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Abstract—A quickest intrusion detection algorithm is proposed
to detect false data injection attacks (FDIA) in smart grids with
time-varying dynamic models. The quickest detection algorithm
aims at minimizing the worst-case detection delays of cyber-
attacks, subject to an upper bound of the false alarm rate.
Since power grid state transitions could be caused by either
cyber-attacks or sudden change in loads or grid configurations,
we propose to distinguish between FDIA and sudden system
change by using a time-varying dynamic model, which can
accurately capture the dynamic state transitions due to changes
in system configurations. A dynamic state estimation algorithm
is developed to estimate and track the time-varying and non-
stationary power grid states. The quickest detection algorithm
is developed by analyzing the statistical properties of dynamic
state estimations, such that the algorithm minimizes the worst-
case detection delay while accurately distinguishing FDIA from
sudden system changes. A Markov-chain-based analytical model
is used to identify the detector’s parameter and quantify its
performance. Simulation results demonstrate that the proposed
algorithm can accurately detect and remove false data injections
or system faults with minimum delays. The proposed algorithm
can be implemented to harden intelligent electronic devices or
supervisory control and data acquisition systems to improve their
resilience to cyber-attacks or system faults, thus improving the
cyber-security of smart grids.

Index Terms—TFalse data injection, cyber-attack, dynamic state
estimation, dynamic load change, power system.

I. INTRODUCTION

A smart grid is a combination of electrical power infras-
tructure, smart meters, and a network of computers [1]. It
uses information technologies to make intelligent decisions
about the control and state of electrical power systems. Com-
pared to conventional power grids, smart grid is more robust
and efficient due to the advancement in system monitoring,
energy management, and operation control. However, due
to its dependence on cyber-infrastructure, a smart grid is
prone to cyber-attacks [1]. Cyber-attacks can be performed
by hacking into the communication network of smart grids,
or by remotely accessing the remote terminal units (RTUs)
installed at the substations [2]. For example, the supervisory
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control and data acquisition (SCADA) system of Iran’s Natanz
nuclear fuel-enrichment facility was attacked by a Stuxnet
worm in July 2010 [3]. An adversary can launch cyber-attacks
by compromising the measurement results obtained by the
SCADA system or phasor measurement units (PMUs), such
as the power injected into different buses or power flowing
into the lines between the buses. False data injected in the
measurement results will affect the real-time control of grid
operations, thus cause significant damages to power grids. A
comprehensive review of false data injection attack (FDIA)
against modern power systems is given in [4]. To improve
the cyber-security of smart grids, it is critical to ensure
the integrity and confidentiality of the intelligent electronic
devices (IEDs) in the network such as smart meters, RTUs,
PMUs through hardware or software hardening [5]. Tamper-
proof hardware platforms can reduce avenues for FDIA.

A large number of algorithms have been developed to detect
various forms of cyber-attacks in smart grids [6]-[10]. Most
methods assume a static system model, where the system is in
steady state and its measurements are quasi-static over time.
However, in reality, the state of a power system varies with
time due to the dynamic nature of system loads [11]. So, state
estimation and FDIA detection algorithms require a dynamic
model to track the time evolution of the system states, which
can be utilized to detect and replace corrupted measurements
in the system. A dynamic state estimator can capture the
system transients due to sudden system changes in a faster
and more accurate manner compared to its static counterpart.
This is possible because of the dynamic state estimator’s
ability of using past state estimations to predict future state
of the system one step ahead. A mismatch between newly
collected measurements and their predicted values indicates
that there have been sudden changes in the system such
as loss of a large load, changes in network configurations,
system faults, or malicious attacks that have modified some
system measurements. It is vital to detect and identify these
attacks as soon as possible in order to replace the corrupted
measurements before they are processed by the state estimator.

Dynamic state estimation is important for the control and
operations of a power grid [11]-[17]. Dynamic state estima-
tion in many existing works is performed by using different
versions of an extended Kalman filter (EKF) to filter pre-
dicted state variables [11]-[13]. In [16], FDIA is detected by
tracking the dynamics of measurement variations in terms of
the Kullback-Leibler divergence [18] between two probability
distributions under normal and abnormal conditions. In [17],
an online FDIA detection method is developed by analyzing
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temporally consecutive estimated system states using wavelet
transform and deep neural network, which can effectively
capture deviations in temporal data correlations of state vectors
due to FDIA scenarios. Most works utilize the estimation
residual, which is the difference between the newly collected
measurements and their corresponding predictions, to test the
presence of FDIA. If the residual magnitude exceeds a certain
threshold, a flag is raised indicating that either there is a sud-
den system change or FDIA. FDIA is distinguished from sud-
den system changes by analyzing correlated measurements in
the location near the abnormality. In [11], if the measurements
from neighboring buses fail the detection test simultaneously,
a sudden change is declared. But, such a method might not be
effective if false data are simultaneously injected into several
neighboring buses with correlated measurements. This may
lead to a mischaracterization of the attacks as sudden changes.

