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Abstract—A quickest intrusion detection algorithm is proposed
to detect false data injection attacks (FDIA) in smart grids with
time-varying dynamic models. The quickest detection algorithm
aims at minimizing the worst-case detection delays of cyber-
attacks, subject to an upper bound of the false alarm rate.
Since power grid state transitions could be caused by either
cyber-attacks or sudden change in loads or grid configurations,
we propose to distinguish between FDIA and sudden system
change by using a time-varying dynamic model, which can
accurately capture the dynamic state transitions due to changes
in system configurations. A dynamic state estimation algorithm
is developed to estimate and track the time-varying and non-
stationary power grid states. The quickest detection algorithm
is developed by analyzing the statistical properties of dynamic
state estimations, such that the algorithm minimizes the worst-
case detection delay while accurately distinguishing FDIA from
sudden system changes. A Markov-chain-based analytical model
is used to identify the detector’s parameter and quantify its
performance. Simulation results demonstrate that the proposed
algorithm can accurately detect and remove false data injections
or system faults with minimum delays. The proposed algorithm
can be implemented to harden intelligent electronic devices or
supervisory control and data acquisition systems to improve their
resilience to cyber-attacks or system faults, thus improving the
cyber-security of smart grids.

Index Terms—False data injection, cyber-attack, dynamic state
estimation, dynamic load change, power system.

I. INTRODUCTION

A smart grid is a combination of electrical power infras-

tructure, smart meters, and a network of computers [1]. It

uses information technologies to make intelligent decisions

about the control and state of electrical power systems. Com-

pared to conventional power grids, smart grid is more robust

and efficient due to the advancement in system monitoring,

energy management, and operation control. However, due

to its dependence on cyber-infrastructure, a smart grid is

prone to cyber-attacks [1]. Cyber-attacks can be performed

by hacking into the communication network of smart grids,

or by remotely accessing the remote terminal units (RTUs)

installed at the substations [2]. For example, the supervisory
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control and data acquisition (SCADA) system of Iran’s Natanz

nuclear fuel-enrichment facility was attacked by a Stuxnet

worm in July 2010 [3]. An adversary can launch cyber-attacks

by compromising the measurement results obtained by the

SCADA system or phasor measurement units (PMUs), such

as the power injected into different buses or power flowing

into the lines between the buses. False data injected in the

measurement results will affect the real-time control of grid

operations, thus cause significant damages to power grids. A

comprehensive review of false data injection attack (FDIA)

against modern power systems is given in [4]. To improve

the cyber-security of smart grids, it is critical to ensure

the integrity and confidentiality of the intelligent electronic

devices (IEDs) in the network such as smart meters, RTUs,

PMUs through hardware or software hardening [5]. Tamper-

proof hardware platforms can reduce avenues for FDIA.

A large number of algorithms have been developed to detect

various forms of cyber-attacks in smart grids [6]–[10]. Most

methods assume a static system model, where the system is in

steady state and its measurements are quasi-static over time.

However, in reality, the state of a power system varies with

time due to the dynamic nature of system loads [11]. So, state

estimation and FDIA detection algorithms require a dynamic

model to track the time evolution of the system states, which

can be utilized to detect and replace corrupted measurements

in the system. A dynamic state estimator can capture the

system transients due to sudden system changes in a faster

and more accurate manner compared to its static counterpart.

This is possible because of the dynamic state estimator’s

ability of using past state estimations to predict future state

of the system one step ahead. A mismatch between newly

collected measurements and their predicted values indicates

that there have been sudden changes in the system such

as loss of a large load, changes in network configurations,

system faults, or malicious attacks that have modified some

system measurements. It is vital to detect and identify these

attacks as soon as possible in order to replace the corrupted

measurements before they are processed by the state estimator.

Dynamic state estimation is important for the control and

operations of a power grid [11]–[17]. Dynamic state estima-

tion in many existing works is performed by using different

versions of an extended Kalman filter (EKF) to filter pre-

dicted state variables [11]–[13]. In [16], FDIA is detected by

tracking the dynamics of measurement variations in terms of

the Kullback-Leibler divergence [18] between two probability

distributions under normal and abnormal conditions. In [17],

an online FDIA detection method is developed by analyzing
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temporally consecutive estimated system states using wavelet

transform and deep neural network, which can effectively

capture deviations in temporal data correlations of state vectors

due to FDIA scenarios. Most works utilize the estimation

residual, which is the difference between the newly collected

measurements and their corresponding predictions, to test the

presence of FDIA. If the residual magnitude exceeds a certain

threshold, a flag is raised indicating that either there is a sud-

den system change or FDIA. FDIA is distinguished from sud-

den system changes by analyzing correlated measurements in

the location near the abnormality. In [11], if the measurements

from neighboring buses fail the detection test simultaneously,

a sudden change is declared. But, such a method might not be

effective if false data are simultaneously injected into several

neighboring buses with correlated measurements. This may

lead to a mischaracterization of the attacks as sudden changes.

