This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

Coded Computing for Distributed Graph Analytics

Saurav Prakash®, Amirhossein Reisizadeh*, Ramtin Pedarsani, Amir Salman Avestimehr

Abstract—Many distributed computing systems have been
developed recently for implementing graph based algorithms such
as PageRank over large-scale graph-structured datasets such
as social networks. Performance of these systems significantly
suffers from communication bottleneck as a large number of mes-
sages are exchanged among servers at each step of the computa-
tion. Motivated by graph based MapReduce, we propose a coded
computing framework that leverages computation redundancy
to alleviate the communication bottleneck in distributed graph
processing. As a key contribution of this work, we develop a novel
coding scheme that systematically injects structured redundancy
in the computation phase to enable coded multicasting oppor-
tunities during message exchange between servers, reducing the
communication load substantially in large-scale graph processing.
For theoretical analysis, we consider random graph models, and
focus on schemes in which subgraph allocation and Reduce
allocation are only dependent on vertex ID while the Shuffle
design varies with graph connectivity. Specifically, we prove that
our proposed scheme enables an (asymptotically) inverse-linear
trade-off between computation load and average communication
load for two popular random graph models — Erdos-Rényi model,
and power law model. Particularly, for a given computation
load r, (i.e. when each graph vertex is carefully stored at r
servers), the proposed scheme slashes the average communication
load by (nearly) a multiplicative factor of r. Furthermore, for
the Erdos-Rényi model, we prove that our proposed scheme is
optimal asymptotically as the graph size increases by providing
an information-theoretic converse. To illustrate the benefits of
our scheme in practice, we implement PageRank over Amazon
EC2, using artificial as well as real-world datasets, demonstrating
gains of up to 50.8% in comparison to the conventional PageRank
implementation. Additionally, we specialize our coded scheme
and extend our theoretical results to two other random graph
models — random bi-partite model, and stochastic block model.
Our specialized schemes asymptotically enable inverse-linear
trade-offs between computation and communication loads in
distributed graph processing for these popular random graph
models as well. We complement the achievability results with
converse bounds for both of these models.

Index Terms—Coded computation, distributed computing,
graph algorithms, MapReduce, PageRank.

*Authors have equal contribution.

S. Prakash and A. S. Avestimehr are with the the Department of Electrical
and Computer Engineering, University of Southern California, Los Angeles,
CA 90089 USA (e-mail: sauravpr@usc.edu; avestimehr @ee.usc.edu).

A. Reisizadeh and R. Pedarsani are with the Department of Electrical and
Computer Engineering, University of California, Santa Barbara, Santa Bar-
bara, CA 93106 USA (e-mail: reisizadeh@ucsb.edu; ramtin@ece.ucsb.edu).

We sincerely thank the editor and all the reviewers for their valuable
feedback and detailed comments. This work is supported by a startup grant
for Ramtin Pedarsani and NSF grants CCF-1408639, CCF-1755808, NETS-
1419632, ONR award N000141612189, NSA grant, a research gift from Intel
and by Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053. The views, opinions, and/or findings expressed are
those of the author(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

A part of this work was presented at IEEE International Symposium on
Information Theory, 2018 [1].

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

I. INTRODUCTION

RAPHS are widely used to identify and incorporate the
Grelationship patterns and anomalies inherent in real-life
datasets. Their growing scale and importance have prompted
the development of various large-scale distributed graph pro-
cessing frameworks, such as Pregel [2], PowerGraph [3] and
GraphLab [4]. The underlying theme in these systems is the
think like a vertex approach [5] where the computation at each
vertex requires only the data available in the neighborhood
of the vertex (see Fig. 1 for an illustrative example). This
approach significantly improves performance in comparison
to general-purpose distributed data processing systems (e.g.,
Dryad [6]), which do not leverage the underlying structure of
graphs.

File wy : {II89* P(1 — 1), P(1 — 2),P(1 - 5)}

——
State

Neighborhood
Parameters
PageRank Computation :
I = 3 vy PG — DI

Intermediate
Values

Fig. 1: Tllustrating the think like a vertex paradigm prevalent in
common parallel graph computing frameworks. The computation as-
sociated with a vertex only depends on its neighbors. In this example,
we consider the PageRank computation over a graph with six vertices.
Using vertex 1 for representation, we illustrate the file and PageRank
update at each vertex. File w; contains the state (current PageRank
TI$"") and the neighborhood parameters (probabilities of transitioning
to neighbors {P(1 — 1),P(1 — 2),P(1 — 5)}). The PageRank
update associated with vertex 1 is a function of only the neighborhood
files (specifically, of the PageRanks of neighboring vertices and the
transition probabilities from neighbors to vertex 1).

In these distributed graph processing systems, different
subgraphs are stored at different servers, where a subgraph
refers to the set of files associated with a subset of graph
vertices. As a result of the distributed subgraph allocation, for
carrying out the graph computation for a given vertex at a
particular server, the intermediate values corresponding to the
neighboring vertices whose files are not available at the server
have to be communicated from other servers. These distributed
graph processing systems, therefore, require many messages
to be exchanged among servers during job execution. This
results in communication bottleneck in parallel computations
over graphs [7], accounting for more than 50% of the overall
execution time in representative cases [8].

To alleviate the communication bottleneck in distributed
graph processing, we develop a new framework that leverages
computation redundancy by computing the intermediate values
at multiple servers via redundant subgraph allocation. The
redundancy in computation of intermediate values at mul-
tiple servers allows coded multicasting opportunities during

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

exchange of messages between servers, thus reducing the
communication load. Our proposed framework comprises of a
mathematical model for MapReduce decomposition [9] of the
graph computation task. The Map computation for a vertex
corresponds to computing the intermediate values for the
vertices in its neighborhood, while the Reduce computation
for a vertex corresponds to combining the intermediate values
from the neighboring vertices to obtain the final result of graph
computation. Referring to the example in Fig. 1, the Map and
Reduce computations associated with vertex 1 are as follows:

. curr
Map: IIT"" — {v11,v2,1, 051},
Reduce: TIT™ = vy 1 +v12 + 015,

where v; ; = P(i — j)II" is the intermediate value obtained
from the Map computation of vertex i € N ().

In distributed graph based MapReduce, each server is al-
located a subgraph for Map computations and Reduce tasks
for a subset of graph vertices, and the overall execution takes
place in three phases — Map, Shuffle, and Reduce. During Map
phase, each server computes the intermediate values associated
with the files in the allocated subgraph. During Shuffle phase,
servers communicate with each other to exchange missing
intermediate values that are needed for executing the allocated
Reduce tasks. Finally, each server carries out the Reduce
computations allocated to it to obtain the final results, using the
intermediate values obtained locally during the Map phase and
the missing intermediate values obtained from other servers
during the Shuffle phase. Using our mathematical model of
graph based MapReduce, our framework proposes to trade
redundant computations in the Map phase with communication
load during the Shuffle phase. The key idea is to leverage the
graph structure and create coded messages during the Shuffle
phase that simultaneously satisfy the data demand of multiple
computing servers in the Reduce phase.

Our work is rooted in the recent development of a coding
framework that establishes an inverse-linear trade-off between
computation and communication for general MapReduce com-
putations — Coded Distributed Computing (CDC) [10]. In the
MapReduce formulation considered in [10], there are n input
files and the goal is to compute () output functions, where
each of the () output functions depends on all of the n input
files. In CDC, each Map computation is carefully repeated at
r servers. The injected redundancy provides coded multicast
opportunities in the Shuffle phase where servers exchange
coded messages that are simultaneously useful for multiple
servers. Each server then decodes the received messages and
executes the Reduce computations assigned to it. Compared to
uncoded Shuffle, where the required intermediate values are
transmitted without leveraging coded multicast, CDC slashes
the communication load by r. However, in contrast to graph
based MapReduce considered in our framework, CDC does
not incorporate the heterogeneity in the file requirements by
the Reducers, as each Reducer in CDC is assumed to need
intermediate values corresponding to all input files.

Moving from the MapReduce framework in [10] to graph
based MapReduce, the key challenge is that the computation
associated with each vertex highly depends on the graph
structure. In particular, graph computation at each vertex

Q)

ot

=

N

Computation Load

0 0.5 1 1.5 2 2.5 3 3.5

Execution time (in s)

Fig. 2: Demonstrating the impact of our proposed coded scheme in practice.
We consider PageRank implementation over a real-world dataset in an
Amazon EC2 cluster consisting of 6 servers. In this figure, we have illustrated
the overall execution time as well as the times spent in different phases of
execution, as a function of computation load r (details of implementation
are provided in Section VII). One can observe that the Shuffle phase is the
major component of the overall execution time in conventional PageRank
implementation (computation load » = 1), and our proposed coded scheme
slashes the overall execution time by shortening the Shuffle phase (i.e.,
reducing the communication load) at the expense of increasing the Map phase
(i.e. increasing the Map computations).

requires data only from the neighboring vertices, while in the
MapReduce framework in [10], each output computation needs
all the input files (which in graph based MapReduce shall
correspond to a complete graph). This asymmetry in the data
requirements of the graph computations is the main challenge
in developing efficient subgraph and Reduce computation al-
locations and Shuffling schemes for graph based MapReduce.
As a key component of our proposed coding framework, we
propose a coded scheme that creates coding opportunities
for communicating messages across servers by Mapping the
same graph vertex at different servers, so that each coded
transmission satisfies the data demand of multiple servers.
Within each multicast group, each server communicates a
coded message which is generated using careful alignment of
the intermediate values that the server needs to communicate
to all the remaining members of the multicast group. Each
server retrieves the missing intermediate values required for its
Reduce computations using the locally available intermediate
values from the Map phase and the coded messages received
during the Shuffle phase.

For characterization of the performance of our proposed
coding framework for distributed graph analytics, we focus on
random undirected graph models. In popular graph processing
frameworks such as Pregel [2], the graph partitioning for
distributed processing among a set of servers is solely based
on vertex ID, such as using hash(ID) mod K, where K is the
number of servers. Therefore, in our problem formulation, for
a given computation load r and a random graph G = (V,),
we focus on subgraph and Reduce computation allocations
A(r) that are based only on vertex IDs and not on graph
connectivity. Here, V and & respectively denote the vertex set
and edge set of G. Although the Map and Reduce allocations
are functions solely of vertex IDs, the Shuffle design needs
to incorporate the graph connectivity of the graph realizations
so that the communication load is minimized. This motivates
us to consider the characterization of the minimum average

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

normalized communication load L*(r), which is defined as
follows:

L*(r):= inf Eg[La(r,G)],

A€ A(r)

where L 4(r,G) denotes the minimum normalized communi-
cation load for a realization G of G for a given subgraph
and Reduce allocation tuple A € A(r). The normalization is
with respect to the total size of all the intermediate values
corresponding to a fully connected graph with same number
of vertices. Further details are deferred to Section II, where
we describe our problem formulation in detail.

For two popular random graph models, Erdos-Rényi model
and power law model, we prove that our proposed coded
scheme asymptotically achieves an inverse-linear trade-off
between computation load in the Map phase and average
normalized communication load in the Shuffle phase. Further-
more, for the Erdos-Rényi model, we develop an information-
theoretic converse for the average communication load given
a computation load of r. Using the asymptotic achievability
result, we prove that the converse for the Erdos-Rényi model is
asymptotically tight, thus proving the asymptotic optimality of
our proposed coded scheme. Specifically, for a given compu-
tation load r, we show that the minimum average normalized
communication load is as foilows:

wpN r
L)~ rp<1 K)’
where p is the edge probability in the Erdos-Rényi model of
size n, and K denotes the number of servers.

To illustrate the benefits of our proposed coded scheme
in practice, we demonstrate via simulation results that even
for the Erdos-Rényi model with finite n, our proposed coded
scheme achieves an average communication load which is
within a small gap from the information-theoretic lower bound.
Furthermore, it provides a gain of (almost) r in comparison to
the baseline scheme with uncoded Shuffling. Additionally, we
implement the PageRank algorithm over Amazon EC2 servers
using artificial as well as real-world graphs, demonstrating
how our proposed coded scheme can be applied in practice.
Fig. 2 illustrates the results of our experiments over the
conventional PageRank approach (= 1) for a social network
webgraph Marker Cafe Dataset [11]. As demonstrated in Fig.
2, our proposed coded scheme achieves a speedup of up to
43.4% over the conventional PageRank implementation and a
speedup of 25.5% over the single server implementation. The
details of the implementation are provided in Section VII.