Most existing FDIA detection methods are developed to
improve detection accuracy, with little or no attention given
to detection delay. Detection delay is defined as the time
difference between the launch and detection of a cyber-
attack. Reducing detection delay is critical for improving
cybersecurity [19]. A lower detection delay can shorten the
response time so that remedial actions can be taken in a timely
manner to significantly reduce the damages and economic
losses caused by cyber-attacks. Detection delay can be reduced
by employing algorithms from the quickest change detection
(QCD) framework [20], which aims at minimizing the average
or worst-case detection delays while ensuring high detection
accuracy. One of the most commonly used QCD procedure
is the cumulative sum (CUSUM) procedure [20], [21]. It has
been shown in [22], [23] that the CUSUM algorithm is asymp-
totically optimum, that is, it can asymptotically minimize
the worst-case detection delay (WDD) when the false alarm
rate goes to 0. However, implementation of CUSUM requires
knowledge of the exact statistical distribution of the mea-
surement under attack, which is usually unknown in practical
applications [24]. An adaptive Rao-CUSUM test is proposed
in [6] for false data detection in smart grid, where the unknown
distribution of data under attack is summarized by using the
Rao test statistic [25]. In [19], an orthogonal matching pursuit
CUSUM (OMP-CUSUM) algorithm is proposed to identify
the buses under attack while minimizing the detection delay.
Both [6] and [19] are developed under highly simplified linear
static system models and they cannot capture the time-varying
transient of power grids.

In this paper, we develop a quickest intrusion detection
algorithm for detecting FDIA in smart grids by using dynamic
state estimations. This algorithm can be used to harden IEDs,
PMUs, or SCADA system to improve their resilience to cyber-
attacks or system faults. The detection method is designed
to minimize the worst-case detection delay of FDIA subject
to an upper bound of the false alarm rate, which is defined
as the probability of falsely detecting an FDIA while the
system is under normal operating conditions. One of the main
challenges faced by FDIA detection is to distinguish power
grid state changes caused by FDIA from those caused by
a sudden system change, such as sudden load changes on
certain buses. To address this challenge, we propose to use

a locally linear but globally non-linear dynamic state model
to represent the dynamic state transitions in power grids. The
dynamic state evolution of the power grid is estimated and
tracked by using an EKF-based dynamic state estimator, which
estimates the current state by using both current measurements
and predictions from past states. A sudden system change
will affect the dynamic state transitions on all buses based on
the physical model of the grid, and such state transitions can
be accurately estimated by the dynamic state estimator based
on SCADA or PMU measurements. On the contrary, FDIA
or system faults might violate the dynamic state transitions
determined by the model, and this may result in large residuals
in estimation. Thus the employment of the dynamic state
models can help distinguish FDIA from sudden system change.

The quickest intrusion detection algorithm is developed by
analyzing the statistical properties of the results obtained from
dynamic state estimations. The problem is formulated as a hy-
pothesis test performed on the residuals between the estimated
and actual measurements. Since the false data attack vector
is unknown at the detector, we propose a new normalized
Rao-CUSUM test, which summarizes the unknown statistics
of post-attack distributions by using a normalized Rao test
statistic. Simulation results show that the normalization of
Rao test statistic yields significantly lower FAR compared
to un-normalized Rao test statistic under the same detection
delay. The design parameter of the test is identified by using a
Markov-chain based model of the test statistics through offline
calculations. Once FDIA is detected, corrupted measurements
are identified and replaced with their predicted values to ensure
normal operations of the grid.

To summarize, this work has two main contributions. First,
the detection algorithm aims at minimizing the worst-case
detection delay of FDIA while ensuring high detection accu-
racy. The quickest detection algorithm is developed by using
a new normalized Rao-CUSUM test that can accurately detect
FDIA in a timely manner. Second, with a dynamic model and
dynamic state estimations, the quickest detection algorithm can
distinguish state transitions caused by FDIA from those caused
by sudden system change, thus ensure the normal operations
of the grid under both conditions.

The remainder of this paper is organized as follows. Section
IT describes the system model and problem formulation. The
dynamic model and dynamic state estimation are presented in
Section III. In Section IV, we develop the quickest detection
algorithm by analyzing the statistical properties of the results
from dynamic state estimations. In Section V, a Markov-chain-
based model is introduced to analytically evaluate the proposed
false data detector. Simulation results are given in Section VI,
and Section VII concludes this paper.

II. SYSTEM MODEL

A power system with /N buses is considered. Without loss of
generality, the first bus is assumed to be the reference. Define
the set of buses connected to bus i as A&; with cardinality
¢; = |X;|. Denote the active and reactive power injections
into bus 7 as P; and @;, respectively. Similarly, the active and
reactive power flows from bus 7 to bus j are denoted P;; and
Q;j, respectively, V j € &;.
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The power system collects measurements of both active and
reactive power flows on different buses. The measurements
are collected in such a way that the system becomes ob-
servable, i.e. all the state variables can be determined from
the measurements. There are many optimal approaches for
sensor placement in order to make the system completely
observable through collected measurements [26]. The power
system provides a total of m = m; + my + 1 measurements,
where m; = 2N is the number of active and reactive power
injections, my = vazl |X;| is the number of active and
reactive power flows. In addition to the power measurements,
the measurement of the voltage magnitude at the reference
bus is also available. Define the measurement vector as z =
[21, 22, zm]T € R™*1, where (-)7 is the matrix transpose
operator and R is the set of real numbers.