Most existing FDIA detection methods are developed to

improve detection accuracy, with little or no attention given

to detection delay. Detection delay is defined as the time

difference between the launch and detection of a cyber-

attack. Reducing detection delay is critical for improving

cybersecurity [19]. A lower detection delay can shorten the

response time so that remedial actions can be taken in a timely

manner to significantly reduce the damages and economic

losses caused by cyber-attacks. Detection delay can be reduced

by employing algorithms from the quickest change detection

(QCD) framework [20], which aims at minimizing the average

or worst-case detection delays while ensuring high detection

accuracy. One of the most commonly used QCD procedure

is the cumulative sum (CUSUM) procedure [20], [21]. It has

been shown in [22], [23] that the CUSUM algorithm is asymp-

totically optimum, that is, it can asymptotically minimize

the worst-case detection delay (WDD) when the false alarm

rate goes to 0. However, implementation of CUSUM requires

knowledge of the exact statistical distribution of the mea-

surement under attack, which is usually unknown in practical

applications [24]. An adaptive Rao-CUSUM test is proposed

in [6] for false data detection in smart grid, where the unknown

distribution of data under attack is summarized by using the

Rao test statistic [25]. In [19], an orthogonal matching pursuit

CUSUM (OMP-CUSUM) algorithm is proposed to identify

the buses under attack while minimizing the detection delay.

Both [6] and [19] are developed under highly simplified linear

static system models and they cannot capture the time-varying

transient of power grids.

In this paper, we develop a quickest intrusion detection

algorithm for detecting FDIA in smart grids by using dynamic

state estimations. This algorithm can be used to harden IEDs,

PMUs, or SCADA system to improve their resilience to cyber-

attacks or system faults. The detection method is designed

to minimize the worst-case detection delay of FDIA subject

to an upper bound of the false alarm rate, which is defined

as the probability of falsely detecting an FDIA while the

system is under normal operating conditions. One of the main

challenges faced by FDIA detection is to distinguish power

grid state changes caused by FDIA from those caused by

a sudden system change, such as sudden load changes on

certain buses. To address this challenge, we propose to use

a locally linear but globally non-linear dynamic state model

to represent the dynamic state transitions in power grids. The

dynamic state evolution of the power grid is estimated and

tracked by using an EKF-based dynamic state estimator, which

estimates the current state by using both current measurements

and predictions from past states. A sudden system change

will affect the dynamic state transitions on all buses based on

the physical model of the grid, and such state transitions can

be accurately estimated by the dynamic state estimator based

on SCADA or PMU measurements. On the contrary, FDIA

or system faults might violate the dynamic state transitions

determined by the model, and this may result in large residuals

in estimation. Thus the employment of the dynamic state

models can help distinguish FDIA from sudden system change.

The quickest intrusion detection algorithm is developed by

analyzing the statistical properties of the results obtained from

dynamic state estimations. The problem is formulated as a hy-

pothesis test performed on the residuals between the estimated

and actual measurements. Since the false data attack vector

is unknown at the detector, we propose a new normalized

Rao-CUSUM test, which summarizes the unknown statistics

of post-attack distributions by using a normalized Rao test

statistic. Simulation results show that the normalization of

Rao test statistic yields significantly lower FAR compared

to un-normalized Rao test statistic under the same detection

delay. The design parameter of the test is identified by using a

Markov-chain based model of the test statistics through offline

calculations. Once FDIA is detected, corrupted measurements

are identified and replaced with their predicted values to ensure

normal operations of the grid.

To summarize, this work has two main contributions. First,

the detection algorithm aims at minimizing the worst-case

detection delay of FDIA while ensuring high detection accu-

racy. The quickest detection algorithm is developed by using

a new normalized Rao-CUSUM test that can accurately detect

FDIA in a timely manner. Second, with a dynamic model and

dynamic state estimations, the quickest detection algorithm can

distinguish state transitions caused by FDIA from those caused

by sudden system change, thus ensure the normal operations

of the grid under both conditions.

The remainder of this paper is organized as follows. Section

II describes the system model and problem formulation. The

dynamic model and dynamic state estimation are presented in

Section III. In Section IV, we develop the quickest detection

algorithm by analyzing the statistical properties of the results

from dynamic state estimations. In Section V, a Markov-chain-

based model is introduced to analytically evaluate the proposed

false data detector. Simulation results are given in Section VI,

and Section VII concludes this paper.

II. SYSTEM MODEL

A power system with N buses is considered. Without loss of

generality, the first bus is assumed to be the reference. Define

the set of buses connected to bus i as Xi with cardinality

ci = |Xi|. Denote the active and reactive power injections

into bus i as Pi and Qi, respectively. Similarly, the active and

reactive power flows from bus i to bus j are denoted Pij and

Qij , respectively, ∀ j ∈ Xi.
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The power system collects measurements of both active and

reactive power flows on different buses. The measurements

are collected in such a way that the system becomes ob-

servable, i.e. all the state variables can be determined from

the measurements. There are many optimal approaches for

sensor placement in order to make the system completely

observable through collected measurements [26]. The power

system provides a total of m = m1 +m2 + 1 measurements,

where m1 = 2N is the number of active and reactive power

injections, m2 =
∑N

i=1 |Xi| is the number of active and

reactive power flows. In addition to the power measurements,

the measurement of the voltage magnitude at the reference

bus is also available. Define the measurement vector as z =
[z1, z2, · · · , zm]T ∈ Rm×1, where (·)T is the matrix transpose

operator and R is the set of real numbers.