We also specialize our coded scheme and extend the achiev-
ability results to two additional random graph models, random
bi-partite model and stochastic block model. Specifically, we
leverage the community structure in these models to adapt
our proposed scheme to these models. In the random bi-
partite model, we observe that there are no intra-cluster edges,
due to which intermediate values for a particular Reducer in
one cluster only comes from Mappers in the other cluster.
Therefore, we specialize our proposed coded scheme from
Section IV for the random bi-partite model, partitioning the
available servers in proportion to the cluster sizes, so that
there is maximum overlap between Reducers corresponding
to vertices in one cluster and Mappers corresponding to

vertices in other cluster. Similarly, for the stochastic block
model, we specialize our proposed coded scheme based on
the observation that Reducers corresponding to vertices in one
cluster depend on the Mappers corresponding to the vertices
within the cluster with one probability (due to intra-cluster
edges), and on the vertices in the other cluster with another
probability (due to cross-cluster edges).

For both the random bi-partite model and the stochastic
block model, we provide converse bounds. For the random
bi-partite model, we remove vertices (and the edges corre-
sponding to them) from the larger cluster so that the reduced
graph has two clusters of equal sizes. The reduced graph
model thus has two sets of Mappers and Reducers, which
correspond to two different Erdos-Rényi models. Applying
our converse bound for the Erdos-Rényi model, we arrive
at the converse of the random bi-partite model. For the
stochastic block model converse, the key idea is to randomly
remove edges from the graph such that a larger Erdds-Rényi
graph is obtained, then utilize a coupling argument, and
finally use our information theoretic converse bound for the
Erdos-Rényi model. Therefore, the modified coded schemes
for these models demonstrate that inverse-linear trade-offs
between computation and communication loads in distributed
graph processing exists for these graph models as well.

Related Work. A number of coding theoretic strategies have
been recently proposed to mitigate the bottlenecks in large
scale distributed computing [10], [12]. Several generaliza-
tions to the Coded Distributed Computing (CDC) technique
proposed in [10] have been developed. The authors in [13]
extend CDC to wireless scenarios. The work in [14] extends
CDC to multistage dataflows. An alternative trade-off between
communication and distributed computation has been explored
in [15] for MapReduce framework under predetermined stor-
age constraints. Coding using resolvable designs has been
proposed in [16]. [17] extends CDC to heterogeneous comput-
ing environments. The work in [18] proposes coding scheme
for reducing communication load for computations associated
with linear aggregation of intermediate results in the final
Reduce stage. The key difference between our framework and
each of these works is that general MapReduce computations
over graphs have heterogeneity in the data requirements for the
Reduce functions associated with the vertices. Other notable
works that deal with communication bottleneck in distributed
computation include [19]-[21], where the authors propose
techniques to reduce communication load in data shuffling in
distributed learning.

Apart from communication bottleneck, various coding the-
oretic works have been proposed to tackle the straggler bot-
tleneck [12], [22]-[43]. Stragglers are slow processors that
have significantly larger delay for completing their compu-
tational task, thus slowing down the overall job execution in
distributed computation. The first paper in this line of research
proposed erasure correcting codes for straggler mitigation
in linear computation [12]. The work in [22] explores the
potential of the multicore nature of computing servers, while
[24] extends the straggler mitigation for the matrix vector
problem in wireless scenarios. Redundant short dot products

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

for matrix multiplication with long vector has been proposed
in [23]. The authors in [24] propose Heterogeneous Coded
Matrix Multiplication (HCMM) scheme for matrix-vector mul-
tiplication in heterogeneous scenarios. In [25], the authors
propose gradient coding schemes for straggler mitigation in
distributed batch gradient descent. Works in [26] and [27] de-
velop coding schemes for computing high-dimensional matrix-
matrix multiplication. A Coupon Collector based straggler
mitigation scheme for batched gradient descent has been
proposed in [28]. Other notable schemes include Substitute
decoding for coded iterative computing [29], coding for sparse
matrix multiplications [30]-[32], approximate gradient coding
[33], efficient gradient computation tackling both straggler
and communication load [34], a unified coding scheme for
distributed matrix multiplication [35], logistic regression with
unreliable components [36], among others.

Notation. We denote by [n] the set {1,2,...,n} for n € N.
For non-negative functions f and g of n, we denote f = ©(g)
if there are positive constants cj, co and ng € N such that
c1 < f(n)/g(n) < ¢y for every n > ng, and f = o(g)
if f(n)/g(n) converges to 0 as n goes to infinity. We define
f = w(g), if for any positive constant ¢, there exists a constant
ng € N such that f(n) > c¢- g(n) for every n > ng. To ease
the notation, we let 2 x Bern(p) denote a random variable
that takes on the value 2 w.p. p and 0 otherwise.

II. PROBLEM SETTING

We now describe the setting and formulate our distributed
graph analytics problem. In particular, we specify our com-
putation model, distributed implementation model and our
problem formulation based on random graphs.

A. Computation Model

We consider an undirected graph G = (V, £) where V = [n]
and & = {(i,7) : 1,7 € V} denote the set of graph vertices
and the set of edges respectively. A binary file w; € For
of size ' € N containing vertex state and neighborhood
parameters is associated with each graph vertex ¢ € V. We
denote by W = {w; : i € V} the set of files associated
with all vertices in the graph. The neighborhood of vertex
i is denoted by N(i) = {j € V : (j,i) € &} and
the set of files in the neighborhood of ¢ is represented by
Wiy = {w; = j € N(i)}. In general, G can have self-loops,
i.e., vertex ¢ can be contained in N (i). Furthermore, a graph
computation is associated with each vertex ¢ € V as follows:

¢ : Tl 5 Fys
where ¢;(-) is a function that maps the input files in Wy(;)
to a length B binary stream 0; = ¢;(Wi (;))-
The computation ¢;(-) can be represented as a MapReduce
computation:

¢i W) = hi{gi,5(w;) - wj € War(iy}), (1
where the Map function g¢; ; : For — For Maps file w; to
a length T' binary intermediate value v, ; = g; ;(w;), Vi €
N(j). The Reduce function h; IFW(2, Fys Reduces the

intermediate values associated W1th the output function ¢;(-)
into the final output value o; = h;({v; ; : j € N(i)}).

4

We illustrate our computation model using the graph pre-
sented in the previous section. Fig. 3(a) illustrates the graph
with n = 6 vertices, where each vertex is associated with a
file, while Fig. 3(b) illustrates the corresponding MapReduce
computations.

Common graph based algorithms can be expressed in the
MapReduce computation framework described above [44]. For
brevity, we present two popular graph algorithms and describe
how they can be expressed in the proposed MapReduce
computation framework.

Example 1. PageRank [45], [46] is a popular algorithm to
measure the importance of the vertices in a webgraph based on
the underlying hyperlink structure. In particular, the algorithm
computes the likelihood that a random surfer would visit a
page. Mathematically, the rank of a vertex ¢ satisfies the
following relation:

(i) = (1—d) Y TGP —i)+ d7
= VI
JEN(9)
where (1—d) is referred to as the damping factor, II(7) denotes
the likelihood that the random surfer will arrive at vertex 4, |V
is the total number of vertices in the webgraph, and P(j — i)
is the transition probability from vertex j to vertex i. The
graph computation can be carried out iteratively as follows:

1% (i) = d) Y T j—)i)-i-d%,
ien VI
where k and k£ — 1 are respectlvely the current and preVious
iterations and TI°(i) = \VI forall¢ € Vand k = 1,2,
The number of iterations depends on the stopping crite-
rion for the algorithm. Usually, the algorithm is stopped
when the change in the PageRank mass of each vertex is
less than a pre-defined tolerance. The rank update at each
vertex can be decomposed into Map and Reduce functions
for each iteration k. For a given vertex ¢ and iteration k,
let wf = {1} U {PG@ — j) : j € N(@)}, and
¢5(Wk[(z)) = 1 =d) X eni ()P — i) + d\V\
The Mapper g; ;(-) maps file wf to the intermediate values
Uﬁj = g”(wf) = TI*1(j)P(j — i) for all neighboring
vertices i € N(j). Using the intermediate values from the
Map computations, the Reducer h;(-) computes vertex ¢’s
updated rank as IT%(i) = h;({vf; : j € N(i)}) = (1 —
d) e viy + dﬁ
Example 2. Single-source shortest path is one of the most
studied problems in graph theory. The task here is to find the
shortest path to each vertex ¢ in the graph from a source vertex
s. A sub-problem for this task is to compute the distance of
each vertex 4 from the source vertex s, where distance D(7)
is the length of the shortest path from s to ¢. This can be
carried out iteratively in parallel. First, initialize D°(s) = 0
and D°(i) = +00,Vi € V' \ {s}. Subsequently, each vertex i
is updated as follows at each iteration k:
k¢ k=1 -
DH(i) = min {D*(7) +1(3,0)},

where t(j,4) is the weight of the edge (j,¢). The algorithm is
stopped when the change in the distance value for each vertex
is within a pre-defined tolerance. The distance computation
for each vertex at iteration k can be decomposed into Map

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

and Reduce computations. Particularly, for each vertex ¢ and
iteration k, let w¥ = {D* 1)} U {t(i,5) : 7 € N()},
and ¢F Wy (;)) = minjeni) (D"~ (j) +t(j,7)). The Mapper
g:,;(-) Maps the file wf to the intermediate values v¥ . pio=
gi5(w ;“) = D¥=1(j) + t(4,4) for all neighboring vertices
i € N(j). Using the intermediate values from the Map
computations, the Reducer h;(-) computes 4’s updated distance

value as D¥ (i) = hi({vﬁj 1j €N(i)}) = minjen) vf-‘:j.

B. Distributed Implementation

For distributing the graph processing task, we consider K
servers that are connected through a shared multicast network.
Furthermore, at any given time, only one server can multicast
over the shared network. Additionally, we assume that a multi-
cast takes the same amount of time as a unicast. As described
next, in order to distribute the Map computation tasks among
the servers, each server is allocated a subgraph which is
comprised of a subset of graph vertices and associated files
that contain state and neighborhood information of vertices.
Subgraph Allocation: Each server is assigned the Map com-
putations in (1) associated with a subgraph, which consists
of a subset of vertices and associated files containing state
and neighborhood information of the vertices. We denote the
subgraph that is allocated to each server k € [K]| by My, C V.
Thus, server k will then store all the files in My, and will
be responsible for computing the Map functions on those
files. Note that each file should be Mapped by at least one
server. Additionally, we allow redundant computations, i.e.,
each file can be Mapped by more than one server. The key
idea in leveraging redundancy in the Map computation phase
is to trade the computational resources in order to reduce
the communication load in the Shuffle phase. We define the
computation load as follows.

Definition 1 (Computation Load). For a subgraph allocation,
(My, -+, Mk), the computation load, r € [K], is defined as

Y M

n
where |M,| denotes the number of vertices in the subgraph

My, for k € [K].

Remark 1. For a desired computation load r, each server is
assigned a subgraph with the same number of vertices, i.e. for
each server k € [K], |IMy| = &2

To carry out the Reduce computation in (1) for all vertices,

each server is assigned a subset of Reduce functions as
follows.
Reduce Allocation: A Reducer is associated with each vertex
of the graph G as represented in (1). We use R C V to
denote the set of vertices whose Reduce computations are
assigned to server k € [K]|. The set of Reduce computations
are partitioned into K equal parts and each part is asso-
ciated exclusively with one server, i.e., Uszle =) and
R NRy = ¢ for m,n € [K], m # n. Therefore, |Ri| = %,
Vk € [K].

For the graph in Fig. 3(a) and a computation load of r = 2,
we illustrate a scheme for subgraph allocation and Reduce
allocation in Fig. 3(c). Here, each vertex appears in exactly two

(a) An example of a graph with 6 vertices, each of which has a file
associated with it that contains its state and neighborhood parameters.

wy = v11 = g11(wi)
g1(-) v2,1 = ga.1(wi)

Us,1 =3]3.1§u‘1;

wa ~ V1,2 = g1,2(w2
72(+) v32 = g32(wa)

v6,2 = g6,2(w2)

w3 ~ Va3 = gz.g(u‘x)

O} s

4,3 9, 3(w: %)

wy ~ V3,4 = g3,4(wa)
g.1(') Us.4 = G5, 1()

o1 = hi(vi,1,v1.2,01.5)
09 = ha(v2,1,v2,3,02,6)
03 = h3(v3,2,v34)

04 = hy(v4,3,v45,V4,6)

05 = /Zr,(l‘s.]»l'n.x)

5 g1,z 5
Va5 = ga,5(ws)
we v2,6 = g2.6(we)
V4,6 = !/4.5(“"5)
V6,6 = go.6(Ws)

06 = he (6,2, V6.4, V6,6)

(b) MapReduce decomposition of the graph computations for the
graph in Fig. 3(a).