Define the state vector as x = [x1,22,...,7,]T € R™¥!
for n = 2N — 1, where the first N — 1 elements of x are the
voltage angles of N — 1 non-reference buses and the last IV
elements are the voltage magnitudes of N buses.

The relationship between the measurement vector zj; and
the state vector xj, at an instant of time k is expressed as

z;, = h(xy) + ey, (1)

where h(x;) = [h1(xk), .., b (xx)]" is a nonlinear function
between the measurement vector z; and the system state
vector xj, and e, € R™*! is the measurement error vector
at the sampling instant k. As shown in [11], we assume that
the measurement noise ey is zero-mean Gaussian distributed
with covariance matrix Ry.

Based on the observations in (1), the state estimator can
obtain an estimate Xj of the state variable xj. The state
estimation results can be used to facilitate the detection of
FDIA or system faults.

III. DYNAMIC STATE ESTIMATION

In this section, we present a dynamic state estimation
algorithm, which relies on previous estimates to predict future
states of the system. The predicted states can, in turn, be used
by the system operator for timely anomaly detection and other
control decisions such as economic dispatch.

Consider the following state transition model, which de-
scribes the time behavior of the state vector, as

Xp+1 = Fpxp + G + wy, (2)

where Fj, € R™*" is a non-zero diagonal matrix, Gy € Rnx1
is a non-zero column vector, and wj, € R"™*! is a white
Gaussian noise vector with 0 mean and covariance matrix Q.

The parameters Fj; and Gy can be identified according
to the Holt’s exponential smoothing method [11]. The Holt’s
method performs smoothing over an original time series with
two smoothing parameters, o and (3, with values between 0
and 1. Denote the predicted state vector at time k as Xj. The
Holt’s method is expressed as

Xp+1 = aj, + by, (€)
a), = axy + (1 — a)Xx, 4)
bj, = B [a} —aj_1] + (1 = B)bj_1. ©)

Combining (3)-(5) yields
Xi+1 = Fixy + Gy, (6)
where
Fi = a(l + B)L,,
Gr=(1+4p8)1—-a)xi —Bay_; + (1 - B)bj_;.

The time-varying linear dynamic model in (2) can then be
obtained by adding a zero mean Gaussian noise wy, to (6) to
account for model uncertainties.

The proposed dynamic state estimator contains two steps:
state forecasting and state estimation.

A. State Forecasting

One main advantage of the dynamic state estimator is its
ability to use past state estimates to predict future system
states. Let X;, be the estimated state vector at time k and X, its
error covariance matrix. The predicted state vector Xy and
its error covariance matrix My at time k can be obtained
by performing the conditional expectation on (2) as follows

X1 = E[Xpq1 | X = Xi) = Fixp + Gy, @)
M1 =E [(Xp11 — K1) (X1 — K1) | Xp = X
=Fi. 32 F; + Qg (8)

where E[] is the expectation operator.

B. State Estimation

The state estimation, also known as state filtering, seeks to
estimate the state at time k + 1 by using both the predicated
state vector, X1, obtained at the preceding step k, and the
newly received measurement vector zx1 at time k+ 1. During
this stage, a new estimate X1 along with its error covariance
matrix 34 are obtained at time k + 1 by minimizing the
objective function

1 _
J (Xk1) = 3 Zrs1 — h(xes1)]” Ryt 21 — h(xpg)]

1 - T ar—1 -
t3 [(xk-i-l = Xp+1)” My (Xet1 — Xey1) | - )
The estimate X1 that minimizes the objective function in (9)
can be obtained through an iterative extended Kalman filter

(EKF) [11] as
x(D) — (@) 4 g(i){HT(X(i))Rfl[Z _ h(X(i))]

- M x® -]}, (10)
where i denotes the iteration counter, H(x) = %ﬁ:‘) is the
Jacobian matrix, and

‘ , , ~1
50 = HT(x(l))R_lH(x(’))—i-M_l} (11

It should be noted that the subscript £ + 1 was omitted in
(10) and (11) for simplicity. The proof for (10) is given in
Appendix A.

One main benefit of the state forecasting stage is to provide
the initial states to the iterative EKF algorithm in (10). Thus,
the convergence of the EKF algorithm partly depends on the
accuracy of the forecast state vector. A high state forecasting
accuracy leads to a faster convergence of the EKF algorithm.
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IV. FALSE DATA DETECTION AND IDENTIFICATION

The problems of detecting false data injections in the
measurement vector and identifying the buses under attack
are studied in this section.