Define the state vector as x = [x1, x2, . . . , xn]
T ∈ Rn×1

for n = 2N − 1, where the first N − 1 elements of x are the

voltage angles of N − 1 non-reference buses and the last N

elements are the voltage magnitudes of N buses.

The relationship between the measurement vector zk and

the state vector xk, at an instant of time k is expressed as

zk = h(xk) + ek, (1)

where h(xk) = [h1(xk), . . . , hm(xk)]
T

is a nonlinear function

between the measurement vector zk and the system state

vector xk, and ek ∈ Rm×1 is the measurement error vector

at the sampling instant k. As shown in [11], we assume that

the measurement noise ek is zero-mean Gaussian distributed

with covariance matrix Rk.

Based on the observations in (1), the state estimator can

obtain an estimate x̂k of the state variable xk. The state

estimation results can be used to facilitate the detection of

FDIA or system faults.

III. DYNAMIC STATE ESTIMATION

In this section, we present a dynamic state estimation

algorithm, which relies on previous estimates to predict future

states of the system. The predicted states can, in turn, be used

by the system operator for timely anomaly detection and other

control decisions such as economic dispatch.

Consider the following state transition model, which de-

scribes the time behavior of the state vector, as

xk+1 = Fkxk +Gk +wk, (2)

where Fk ∈ Rn×n is a non-zero diagonal matrix, Gk ∈ Rn×1

is a non-zero column vector, and wk ∈ Rn×1 is a white

Gaussian noise vector with 0 mean and covariance matrix Qk.

The parameters Fk and Gk can be identified according

to the Holt’s exponential smoothing method [11]. The Holt’s

method performs smoothing over an original time series with

two smoothing parameters, α and β, with values between 0

and 1. Denote the predicted state vector at time k as x̃k. The

Holt’s method is expressed as

x̃k+1 = a′k + b′
k, (3)

a′k = αxk + (1 − α)x̃k, (4)

b′
k = β

[

a′k − a′k−1

]

+ (1− β)b′
k−1. (5)

Combining (3)-(5) yields

x̃k+1 = Fkxk +Gk, (6)

where

Fk = α(1 + β)In,

Gk = (1 + β)(1 − α)x̃k − βa′k−1 + (1− β)b′
k−1.

The time-varying linear dynamic model in (2) can then be

obtained by adding a zero mean Gaussian noise wk to (6) to

account for model uncertainties.

The proposed dynamic state estimator contains two steps:

state forecasting and state estimation.

A. State Forecasting

One main advantage of the dynamic state estimator is its

ability to use past state estimates to predict future system

states. Let x̂k be the estimated state vector at time k and Σk its

error covariance matrix. The predicted state vector x̃k+1 and

its error covariance matrix Mk+1 at time k can be obtained

by performing the conditional expectation on (2) as follows

x̃k+1 = E [xk+1 | xk = x̂k] = Fkx̂k +Gk, (7)

Mk+1 = E

[

(xk+1 − x̃k+1) (xk+1 − x̃k+1)
T | xk = x̂k

]

= FkΣkFk +Qk, (8)

where E [.] is the expectation operator.

B. State Estimation

The state estimation, also known as state filtering, seeks to

estimate the state at time k + 1 by using both the predicated

state vector, x̃k+1, obtained at the preceding step k, and the

newly received measurement vector zk+1 at time k+1. During

this stage, a new estimate x̂k+1 along with its error covariance

matrix Σk+1 are obtained at time k + 1 by minimizing the

objective function

J (xk+1) =
1

2
[zk+1 − h(xk+1)]

T
R−1

k+1 [zk+1 − h(xk+1)]

+
1

2

[

(xk+1 − x̃k+1)
T
M−1

k+1 (xk+1 − x̃k+1)
]

. (9)

The estimate x̂k+1 that minimizes the objective function in (9)

can be obtained through an iterative extended Kalman filter

(EKF) [11] as

x(i+1) = x(i) +Σ(i){HT (x(i))R−1[z− h(x(i))]

−M−1[x(i) − x̃]}, (10)

where i denotes the iteration counter, H(x) = ∂h(x)
∂x

is the

Jacobian matrix, and

Σ(i) =
[

HT (x(i))R−1H(x(i)) +M−1
]−1

. (11)

It should be noted that the subscript k + 1 was omitted in

(10) and (11) for simplicity. The proof for (10) is given in

Appendix A.

One main benefit of the state forecasting stage is to provide

the initial states to the iterative EKF algorithm in (10). Thus,

the convergence of the EKF algorithm partly depends on the

accuracy of the forecast state vector. A high state forecasting

accuracy leads to a faster convergence of the EKF algorithm.
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IV. FALSE DATA DETECTION AND IDENTIFICATION

The problems of detecting false data injections in the

measurement vector and identifying the buses under attack

are studied in this section.

Results of the dynamic state estimation will be used in

the detection and identification of FDIA. To facilitate the

development of the FDIA detection algorithm, let the initial

guess x(i) = x̃ at time k + 1 and by performing only one

iteration in (10), the estimated state vector is approximated as

x̂k+1 = x̃k+1 +Kk+1vk+1, (12)

where

vk+1 = zk+1 − h(x̃k+1) (13)

is the residual vector,

Kk+1 = Σk+1H
T (x̃k+1)R

−1
k+1 (14)

is the gain matrix, and

Σk+1 =
[

HT (x̃k+1)R
−1
k+1H(x̃k+1) +M−1

k+1

]−1
. (15)

To facilitate analysis, write the Taylor series expansion of

h(xk+1) around a linearization point x̃k+1 as

h(xk+1) = h(x̃k+1) +H(x̃k+1)(xk+1 − x̃k+1), (16)

where H(x̃k+1) =
∂h(x)
∂x

|x=x̃k+1
.