Reduce
Allocation

Subgraph

Allocation

Needed
for
Reducers

Uncoded

V5,1 U34 V1,5 v, V4,3 U
Shuffle 5,) 0 6,2 4,3 V2,6

{ ‘ Us,1 @ U3,4
L

Intermediate
Values
Available

Coded

V1.5
Shuffle o ® V6,2

(c) INlustration of subgraph and Reduce allocations for graph in Fig.
3(a) with computation load r = 2 and K = 3 servers. Each server
is allocated a subgraph of size 4 and 2 Reducers. After the Map
phase, each server needs to obtain the missing intermediate values
that are needed to compute the Reduce functions allocated to it. Due
to redundant subgraph allocation, each of the intermediate values
missing at a server is available at both other servers. We illustrate two
Shuffling schemes. In the uncoded Shuffle, a missing intermediate
value is obtained from one of the other two servers, and each server
is assigned the task of sending two intermediate values, one for each
of the other two servers. In coded Shuffle, each server sends a XOR of
the assigned intermediate values and sends only one coded message
which is simultaneously useful for the both other servers.

Fig. 3: An illustrative example.

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

subgraphs, i.e. Map computation associated with each vertex
is assigned to exactly two servers. The subgraph and Reduce
allocations in Fig. 3(c) form key components of our proposed
scheme in Section IV, in which for a computation load of r,
every unique set of r servers is allocated a unique batch of
n/ (I:) files for Map computations.

For a given scheme with subgraph allocation and Reduce

allocation tuple denoted by A = (M, R), where M =
(M, - ,Mg) and R = (Ry, - ,Rk), the distributed
graph processing proceeds in three phases as described next.
Map phase: Each server first Maps the files associated with
the subgraph that is allocated to it. More specifically, for each
i € My, server k computes a vector of intermediate values
corresponding to the vertices in A/ (i) that is §; = (v;; : j €
N (7). For the running example, we illustrate the intermediate
values generated at each server during the Map phase in Fig.
3(c), where the color of an intermediate value denotes the
server that is allocated the task to execute the corresponding
Reducer.
Shuffle phase: To be able to do the final Reduce computations,
each server needs the intermediate values corresponding to
the neighbors of each vertex that it is responsible for its
Reduction. Servers exchange messages so that at the end of
the Shuffle phase, each server is able to recover its required
set of intermediate values. More formally, the Shuffle phase
proceeds as follows. For each k € [K],

(i) server k creates a message X € [Faer as a function
of intermediate values computed locally at that server
during the Map phase, i.e. X = ¥, ({g; : ¢ € My}),
where c;, is the length of the binary message X,

(ii) server k multicasts X to all the remaining servers,

(iii) server k recovers the missing intermediate values {v; ; :
i € Ri,j € N(i),j ¢ My} using locally computed
intermediate values {v;; : i € N(j),j € My} and
received messages { X : k' € [K]\ {k}}.

We define the normalized communication load of the Shuffle

phase as follows.

Definition 2 (Normalized Communication Load). The nor-
malized communication load, denoted by L, is defined as the
number of bits communicated by K servers during the Shuffle
phase, normalized by the maximum possible total number of
bits in the intermediate values associated with all the Reduce

functions, i.e.

L : Zi(zl Ck

==
For the running example in Fig. 3(c), after the Map phase,
each server obtains the intermediate values corresponding to
the files in its subgraph. The intermediate values that are
needed for computing the allocated Reduce functions but are
not available after the Map phase have also been highlighted.
We illustrate an uncoded Shuffling scheme in which each
server is assigned the task of sending some of its locally
available intermediate values to other server over the shared
multicast network. We highlight here that each intermediate
value missing at a server is available at two other servers. For
example, v5 1 and vg o are missing at server 3, and both of
them are available at servers 1 and 2. In this uncoded Shuffle,

exactly one of the two servers is uniquely assigned the task
to communicate the missing intermediate value to the server.
For example, vs; is multicasted by server 1 while vg o is
multicasted by server 2. As a total of 6 intermediate values
are sent over the shared multicast network, the normalized
communication load of the uncoded Shuffle is L = %.

The servers can instead send linear combinations of the

intermediate values over the multicast network. For example,
server 1 multicasts vs 1 @ v3 4. As vs 1 is locally available
at server 2, server 2 can compute (vsq @ v374) @ vs,1 and
obtain the missing intermediate value v3 4. Similarly, server 3
can obtain the missing intermediate value v5 ;. This illustrates
that by using coded Shuffle, in which each server sends a
combination of locally available intermediate values over the
multicast network, the communication load can be improved
over the uncoded Shuffle. In this case specifically, the commu-
nication load for the coded Shuffle is L = 33, which is factor
of two (same as the computation load » = 2) improvement
over uncoded Shuffle. This forms the motivation behind our
proposed scheme in Section IV.
Reduce phase: Using its locally computed intermediate values
and the intermediate values recovered from the messages
received from other servers during the Shuffle phase, server
k € [K] computes the Reduce functions in Ry, to calculate
0;i =h;({vi; : j € N(4)}) for all i € Ry.

In Fig. 3(c), each server has all the intermediate values that
are needed to compute the allocated Reduce functions. For
example, for computing the Reduce function associated with
vertex 1, server 1 has intermediate values v, and vy o avail-
able locally from the Map phase and the intermediate value
v1,5 obtained from server 2 in the Shuffle phase. Therefore,
each of the three servers can compute the Reduce functions
allocated to it.

C. Problem Formulation

As illustrated in Fig. 3, the communication load during
Shuffle phase depends on subgraph allocation, Reduce alloca-
tion, and Shuffle strategy. For an allowed computation load r,
our broader goal is to minimize the communication load during
Shuffle phase through efficient schemes for allocation of
subgraphs and Reducers to servers and for coded Shuffling of
intermediate values among the servers. We consider a random
undirected graph G = (V, £), where edges independently exist
with probability P[(¢, j) € &] for all i, j € V. Let A(r) be the
set of all possible subgraph and Reduce allocations for a given
computation load r (as defined in the previous subsection). For
a graph realization G of G and an allocation A € A(r), a coded
Shuffling scheme is feasible if each server can compute all
the Reduce functions assigned to it. We denote by L 4(r, G)
the minimum (normalized) communication load (as defined
in Definition 2) over all feasible Shuffling coding schemes
that enable each server to compute all the Reduce functions
assigned to it.! Hence, for a given realization G of the random
graph G, the minimum communication load among all possible

The uncoded Shuffling schemes are special cases of the coded Shuffling
schemes and are thus included in the set of all feasible coded Shuffling
schemes under consideration.

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

subgraph and Reduce allocations and feasible coded Shuffling
schemes is as follows:

Li(r) = inf La(r,G). (2)

AcA(r)

Remark 2. Partitioning of graphs in popular graph processing
frameworks such as Pregel [2] is solely based on the vertex ID
and not on the vertex neighborhood density. Furthermore, de-
signing subgraph allocation, Reduce allocation and Shuffling
schemes for characterizing the minimum communication load
in (2) is NP-hard in general. This is because for the case of
computation load r = 1, finding the minimum communication
load is equivalent to finding the minimum K-cut over the
graph, which is NP-hard for general graphs [47]. Additionally,
existing heuristics for load balancing in distributed graph
processing involve additional steps such as migration of ver-
tex files during graph algorithm execution [48], which adds
latency to the overall execution time. Hence, we focus on
the problem of finding the subgraph and Reduce allocation
tuple A € A(r) that minimizes the average normalized
communication load across all graph realizations G of G.

We formally define our problem as follows.

Problem: For a given random undirected graph G = (V, £) and
a computation load r € [K], our goal is to characterize the
minimum average normalized communication load, i.e.

L*(r):= inf Egl[La(r,G)]. 3
()= inf EqlLa(r.9) 0
Remark 3. For r > K, L*(r) is trivially 0 as each vertex
can be mapped at each server, so all the intermediate values
associated with the Reducers of any server is available at the
server.

Remark 4. As defined above, L*(r) essentially reveals a fun-
damental trade-off between computation and communication
in distributed graph processing.

Remark 5. In the above problem formulation, for a given
subgraph and Reduce allocation tuple A € A(r), in order
to minimize the average communication load, the Shuffle
scheme needs to take into consideration the connectivity of
each realization G of G. As we describe in Section IV,
our proposed coded scheme utilizes careful alignment of
intermediate values for creating coded messages for multicast
during the Shuffle phase, leading to significant improvement
in the average communication load.

Remark 6. Although the main focus of our problem formu-
lation is on minimizing the average communication load for
random graph models, our proposed coded scheme in Section
IV is applicable to any real-world graph. As demonstrated
in Section VII, our proposed coded scheme can provide
significant performance gains in practice. Specifically, for
implementing PageRank over the real-world social webgraph
TheMarker Cafe [11], our proposed scheme provides a gain
of up to 43.4% in the overall execution time in comparison to
the conventional PageRank implementation.

In the next Section, we discuss our main results for four
popular random graph models.

III. MAIN RESULTS

In this section, we present the main results of our work. Our
first result is the characterization of L*(r) (defined in (3)) for
the Erdos-Rényi model that is defined below.

Erdos-Rényi Model: Denoted by ER(n, p), this model con-
sists of graphs of size n in which each edge exists with
probability p € (0, 1], independently of other edges (Fig. 5(a)).
Theorem 1. For the Erdos-Rényi model ER(n,p) with p =
w(5z), we have

lim mzl(l—i).
n—oco P r K

Remark 7. Theorem 1 reveals an interesting inverse-linear
trade-off between computation and communication in dis-
tributed graph processing. Specifically, our proposed coded
scheme in Section IV asymptotically gives a gain of r in the
average normalized communication load in comparison to the
uncoded Shuffling scheme that as we discuss later in Section
IV, only achieves an average normalized communication load
of p(1 —). This trade-off can be used to leverage additional
computing resources and capabilities to alleviate the costly
communication bottleneck. Moreover, we numerically demon-
strate that even for finite graphs, not only the proposed scheme
significantly reduces the communication load in comparison to
the uncoded scheme, but also has a small gap from the optimal
average normalized communication load (Fig. 4). Finally, the
assumption p = w(#) implies the regime of interest in which
the average number of edges in the graph is growing with
n. Otherwise, the problem would not be of interest since the
communication load would become negligible even without
redundancy/coding in computation.

1072
T T I

]l —@— Uncoded Scheme [
G —— Proposed Coded Scheme
~ —— Lower Bound
=
3
Q
— 6 N
[=
g
=
g
S 4f :
g
g
o
O
3 2 1
|5}
o
o
s

0 N

| | | | |

1 2 3 4 5
Computation Load (r)

Fig. 4: Performance comparison of our proposed coded scheme with
uncoded Shuffle scheme and the proposed lower bound. The averages
for the communication load for the two schemes were obtained over
graph realizations of the Erdds-Rényi model with n = 300, p =
0.1 and K = 5.

Remark 8. Achievability Theorem 1 is proved in Section IV,
where we provide subgraph and Reduce allocations followed
by the code design for Shuffling for our proposed scheme.
The main idea is to leverage the coded multicast opportunities
offered by the injected redundancy and create coded messages

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

which simultaneously satisfy the data demand of multiple
servers. Careful combination of available intermediate values
during the Shuffle phase benefits from the missing graph
connections by aligning the intermediate values assigned to be
communicated over the shared network. Conversely, Theorem
1 demonstrates that the asymptotic bandwidth gain r achieved
by the proposed scheme is optimal and can not be improved.
For the proof of converse provided in Section V, we use
induction to derive information-theoretic lower bounds on
the average normalized communication load required by any
subset of servers and then use the induction on the set of all
the K servers.

Our second result is the characterization of L*(r) for the
power law model that is defined below.
Power Law Model: Denoted by PL(n,~,p), this model
consists of graphs of size n in which degrees are i.i.d random
variables drawn from a power law distribution with exponent
~ and edge probabilities are p-proportional to product of the
degrees of the two end vertices (Fig. 5(b)).