Results of the dynamic state estimation will be used in
the detection and identification of FDIA. To facilitate the
development of the FDIA detection algorithm, let the initial
guess x() = % at time k + 1 and by performing only one
iteration in (10), the estimated state vector is approximated as

X1 = X1 + Kpp1vegr, (12)
where
Vit1 = Zgt+1 — h(Xpt1) (13)
is the residual vector,
Kii1 = 2k+1HT()~Ck+1)R;;1_1 (14)
is the gain matrix, and
_ T/ -1 5 -1 711
Si1 = [H Fee) Ry H(Xipr) + M, . (15)

To facilitate analysis, write the Taylor series expansion of
h(xy11) around a linearization point X1 as

h(xk+1) = h(f(k_,_l) + H(ilﬁ—l)(xk-i-l - ik-i-l)a (16)
Where H(ik+1) = 8%52() |x:}~(k+1'

The higher order terms of (16) are omitted by assuming that
the difference (Xx4+1 — Xp41) is very small.
Combining (1), (13), and (16) gives

Vit1 = H(Xg1) (X1 — Xet1) + €pt1. 17

The covariance matrix, S 1, of the residual vector, Vi1,
can then be calculated as

Skr1 = H(Xp1 )My 1 HY (Xp41) + Rygr

Based on (12), the estimated state vector Xy is a func-
tion the residual vector vi41, the difference between newly
received measurements at time k + 1 and its corresponding
predictions h(Xy1). The newly received measurement vector
Zi+1 may deviate from its predicated value h(Xj41). This
mismatch between the measured and predicted measurements
may be a result of several factors: a sudden change in the
system’s operating point due to a loss of a large load [12],
system faults such as sensor failure or line-to-ground faults,
or false data injections in the measurements. The change in
the system’s operating point is considered as a normal event.
However, presence of false data injections is abnormal and
can be very harmful to the system. Hence, it is vital to
distinguish between state changes due to sudden load change
or FDIA, such that false data injections can be detected and
removed from the measurements z;_; before performing state
estimations.

We propose a new quickest change detection method by
analyzing the statistical properties of the residual vector v 1.
The design criterion of the quickest change detection algorithm
is to minimize the worst-case detection delay, subject to the
constraint on an upper-bound of the false alarm rate. Specif-
ically, a sudden load change will affect the measurements on

(18)

all buses based on the physical model of the system. On the
other hand, FDIA will only affect the measurements on a few
buses. Thus we propose to distinguish between sudden load
change and FDIA by analyzing the statistical correlations of
signals from different buses.

A. Formulation of the Hypothesis Test

Define the null hypothesis Hy, which corresponds to the
measurements without false data at time k£ + 1, and the alter-
native hypothesis H, which corresponds to the measurements
with false data at time k + 1, as

Ho : Zpr1 = W(Xpp1) + €p41,

Hi: Zkr1 = h(Xpq1) + €1 + A, (19)

where a is a vector of false data injected in the measurements.
From (13), (17), and (19), the hypothesis test on the residual
vector vi41 can be written as

Ho : Virr = H(Xpy1) (Kpt1 — Xer1) + €x11,

Hi i Viep1r = H(Xpg1) (Xet1 — Xpt1) + exp1 +a. (20)

The residual vector vi41 under the null hypothesis H is
generally assumed to be a zero mean Gaussian vector [11] and
[14]. With the dynamic state estimator presented in this paper,
the covariance matrix Siy; of the residual vector is given
in (18). Assuming that the attack vector a is a deterministic
vector, under the alternate hypothesis Hi, vi41 is Gaussian
with mean a and covariance matrix Sy 1.

As in (18), the elements in zj are correlated based on the
physical model of the power grid. To simplify the analysis, we
propose to perform a whitening transformation on vj4. The
covariance matrix of the residual vector can be decomposed as
Sk+1 = U;;F+1Dk+1Uk+1, where Dy is a diagonal matrix
with the eigenvalues of Sy 1 on its main diagonal and Uy
is the corresponding orthonormal eigenvector matrix at time
instant k + 1. The whitening transformation of the residual
vector Vit 1S Vi1 = Wi41Viy1, where the whitening
matrix Wy, = D,;fl Uy, 1. With the whitening operator,
it can be easily shown that the covariance matrix of Vg4 is
I,,, which is an m x m identity matrix.

Following the Gaussian distribution of v, given in (20),
the hypothesis test on vy is

~ N(0,L,),
~ N(/L,Im),

Ho : Vi1 = W1 Vet

Hi: Vi1 = Wrp1 Vi 2D

where p = Wy a.

B. Proposed False Data Detector

A QCD-based false data detection method is proposed in
this section to detect cyber-attacks. We assume that the false
data is injected at a random time 7, and the attack was detected
at time 7. Based on the design criteria of quickest change
detection, the problem can be formulated as

(P1)  minimize WDD = supE.[(7 — k)]
k
1
subject to FAR = o <.
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where WDD is the worst-case detection delay, FAR is the
false alarm rate, (a)™ = a if @ > 0 and O otherwise, Ej, is
the expectation assuming the attack becomes active at 7 = k,
and E., denotes the expectation when there is no attack. The
solution of the problem is a quickest detection algorithm in that
it aims at minimizing the worst-case detection delay, subject
to an upper bound of the false alarm rate.