The higher order terms of (16) are omitted by assuming that

the difference (xk+1 − x̃k+1) is very small.

Combining (1), (13), and (16) gives

vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1. (17)

The covariance matrix, Sk+1, of the residual vector, vk+1,

can then be calculated as

Sk+1 = H(x̃k+1)Mk+1H
T (x̃k+1) +Rk+1. (18)

Based on (12), the estimated state vector x̂k+1 is a func-

tion the residual vector vk+1, the difference between newly

received measurements at time k + 1 and its corresponding

predictions h(x̃k+1). The newly received measurement vector

zk+1 may deviate from its predicated value h(x̃k+1). This

mismatch between the measured and predicted measurements

may be a result of several factors: a sudden change in the

system’s operating point due to a loss of a large load [12],

system faults such as sensor failure or line-to-ground faults,

or false data injections in the measurements. The change in

the system’s operating point is considered as a normal event.

However, presence of false data injections is abnormal and

can be very harmful to the system. Hence, it is vital to

distinguish between state changes due to sudden load change

or FDIA, such that false data injections can be detected and

removed from the measurements zk+1 before performing state

estimations.

We propose a new quickest change detection method by

analyzing the statistical properties of the residual vector vk+1.

The design criterion of the quickest change detection algorithm

is to minimize the worst-case detection delay, subject to the

constraint on an upper-bound of the false alarm rate. Specif-

ically, a sudden load change will affect the measurements on

all buses based on the physical model of the system. On the

other hand, FDIA will only affect the measurements on a few

buses. Thus we propose to distinguish between sudden load

change and FDIA by analyzing the statistical correlations of

signals from different buses.

A. Formulation of the Hypothesis Test

Define the null hypothesis H0, which corresponds to the

measurements without false data at time k + 1, and the alter-

native hypothesis H1, which corresponds to the measurements

with false data at time k + 1, as

H0 : zk+1 = h(xk+1) + ek+1,

H1 : zk+1 = h(xk+1) + ek+1 + a, (19)

where a is a vector of false data injected in the measurements.

From (13), (17), and (19), the hypothesis test on the residual

vector vk+1 can be written as

H0 : vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1,

H1 : vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1 + a. (20)

The residual vector vk+1 under the null hypothesis H0 is

generally assumed to be a zero mean Gaussian vector [11] and

[14]. With the dynamic state estimator presented in this paper,

the covariance matrix Sk+1 of the residual vector is given

in (18). Assuming that the attack vector a is a deterministic

vector, under the alternate hypothesis H1, vk+1 is Gaussian

with mean a and covariance matrix Sk+1.

As in (18), the elements in zk+1 are correlated based on the

physical model of the power grid. To simplify the analysis, we

propose to perform a whitening transformation on vk+1. The

covariance matrix of the residual vector can be decomposed as

Sk+1 = UT
k+1Dk+1Uk+1, where Dk+1 is a diagonal matrix

with the eigenvalues of Sk+1 on its main diagonal and Uk+1

is the corresponding orthonormal eigenvector matrix at time

instant k + 1. The whitening transformation of the residual

vector vk+1 is v̄k+1 = Wk+1vk+1, where the whitening

matrix Wk+1 = D
− 1

2

k+1Uk+1. With the whitening operator,

it can be easily shown that the covariance matrix of v̄k+1 is

Im, which is an m×m identity matrix.

Following the Gaussian distribution of vk+1 given in (20),

the hypothesis test on v̄k+1 is

H0 : v̄k+1 = Wk+1vk+1 ∼ N (0, Im),

H1 : v̄k+1 = Wk+1vk+1 ∼ N (µ, Im), (21)

where µ = Wk+1a.

B. Proposed False Data Detector

A QCD-based false data detection method is proposed in

this section to detect cyber-attacks. We assume that the false

data is injected at a random time τ , and the attack was detected

at time τ̂ . Based on the design criteria of quickest change

detection, the problem can be formulated as

(P1) minimize WDD = sup
k

Ek[(τ̂ − k)+]

subject to FAR =
1

E∞[τ̂ ]
≤ ζ.
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where WDD is the worst-case detection delay, FAR is the

false alarm rate, (a)+ = a if a ≥ 0 and 0 otherwise, Ek is

the expectation assuming the attack becomes active at τ = k,

and E∞ denotes the expectation when there is no attack. The

solution of the problem is a quickest detection algorithm in that

it aims at minimizing the worst-case detection delay, subject

to an upper bound of the false alarm rate.

The above problem can be solved by using the well-known

CUSUM algorithm [21]

τ̂ = inf{k ≥ 1|Ck ≥ A}, (22)

where A is a threshold obtained by the FAR upper bound ζ,

Ck+1 = max(0, Ck + Lk), (23)

and Lk = log f1(v̄k)
f0(v̄k)

is the log-likelihood ratio (LLR), with

f1(v̄k) and f0(v̄k) being the probability density functions

(pdfs) associated with hypotheses H1 and H0, respectively.