Theorem 2. For the power law model graph PL(n,~, p) with
node degrees {dy,--- ,dn}, v > 2 and p = ﬁ, we have
i=1 """

20 <10-5)

lim sup <
n—00 (L_l) r
y—2

Remark 9. Theorem 2 demonstrates that an inverse-linear
trade-off between computation load and communication load
can also be achieved in the power law model. We leverage
our coded scheme proposed in Section IV for the proof of
Theorem 2 in Section VI.

° °
9
°
o °
° o
&0 ° o
[} e °
° 0.0 .
° o e g °
°
o °
o o o
3 o [} o
« o o o
° ° - o
) ° o
g ' ° °
o
° o o o
° Q ©

(a) Erdos-Rényi model with (b) Power law model with n =
n = 20. 40, v = 2.3 and 100 edges.

Q Q ° ° ° ° ° °

° ° ° ° °

(d) Stochastic block model
with n; = 12 and ny = 18.

(c) Random bipartite model
with n; = 6 and ne = 4.

Fig. 5: Illustrative instances of the random graph models considered
in the paper. In Fig. 5(a), each edge exists with a given probability
p. In Fig. 5(b), expected degree of each vertex follows a power law
distribution with exponent . In Fig. 5(c), each cross-edge exists
with a given probability g. In Fig. 5(d), each intra-cluster edge exists
with a given probability p and each cross-edge exists with a given
probability q.

Furthermore, we specialize our proposed coded scheme
in Section IV to develop subgraph allocation and Reduce
allocation schemes along with coded Shuffling schemes for
two other popular random graph models which are described
below:

Random Bi-partite Model: Denoted by RB(n1,n2,q), this
model consists of graphs with two disjoint clusters of sizes 11
and no in which each inter-cluster edge exists with probability
g € (0,1], independently of other inter-cluster edges (Fig.
5(c)). No intra-cluster edge exists in this model.

Stochastic Block Model: Denoted by SBM(nq,n2,p, q), this
model consists of graphs with two disjoint clusters of sizes nq
and ny such that each intra-cluster edge exists with probability
p and each inter-cluster edge exists with probability ¢, 0 < ¢ <
p < 1, all independent of each other (Fig. 5(d)).

The following theorems provide the achievability and con-
verse results for RB and SBM models.

Theorem 3. For the random bi-partite model RB(ny,ns,q)
with n = n1 + ng, n1 = O(n), ng = O(n), |n1 — na| = o(n)

and q = w(n%) we have
1 2r . 2r
87“<1_K> §h71rlr1_>sot<1)pq§2r<1—K>.

Remark 10. Theorem 3 characterizes the optimal average
normalized communication load within a factor of 4 for the
random bi-partite model. We provide the proofs for achiev-
ability and converse of Theorem 3 in Appendices and A
and B respectively. For achievability, we observe that there
are no intra-cluster edges in the random bi-partite model,
due to which intermediate values for a particular Reducer
in one cluster only comes from Mappers in the other clus-
ter. Therefore, we specialize our proposed coded scheme in
Section IV for the random bi-partite model, partitioning the
available servers in proportion to the cluster sizes. Therefore,
there is maximum overlap between Reducers corresponding to
vertices in one cluster and Mappers corresponding to vertices
in other cluster. For proving the converse, we remove vertices
(and the edges corresponding to them) from the larger cluster
so that the reduced graph has two clusters of equal sizes.
The reduced graph model thus has two sets of Mappers
and Reducers, which correspond to two different Erdos-Rényi
models. Applying our lower bound for the Erdos-Rényi model
in Theorem 1, we arrive at the converse of the bi-partite model.

L*(r) 1

Theorem 4. For the stochastic block model SBM(n1,n2,p, q)

with n = ny; + ng, ng = O(n), ng = O(n), and p =
w(7z),q = w(5z), we have
i L*(r) 1 r
lnsup o <, () @
(n1+mn2)?
Moreover, the following converse inequality holds:
L*(r) _ 1 r
A 7) . 5
q ~r (K)

Remark 11. Using (4) and (5), it can be easily verified that for
the stochastic block model, the converse is within a constant
factor of achievability if p = ©O(g). The achievability and
converse of Theorem 4 are proved in Appendices C and D
respectively. For achievability, we specialize our proposed
coded scheme from Section IV based on the observation that

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

in SBM, the Reducers corresponding to vertices in one cluster
depend on the Mappers corresponding to the vertices within
the cluster with one probability (due to intra-cluster edges),
and on the vertices in the other cluster with another probability
(due to cross-cluster edges). For the converse, the key idea is
to randomly remove edges from the SBM model such that a
larger ER model is obtained, then utilize a coupling argument,
and finally use our information theoretic converse bound in
Theorem 1.

IV. PROPOSED SCHEME AND PROOF OF ACHIEVABILITY
OF THEOREM 1

In this section, we first describe our proposed coded scheme
for distributed graph analytics, and then leverage it to prove
the achievability for the Erdos-Rényi model in Theorem 1.

A. Proposed Scheme

As described in our distributed graph processing framework

in Section II, a scheme for distributed implementation of the
graph computations consists of subgraph allocation, Reduce
allocation, and Shuffling algorithm. We next precisely describe
our proposed scheme for a given realization G of the under-
lying random graph G = (V, £).
Subgraph Allocation: The n files associated with the n
vertices of G are first partitioned serially into (%) batches
Bi,Ba, ..., Bk, where B; comprises of the files associated
with the vertices with IDs in the range {(j —1)g + 1,(j —
1g+2,...,j9}. Here, g = n/(ff) denotes the number of files
in each batch. For our example with a graph of 6 vertices, 3
servers, and computation load 2 presented in Section II, the 6
files are partitioned into (*) = 3 batches each of size g = 2
as follows (see Fig. 6(a)):

Bl = {1’2}7
By = {3,4},
Bs = {5,6}.

Each of the () batches of files is associated with a unique
set of r servers. Specifically, let F;, Fo, .. ./—"(K) denote all

possible combinations of the elements of {1,2,..., K}. Then,
each of the servers with indices in F; is allocated each of the
files contained in batch B;. Thus, server k € [K] Maps the
vertices in B; if k € F;. Equivalently, B; C My, if k € F;.
Therefore, we have the following for the subgraph allocation
for server k:

Mi = Uje| ()] wer, Bi-

As each server is present in (“ ') of the (%) unique com-
binations of servers, we have the following for each server
ke [K]:
K-1 K—-1\ n ™
M = = —_—_ = —,
M| (rl)g (rl)(f) K
In Fig. 6(a), we illustrate the subgraph allocation for our
running example. 71 = {1,2}, F» = {1,3} and F3 = {2,3}.
Each of the two files in batch B; is assigned to each of the
servers in F;, for j € {1,2,3}. Thus, server 1 is allocated
files By U By = {wy,wa,ws, w4}, server 2 is allocated files

9

B1UBs = {w1,wa, ws, ws} and server 3 is allocated BoUB3 =
{wg,w4,w5,w6}. Thus, |./\/l1| = |./\/l2| = ‘Mg,‘ =4.
Reduce Allocation: The n Reduce functions associated with
the n graph vertices are disjointly and uniformly partitioned
into K subsets and each subset is assigned exclusively to one
server. Specifically, for k € [K], |Rx| = # and Ry = {(k —
g +1,(k=1)% +2,...,k%}. In our running example,
Rl = {1,2}, Rg = {3,4} and Rg = {5,6}

For notational convenience, we denote our proposed sub-
graph allocation and Reduce allocation by Ag.
Coded Shuffle: As illustrated in Fig. 3(c), the key idea in
coded Shuffling is to create coded combinations of locally
available intermediate values so that the same message can be
useful for many servers simultaneously. Due to the subgraph
and Reduce allocation Ag described above, every set Fjofr
servers has a unique batch of files B;. Thus, all the intermedi-
ate values corresponding to the Map computations associated
with the files in B; are available at every server in F; after
the Map phase. With this observation, consider without loss
of generality the set of servers S = {1,2,...,r+1}. For each
server k € S, let Z é\ iy be the set of all intermediate values
that are needed by Reduce functions in k, and are available
exclusively at each server k' € S\ {k}, i.e.

Zj;‘\{k} = {U,’J :(i,7) €€,1 € Ry, j € mk’eS\{k}Mk"}-
(6)
We observe that after the Map phase, server r + 1 has Z% S\{k}
for k € {1,...,r}. Furthermore, server 1 has Z§, 1, for k €
{2,...,r}, server 2 has Zg\{k} for k € {1,3,...,r}, and so
on. Therefore, server r + 1 can create a coded message by
selecting one intermediate value each from Zg\ (K} for k €
{1,...,r}, and taking a XOR of them. The coded message
is simultaneously useful for the servers {1,...,r} as each of
them can XOR out its own missing intermediate value as it has
the remaining intermediate values associated with the coded
message. Similar arguments hold for the coded messages from
other servers within S.
In light of the above arguments, for each k € S, each
intermediate value v;; € Zg\ (K} is evenly split into r

segments v(lj) SN Z(") each of size L bits. Each segment is

associated with a dlStll’lCt server in S\ { k}, where the segment
assignment is based on the order of the indices of the r servers
S\ {k}. Therefore, ZZ;\ (xy is evenly partitioned to r sets,
which are denoted by Zg'\{k},s for s € S\ {k}. Depending
on the connectivity of G, the number of intermediate values in
Z§\ () shall vary, and the maximum possible size of Z§, (;,
is 4= g7 = ey
and fills that out with segments which are associated with it.
Each row of the table is filled from left by the segments in one
of the sets Zg\{k}’s, where k € S\ {s} (see Fig. 7). Then,
server s broadcasts the XOR of all the segments in each non-
empty column of the table, where for each non-empty column,
the empty entries are zero padded. Clearly, there exist at most
g of such coded messages. The process is carried out similarly
for every other subset S C [K] of servers with |S| =r + 1.
After the Shuffle phase, for each multicast group of r» 4 1
servers, all but one intermediate values contributed in each

. Each server s € S creates an r x g table

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

coded message are locally available. Moreover, all possible
subsets of multicast servers have sent their corresponding
messages. Therefore, each server can recover all of the in-
termediate values associated with its assigned set of Reduce
functions using the received coded messages and the locally
computed intermediate values. Thus, our proposed coded Shuf-
fling scheme is feasible, i.e. for any given graph, and subgraph
and Reduce allocation Ag, our proposed Shuffling enables

Subgraph

Allocation

Reduce 2
Allocation

s
N
o
=N

(a) Hlustrating the subgraph allocation and Reduce allocation A¢ for
the example graph with 6 vertices. The 6 files are partitioned into 3
batches and each batch is assigned to a unique subset of 2 servers.
The Reduce functions are partitioned into 3 sets, one set is assigned
to each server.

S1 needs Lgll) ”e()lz)
® @ S sends

1 1

0(53 ”4(1 3

« (2) 2

S needs Vs { 1((,1)
® D Sy sends

2 2

Uy

S5 needs 11(1;2 7'(:.1)
57] b S5 sends

@3 3

Ry

(b) For the subgraph and Reduce allocations Ac in Fig. 6(a), we
illustrate our proposed coded Shuffle scheme. For each intermediate
value needed by a server, each of the remaining two servers is
assigned the task of communicating a segment which is one-half
of the intermediate value. The servers create a table of the segments
that they are assigned to send, with each row corresponding to the
intermediate values required exclusively by one of the remaining
servers. Each server sends two coded messages, each of which is
simultaneously useful for both the remaining servers.

Fig. 6: Illustration of our proposed scheme.

10

each server to compute all the Reduce functions assigned to
1t.

Remark 12. The proposed scheme carefully aligns and com-
bines the existing intermediate values to benefit from the
coding opportunities. This resolves the issue posed by the
asymmetry in the data requirements of the Reducers which
is one of the main challenges in moving from the general
MapReduce framework in [10] to graph analytics.