The above problem can be solved by using the well-known
CUSUM algorithm [21]

7 =inf{k > 1|Cy > A}, (22)

where A is a threshold obtained by the FAR upper bound ¢,

Ck+l = max(O, Cr + Lk), (23)

and Ly = log % is the log-likelihood ratio (LLR), with
f1(vk) and fo(vy) being the probability density functions
(pdfs) associated with hypotheses H; and Hj, respectively.
The CUSUM algorithm is the asymptotically optimum solu-
tion to (P1) because it can asymptotically minimize the WDD
when the FAR goes to 0 [22], [23].

Under the assumption that v is Gaussian distributed, the
LLR can be calculated as

Lk::aTvvgvk-%aTvvfkaa. (24)

The calculation of the LLR Lj requires the knowledge of
the attack vector a, which is unknown at the detector. Thus
we cannot directly apply the CUSUM algorithm. In order to
resolve the unknown parameters, the detection method in [23]
utilizes the generalized likelihood ratio test (GLRT) approach
by replacing the unknown parameter with the maximum like-
lihood estimation (MLE) as

A . k
7 =inf{k > 1] 1r£1tagxk sgp Zi:t L; > A}. (25)

This approach is proven to be asymptotically optimal in
terms of minimum detection delay [27]. However, the test
statistic cannot be computed recursively as the CUSUM test,
because GLRT needs to compute every unknown element of
a for each observation at sampling time 1 < ¢ < k. In other
words, GLRT needs to store the observations and perform
MLE of a at every sampling instant. As a result, this approach
has very high complexity, and it might not be feasible for real-
time FDIA detection in power grids.

A low-complexity adaptive-CUSUM algorithm is proposed
in [6] based on Rao test [25], which is asymptotically equiv-
alent to the GLRT test [28]. The Rao test statistic can be
computed by taking the derivative of Lj with respect to the
unknown parameter a evaluated around the region of interests.
In our case, the region of interest is considered to be around
zero because the hypothesis H has zero mean. According to
(21), the statistic [25] of the Rao test for detection at time k&
can be written as follows:

oL,"
Oa
where Z(a) is the Fisher information matrix [18]. The proof
for (26) is given in Appendix B.

0Ly

Y (Vi) = 1(a)’azo} g’azo = \_fg\_fk, (26)

lazo |

5

Under the null hypothesis Hg, the Rao test statistic follows
Chi-square distribution, that is, Y (V) ~ x2,, where m is
the degree-of-freedom corresponding to the dimension of the
measurement vector. If we directly replace the LLR Lj in
(23) with the Rao test statistic Y (vy) in the CUSUM test
defined in (22), the CUSUM test statistic C, will increase
monotonically under both the null and alternative hypothesis
because Y (V) > 0. This is undesirable for CUSUM because
it is a threshold test. To address this issue, we introduce a
normalized version of the test statistic in (26) with respect to
the mean and standard deviation of Y (v}) under #Hg, which
are, m and v2m, respectively. Based on the normalized test
statistic, we propose a new detection rule as follows.

Definition 1. (Normalized Rao-CUSUM Detector) Given a
whitened residual vector Viy1 = Wy1Viy at time k+ 1,
an FDIA is detected at time 7T with

7 =inf{k > 1T}, > A}, (27
where
Y(Vk+1) — m>
Ti41 =max (0,1 + —————— | > A, 28
k1 < s 28)

with Ty = 0. The threshold A is determined by the FAR upper
bound (.

The normalized Rao-CUSUM detector is developed by
modifying the asymptotically optimum GLRT-CUSUM de-
tector to balance the tradeoff between complexity and per-
formance. The proposed normalized Rao-CUSUM algorithm
might have a bit higher WDD than the GLRT-CUSUM algo-
rithm, but offers much lower complexity.

It should be noted that the above test can distinguish be-
tween sudden load change from FDIA because the formulation
of the null hypothesis H includes sudden load change as
a special case. In case of a sudden load change, the system
dynamics still follow the physical model of the power grid. As
a result, the residual vector can still be modeled as zero-mean
Gaussian distributed with covariance matrix Syy1. Yet this is
no longer true when there is false data injected into the power
grid, which is modeled as the alternative hypothesis #;. Since
the test in Definition 1 is designed to distinguish between the
null and alternative hypothesis by minimizing the worst-case
detection delay, it is able to distinguish between load change
and FDIA. On the other hand, system faults, such as sensor
failures or line faults, will also cause the measurements to
deviate from those predicted by the physical model of the
system. In that case, the proposed algorithm will be able
to detect the presence of sensor failures or system faults.
However, it will not be able to differentiate FDIA from sensor
failures or system faults. Thus the algorithm will treat FDIA,
sensor failure, or other system faults in a similar manner.

In case false data are detected, we can identify the buses
under attack by using the power of the residuals at different
buses. That is, if the residual power or amplitude on a given
bus is above a certain threshold, then it is considered that
the corresponding bus is under attack. Similar to [11], the
amplitude test can be expressed as

|Vk+1 (7’)| > Y0s;, (29)
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where |vj1(i)| is the absolute value of the i-th element of
Vi+1, 0g, 1s the standard deviation of the ¢-th element of v 1,
and ~ defines the limit of confidence. If a bus is detected as
under attack, we replace the estimated states with the predicted
states to ensure the normal operations of the power grid.