The CUSUM algorithm is the asymptotically optimum solu-

tion to (P1) because it can asymptotically minimize the WDD

when the FAR goes to 0 [22], [23].

Under the assumption that v̄k is Gaussian distributed, the

LLR can be calculated as

Lk = aTWT
k v̄k −

1

2
aTWT

k Wka. (24)

The calculation of the LLR Lk requires the knowledge of

the attack vector a, which is unknown at the detector. Thus

we cannot directly apply the CUSUM algorithm. In order to

resolve the unknown parameters, the detection method in [23]

utilizes the generalized likelihood ratio test (GLRT) approach

by replacing the unknown parameter with the maximum like-

lihood estimation (MLE) as

τ̂ = inf{k ≥ 1| max
1≤t≤k

sup
a

∑k

i=t
Li ≥ A}. (25)

This approach is proven to be asymptotically optimal in

terms of minimum detection delay [27]. However, the test

statistic cannot be computed recursively as the CUSUM test,

because GLRT needs to compute every unknown element of

a for each observation at sampling time 1 ≤ t ≤ k. In other

words, GLRT needs to store the observations and perform

MLE of a at every sampling instant. As a result, this approach

has very high complexity, and it might not be feasible for real-

time FDIA detection in power grids.

A low-complexity adaptive-CUSUM algorithm is proposed

in [6] based on Rao test [25], which is asymptotically equiv-

alent to the GLRT test [28]. The Rao test statistic can be

computed by taking the derivative of Lk with respect to the

unknown parameter a evaluated around the region of interests.

In our case, the region of interest is considered to be around

zero because the hypothesis H0 has zero mean. According to

(21), the statistic [25] of the Rao test for detection at time k

can be written as follows:

Y (v̄k) =
∂Lk

∂a

T
∣

∣

a=0

[

I−1(a)
∣

∣

a=0

] ∂Lk

∂a

∣

∣

a=0
= v̄T

k v̄k, (26)

where I(a) is the Fisher information matrix [18]. The proof

for (26) is given in Appendix B.

Under the null hypothesis H0, the Rao test statistic follows

Chi-square distribution, that is, Y (v̄k) ∼ χ2
m, where m is

the degree-of-freedom corresponding to the dimension of the

measurement vector. If we directly replace the LLR Lk in

(23) with the Rao test statistic Y (v̄k) in the CUSUM test

defined in (22), the CUSUM test statistic Ck will increase

monotonically under both the null and alternative hypothesis

because Y (v̄k) ≥ 0. This is undesirable for CUSUM because

it is a threshold test. To address this issue, we introduce a

normalized version of the test statistic in (26) with respect to

the mean and standard deviation of Y (v̄k) under H0, which

are, m and
√
2m, respectively. Based on the normalized test

statistic, we propose a new detection rule as follows.

Definition 1. (Normalized Rao-CUSUM Detector) Given a

whitened residual vector v̄k+1 = Wk+1vk+1 at time k + 1 ,

an FDIA is detected at time τ̂ with

τ̂ = inf{k ≥ 1|Tk ≥ A}, (27)

where

Tk+1 = max

(

0, Tk +
Y (v̄k+1)−m√

2m

)

> A, (28)

with T0 = 0. The threshold A is determined by the FAR upper

bound ζ.

The normalized Rao-CUSUM detector is developed by

modifying the asymptotically optimum GLRT-CUSUM de-

tector to balance the tradeoff between complexity and per-

formance. The proposed normalized Rao-CUSUM algorithm

might have a bit higher WDD than the GLRT-CUSUM algo-

rithm, but offers much lower complexity.

It should be noted that the above test can distinguish be-

tween sudden load change from FDIA because the formulation

of the null hypothesis H0 includes sudden load change as

a special case. In case of a sudden load change, the system

dynamics still follow the physical model of the power grid. As

a result, the residual vector can still be modeled as zero-mean

Gaussian distributed with covariance matrix Sk+1. Yet this is

no longer true when there is false data injected into the power

grid, which is modeled as the alternative hypothesis H1. Since

the test in Definition 1 is designed to distinguish between the

null and alternative hypothesis by minimizing the worst-case

detection delay, it is able to distinguish between load change

and FDIA. On the other hand, system faults, such as sensor

failures or line faults, will also cause the measurements to

deviate from those predicted by the physical model of the

system. In that case, the proposed algorithm will be able

to detect the presence of sensor failures or system faults.

However, it will not be able to differentiate FDIA from sensor

failures or system faults. Thus the algorithm will treat FDIA,

sensor failure, or other system faults in a similar manner.

In case false data are detected, we can identify the buses

under attack by using the power of the residuals at different

buses. That is, if the residual power or amplitude on a given

bus is above a certain threshold, then it is considered that

the corresponding bus is under attack. Similar to [11], the

amplitude test can be expressed as

|vk+1(i)| > γσSi
, (29)
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where |vk+1(i)| is the absolute value of the i-th element of

vk+1, σSi
is the standard deviation of the i-th element of vk+1,

and γ defines the limit of confidence. If a bus is detected as

under attack, we replace the estimated states with the predicted

states to ensure the normal operations of the power grid.