In Fig. 6(b), every intermediate value in Z3 (1.2}
{vs,1,v6,2} 1s split into r = 2 segments, each associated with
a distinct server in {1,2}. This is done similarly for servers 1
and 2. Then, servers 1, 2, and 3 broadcast their coded messa es
Xy = {Uél) fllg,vé 4@”(1)} X {U(Ql @Uﬂa Uf(i22@ Ua 6}
and X5 = {v ® vy 5,115(322 @ v276}, respectively. All three
servers can recover their missing intermediate values. For
instance, server 3 needs vs 1 to carry out the Reduce function
associated with vertex 5. Since it has already Mapped vertices
3 and 5, intermediate values vs3 and v;5 are available
locally. Server 3 can recover v() (1) &) v(l)

and v(2> S5) v§ 5) respectively. As each server sends 2 coded
messages to other servers and each coded message is half the
size of an intermediate value, therefore, the overall normalized
communication load is %, which is two times better than the

normalized communication load for uncoded Shuffling.

and véQI) from vy

B. Proof of Achievability of Theorem 1

We now analyze the performance of our proposed coded
scheme in Section IV-A for the Erdos-Rényi random graph
model to prove the achievability of Theorem 1. For our pro-
posed subgraph and Reduce allocation Ag, we first compute
the average communication for uncoded Shuffle where no
coding is utilized during the Shuffle phase.

Uncoded Shuffle: Given the subgraph and Reduce allocation
Ag, consider a server k € [K]|. Due to symmetry, the total
expected communication load is sum of the communication
loads of each server. Hence we can focus on finding the
communication load of server 1. Note that there are n/K
Reducers assigned to server 1, and 7z Mappers assigned to
server 1. Therefore, for each Reducer in server 1, the expected
communication required is (pn — p%?)T. Summing over the
expected communication loads for all the Reducers in server
1 and appropriate normalization, the total expected communi-
cation load for server 1 is 7 (pn — p#)T. Summing over all
the K servers, we get the average normalized communication

load for the uncoded Shuffle as follows:
LY = Eg [L9S(r,G)]

sk

(i-p).

where Lﬂg(r, G3) denotes the normalized communication load
for uncoded Shuffle for the graph realization G of the Erdos-
Rényi random graph model G.

We now apply our proposed coded Shuffle scheme and com-
pute the induced average communication load. Without loss of
generality, we analyze our algorithm by a generic argument for

1
n2T

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

servers S = {1,--- ,r+ 1} which can be similarly applied
for any other set of servers S with |S| = r + 1, due to the
symmetric structure induced by the graph model and subgraph
allocation and Reduce allocation Ac. Denote r + 1 servers as
S1, -+ ,Sr+1, and consider the messages that s; is assigned
to send within the multicast group S, the coded messages
that are sent by other servers within S are also created
similarly. As described in Section IV-A and illustrated in Fig.
7, server s; creates a table of intermediate value segments for
transmission. In this table, each row is filled from the left,
and for i € [r], i’th row contains the allocated segments for

the intermediate values in the set Z5i7' . The number
S\{si+1}.s1

of segments in Z;i\f{lsiﬂ}’sl, denoted by g;, depends on the
connectivity of the graph G and is upper bounded by g,
the total number of intermediate values in Z;i\t{lsiﬂ} for a
completely connected graph. Server s; broadcasts at most
Gmax = max(gi,Jo, ..., J,) coded messages X1, ... XGmx,
zero padding the empty entries in the non-empty columns.
These coded messages are simultaneously and exclusively use-
ful for the servers s, --- ,S,+1. For each non-empty column
J € [Gmax)» X7 is XOR of at most r non-zero segments of size
% bits, associated with server s;. More formally, for each

non-empty column j € [Gmax], We have the following:

o= @il 2
i=1
In (7), for i € [r] and j € [g;], we have used vél()i.j) to denote
the non-zero segment in the table in ¢’th row and 7’th column,
while for j € {g; +1,3; +2,...,3}, US()i.j) denotes the zero
padding segment. ’

Let Bern(p) random variable E,; ;) indicate the existence
of the edge a(i,j) € VxV,ie. B,) = 1. ifa(i,j) € £, and
Eqi,j) = 0, otherwise. Clearly, for all vertices 4, j,t,u € V,
Eq i) is independent of E, ;) if (i, j) and a(t,u) do not
represent the same edge, and Fo(; ;) = Eqt,4), Otherwise.

X! X? X3 X9
Il Il | Il
s N
. 1) 1) (1) 1)
Py Ya(1,1) Ya(1,2) Ya(1,3) ' Ve (1,5) |
N //
@D 5>} 52 52
/’-\\ /’-\\ //>\\
. ©) e NS HNEY)
P Ya21) ! Va2 | 1 Va2 ! ' vaiag) |
\ / \ / \ /
AN 7 N 7 AN 7
® ® 57 ®
® 52} 57 57
g T \\ s T \\
.)) NEY! (1)
Pr . Ya(r,1) Ya(r,2) U Yo (r,3) ' ‘\ Ya(r,g) /!
\

Fig. 7: Creating coded messages by aligning the associated interme-
diate value segments.

11

For i € [r], the random variable P; is defined as

g
P = Z Euij) (3)
=1

i.e. each P; is sum of § possibly dependent Bern(p) random
variables. Note that P;’s are not independent in general. By
careful alignment of present intermediate values (Fig. 7), s1
broadcasts) coded messages each of size % bits, where
() = max;¢c[,) P;. Thus, the total coded communication load
sent from server s; exclusively for servers sg,- -, 8,41 1
%Q bits. By similar arguments for other sets of servers, we
can characterize the average normalized coded communication
load of the proposed scheme as follows:

- 1 K-1

18, = EeliS,(n 0] = k(T El@l @
where L%C (r,G) denotes the normalized communication load
for the proposed coded Shuffle for the graph realization G of
the Erdds-Rényi random graph model G.

The following lemma asymptotically upper bounds E[Q)]

and the proof is provided in Section IV-C.

Lemma 1. For ER(n,p) graphs with p = w(55), we have
E[Q] < pg + o(pg).
Putting (9) and Lemma 1 together, we have

- 1 r
L) < L5, < oo (1= 1) +olp),
hence the achievability claimed in Theorem 1 is proved.
Finally, we note that as explained in the uncoded Shuffle
algorithm, the average normalized uncoded communication
load of the proposed scheme is LY = p (1 — %), which
implies that our scheme achieves an asymptotic gain of r.

Remark 13. As we next show in the proof of Lemma 1, the
regime p = w(1/n?) is essential in order to have pg = w(1).
As g = % = O(n?) is a deterministic function of n, the
regime p :Tuz(l /n?) is needed to get the achievability and
asymptotic optimality of Theorem 1.

C. Proof of Lemma 1
Before proving Lemma 1, we first present the following
lemma that will be used in our proof.
Lemma 2. For random variables { P;};_, defined in (8), their
moment generating functions for s’ > 0 can be bounded by
E[es'Pi:I S (pe2s/ + 1 _p)§/2

Proof. Consider a generic random variable of the form (8)

g
P=>Ej,
j=1

where E;’s are Bern(p) and possibly dependent. However,
although E;’s may not be all independent, but dependency is
restricted to pairs of Ej;’s. In other words, for all 1 < 5 < g,
E; is either independent of all Efg)\(;y, or is equal to £y
for some ¢ € [g] \ {j} and independent of all E ;- By
merging dependent pairs, we can write

G—J
P=>Fj,
j=1

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

where

(i) Fy’s are independent,

(i) g —2J of F;’s are Bern(p),

(iii) J of F;’s are 2 x Bern(p),
for some integer 0 < J < Lg] Now, we can bound the
moment generating function of P. For s’ > 0,

E[eS/P] = E[esl Xia Fj]

ﬁ,

j=
()9 QJ(p€25' _|_1_p)J
§/2_J ’
[pe +1-p] (peQSJrl—p)J
a) _ /
< (pe2s +1 —p)g/2 J(peQS +1 —p)J
_ (pe2s’ +1 _p)g/27
where inequality (a) is obtained using Lemma 4 (proof
available in Appendix E). O

We now complete the proof of Lemma 1. For any s’ > 0,
we can write

A
H =
X
R

<3

ZIE[@

i=1
(2s’ +1-—)g/27

where the last inequahty follows from Lemma 2. Taking
logarithm from both sides yields

1 q !
E[Q] < 7 log(r) + 2%, log(pe* +1 —p). (10)
Let us substitute s = 2s’ in (10). Then,
1 g .
E[Q] < S log(r?) + Llog(pe” + 1-p), (1D

for any s > 0. Let p = 1 — p and pick

log(r)

grp
We proceed with evaluation of the right hand side (RHS) of
(11) at s = s,. We first recall the following Taylor series

Sy = 2

2?23
log(l—i-ac):x—?—i—?—u-, for € (—1,1],
22 3
—1+x+f+§+ for z € R.

Let z = p(e®* —1). It is easy to check that for p = w(-), we
have + — 0 and s, — 0 as n — oo. Therefore, for n — oo
we can write

log(pe®™ +1 —p)

=log(z + 1)
z? s

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12
2(,8 2 3(8 3
: pile™ =17 pie™ 1)
— s+ _ 1) — _
ple) 5 + 3
8*2 8*3 p2 3*2 5*3 2
ploet 5+ +) St + 350 +)
3 2 3
P S S 3
A GO TR
= ps. + 252+ ofps?)

Putting everything together, we have

1 ’
E[Q) < - log(r”) + - log(pe™ +1-p)

PP o

| >
= —log(r?) + si(ps* + 5 S + o(ps?))

Sx

1 ~ . gpb _

- log(r?) + gp + -5+ + 0(gps.)
10) (\/gp) .

= gp+ 2/ gpplog(r) +
Recall that g = #Z) which is a deterministic function of

r

n. Therefore, we choose p=uw(s

thus /gpp log(r (

pg + o(pg), as n —> 0.

) to have gp = w(1) and
p) = o(gp). Therefore, E[Q] <

V. CONVERSE FOR THE ERDOS-RENYI MODEL

In this section, we prove the asymptotic optimality of
our proposed coded scheme for the Erdds-Rényi model, by
leveraging the techniques employed in [10]. More precisely,
we complete the proof of Theorem 1 by deriving the lower
bound on the best average communication load for the Erdos-
Rényi model, that matches the achievability in (10).

Let G be an ER(n,p) random graph and consider a sub-
graph and Reduce allocation A = (M, R) € A(r), where
Zszl M| =rn and |Ry| = %, for all k € [K]. We denote
the number of files that are Mapped at j vertices under Map
assignment M, as a’y,, for all j € [K7]. The following lemma
holds.

Lemma 3. Eg[L4(r,G)] > pEj 1 e

Proof. We let intermediate values v; ; be realizations of ran-
dom variables V; ;, uniformly distributed over For. For a
random graph G = (V,€) and subsets Z,7 C V = [n],
define VIQ’J ={Vi; : (4,5) € £, € Z,j € TJ} as the
set of present intermediate values in graph G corresponding
to Reducers in Z and Mappers in J. For a given allocation
A= (M,R) € A(r) and a subset of servers S C [K], we
define Xs = {X; : k€ S} and Y§ = (Vg&:, V%\AS), where
“:” denotes all possible indices (which depend on both alloca-
tion and graph realization). As described in Section II-B, each
coded message is a function of the present intermediate values
Mapped at the corresponding server. Moreover, all the interme-
diate values required by the Reducers are decodable from the
locally available intermediate values and received messages
at the corresponding server. That is, H (X k\Vng) = 0 and
H(Vg X Vg .) = 0 for all servers k € [K] and graphs
G. We "denote the number of Vertlces that are exclusively
Mapped by j servers in S as a’ ° . that is

akf = Y |(Mkesi M) \ (Ungs, Mio)l-
51C8:181|=j

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE
Transactions on Information Theory