The normalized Rao-CUSUM detector proposed in Defini-
tion 1 is a simple threshold test, and the test statistic 7}, can be
recursively calculated based on (28). As a result, the proposed
test has low complexity and can be easily implemented. The
implementation of the detector in (27) requires a threshold A,
which in turn depends on the FAR upper bound (. In the next
section, we will provide a theoretical guideline for choosing
the threshold value A in terms of FAR with the help of a
Markov-chain-based analytical model.

C. Computation Complexity Analysis

In this subsection, we study the effects of the size of system
on the computation complexity of the proposed algorithm. The
size of the system can be defined by two parameters:

o The dimension of state vector: n = 2N — 1, where N is
the number of buses in the system,

o The dimension of measurement vector: m, which depends
on the number of buses and lines.

It is easily observed that m > n. To determine the effect of size
of the system on the performance, we present the complexity
analysis of the proposed algorithm in a single sampling instant
k with respect to these two parameters separately.

The proposed algorithm has two stages: 1) false data
detection and 2) dynamic state estimation. With respect to
m, computation in stage 1 is dominated by the eigenvalue
decomposition process which has a cubic complexity O(m?),
and stage 2 is dominated by the matrix inversion of R which
also has a cubic complexity O(m?). So, total complexity of
the proposed algorithm scales cubically with m as O(m?).

With respect to n, stage 2 computation is dominated by the
computations of My, in (8) and ¥j in (11), both of which
have a cubic complexity O(n?3). Comparatively, complexity
of stage 1 scales quadratically with n. So, total complexity of
the proposed algorithm scales cubically with n as O(n?).

V. MARKOV-CHAIN-BASED ANALYTICAL MODEL

In this section, we present a Markov-chain-based model to
analyze the proposed false data detector. The Markov-chain-
based model provides theoretical guidelines on the choice of
the detection threshold in (27) based on the FAR upper bound.
For a given FAR upper bound, we can obtain the optimum
detection threshold by using offline Monte-Carlo simulations.
Once the optimum threshold is obtained offline, the online
normalized Rao-CUSUM detector can then be performed to
detect FDIA or system faults in real time.

To facilitate analysis, R* U 0 is discretized into a finite set

of intervals representing the states {Uy, Uy, --- ,Up} such as
Up=0, U =(0,A], U= (A,2A]
Us = (2A,34], -+ , Unm = (4, +00),

_A

where A = 575 and M represents the total number of
transitions from 0 to the state that has the value greater than
the threshold A.

It can be easily observed from (28) that the sequence
exhibits the property of a first-order Markov chain, where the
future state T}y at time index k£ + 1 depends only on the
current state T}, but not on past states [29].

The transition probabilities of the Markov chain under H,y
for the proposed algorithm from state U; at k to state U; at
k 4 1 can be described as

Pij = P(TkJrl S Uj|Tk S UZ) (30)
The transition probability P;; can be computed numerically
using Monte-Carlo simulations according to the distribution of
v under the null hypothesis Hy. The values of the transition
probabilities are uniquely determined by the threshold A and
the number of discretization levels M. Since the calculations
of the transition probabilities are performed offline, we can
achieve arbitrary precision of the transition probability by
increasing the number of Mote-Carlo trials without affecting
the complexity of the online portion of the algorithm. As a
result, we can establish a very accurate numerical relationship
between A and the transition probabilities.

Define the transition probability matrix (TPM) P as an
(M 4+ 1) x (M + 1) matrix with the (4, j)-th element being
P;_1,j—1. It is clear that P is a Markov matrix, that is, all
elements of P are non-negative and the sum of each row vector
is 1. The steady-state probability 7; of each state U; can be
determined by

M
mp= Pymi, Vje{0,-- M}, (3D
M

Zj:() Ty = 1.

The transition probability of the Markov chain can be
written in a matrix format as

(32)

Plrn=mn (33)
where m = [mo, 71, - ,mar]7. The steady-state probability
vector 7w can then be obtained by finding the eigenvector
corresponding to the eigenvalue 1 of the TPM P. Since P
is a Markov matrix, it always has an eigenvalue of 1.

The steady-state probability can be used to calculate the
FAR, which can be equivalently evaluated as the probability
that T}, crosses the threshold A when there is no attack in the
network. As in [29], the FAR can be equivalently calculated
as the steady-state probability 7y, that is, the probability that
T}, stays at state Uys under the null hypothesis

FAR = 7). (34)

Since 7 is determined by the eigenvector of P, which in
turn depends on the choice of threshold A, there is an optimum
threshold value for a given FAR. Enabled by the Markov-chain
model, we can numerically obtain a very accurate estimate of
the optimum threshold based on the FAR.
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Fig. 1. Performance analysis of the proposed algorithm in comparison with
Rao-CUSUM test [6].

VI. SIMULATION RESULTS

In this section, we present numerical simulations results to
illustrate the performance of the proposed algorithm. The first
subsection demonstrates the performance in terms of FAR and
WDD using simulated data. The second subsection presents
numerical results based on simulations of the 13-bus system
using MATLAB Power System Toolbox (PST v3.0) [30], [31].