The normalized Rao-CUSUM detector proposed in Defini-

tion 1 is a simple threshold test, and the test statistic Tk can be

recursively calculated based on (28). As a result, the proposed

test has low complexity and can be easily implemented. The

implementation of the detector in (27) requires a threshold A,

which in turn depends on the FAR upper bound ζ. In the next

section, we will provide a theoretical guideline for choosing

the threshold value A in terms of FAR with the help of a

Markov-chain-based analytical model.

C. Computation Complexity Analysis

In this subsection, we study the effects of the size of system

on the computation complexity of the proposed algorithm. The

size of the system can be defined by two parameters:

• The dimension of state vector: n = 2N − 1, where N is

the number of buses in the system,

• The dimension of measurement vector: m, which depends

on the number of buses and lines.

It is easily observed that m > n. To determine the effect of size

of the system on the performance, we present the complexity

analysis of the proposed algorithm in a single sampling instant

k with respect to these two parameters separately.

The proposed algorithm has two stages: 1) false data

detection and 2) dynamic state estimation. With respect to

m, computation in stage 1 is dominated by the eigenvalue

decomposition process which has a cubic complexity O(m3),
and stage 2 is dominated by the matrix inversion of Rk which

also has a cubic complexity O(m3). So, total complexity of

the proposed algorithm scales cubically with m as O(m3).

With respect to n, stage 2 computation is dominated by the

computations of Mk in (8) and Σk in (11), both of which

have a cubic complexity O(n3). Comparatively, complexity

of stage 1 scales quadratically with n. So, total complexity of

the proposed algorithm scales cubically with n as O(n3).

V. MARKOV-CHAIN-BASED ANALYTICAL MODEL

In this section, we present a Markov-chain-based model to

analyze the proposed false data detector. The Markov-chain-

based model provides theoretical guidelines on the choice of

the detection threshold in (27) based on the FAR upper bound.

For a given FAR upper bound, we can obtain the optimum

detection threshold by using offline Monte-Carlo simulations.

Once the optimum threshold is obtained offline, the online

normalized Rao-CUSUM detector can then be performed to

detect FDIA or system faults in real time.

To facilitate analysis, R+ ∪ 0 is discretized into a finite set

of intervals representing the states {U0, U1, · · · , UM} such as

U0 = 0, U1 = (0,∆], U2 = (∆, 2∆],

U3 = (2∆, 3∆], · · · · · · , UM = (A,+∞),

where ∆ = A
M−1 and M represents the total number of

transitions from 0 to the state that has the value greater than

the threshold A.

It can be easily observed from (28) that the sequence

exhibits the property of a first-order Markov chain, where the

future state Tk+1 at time index k + 1 depends only on the

current state Tk, but not on past states [29].

The transition probabilities of the Markov chain under H0

for the proposed algorithm from state Ui at k to state Uj at

k + 1 can be described as

Pij = P (Tk+1 ∈ Uj|Tk ∈ Ui). (30)

The transition probability Pij can be computed numerically

using Monte-Carlo simulations according to the distribution of

v̄ under the null hypothesis H0. The values of the transition

probabilities are uniquely determined by the threshold A and

the number of discretization levels M . Since the calculations

of the transition probabilities are performed offline, we can

achieve arbitrary precision of the transition probability by

increasing the number of Mote-Carlo trials without affecting

the complexity of the online portion of the algorithm. As a

result, we can establish a very accurate numerical relationship

between A and the transition probabilities.

Define the transition probability matrix (TPM) P as an

(M + 1) × (M + 1) matrix with the (i, j)-th element being

Pi−1,j−1. It is clear that P is a Markov matrix, that is, all

elements of P are non-negative and the sum of each row vector

is 1. The steady-state probability πj of each state Uj can be

determined by

πj =
∑M

i=0
Pijπi, ∀ j ∈ {0, · · · ,M}, (31)

∑M

j=0
πj = 1. (32)

The transition probability of the Markov chain can be

written in a matrix format as

PT
π = π (33)

where π = [π0, π1, · · · , πM ]T . The steady-state probability

vector π can then be obtained by finding the eigenvector

corresponding to the eigenvalue 1 of the TPM P. Since P

is a Markov matrix, it always has an eigenvalue of 1.

The steady-state probability can be used to calculate the

FAR, which can be equivalently evaluated as the probability

that Tk crosses the threshold A when there is no attack in the

network. As in [29], the FAR can be equivalently calculated

as the steady-state probability πM , that is, the probability that

Tk stays at state UM under the null hypothesis

FAR = πM . (34)

Since πM is determined by the eigenvector of P, which in

turn depends on the choice of threshold A, there is an optimum

threshold value for a given FAR. Enabled by the Markov-chain

model, we can numerically obtain a very accurate estimate of

the optimum threshold based on the FAR.
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Fig. 1. Performance analysis of the proposed algorithm in comparison with
Rao-CUSUM test [6].

VI. SIMULATION RESULTS

In this section, we present numerical simulations results to

illustrate the performance of the proposed algorithm. The first

subsection demonstrates the performance in terms of FAR and

WDD using simulated data. The second subsection presents

numerical results based on simulations of the 13-bus system

using MATLAB Power System Toolbox (PST v3.0) [30], [31].