13
We prove the following claim by induction. Putting (15), (16), (17), and (18) together, we have
g
Claim 1. For any subset S C K], Eg [H(XS|Y c)}
S| 1
S| - > — { g g }
Eg[(XS\YC)} >pTZaM n | |. J (12) =5, ZEQ H(Xs|Vi, - Yse)
J=1 K
Z Eg { Mk ’ YSQL)}
Proof. (i) If S = {k}, for any k € [K] and graph G we O kes
have H(Xs|Y§.) > 0. Therefore, + Eg [H(XS\V:?MIC, ng):, Ysgc)}
1
nl-—1 So
Eg {H(Xlegc)} >0=pTY ay’ - 1 (n 1.8\ {k}
> — —pT ’
j=1 ME T _Sokes K’ ZGM
(i) Assume that claim (12) holds for all subsets of size Sj. So)
For any subset S C [K] of size Sp + 1, the following +pTZ oISk TV So — J)
steps hold: = M K j
(Xs\Ysgc)
nl S\{k
% I
ZH (Xs, X5|V5.) I kes
|S =
SOH snSo+1—j
=3 5| =S (H (XX YE) + HXGYE) (3) =T Z M=
kES
(iii) Therefore, for any subset S C [K|, claim (12) holds.
|S| Z H(Xs| X, YE.) + ‘S|H(XS\YEC). (14) d %] O
keS
where (14) follows from (13) using chain rule and Now, pick § = [K]. Then,
conditional entropy relations. Simplifying (14) and using Eg [(XS\Y } K
|S| — 1 = Sy, we have the following: Eg[La(r,G)] > —C Z
1 - n?2 —
H(Xs|Y§) 2 o D H(Xs|VE, . YE). (5) -
S ert o O
Moreover, Proof of Converse for Theorem 1. First, we use the result in
H(. Mk,YSgC) = H(V{ g |Vg ,YSQC) Claim 1 and bound the best average normalized communica-
+ H(X$|V Mkvvgk,:»ysgc)' tion load as folloivs: .
(16) L*(r) > inf Bg [La(r,)]
We can lower bound expected value of the first RHS K g j_ i
term in (16) as follows > infpz Im2 "7
g g AT Kj
Eg [H(VE, [VEy, YE)] j
where the infimum is over all subgraph and Reduce allocations
_E Z H(VE, VO) A = (M,R) € A(r) for which Zle IMg| = rn and
e —~ {oh: v MUMse |Rik| = %. VEk € [K]. Additionally, for any Map allocation
Ve with computation load r, we have the following equations:
=E N(@)] — N (v) N (Mg U Mse S L
j=1 j=1
= pT Z aj S\{k} Using convexity of KK—7 in j and (19), the converse is proved
as follows:
K j .
ay K —j
* > : A
—pTZaJ’S\““} (7) U zifed, St
Expected value of the second term in RHS of (16) can . K — Z]KZ 1 J 1;&
be lower bounded from the induction assumption: 2 1%fp Ky K .y
e =17
]Eg|: (XS|VMk7V'R,k,:7YSC):| 1 (,r.J)
= —p _—— .
= Eg{ (XS\{k}| 5\{;@})} r K
So n So—j VI. ACHIEVABILITY FOR THE POWER LAW MODEL
S\ {k 0 —
> pT Z ai\/t M }gT (18) We consider a general model for random graphs where the
J=1 expected degree sequence d = (dy,- -+ ,d,,) is independently

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

drawn from a power law distribution with exponent ~, i.e.
Pr[d; = d] = ¢d™ for ¢ € [n] and d > 1 and proper
constant ¢ [49]. Given the realization of the expected degrees
d, for p = ﬁ and all i,j € [n], vertices ¢ and j are
connected with prdbablllty pi; = Pl(i,j) € & = pdid;,
independently of other edges. We now proceed to analyze
the coded and uncoded communication loads averaged over
the random connections and random degrees induced by the
subgraph and Reduce allocation Ag proposed in Section IV-A.

Consider the allocation Ac = (M, R) and a subset of
servers S C [K] of size |S| = r + 1. According to the
proposed scheme in Section IV-A, for every server s € S,
servers in S\ {s} form a table and construct coded messages
using the intermediate values in the sets Zé\ (k} (defined in
(6)) where k € S\ {s}. Therefore, r+1 tables are formed each
constructing coded messages of size maxges\ (s} | Zh {k}|%
bits. The total coded load induced by the subset (and
exclusively for the use of servers in S) denoted by LEC(S) is

1
L%C (S) = max

| g]; "
2 \{k}
ner i keS\{s}

However, in uncoded scenarios, denoted by Lg(;’ (S) the total
uncoded load induced by subset S (and exclusively for the use

of servers in S) is
1
Cray :
S) =D 125

seS
We have
=
= Y ymes, Qo
i€R,

mENK es\ {53 M/

where the random Bernoulli 1{(¢,m) € &} indicates the
realization of the edge connecting vertices ¢ and m, i.e.

E[1{(i,m) € £}|d] = pd;d,,. We note that |Rs| = n/K and
| Mires\gsy M| = n/(X). Therefore, there are § = %
Bernoulli summands in (20) in which every two summands
are either independent or equal and independent of other
summands. More precisely, (20) can be decomposed to sum
of all independent Bernoulli random variables and sum of
dependent ones as follows:

|23\ (s3] = Z 1{(i,m) € £}
i€R,
mEﬁkles\{s}Mk/
=) {Em)e&}

JF1 or Fa or F3
+2

2.

i)meRSm(mk’eS\{s}Mk’)
<m

1{(i,m) € £}, 21
where we denote the events
F1:={i € Rs \ Mres\{syMrr , m € Npres\ (s3 M}
Fa = {Z ERs,me ﬂk’eS\{s}Mk’ \Rs}v
F3 = {’L =méeRsN (mk’GS\{s}Mk'>}-
Note that with this decompostion, all the Bernoulli summands
in both terms in (21) are independent. Assume that the first

14

and second terms in (21) contain ¢ — 2J and J summands
respectively.
According to Kolmogorov’s strong law of large numbers
(Proposition 1 provided at the end of this section) and given
that the second condition in the proposition is satisfied for
Bernoullis, we have
1
g—2J Z

JF1 or Fa or F3

>

i)meRSm(mk’eS\{s}Mk’)
<m

1{(i,m) € £} — Elpd;d,,] 2> 0,

1{(i,m) € &} — E|pd;d,,] = 0.

5
<=3

Therefore, size of the set Zg;\ (s} converges almost surely, that
is

1 S S
7 (|ZZS\{S}| —E[|Z8 (o |])

_9-2) 1 3

1{(i,m) € £} — E[pd;d,,)

g g_2J]:10r.7-'20r]-'3
J1 .
9 1, MERN(Nyresy (53 Mpr)
<m
220,
where

>

1€ER
mEﬂk/ES\{S}Mk/

=E [p VOI(RS)VOI(ﬁk/Es\{S}Mk/)} ;

and vol(V) = >~y d, for any subset of vertices V' C [n].
Moreover,

.n s
Jim EE“ZS\{S}H

E[|Z5\ (o] = E[pd;d,,]

1 1
(pr) n/iKV(ﬂ(Rs) T(IT()VOI(Ok'ES\{s}Mk’)

(22)
Each of the terms vol(R,), vol(Mires\ s} Mx) and inverse
of p are summation of i.i.d power law random variables for
which the expected value exists for v > 2 and E[d;] = jy—:é
Therefore, by strong law of large numbers (Proposition 1) each

term approaches its average almost surely, that is for v > 2

1 as. -1
/Kvol(Rs) 25 Eldy] = 5
! VOl(ﬁ \{ }./\/lk) E)]E[d] = L -1
k'eS\{s ’ 1| = .
n/ () -2
as. 1 y—2

Plugging into (22), we have lim, o %IE“Z:;\{S}H

as. y—1
Zhl = (35
and S C [K]. Putting all together, we have for v > 2,

lim nE[LYS(S)] = lim 7§ E[|2% (4]
n—oo
seS

O A Y 5

—1
b) Therefore, | for any s € S

|ZS\{ }‘

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

~ s (=)

Therefore, denoted by ng’ the total uncoded communication
load, we have

. uUcy _ 1:
) = i,

Y ELXSS)

SCIK]
n|S|=r+1

o ()

For the coded scheme, we have

. Cc T n k
S rBIES9) = i 5 8 | o

n—oo N2y
se
n(r+1)
< Jim "SR 23 |

(23)

The last equality follows the fact that % max,cs |Z§\ {5}\ Ry

gjy_l) , since %|Z§\ {S}| converges almost surely for any s €
. Plugging into (23), the expected coded load is

lim n E[LS,(S)]

n—o00
SCIK]
|S|=r+1

()i ()
D=

lim_ nE[LS] =

I
S| =
/N

which yields

L* nE[LS 1
limnT(lr)_ 1m%§f(l—L>.
n—o00 (77_2) n—oo (77—2) r K

Comparing the coded load with uncoded load proves the
achievability of gain r for the power law model.

Proposition 1 (Kolmogorov’s Strong Law of Large Numbers
[50], [51]). Let X1, Xo,-- , X, -+ be a sequence of inde-
pendent random variables with |E[X,,]| < oo for n > 1. Then

%Z (X; —E[Xi]) =0,
=1

if one of the following conditions are satisfied:
1) X;’s are identically distributed,
2) Vn, var(X,) < oo and Y-, var(Xa)

o < oQ.

VII. EXPERIMENTS OVER AMAZON EC2 CLUSTERS

In this section, we demonstrate the practical impact of
our proposed coded scheme via experiments over Amazon
EC2 clusters. We first present our implementation choices
and experimental scenarios. Then, we discuss the results and
provide some remarks. Implementation codes are available at
[52].

A. Implementation Details

We implement one iteration of the popular PageRank algo-
rithm (Example 1), for a real-world graph as well as artificially

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

15

generated graphs. For real-world dataset, we use TheMarker
Cafe Dataset [11]. For generating artificial graph datasets, we
use the Erdos-Rényi model, where each edge in the graph is
present with probability p. We consider the following three
scenarios:

o Scenario 1: We use a subgraph of size n = 69360 of The-
Marker Cafe Dataset [11]. The computing cluster consists
of K = 6 servers and one master with communication
bandwidth of 100 Mbps at each server.

o Scenario 2: We generate a graph using the Erdos-Rényi
model with n = 12600 vertices and p = 0.3. The
computing cluster consists of K = 10 servers and one
master with communication bandwidth of 100 Mbps at
each server.

o Scenario 3: We generate a graph using the Erdos-Rényi
model with n = 90090 vertices and p = 0.01. The
computing cluster consists of K = 15 servers and one
master with communication bandwidth of 100 Mbps at
each server.

For each scenario, we carry out PageRank implementation
for different values of the computation load r. The case of r =
1 corresponds to the conventional PageRank implementation,
where each vertex i € V = [n] is stored at exactly one server
and My = Ry for each server k € [K], i.e. the Map and
Reduce tasks associated with any vertex ¢ take place in the
same server. For » > 1, we increase the computation load
until the overall execution time starts increasing.

We now describe our implementation choices. We use
Python with mpid4py package. In all of our experiments,
master is of type r4.large and servers are of type m4.large. For
Scenario 2 and Scenario 3, we use a sample from the Erdos-
Rényi model. This process is carried out using a c4.8xlarge
server instance. For each scenario, the graphs are processed
and subgraph allocation is done as a pre-processing step.
For » = 1, the graph is partitioned into smaller instances
which have equal numbers of vertices. Each such partition
consists of two Python 11ists, one that consists of the vertices
that will be Mapped by the corresponding server, and the
other one that consists of the neighborhood information of
each vertex to be Mapped. The position of the neighborhood
tuple in the neighborhood list is same as the position
of the corresponding vertex in the vertex 1ist, so that one
can iterate over the two together during the Map stage. For
r > 1, the graph is divided into (I:) batches, where each
batch consists of equal numbers of vertices. Then each batch is
included in the subgraph of the corresponding set of 7 servers.
This way, we get a a computation load of r.

The overall execution consists of the following phases:

1) Map: Without loss of generality, the rank for each vertex
is initialized to % Each server goes over its subgraph and
Maps the rank associated with a vertex to intermediate
values that are required by the neighboring vertices during
the Reduce stage. Each intermediate value consists of
key-value pair, where the key is an integer storing the
vertex ID, while the value is a real number storing the
associated value. Based on the vertex ID, the intermediate
value is associated with the partition where the vertex is

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

Reduced, which is obtained by hashing the vertex ID.
For each partition, a separate 1ist is created for storing
keys and values.

2) Encode/Pack: In conventional PageRank, no encoding
is done as the transfer of intermediate values is done
directly. For > 1, coded multicast packets are created
using the proposed encoding scheme. Transmission data
is serialized before Shuffling.

3) Shuffle: At any time, only one server is allowed to use
the network for transmission. In conventional PageRank,
each server unicasts its message to different servers, while
for » > 1, the communication takes place in multicast
groups. For any multicast group, each server takes its
turn to broadcast its message to all the remaining servers
in the group.

4) Unpack/Decode: The messages received during the Shuf-
fle phase are de-serialized. For » > 1, each server
decodes the coded packets received from other servers in
accordance with the proposed coded scheme to recover
the intermediate values. After the decoding phase, all
intermediate values that are needed for Reduce phase are
available at the servers.