A. WDD v.s. FAR

Fig. 1 shows the tradeoff between WDD and FAR of the
proposed algorithm and the Rao-CUSUM test presented in
[6]. In the simulation, the data are generated by following
the model in (21) with m = 55 and g = [1,1,0,---,0]. The
false data injection time 7 follows discrete uniform distribution
between [1,100]. Every point on the curves is obtained by
averaging over 10,000 Monte-Carlo trials. For a given FAR,
the corresponding threshold A is chosen by following the
Markov-chain analysis in Section V. As expected, the WDD
is a decreasing function of the FAR. The proposed detection
algorithm outperforms the Rao-CUSUM test used in [6]. At
FAR = 1072, the WDD of the proposed algorithm and the
Rao-CUSUM test is 42 and 95 samples, respectively.

B. FDIA Detection in Power Systems

In this section, we present the simulation results performed
on a 13-bus system with two areas as shown in Fig. 2. Bus 1
is used as the reference bus. The measurement vector consists
of m = 55 components: the voltage magnitude of bus 1,
the active and reactive power injections at all 13 buses, the
active and reactive power flows at all 14 lines. The state vector
consists of n = 25 components: the voltage magnitudes at all
13 buses and the phase angles at the 12 non-reference buses.

Using MATLAB Power System Toolbox (PST v3.0), the
system dynamics is simulated by increasing the active load at
bus 4 by 0.5 per unit (p.u.) and the resulting measurement and
state vectors are considered as the true values of the system.
The noisy measurement vector ey in (1) is obtained by adding
a zero mean Gaussian noise with a diagonal covariance matrix
R, to each of the true measurements. The noise variances,
which are the diagonal elements of Ry, are 10~5 for the
voltage magnitude of reference bus and 10~° for the active
and reactive power measurements. The matrix Qy = 10751,

120
14 12 1

Fig. 2. Single Line Diagram Two Area System [31].
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Fig. 3. The real power at bus 14 vs time ¢ with false data at 0.25 < ¢ < 0.6,
load change at ¢ = 0.6, and the detector in (28).

is kept constant at every sampling time k. The parameters
F) and Gy are obtained according to the Holt’s exponential
smoothing method with v = 0.95 and g = 0.001 [11].

The sampling rate in our simulation is set as At = 0.01
seconds. Thus the k-th time index corresponds to a time value
of t = kAt seconds. In order to evaluate the performance of
the proposed detector, two scenarios are simulated: false data
and sudden load change conditions. The false data condition
is simulated by injecting errors of —1.5 and 1 p.u. into the
active power measurements at buses 13 and 14, respectively,
during a time period 0.25 < ¢ < 0.6 seconds unless specified
otherwise. The sudden load change condition is simulated by
cutting the active power injection of bus 4 by 1 p.u att = 0.6
seconds. In each of the following figures, every point on the
curves is obtained by averaging over 1, 000 Monte-Carlo trials.

Fig. 3 shows the active power at bus 14 with false data
injected into the active power measurements at buses 13 and
14. In addition, the active power injection of bus 4 is cut by
1 p.u. at ¢ = 0.6 seconds to simulate sudden load change.
The threshold of the proposed detector is set at A = 200,
which corresponds to FAR of 2.5 x 10~° according to the
Markov-chain analysis. Once an FDIA is detected, the residual
amplitudes are compared to a threshold as in (29) to identify
the buses under attack, with o = 3.5 used in this paper. The
measurements at the buses under attack are then replaced with
their predicted values. When there is no attack, the power
calculated from the estimated states is almost identical to its
actual value. When false data is injected between 0.25 <t <
0.6 seconds, the proposed detector successfully detects the
presence of FDIA and replaces the corrupted measurement
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Fig. 4. The voltage magnitude (top) and phase angle (bottom) at bus 13 vs
time ¢ with false data at 0.25 < ¢t < 0.6, load change at ¢t = 0.6, and the
detector in (28).
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Fig. 5. The real power at bus 14 vs time ¢ with false data at 0.25 < ¢ < 0.6
and the detector in [11].

with the predicted values. In this case, the power calculated by
using state estimation is slightly different from its true value,
with a difference less than 0.33%. When there is a sudden
change at t = 0.6 seconds, the detector correctly recognizes
it as a normal operating condition and achieves correct state
estimates. In addition, there is a one sample lag between the
predicted value and the actual value.

Fig. 4 shows the voltage magnitude (top) and phase angle
(bottom) at bus 13 under the same configuration of Fig. 3. The
voltage amplitude and phase are estimated with high accuracy
despite the presence of FDIA, mainly because the false data
are correctly identified and replaced with predicted values. In
addition, the state estimator correctly adapts to the dynamic
change at t = 0.6 seconds.

Fig. 5 shows the performance of an existing residual-
based detector that was proposed in [11], under the same
configuration as in Fig. 3. Since the false data are injected
into the correlated measurements of adjacent buses 13 and 14,
the detector in [11] is unable to distinguish the false data from
the sudden changes in the system. The FDIA is erroneously
detected as a sudden change. As a result, during the FDIA,
the power calculated from the estimated and predicted states
deviate significantly from its actual value. The performance of
the estimator yields in an estimation error of as high as 0.7
p.u at t = 0.25 seconds.