A. WDD v.s. FAR

Fig. 1 shows the tradeoff between WDD and FAR of the

proposed algorithm and the Rao-CUSUM test presented in

[6]. In the simulation, the data are generated by following

the model in (21) with m = 55 and µ = [1, 1, 0, · · · , 0]. The

false data injection time τ follows discrete uniform distribution

between [1, 100]. Every point on the curves is obtained by

averaging over 10, 000 Monte-Carlo trials. For a given FAR,

the corresponding threshold A is chosen by following the

Markov-chain analysis in Section V. As expected, the WDD

is a decreasing function of the FAR. The proposed detection

algorithm outperforms the Rao-CUSUM test used in [6]. At

FAR = 10−2, the WDD of the proposed algorithm and the

Rao-CUSUM test is 42 and 95 samples, respectively.

B. FDIA Detection in Power Systems

In this section, we present the simulation results performed

on a 13-bus system with two areas as shown in Fig. 2. Bus 1

is used as the reference bus. The measurement vector consists

of m = 55 components: the voltage magnitude of bus 1,

the active and reactive power injections at all 13 buses, the

active and reactive power flows at all 14 lines. The state vector

consists of n = 25 components: the voltage magnitudes at all

13 buses and the phase angles at the 12 non-reference buses.

Using MATLAB Power System Toolbox (PST v3.0), the

system dynamics is simulated by increasing the active load at

bus 4 by 0.5 per unit (p.u.) and the resulting measurement and

state vectors are considered as the true values of the system.

The noisy measurement vector ek in (1) is obtained by adding

a zero mean Gaussian noise with a diagonal covariance matrix

Rk to each of the true measurements. The noise variances,

which are the diagonal elements of Rk, are 10−5 for the

voltage magnitude of reference bus and 10−6 for the active

and reactive power measurements. The matrix Qk = 10−6In

Fig. 2. Single Line Diagram Two Area System [31].
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Fig. 3. The real power at bus 14 vs time t with false data at 0.25 ≤ t < 0.6,
load change at t = 0.6, and the detector in (28).

is kept constant at every sampling time k. The parameters

Fk and Gk are obtained according to the Holt’s exponential

smoothing method with α = 0.95 and β = 0.001 [11].

The sampling rate in our simulation is set as ∆t = 0.01
seconds. Thus the k-th time index corresponds to a time value

of t = k∆t seconds. In order to evaluate the performance of

the proposed detector, two scenarios are simulated: false data

and sudden load change conditions. The false data condition

is simulated by injecting errors of −1.5 and 1 p.u. into the

active power measurements at buses 13 and 14, respectively,

during a time period 0.25 ≤ t < 0.6 seconds unless specified

otherwise. The sudden load change condition is simulated by

cutting the active power injection of bus 4 by 1 p.u at t = 0.6
seconds. In each of the following figures, every point on the

curves is obtained by averaging over 1, 000 Monte-Carlo trials.

Fig. 3 shows the active power at bus 14 with false data

injected into the active power measurements at buses 13 and

14. In addition, the active power injection of bus 4 is cut by

1 p.u. at t = 0.6 seconds to simulate sudden load change.

The threshold of the proposed detector is set at A = 200,

which corresponds to FAR of 2.5 × 10−5 according to the

Markov-chain analysis. Once an FDIA is detected, the residual

amplitudes are compared to a threshold as in (29) to identify

the buses under attack, with α = 3.5 used in this paper. The

measurements at the buses under attack are then replaced with

their predicted values. When there is no attack, the power

calculated from the estimated states is almost identical to its

actual value. When false data is injected between 0.25 ≤ t <

0.6 seconds, the proposed detector successfully detects the

presence of FDIA and replaces the corrupted measurement
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Fig. 4. The voltage magnitude (top) and phase angle (bottom) at bus 13 vs
time t with false data at 0.25 ≤ t < 0.6, load change at t = 0.6, and the
detector in (28).
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Fig. 5. The real power at bus 14 vs time t with false data at 0.25 ≤ t < 0.6

and the detector in [11].

with the predicted values. In this case, the power calculated by

using state estimation is slightly different from its true value,

with a difference less than 0.33%. When there is a sudden

change at t = 0.6 seconds, the detector correctly recognizes

it as a normal operating condition and achieves correct state

estimates. In addition, there is a one sample lag between the

predicted value and the actual value.

Fig. 4 shows the voltage magnitude (top) and phase angle

(bottom) at bus 13 under the same configuration of Fig. 3. The

voltage amplitude and phase are estimated with high accuracy

despite the presence of FDIA, mainly because the false data

are correctly identified and replaced with predicted values. In

addition, the state estimator correctly adapts to the dynamic

change at t = 0.6 seconds.

Fig. 5 shows the performance of an existing residual-

based detector that was proposed in [11], under the same

configuration as in Fig. 3. Since the false data are injected

into the correlated measurements of adjacent buses 13 and 14,

the detector in [11] is unable to distinguish the false data from

the sudden changes in the system. The FDIA is erroneously

detected as a sudden change. As a result, during the FDIA,

the power calculated from the estimated and predicted states

deviate significantly from its actual value. The performance of

the estimator yields in an estimation error of as high as 0.7
p.u at t = 0.25 seconds.