5) Reduce: Each server goes over its set of vertices that it
needs to Reduce and updates the corresponding PageRank
values. In conventional PageRank, for any vertex i € V,
the Map and Reduce operations associated with it are
done at the same server. Therefore, no further data
transmission is needed to communicate the updated ranks
for the Map phase in next iteration. In the proposed coded
scheme, message passing is done in order to transmit the
updated PageRanks to the Mappers.

Next, we discuss the results of our experiments.

B. Experimental Results

We now present the results from our experiments. The
overall execution times for the three scenarios have been
presented in Fig. 8.2 We make the following observations from
the results:

e As demonstrated in Fig. 8(a), maximum gain for Scenario

1 is obtained with a computation load of » = 5. Our
proposed scheme achieves a speedup of 43.4% over
conventional PageRank implementation (r = 1) and a
speedup of 25.5% over the single server implementation
(r = 6).

e For Scenarios 2 and 3, the optimal gain is obtained for
r = 4, after which the overall execution time increases
due to saturation of gain in Shuffling time and large Map
time. As demonstrated by Fig. 8(b) and Fig. 8(c), our
proposed scheme achieves speedups of 50.8% and 41.8%
for Scenarios 2 and 3 respectively, in comparison to the
conventional PageRank.

o As demonstrated by Fig. 8, Shuffle phase dominates
the overall execution time in the naive implementation
of PageRank. By increasing the computation load, our
proposed coded scheme leverages extra computing in the

2The Map time includes the time spent in Encode/Pack stage, while the
Unpack stage is combined with Reduce phase.

16

[Map

EShufic
[Decode| |
[JReduce

=

Computation Load (r)
w0 IS

N

—

I
0 0.5 1 1.5 2 2.5 3 3.5

Execution time (in s)

(a) Scenario 1

T
I Map
[Shuffle
IDecodel |
[]Reduce

o

-~

S

Computation Load (r)

-

0 10 20 30 40 50
Execution time (in s)

(b) Scenario 2

o

[
I IDecode]
[_JReduce

-~

w

S

Computation Load (r)

-

0 10 20 30 40 50 60 70 80
Execution time (in s)

(c) Scenario 3

Fig. 8: Overall execution times for distributed PageRank implemen-
tation for different computation load for the three scenarios.

Map phase to slash the Shuffle phase, thus speeding up
the overall execution time.

o Theoretically, we demonstrated that by increasing the
computation load by r, we slash the expected commu-
nication load in Shuffle phase by nearly r. Here, we
empirically observe that due to large size of the graph
model, we have a similar trade-off between computation
load and communication load for each sample of the
graph model as well.

o While the Map phase increases almost linearly with r,
the overall gain begins to saturate, since the Shuffle phase
does not decrease linearly with r. This is because as we
increase r, the overheads in multicast data transmissions
increase and start to dominate the overall Shuffling time.
Furthermore, unicasting one packet is smaller than the
time for broadcasting the same packet to multiple servers
[12].

Remark 14. The overall execution time can be approximated

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

as follows:

Trotal (’/‘) ~ TTMap + TShufﬁe/T + TReduce> (24)
where Tiuiap, Tsnute and TReduce are the Map, Shuffle and
Reduce times for the naive MapReduce implementation. For
selecting the computation load for coded implementation, one
heuristic [10] is to choose r that is the nearest integer to the
minimizer r* of (24) where

. Tshutfle
T =

= arg min Trop (7).

TMap r
For instance, in Scenario 2, Tyap = 1.649, Tshume = 43.78
and 7* = 5.15. As demonstrated by Fig. 8(b), a computation
load of » = 5 gives close to the optimal performance attained
at r = 4.

VIII. CONCLUSION AND FUTURE WORK

We described a mathematical model for graph based
MapReduce computations and demonstrated how coding the-
oretic strategies can be employed to substantially reduce
the communication load in distributed graph analytics. Our
results reveal that an inverse-linear trade-off exists between
computation load and communication load in distributed graph
processing. This trade-off can be used to leverage additional
computing resources and capabilities to alleviate the costly
communication bottleneck in distributed graph processing sys-
tems.

As a key contribution of this work, we developed a novel
coding scheme that systematically injects structured redun-
dancy in the computation phase to enable coded multicast-
ing opportunities during message exchange between servers,
reducing the communication load substantially in large-scale
graph processing. For theoretical analysis, we considered ran-
dom graph models, and proved that our proposed scheme en-
ables an asymptotically inverse-linear trade-off between com-
putation load and average normalized communication load for
two popular random graph models — Erdos-Rényi model, and
power law model. Furthermore, for the Erdos-Rényi model, we
provided proof for a matching converse, showing the optimal-
ity of our proposed scheme. We also carried out experiments
over Amazon EC2 clusters to corroborate our claims using
real-world as well as artificial graphs, demonstrating speedups
of up to 50.8% in the overall execution time of PageRank
over the conventional approach. Additionally, we specialized
our coded scheme and extended our theoretical results to two
other random graph models — random bi-partite model, and
stochastic block model. Our specialized schemes asymptoti-
cally enable inverse-linear trade-offs between computation and
communication loads in distributed graph processing for these
popular random graph models as well. We complemented the
achievability results with converse bounds for both of these
models.

One of the major differences from prior frameworks such
as Pregel is the use of combiners before Shuffling [2], where
the intermediate values that are Mapped at any server are
combined at the server depending on the target Reducer
computations. Our proposed schemes can be applied on top of
combiners, and it is an interesting future direction to explore

17

this in detail. The case with fully connected graphs can be
solved using the scheme proposed in the recent work of [18],
which shows that the coding gain can be achieved on top of
the gain from combiners. For the general MapReduce compu-
tation model considered in [10], the proposed scheme in [18]
utilizes the techniques of combiners as well as coding across
intermediate results, which provides a Shuffling gain which
is multiplicative of the gains from combiners and coding.
Furthermore, we focused on subgraph allocation and Reduce
allocation schemes that are oblivious to graph realizations. Our
motivation came from popular graph processing frameworks
such as Pregel [2], where partitioning of graphs is solely based
on the vertex ID and not on the vertex neighborhood density.
Also, designing subgraph allocation, Reduce allocation and
Shuffling schemes for characterizing the minimum communi-
cation load in (2) is NP-hard in general. It might, however,
be an interesting future direction to explore the development
of coded schemes that allocate resources affer looking at the
graph.

REFERENCES

[1] S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr, “Coded
computing for distributed graph analytics,” ISIT, 2018.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
SIGMOD, 2010.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: distributed graph-parallel computation on natural graphs.,” in
0SDI, 2012.

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” VLDB, 2012.

[5] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys, 2015.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
EuroSys, 2007.

[71 A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, 2007.

[8] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan, “Com-
putation and communication efficient graph processing with distributed
immutable view,” HPDC, 2014.

[9] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, 2008.

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed com-

puting,” IEEE Transactions on Information Theory, 2017.

M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici,

“Link prediction in social networks using computationally efficient

topological features,” in /[EEE Third International Confernece on Social

Computing (SocialCom), pp. 73-80, IEEE, 2011.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,

“Speeding up distributed machine learning using codes,” IEEE Trans-

actions on Information Theory, 2017.

S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable

framework for wireless distributed computing,” IEEE/ACM Transactions

on Networking, vol. 25, no. 5, pp. 2643-2654, 2017.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed

computing: Straggling servers and multistage dataflows,” in Communi-

cation, Control, and Computing (Allerton), 2016 54th Annual Allerton

Conference on, pp. 164-171, IEEE, 2016.

Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs

distributed computation: an alternative trade-off curve,” arXiv preprint

arXiv:1705.08966, 20117.

K. Konstantinidis and A. Ramamoorthy, “Leveraging coding tech-

niques for speeding up distributed computing,” arXiv preprint

arXiv:1802.03049, 2018.

M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded

distributed computing,” arXiv preprint arXiv:1709.00196, 2017.

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

[18] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” arXiv preprint arXiv:1805.01993, 2018.

M. A. Attia and R. Tandon, “Information theoretic limits of data
shuffling for distributed learning,” GLOBECOM, 2016.

M. A. Attia and R. Tandon, “Near optimal coded data shuffling for
distributed learning,” arXiv preprint arXiv:1801.01875, 2018.

J. Chung, K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Ubershuffle: Communication-efficient data shuffling for sgd via coding
theory,” NIPS Workshop on ML Systems, 2017.

K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded
computation for multicore setups,” in Information Theory (ISIT), 2017
IEEE International Symposium on, pp. 2413-2417, 1EEE, 2017.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” NIPS, 2016.
A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computation
schemes over wireless networks,” arXiv preprint arXiv:1707.00040,
2017.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” ICML, 2017.

Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” NIPS,
2017.

K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” ISIT, 2017.

S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, ‘“Near-
optimal straggler mitigation for distributed gradient methods,” arXiv
preprint arXiv:1710.09990, 2017.

Y. Yang, M. Chaudhari, P. Grover, and S. Kar, “Coded iterative comput-
ing using substitute decoding,” arXiv preprint arXiv:1805.06046, 2018.
S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded
linear transform,” arXiv preprint arXiv:1804.09791, 2018.

A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-
perfect load balancing in distributed matrix-vector multiplication,” arXiv
preprint arXiv:1804.10331, 2018.

S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
arXiv preprint arXiv:1802.03430, 2018.

Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient
coding via sparse random graphs,” arXiv preprint arXiv:1711.06771,
2017.

M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” arXiv preprint arXiv:1802.03475, 2018.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Globe-
com Workshops (GC Wkshps), 2016 IEEE, pp. 1-6, IEEE, 2016.

Y. Yang, P. Grover, and S. Kar, “Fault-tolerant distributed logistic
regression using unreliable components,” in Communication, Control,
and Computing (Allerton), 2016 54th Annual Allerton Conference on,
pp. 940-947, IEEE, 2016.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Advances in Neural
Information Processing Systems, pp. 5440-5448, 2017.

S. M. M. K. A. Salman Avestimehr and M. Soltanolkotabi, ‘“Funda-
mental resource trade-offs for encoded distributed optimization,” arXiv
preprint arXiv:1804.00217, 2018.

S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
sgd,” arXiv preprint arXiv:1803.01113, 2018.

R. K. Maity and A. S. M. Rawat, “Robust gradient descent via moment
encoding with 1dpc codes,” arXiv preprint arXiv:1805.08327, 2018.

N. Ferdinand, B. Gharachorloo, and S. C. Draper, “Anytime exploitation
of stragglers in synchronous stochastic gradient descent,” in Machine
Learning and Applications (ICMLA), 2017 16th IEEE International
Conference on, pp. 141-146, IEEE, 2017.

Y. Keshtkarjahromi and H. Seferoglu, “Coded cooperative computation
for internet of things,” arXiv preprint arXiv:1801.04357, 2018.

N. Shakya, F. Li, and J. Chen, “Distributed computing with heteroge-
neous communication constraints: The worst-case computation load and
proof by contradiction,” arXiv preprint arXiv:1802.00413, 2018.

J. Lin and M. Schatz, “Design patterns for efficient graph algorithms in
mapreduce,” MLG Workshop, 2010.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.
W. Xing and A. Ghorbani, “Weighted pagerank algorithm,” in Commu-
nication Networks and Services Research, 2004. Proceedings. Second
Annual Conference on, pp. 305-314, IEEE, 2004.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis, “The complexity of multiway cuts,” STOC, 1992.

(19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

(33]

[34]

[35]

[36]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

(471

18

[48] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: a system for dynamic load balancing in large-scale
graph processing,” in Proceedings of the 8th ACM European Conference
on Computer Systems, pp. 169—182, 2013.

F. Chung and L. Lu, “The average distance in a random graph with
given expected degrees,” Internet Mathematics, vol. 1, no. 1, pp. 91—
113, 2004.

R. P E., “Sen, p. k.; singer, j. m.: Large sample methods in statistics. an
introduction with applications. chapman & hall, new york-london 1993,
xii, 382pp., £35.00, isbn 0—412-04221-5,” Biometrical Journal, vol. 36,
no. 5, pp. 602-602.

