follows from step 2 of the VPGM and the line-search procedure that
the vector inequality in (21) is violated with (x,a) = (£, &;). Hence, Lemma 3.4 with (v, B;) =
(x¥, &) implies that
N St
lim ——
k—+o0 8%

= 0. (33)

On the other hand, we have from the optimality condition for £* (see (10)~(12)),
k_ ok
ok =2 - Yo (25), (34)
k
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which implies that
Yo (x) > P (8F) + (05, x — 25).

Consider w* € C achieving the maximum in the expression of the function ¢« (x) given in (11),
ie., Yu(x) = (Jo(xF)(x — x%) + H(x) — H(x¥), w*). Hence, the last inequality and (11) imply
(Jo () (x = 2%) + H(x) = H(x"), w") > (Jo (") (2 = 2*) + H(2") = H(x"), ") + (6%, x — 25).
Then,
(Jo (") (x — ) + H(x),w") > (Jo (x*) (2" — x) + H(2"), w") + (0", x — ), (35)
which together with the K-convexity of G and (5) yield
(G(x) = G(x) + H(x), ") > (Jo (x*) (2" — ), w") + (H(£5), ") + (6, x — 2).

Since {w"}rcn is bounded, we can assume without loss of generality that it converges to some
@. Now, taking into account that {x*};cn converges to £, it follows from (33)-(34) that {6} con-
verges to zero and {£};cn converges to #. Thus, by taking liminf, as k goes to oo, in the above
inequality and using Lemma 2.5(ii), we obtain that

(G(x) — G(x) + H(x), w) = (H(x), ),
which implies that

max(G(x) — G(%) + H(x) — H(%),w) > (G(x) — G(%) + H(x) — H(%),®) >0, Vx€eR".

weC

Hence, since F = G + H, Lemma 2.2 implies that & is a weakly efficient solution of problem (2).
|

We end this section by establishing an iteration-complexity bound to obtain an approximate
weakly efficient solution of problem (2).

For a given tolerance ¢ > 0, we are interested to estimate how many iterations of the VPGM is
necessary to obtain a point x* such that |0;| < e. In view of the remarks preceding Theorem 4.2,
we may see such a point as an “e-approximate” weakly efficient solution of problem (2).

Proposition 4.3 The VPGM generates a point x* such that |0y| < e in at most O(1/¢) iterations, where
O is as defined in (30).

Proof. Assume that none of the generated points x¥, k = 0,..., N, is an e-approximate weakly
efficient solution of problem (2), i.e., |6x| > €. Hence, (31) implies that, for any ¥ € Q and w € C,

(N+1)e < (N+1)min{|6|: k=0,...,N} < i 16x] < (F(x%) = F(xNTY), w) < (F(x%) — F(%),w),
k=0

which implies that

maXyecC <F(x0) - F(f),w) < ,

£ s

N+1<

where the last inequality is due to Cauchy-Schwarz inequality and the fact that ||w|| = 1 for every
w € C. The above conclusion immediately proves the proposition. u
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5 Concluding Remarks

The proximal gradient method (PGM) is one of the most popular and efficient schemes for solving
convex composite vector optimization problems. This method is well-known in the scalar case
and was recently considered in the multiobjective setting in [27]. The main purpose here was to
show that for problems in which the vector function is convex (without any Lipschitz assumption
of the Jacobian of the differentiable component), the sequence generated by the PGM converges to
a weakly efficient solution. An iteration-complexity result was also established in order to obtain
an approximate weakly efficient solution of the vector problem under consideration.
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