To further illustrate the ability of the proposed detector to

distinguish between FDIA and sudden change, Fig. 6 shows
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Fig. 6. The real power at bus 4 vs time t with false data at 0.25 ≤ t < 0.6,
load change at t = 0.6, and the detector in (28).
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Fig. 7. The voltage magnitude (top) and phase angle (bottom) at bus 4 vs
time t with false data at 0.25 ≤ t < 0.6, load change at t = 0.6, and the
detector in (28).

the active power measurement at bus 4. The active load at

bus 4 is increased by 0.5 p.u. at t = 0.6 seconds. The load

change caused a gradual change of the active power. Since the

load change affects power measurements on all buses based

on the physical model of the power grid, the proposed detector

successfully recognizes it as a load change instead of FDIA.

Thus the dynamic state estimator can accurately track and

estimate the state change caused by the load change. The

power calculated from the estimated states is almost identical

to its original value. Again a one sample lag is observed

between the predicted value and actual value. Similarly, in

Fig. 7, the voltage magnitude (top) and phase angle (bottom)

at bus 4 are estimated with high accuracy.

The proposed algorithm assumes that the topology of the

system remains unchanged. However, in the event of a system

fault, the topology of the system might change. As a result,

the proposed algorithm will detect the deviation of system’s

behavior due to system fault in a similar manner as FDIA

detection. To further illustrate the performance of proposed

algorithm under system faults, Fig. 8 shows the active power

at bus 14 under the influence of a single line-to-ground fault,

which is applied to the line connecting bus 3 and bus 101 at

t = 0.2 seconds. The fault is cleared at bus 3 at t = 0.35
seconds and at bus 101 at t = 0.4 seconds. It can be

observed that throughout the duration of the line-to-ground

fault, the proposed algorithm detects the fault and replace

the measurement value by using the predicted values. Thus
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Fig. 8. The real power at bus 14 with single line-to-ground fault at the line
connecting bus 3 and bus 101 during 0.2 ≤ t ≤ 0.4.

the algorithm can detect the presence of fault, but it cannot

differentiate fault from cyber-attacks.

VII. CONCLUSION

A quickest intrusion detection algorithm has been developed

for the detection and removal of false data injected into smart

grids. The algorithm was developed to minimize the worst-

case detection delay subject to an upper bound of false alarm

rate. To distinguish between FDIA and sudden system change,

a time-varying dynamic model was used to represent the

dynamic state transitions. A dynamic state estimator was then

developed to estimate and track the time-varying and non-

stationary state transitions. Based on the statistical properties

of the state estimation results, a new normalized Rao-CUSUM

detector was developed to minimize the detection delay of

FDIA while separating FDIA from sudden system changes.

Unlike existing algorithms that rely on measurement correla-

tion to discriminate false data from sudden system changes, the

proposed algorithm can detect any false data including those

injected into correlated measurements. Simulation results have

shown that the proposed algorithm can accurately and timely

detect and remove FDIA. In addition, the algorithm can also

detect system faults such as sensor failures or line outages.

However, it cannot differentiate system faults from FDIA. The

algorithm can be used to harden IEDs or SCADA systems to

improve the security and resilience of smart grids.

APPENDIX A

PROOF OF (10)

The point x, which minimizes (9) can be obtained by

calculating the first derivative of J(x) and setting it to zero.

Define the first derivative of J(x) as

g(x) =
∂J (x)

∂x
= −∂hT(x)

∂x
R−1 [z− h(x)] +M−1 (x− x̃) .

(35)

The minimum point x̂ of J(x) is calculated by solving

g(x̂) = 0. (36)

Given the non-linearity of (35), (36) is solved by iterative

methods such as the Newton-Raphson method.

The Taylor series expansion of g(x) for x = x(0) +∆x is

g(x) = g(x(0)) +
∂g(x)

∂x
|x=x(0) ∆x, (37)

where x(0) is the initial point and

∂g(x)

∂x
= g

′

(x) = HT (x)R−1H(x) +M−1, (38)

where H(x) = ∂h(x)
∂x

.

According to the Newton-Raphson method, by setting (37)

to zero, the increment ∆x is obtained as

∆x = −
[

g
′

(x(0))
]−1

g(x(0)). (39)

Thus,

x = x(0) −Σ(0)g(x(0)), (40)

where

Σ(0) =
[

g
′

(x(0))
]−1

=
[

HT (x(0))R−1H(x(0)) +M−1
]−1

.

(41)

Combining (35), (40), and (41) at the (i+1)-th iteration with

an initial point x(i) = x(i+1)−∆x, the (i+1)-th point becomes

x(i+1) = x(i) +Σ(i){HT (x(i))R−1[z− h(x(i))]

−M−1(x(i) − x̃)}. (42)

This completes the proof.

APPENDIX B

PROOF OF (26)

Combining the definition of LLR in (24) with the hypothe-

ses in (21), we obtain

∂Lk

∂a
= WT

k v̄k −WT
k Wka. (43)

Next, substituting the value a = 0 yields in

∂Lk

∂a

∣

∣

a=0
= WT

k v̄k. (44)

Using the definition of Fisher information matrix [18], we get

I(a) = −E

[

∂

∂a

(∂Lk

∂a

)

]

= WT
k Wk. (45)

Combining (44) and (45) results in the Rao test statistic

Y (v̄k) = v̄T
k v̄k. This completes the proof.
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