M. Loeve, Probability Theory I.
Springer New York, 1977.
https://github.com/AvestimehrResearchGroup/Coded-PageRank.

[49]

[50]

[51] Graduate Texts in Mathematics,

[52]

APPENDIX A
ACHIEVABILITY FOR THE RANDOM BI-PARTITE MODEL

In this Section, we specialize our proposed scheme in
Section IV for the random bi-partite model and prove the
achievability of Theorem 3. Consider RB(nq,ns,q) graph
g = (Vl UV27€) with n = ni + no, Vl‘ = ny = @(TL),
and |Vs| = ng = O(n) where [ny — na| = o(n). The prior
knowledge of the bi-partite structure of the graph implies that
Reduction of vertices in V; depends only on the Mappers in
V,. Therefore, the two operations would better be assigned to
the same set of servers. Inspired by that argument, we describe
subgraph and Reduce allocations as follows. We divide the
total K servers into two sets of K1 = "L K and Ky = 2K
servers. Assume nq > no.

(I) Mappers in V; and Reducers in Vs, are distributedly
allocated to K; servers according to the allocation
scheme proposed in Section IV-A. Each of the K;
servers Maps anL1 = n4 vertices (in V1) and Reduces
%’1 = Z—f% vertices (in Vs). Note that although each

server in K7 is loaded at its capacity with - Mappers,

these servers are assigned Z—f% < % Reducers which
implies more Reducers can be assigned to these servers.

Next we allocate the Mappers in V, to the other set

of K5 servers similar to Mappers in V;. According to

our pick for K5 and the allocation scheme proposed
in Section IV-A, each server in Ky is assigned with
ngKLQ = n vertices (in V). To allocate the n; Reduc-
tions in V; to the K5 servers, we note that these servers
can accommodate at most Kg% = no Reductions
which is less than n;. To allocate all Reductions, we
use the remaining Reduction space in the K servers.

More precisely, we first allocate ny out of the total n;

Reductions in V; to the Ky servers.

(IIT) Finally, we allocate the remaining n; — ny vertices to

the K servers.

ey

All in all, each of the K servers is now assigned with nr/K
Mappers and n/ K Reducers. We denote this allocation by Ae
A(r). Moreover, coded Shuffling applies the coded scheme
proposed in Section IV-A for Reducing functions in phases
(D and (IT) separately. We also allow uncoded communications
for enabling Reductions required in phase (III).

Now, we evaluate the communication load of each of the
above phases. Let L', L% denote the average normalized
communication loads for phases (I) and (II); and E%CS denote
the average normalized communication load regarding phase

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

(III). From the achievability result in Theorem 1, for ¢ =
w(z), we have

n K1
and)
1 n T
A = pin2? Ko +o(q)

As mentioned before, Reduction of the remaining n; — no
vertices in phase (II) is carried out uncoded, which induces
the average normalized communication load as follows:
N9 (711 — TLQ)

n2 '
Putting all together, the proposed achievable scheme has the
total average normalized communication load L 4 as follows:

F_ _ 701 7 C2 7UC3

£y — g

+4q

Hence, the achievability claim of Theorem 3 can be concluded
as follows:
L*(r)
q

L ~
< lim sup —A
n— 00 q

. 1 nine (r)
< limsup — 1— —
- n—)oopr n? Ky

1n2 r
+ limsup - —2 (1—)
n—>oop'r'n2 K

na(n1 — na)
Tl2

lim sup
n—oo

+ lim sup

n—oo
_ Loy
2r K

APPENDIX B
CONVERSE FOR THE RANDOM BI-PARTITE MODEL

(25)

Here we provide a lower bound on the optimal average
communication load for the random bi-partite model that is
within a constant factor of the upper bounds and complete
the proof of Theorem 3. Consider G = (V1 U V5, &) and
assume that n; > no. To derive a lower bound on L*(r),
for every realization of RB(ni,n2,q) graph, we arbitrarily
remove n; — ng vertices in V; along with their corresponding
edges. The new bi-partite graph represents two random ER
graphs with ny vertices. Consider Reducing the vertices in
one side of the new graph, e.g. V. Clearly, this provides
a lower bound on L*(r). Note that now each Mapper can
benefit from a redundancy factor of 2r. According to Theorem
1, Reducing Vs, induces the (optimal) communication load of

7q(1— 2%) + o(q) which implies
. L*(r) . 1 n2 (27«>
lim su >limsup—qg—=|(1——]+o

(26)

1 2r
=—(1—-——=—.
87’(K)

19

Hence, the proof of converse of Theorem 3 is complete. Fur-
thermore, (25) and (26) together asymptotically characterize
the optimal average normalized communication load L*(r)
within a factor of 4.

APPENDIX C
ACHIEVABILITY FOR THE STOCHASTIC BLOCK MODEL

In this Section, we specialize our proposed scheme in
Section IV for the stochastic block model and prove the
achievability of Theorem 4. Consider an SBM(ny,ns,p,q)
graph g = (Vl UV, & U& U 53) with n = ny + no,
V1| = n1 = O(n), and [V3] = ne = O(n). Edge subsets
&1, € and & respectively represent intra-cluster edges among
vertices in V), intra-cluster edges among vertices in Vs,
and inter-cluster edges between vertices in V; and V,. Let
G = (V1,&) and Go = (Vs, &) be graphs induced by V;
and Vs, respectively, and denote the graph of inter-cluster
connections by Gz = (V3 U Vs, &3). Clearly, G; and Gy are
ER(n1,p) and ER(ng,p) graphs, while G3 is RB(n1,n2,q)
graph.

Subgraph and Reduce allocations are described as follows.
Mappers in V; and Reducers in Vs are distributedly allocated
to K servers according to the allocation scheme proposed in
Section IV. Similarly, Mappers in V5 and Reducers in V; are
distributedly allocated to K servers according to the allocation
scheme proposed in Section IV. Therefore, each server Maps
nyr/K vertices in V; and nor/K vertices in Vs, inducing
the computation load r. Moreover, each server Reduces n; /K
functions in V; and ns/K functions in V5. We consider this
allocation, denoted by }L for both uncoded and coded Shuf-
fling schemes. In uncoded scheme, Reducing each function in
V1 requires on average pn; intermediate values Mapped by
vertices in V) due to intra-cluster connections which intro-
duces the average uncoded load LYC! = Pty (1-%).
Similarly, the average uncoded load for Redzucing Vs due
to intra-cluster connections is E%Q = Portay? (1-%).
Moreover, inter-cluster connections induce an average load
10 = g, (1 7).

In the coded scheme, we propose to employ coded Shuffling
for the ER and RB models in the regime of interest, that is
p=w(3), ¢ =w() and p > q. Thus, the overall commu-
nication load can be decomposed into three components. We
first apply the coded Shuffling scheme described in Section
IV-A to ER graph G; which induces the average normalized
communication load

- 1 1 n r

Lg < ;L%m +o(p) = ;pm (1 — E) + o(p).
Similarly, the same scheme applied to ER graph G, results in
the average normalized communication load

2
na

- 1- 1 r
G2 « Zuc2 = 7(17—> .
i < Li% o) R r—— =) o)
Finally, we employ the same scheme twice for the two ER
models constituting the RB graph Gs which induces the
average normalized communication load
_ 1- 1 2nin
08 < 2 ucs L (1
i s pbitold) r T (ny + na)?

r

— =) +ola).

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2020.2999675, IEEE

Transactions on Information Theory

Let us denote by LG and LYC the total average normalized
communication loads of the coded and uncoded schemes,
respectively. Therefore,

L*(r) < LS
7C1 7C2 7C3
=LY+ LY+ LY

IN

1 - _ _

;(L%‘“ + LY + LY + o(p)
1_

= ;L%C + o(p)

2 2
pny + pns 4 2qning (r)
= 1——)+o(p),
(nl + n2)2 K (p)
which concludes the proof of achievability of Theorem 4.

APPENDIX D
CONVERSE FOR THE STOCHASTIC BLOCK MODEL

In this section, we provide the proof of the converse of
Theorem 4. Consider an SBM(nq,n2,p,q) graph G = (V; U
Vo,E1 U E U 53) with n = ny + ne, |V1| =Ny = @(n),
and |Va| = ny = O(n). Our approach to derive a lower
bound for the minimum average communication load is to
randomly remove edges from the two intra-cluster edges, i.e.
&1 and &,. Moreover, edges are removed such that each of
those clusters are then Erdos-Renyi models with connectivity
probability g (reduced from p). This can be simply verified
by the following coupling-type argument. Let the Bernoulli
random variable E, denote the indicator of existence of a
generic edge in an ER(n,p) graph, ie. Pr[E, =1 =1 —p.
Now, generate another Bernoulli £, by randomly removing
edges from the realized ER graph as follows:

if 5, =0 0
. - 0 wp.1—gq/p
i B, =1 { 1 w.p. q¢/p.
Clearly, E, is Bernoulli(¢) and the resulting graph has fewer
number of edges compared to the original one (with probabil-
ity 1). By doing so for the two ER components of the SBM
graph, we have a larger ER graph of size n = nj + ny with
connectivity probability g. Using the converse in Theorem 1,
we have the following for average normalized communication
load for the stochastic block model:
L*(r) _ 1 r
zs 2 (1 - —) .
K

E, =

q T

APPENDIX E

Lemma 4. For all p € [0,1] and s’ > 0, we have (pesl +1-—
p)’ <pe* +1-p.

Proof. For given p € [0, 1], define f(s') = (pe® +1 —p)2 —
(pe**" + 1 —p). Clearly f(0) = 0. Moreover,

F(s') = 2pp(e” — *) <0,
for s’ > 0. Therefore, f(s’) < 0 for all s’ > 0, concluding the
claim of the lemma.]

20

Saurav Prakash received his Bachelor of Technology degree in Electrical
Engineering from the Indian Institute of Technology (IIT), Kanpur, India
in 2016 and is currently a Ph.D. candidate in Electrical and Computer
Engineering at the University of Southern California (USC), Los Angeles.
He was a finalist in the Qualcomm Innovation Fellowship program in 2019.
He received the Annenberg Graduate Fellowship in 2016 and was one of
the Viterbi-India fellows in summer 2015. His interests include information
theory and data analytics with applications in large-scale machine learning
and edge computing.

Amirhossein Reisizadeh received his B.S. degree form Sharif University
of Technology, Tehran, Iran in 2014 and an M.S. degree from University
of California, Los Angeles (UCLA) in 2016, both in Electrical Engineering.
He is currently pursuing his Ph.D. in Electrical and Computer Engineering
at University of California, Santa Barbara (UCSB). He was a finalist in
the Qualcomm Innovation Fellowship program in 2019. He is interested
in using information and coding-theoretic concepts to develop fast and
efficient algorithms for large-scale machine learning, distributed computing
and optimization.

Ramtin Pedarsani is an Assistant Professor in ECE Department at the
University of California, Santa Barbara. He received the B.Sc. degree in
electrical engineering from the University of Tehran, Tehran, Iran, in 2009,
the M.Sc. degree in communication systems from the Swiss Federal Institute
of Technology (EPFL), Lausanne, Switzerland, in 2011, and his Ph.D. from
the University of California, Berkeley, in 2015. His research interests include
machine learning, information and coding theory, networks, and transportation
systems. Ramtin is a recipient of the IEEE international conference on
communications (ICC) best paper award in 2014.

A. Salman Avestimehr is a Professor and director of the Information Theory
and Machine Learning (VITAL) research lab at the Electrical and Computer
Engineering Department of University of Southern California. He received
his Ph.D. in 2008 and M.S. degree in 2005 in Electrical Engineering and
Computer Science, both from the University of California, Berkeley. Prior to
that, he obtained his B.S. in Electrical Engineering from Sharif University of
Technology in 2003. His research interests include information theory, coding
theory, and large-scale distributed computing and machine learning.

Dr. Avestimehr has received a number of awards for his research, including
the James L. Massey Research & Teaching Award from IEEE Information
Theory Society, an Information Theory Society and Communication Society
Joint Paper Award, a Presidential Early Career Award for Scientists and
Engineers (PECASE) from the White House, a Young Investigator Program
(YIP) award from the U. S. Air Force Office of Scientific Research, a National
Science Foundation CAREER award, the David J. Sakrison Memorial Prize,
and several Best Paper Awards at Conferences. He is a Fellow of IEEE. He
has been an Associate Editor for IEEE Transactions on Information Theory.
He is currently a general Co-Chair of the 2020 International Symposium on
Information Theory (ISIT).

0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 31,2020 at 21:21:12 UTC from IEEE Xplore. Restrictions apply.