To further illustrate the ability of the proposed detector to
distinguish between FDIA and sudden change, Fig. 6 shows
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Fig. 6. The real power at bus 4 vs time ¢ with false data at 0.25 < ¢ < 0.6,
load change at ¢ = 0.6, and the detector in (28).
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Fig. 7. The voltage magnitude (top) and phase angle (bottom) at bus 4 vs
time ¢ with false data at 0.25 < ¢ < 0.6, load change at ¢t = 0.6, and the
detector in (28).

the active power measurement at bus 4. The active load at
bus 4 is increased by 0.5 p.u. at ¢ = 0.6 seconds. The load
change caused a gradual change of the active power. Since the
load change affects power measurements on all buses based
on the physical model of the power grid, the proposed detector
successfully recognizes it as a load change instead of FDIA.
Thus the dynamic state estimator can accurately track and
estimate the state change caused by the load change. The
power calculated from the estimated states is almost identical
to its original value. Again a one sample lag is observed
between the predicted value and actual value. Similarly, in
Fig. 7, the voltage magnitude (top) and phase angle (bottom)
at bus 4 are estimated with high accuracy.

The proposed algorithm assumes that the topology of the
system remains unchanged. However, in the event of a system
fault, the topology of the system might change. As a result,
the proposed algorithm will detect the deviation of system’s
behavior due to system fault in a similar manner as FDIA
detection. To further illustrate the performance of proposed
algorithm under system faults, Fig. 8 shows the active power
at bus 14 under the influence of a single line-to-ground fault,
which is applied to the line connecting bus 3 and bus 101 at
t = 0.2 seconds. The fault is cleared at bus 3 at ¢ = 0.35
seconds and at bus 101 at { = 0.4 seconds. It can be
observed that throughout the duration of the line-to-ground
fault, the proposed algorithm detects the fault and replace
the measurement value by using the predicted values. Thus
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Fig. 8. The real power at bus 14 with single line-to-ground fault at the line
connecting bus 3 and bus 101 during 0.2 < ¢ < 0.4.

the algorithm can detect the presence of fault, but it cannot
differentiate fault from cyber-attacks.

VII. CONCLUSION

A quickest intrusion detection algorithm has been developed
for the detection and removal of false data injected into smart
grids. The algorithm was developed to minimize the worst-
case detection delay subject to an upper bound of false alarm
rate. To distinguish between FDIA and sudden system change,
a time-varying dynamic model was used to represent the
dynamic state transitions. A dynamic state estimator was then
developed to estimate and track the time-varying and non-
stationary state transitions. Based on the statistical properties
of the state estimation results, a new normalized Rao-CUSUM
detector was developed to minimize the detection delay of
FDIA while separating FDIA from sudden system changes.
Unlike existing algorithms that rely on measurement correla-
tion to discriminate false data from sudden system changes, the
proposed algorithm can detect any false data including those
injected into correlated measurements. Simulation results have
shown that the proposed algorithm can accurately and timely
detect and remove FDIA. In addition, the algorithm can also
detect system faults such as sensor failures or line outages.
However, it cannot differentiate system faults from FDIA. The
algorithm can be used to harden IEDs or SCADA systems to
improve the security and resilience of smart grids.

APPENDIX A
PROOF OF (10)

The point x, which minimizes (9) can be obtained by
calculating the first derivative of J(x) and setting it to zero.
Define the first derivative of J(x) as

g(x) = (’“).gix) _ _(9h8)£x)

(35)
The minimum point X of J(x) is calculated by solving
g(%)=0.

Given the non-linearity of (35), (36) is solved by iterative
methods such as the Newton-Raphson method.

(36)

R'z-—hx)]+M*!(x-%).

The Taylor series expansion of g(x) for x = x(9) 4 A, is

og(x
g(x) = g(x'?) + % hexo Ax, (37)
where x(°) is the initial point and
8?9(;) =g () =H' xR 'Hx+M' (8
Oh(x
where H(x) = %.

According to the Newton-Raphson method, by setting (37)
to zero, the increment Ay is obtained as

Ac=-[g )] g(x®). (39)

Thus,

x =x0 — 2O0g(x(), (40)

where

50 = [¢ )] = AT O)RHE) 4 M

(4D

Combining (35), (40), and (41) at the (i + 1)-th iteration with
an initial point x(¥) = x("+1) — A the (i+1)-th point becomes
x0T = xO L mOHT(xOYR 7z — h(x)]

- M (x® —x)}. (42)

This completes the proof.

APPENDIX B
PROOF OF (26)

Combining the definition of LLR in (24) with the hypothe-
ses in (21), we obtain

L
OLk _ Wy, - WI'Wya. 43)
Oa
Next, substituting the value a = 0 yields in
0Ly, _
Sa o = Wi Vi (44)
Using the definition of Fisher information matrix [18], we get
0 0Ly T
Z(a) =—E | —(—=—)| = W, W,. 45
(a) [aa(aa )} kR “45)

Combining (44) and (45) results in the Rao test statistic
Y (V) = VI V. This completes the proof.
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